JP4966928B2 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP4966928B2
JP4966928B2 JP2008198587A JP2008198587A JP4966928B2 JP 4966928 B2 JP4966928 B2 JP 4966928B2 JP 2008198587 A JP2008198587 A JP 2008198587A JP 2008198587 A JP2008198587 A JP 2008198587A JP 4966928 B2 JP4966928 B2 JP 4966928B2
Authority
JP
Japan
Prior art keywords
water
treated
cathode
anode
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008198587A
Other languages
Japanese (ja)
Other versions
JP2010036062A (en
JP2010036062A5 (en
Inventor
直之 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2008198587A priority Critical patent/JP4966928B2/en
Publication of JP2010036062A publication Critical patent/JP2010036062A/en
Publication of JP2010036062A5 publication Critical patent/JP2010036062A5/ja
Application granted granted Critical
Publication of JP4966928B2 publication Critical patent/JP4966928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工業排水等の水中に溶存している有機化合物を処理するのに好適な水処理方法に関する。   The present invention relates to a water treatment method suitable for treating an organic compound dissolved in water such as industrial wastewater.

工業排水等の水中に溶存している有機化合物は、一般的には、好気性又は嫌気性の微生物を用いた生物処理により分解され無害化されるが、微生物を用いた分解処理が困難な場合もある。そのような難分解性の有機化合物は、多くの場合、促進酸化処理により分解することができる。促進酸化処理は、処理装置内でOHラジカル(ヒドロオキシラジカル: ・OH)を生成させ、OHラジカルの強い酸化力によって、有機化合物を例えばCO、蟻酸、アルデヒド等の低分子まで分解するものである。なお、促進酸化処理は生物処理とともに用いると、より有効である。 Organic compounds dissolved in water such as industrial wastewater are generally decomposed and rendered harmless by biological treatment using aerobic or anaerobic microorganisms, but when decomposition treatment using microorganisms is difficult There is also. Such persistent organic compounds can often be decomposed by accelerated oxidation treatment. In the accelerated oxidation treatment, OH radicals (hydroxy radicals: OH) are generated in the treatment apparatus, and organic compounds are decomposed into low molecules such as CO 2 , formic acid, and aldehydes by the strong oxidizing power of the OH radicals. is there. The accelerated oxidation treatment is more effective when used with biological treatment.

従来の促進酸化処理は、オゾン(O)、過酸化水素(H)、UV照射を組み合わせる方式が一般的であり、ダイオキシンの分解処理等に実用化されている。この方式は、オゾン発生器、排ガス処理装置、UV照射装置等の特殊な設備に要するコストが大きい。一方、特殊な設備を必要とせず初期投資が少ない簡便な方式として、以下の式で示すような二価鉄イオン(Fe2+)と過酸化水素からOHラジカルを生成する反応(フェントン反応)を利用するフェントン法が知られている。
Fe2+ + H → Fe3+ + OH + ・OH
このフェントン法は、二価鉄イオン源と過酸化水素を薬剤として外部から投入しており、特に、取り扱い上の危険性が高い過酸化水素の供給コストが非常に大きい。
Conventional accelerated oxidation treatment is generally performed by combining ozone (O 3 ), hydrogen peroxide (H 2 O 2 ), and UV irradiation, and has been put to practical use for dioxin decomposition treatment. This method requires a large cost for special equipment such as an ozone generator, an exhaust gas treatment device, and a UV irradiation device. On the other hand, as a simple method that requires little initial investment and does not require special equipment, a reaction (Fenton reaction) that generates OH radicals from divalent iron ions (Fe 2+ ) and hydrogen peroxide as shown in the following formula is used. The Fenton method is known.
Fe 2+ + H 2 O 2 → Fe 3+ + OH + OH
In this Fenton method, a divalent iron ion source and hydrogen peroxide are supplied as chemicals from the outside, and the supply cost of hydrogen peroxide, which is particularly dangerous for handling, is very high.

更には、フェントン法と電解処理を組み合わせ、フェントン法で必要な二価鉄イオンと過酸化水素の両方又はどちらかを促進酸化処理と同じ装置内で生成供給するような電解フェントン法が知られている。電解フェントン法における二価鉄イオンの主な生成供給については次のような方式がある。
(1)陰極(カソード)によって、
Fe3+ + e → Fe2+
のような、フェントン反応で生成された三価鉄イオンを電解還元して二価鉄イオンを供給する方式。
(2)陽極(アノード)に鉄電極を用いて、
Fe → Fe2+ + 2e
のような、二価鉄イオンを電解生成する方式。
また、過酸化水素の主な生成供給の方式には、陰極によって、
+ 2H + 2e → H
のような、酸素を電解還元して過酸化水素を供給する方式がある。このような電解フェントン法では、二価鉄イオン源と過酸化水素の両方又はどちらかを初期投入以外は薬剤として外部から投入しなくても済み、特に、酸素を電解還元して過酸化水素を供給する方式では過酸化水素の供給コストの削減が期待できる。
Furthermore, an electrolytic Fenton method is known in which the Fenton method and electrolytic treatment are combined, and both divalent iron ions and hydrogen peroxide required by the Fenton method are generated and supplied in the same apparatus as the accelerated oxidation treatment. Yes. There are the following methods for the main production and supply of divalent iron ions in the electrolytic Fenton method.
(1) Depending on the cathode (cathode)
Fe 3+ + e → Fe 2+
A method of supplying divalent iron ions by electrolytic reduction of trivalent iron ions generated by the Fenton reaction.
(2) Using an iron electrode for the anode (anode),
Fe → Fe 2+ + 2e
A method to generate divalent iron ions by electrolysis.
In addition, the main production and supply method of hydrogen peroxide is by the cathode,
O 2 + 2H + 2e → H 2 O 2
There is a method of supplying hydrogen peroxide by electrolytic reduction of oxygen. In such an electrolytic Fenton method, it is not necessary to input a divalent iron ion source and / or hydrogen peroxide from the outside as a medicine except for the initial charging. The supply method can be expected to reduce the supply cost of hydrogen peroxide.

他方、OHラジカルを生成させるのに、非特許文献1には、二価鉄イオン源と次亜塩素酸(HOCl)を投入して、フェントン反応に類似した以下の式で示すような反応(フェントン型反応)を利用することが報告されている。
Fe2+ + HOCl → Fe3+ + Cl + ・OH
非特許文献1によると、このフェントン型反応は、反応速度定数がフェントン反応と比較して3桁程度大きいという特徴がある。
On the other hand, in order to generate OH radicals, Non-Patent Document 1 introduces a divalent iron ion source and hypochlorous acid (HOCl), and a reaction similar to the Fenton reaction represented by the following formula (Fenton): Type reaction) has been reported.
Fe 2+ + HOCl → Fe 3+ + Cl + OH
According to Non-Patent Document 1, this Fenton type reaction has a feature that the reaction rate constant is about three orders of magnitude larger than that of the Fenton reaction.

L.P.Candeias、外2名、“Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(2) complex”、Free Rad. Res.、(米国)、Harwood Academic Publishers GmbH、1994年、第20巻、第4号、p.241−249L. P. Candias, two others, “Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron (2) complex”, Free Rad. Res. , (USA), Harwood Academic Publishers GmbH, 1994, Vol. 20, No. 4, p. 241-249

しかしながら、工業排水等の水処理に使用する上で、上記のフェントン法は勿論、酸素を電解還元して過酸化水素を供給する方式の電解フェントン法においても、純粋な酸素ガスをガスボンベ等から促進酸化処理装置内に供給する必要があり、必ずしも薬剤の供給コストの削減が十分に達成できるとは言えない。   However, when used for water treatment of industrial wastewater, etc., the above Fenton method, as well as the electrolytic Fenton method of electrolytically reducing oxygen and supplying hydrogen peroxide, promote pure oxygen gas from gas cylinders, etc. It is necessary to supply into the oxidation treatment apparatus, and it cannot be said that reduction of the supply cost of the chemical can be sufficiently achieved.

また、非特許文献1のような次亜塩素酸を過酸化水素の代わりに用いてフェントン型反応を起こさせる技術は、以下に述べるようにそのままでは実用化できるものとは言えない。本願発明者は、非特許文献1のように、二価鉄イオン源と次亜塩素酸を投入してフェントン型反応を起こさせる技術が利用可能なものかどうかを以下のとおりに実験した。分解すべき有機化合物として1,4−ジオキサン(1,4−dioxane)を用いた。1,4−ジオキサンを1.25mMと次亜塩素酸を4mM含む溶液A、二価鉄イオン源として硫酸鉄(FeSO)を4mM含む溶液Bを作成し、それぞれを当量混合してフェントン型反応を起こさせ、1,4−ジオキサンの分解量を測定した。1,4−ジオキサンの初期濃度は0.625mMである。一方、これと対比するために、1,4−ジオキサンを1.25mMと過酸化水素を4mM含む溶液A’、硫酸鉄を4mM含む溶液B’を作成し、それぞれを当量混合してフェントン反応を起こさせ、1,4−ジオキサンの分解量を測定した。1,4−ジオキサンの初期濃度は0.625mMである。なお、硫酸を適量添加することにより、pHを2付近になるように制御した。 Further, the technology for causing the Fenton-type reaction using hypochlorous acid instead of hydrogen peroxide as in Non-Patent Document 1 cannot be said to be practically used as it is as described below. The inventor of the present application experimented as follows as to whether or not a technique for introducing a divalent iron ion source and hypochlorous acid to cause a Fenton-type reaction as in Non-Patent Document 1 can be used. 1,4-Dioxane was used as the organic compound to be decomposed. A solution A containing 1.25 mM of 1,4-dioxane and 4 mM of hypochlorous acid and a solution B containing 4 mM of iron sulfate (FeSO 4 ) as a divalent iron ion source were prepared, and they were mixed in an equivalent amount to obtain a Fenton-type reaction. And the amount of 1,4-dioxane decomposed was measured. The initial concentration of 1,4-dioxane is 0.625 mM. On the other hand, for comparison, a solution A ′ containing 1.25 mM of 1,4-dioxane and 4 mM of hydrogen peroxide and a solution B ′ containing 4 mM of iron sulfate were prepared, and each was mixed in an equivalent amount to perform the Fenton reaction. The amount of 1,4-dioxane decomposed was measured. The initial concentration of 1,4-dioxane is 0.625 mM. The pH was controlled to be around 2 by adding an appropriate amount of sulfuric acid.

化学量論的には、溶液Aと溶液Bを混合した場合と溶液A’と溶液B’を混合した場合で、生成されるOHラジカルの量は等しいことが期待され、1,4−ジオキサンの分解量も等しいことが期待される。実際の実験結果は、溶液Aと溶液Bを混合した場合の1,4−ジオキサンの分解量は0.0967mM、溶液A’と溶液B’を混合した場合の1,4−ジオキサンの分解量は0.518mMであった。すなわち、溶液Aと溶液Bを混合した場合は溶液A’と溶液B’を混合した場合に比べ、1,4−ジオキサンの分解量は約5分の1にとどまった。これは、OHラジカルと次亜塩素酸の反応速度定数が大きいために、溶液Aの中に高濃度の状態で残っている次亜塩素酸が生成されたOHラジカルを消費するラジカルスカベンジャーとして働き、1,4−ジオキサンの分解に供されるOHラジカルの量が少なくなっていたためと考えられる。   Stoichiometrically, it is expected that the amount of OH radicals produced is the same when the solution A and the solution B are mixed and when the solution A ′ and the solution B ′ are mixed. The amount of decomposition is expected to be equal. The actual experimental results show that the decomposition amount of 1,4-dioxane when the solution A and the solution B are mixed is 0.0967 mM, and the decomposition amount of 1,4-dioxane when the solution A ′ and the solution B ′ are mixed is 0.518 mM. That is, when the solution A and the solution B were mixed, the decomposition amount of 1,4-dioxane was only about one-fifth compared with the case where the solution A ′ and the solution B ′ were mixed. This acts as a radical scavenger that consumes the OH radicals in which hypochlorous acid remaining in a high concentration state in the solution A due to the large reaction rate constant of OH radicals and hypochlorous acid, This is probably because the amount of OH radicals used for the decomposition of 1,4-dioxane was reduced.

そこで、本願発明者は、工業排水等には大量の塩化物イオンが元々含まれていること、及び塩化物イオン源は安価な、しかも危険性の低い方式で(典型的な例として塩化ナトリウム(NaCl)の形で)供給できること、に着目し、塩化物イオンを用いて次亜塩素酸を徐々に発生させ、それからOHラジカルを生成して有機化合物を効率的に分解するようにして、上記フェントン型反応を利用した実用的な方式を鋭意研究した。   Therefore, the present inventor has found that industrial wastewater or the like originally contains a large amount of chloride ions, and that the chloride ion source is an inexpensive and low-risk method (typically sodium chloride ( Paying attention to the fact that it can be supplied (in the form of NaCl), hypochlorous acid is gradually generated using chloride ions, and then OH radicals are generated to efficiently decompose the organic compound. We researched practical methods using mold reaction.

本発明は、係る事由に鑑みてなされたものであり、その目的は、二価鉄イオンと次亜塩素酸からOHラジカルを生成して有機化合物を効率的に分解することができる低コストの水処理方法を提供することにある。   The present invention has been made in view of such reasons, and its purpose is to produce low-cost water that can efficiently decompose organic compounds by generating OH radicals from divalent iron ions and hypochlorous acid. It is to provide a processing method.

請求項1に記載の水処理方法は、添加された鉄イオン源と添加された塩化物イオン源から水槽に注入された被処理水に鉄イオンと塩化物イオンを存在せしめ、pHを3以下になるように調整しながら、この被処理水に浸された陽極と陰極の間に電圧を印加して設定した所定値の電流を流すことによって、陽極で塩化物イオンと水とを反応させて次亜塩素酸を生成し、陰極で三価鉄イオンを還元して二価鉄イオンを生成し、それらの次亜塩素酸と二価鉄イオンとを反応させて生成したOHラジカルによって被処理水に溶存している有機化合物を促進酸化して分解する促進酸化工程を含むことを特徴とする。 In the water treatment method according to claim 1, iron ions and chloride ions are present in the water to be treated injected into the water tank from the added iron ion source and the added chloride ion source, and the pH is reduced to 3 or less. While adjusting so that a predetermined current set by applying a voltage between the anode and the cathode immersed in the water to be treated is allowed to react with the chloride ions and water at the anode, Produces chlorous acid, reduces trivalent iron ions at the cathode to produce divalent iron ions, and reacts with these hypochlorous acid and divalent iron ions to produce water to be treated. It includes an accelerated oxidation step in which dissolved organic compounds are oxidized and decomposed .

請求項2に記載の水処理方法は、請求項に記載の水処理方法において、前記促進酸化工程では陽極と陰極との間の電流密度を8.5mA/cm以下に設定することを特徴とする。 The water treatment method according to claim 2 is characterized in that, in the water treatment method according to claim 1 , the current density between the anode and the cathode is set to 8.5 mA / cm 2 or less in the accelerated oxidation step. And

請求項3に記載の水処理方法は、請求項1又は2に記載の水処理方法において、前記水槽に中和剤を添加して被処理水を中和することにより、水酸化鉄を沈殿させる中和工程と、沈殿した水酸化鉄を残して被処理水を排出する水排出工程と、を更に備えることを特徴とする。 The water treatment method according to claim 3 is the water treatment method according to claim 1 or 2 , wherein iron hydroxide is precipitated by adding a neutralizing agent to the water tank to neutralize the water to be treated. The method further comprises a neutralization step and a water discharge step of discharging the water to be treated while leaving the precipitated iron hydroxide.

請求項4に記載の水処理方法は、請求項に記載の水処理方法において、前記中和工程では陽極と陰極の間に電圧を印加する期間が設けられていることを特徴とする。 The water treatment method according to a fourth aspect is the water treatment method according to the third aspect , wherein a period for applying a voltage is provided between the anode and the cathode in the neutralization step.

本発明に記載の水処理方法によれば、陽極において塩化物イオンと水の反応により次亜塩素酸が徐々に発生し、陰極において三価鉄イオンを還元して二価鉄イオンを生成し、それらの次亜塩素酸と二価鉄イオンとが反応してOHラジカルが生成され、そのOHラジカルにより有機化合物を効率的に分解することができる。その結果、低コストでの水処理が可能になる。   According to the water treatment method of the present invention, hypochlorous acid is gradually generated by reaction of chloride ions and water at the anode, and trivalent iron ions are reduced at the cathode to produce divalent iron ions. These hypochlorous acid and divalent iron ions react to generate OH radicals, and the organic compounds can be efficiently decomposed by the OH radicals. As a result, low-cost water treatment becomes possible.

以下、本発明を実施するための最良の形態を図面を参照しながら説明する。図1は、本発明の実施形態に係る水処理方法を実現する水処理装置1の模式図である。この水処理装置1は、水槽2を有し、水槽2の内側には陽極(アノード)3Xと陰極(カソード)3Yが設置され、水槽2の外側には陽極3Xと陰極3Yの間に電圧を印加する電圧印加手段4が設けられている。陽極3Xは例えばRuO/Ti電極であり、陰極3Yは例えばステンレス電極である。また、図2は、この水処理方法の各工程間の流れを説明するための説明図である。この水処理方法では、水槽2の中に注入された工業排水等の被処理水Sは、図2(a)で示す促進酸化工程、図2(b)で示す中和工程、図2(c)で示す水排出工程を経て処理される。 The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a water treatment apparatus 1 that realizes a water treatment method according to an embodiment of the present invention. This water treatment apparatus 1 has a water tank 2, and an anode (anode) 3X and a cathode (cathode) 3Y are installed inside the water tank 2, and a voltage is applied between the anode 3X and the cathode 3Y outside the water tank 2. A voltage applying means 4 for applying is provided. The anode 3X is, for example, a RuO 2 / Ti electrode, and the cathode 3Y is, for example, a stainless steel electrode. Moreover, FIG. 2 is explanatory drawing for demonstrating the flow between each process of this water treatment method. In this water treatment method, the water to be treated S such as industrial wastewater injected into the water tank 2 is an accelerated oxidation step shown in FIG. 2 (a), a neutralization step shown in FIG. 2 (b), and FIG. It is processed through a water discharge process indicated by).

促進酸化工程では、水槽2の中の被処理水Sに、鉄イオン源(例えば、塩化鉄(FeCl))を添加し、必要に応じて塩化物イオン源(例えば、塩化ナトリウム(NaCl))を添加することで、被処理水Sに鉄イオンと塩化物イオンを存在せしめる。被処理水Sに大量の塩化物イオンが元々含まれている場合には外部から添加する塩化物イオン源は不要である。そして、pHを酸性に調整しながら、電流値を所定値に設定して陽極3Xと陰極3Yの間に電圧を印加する。なお、後述のように、中和工程で得られる水酸化鉄を鉄イオン源として再利用可能なので、水排出工程後に新しい被処理水Sを注入して促進酸化工程を行うときには、鉄イオン源の外部からの添加は不足したときに行うことになる。 In the accelerated oxidation step, an iron ion source (for example, iron chloride (FeCl 3 )) is added to the water to be treated S in the water tank 2, and a chloride ion source (for example, sodium chloride (NaCl)) as necessary. As a result, iron ions and chloride ions are present in the water to be treated S. If the treated water S originally contains a large amount of chloride ions, a chloride ion source added from the outside is not necessary. Then, while adjusting the pH to be acidic, the current value is set to a predetermined value, and a voltage is applied between the anode 3X and the cathode 3Y. As will be described later, iron hydroxide obtained in the neutralization step can be reused as an iron ion source. Therefore, when performing the accelerated oxidation step by injecting new treated water S after the water discharge step, the iron ion source External addition will be performed when insufficient.

陽極3Xと陰極3Yの間の電圧印加により、陽極3Xにおいて、以下の式に示すように、塩化物イオン(Cl)と水(HO)の反応により、次亜塩素酸(HOCl)とそれに付随して塩酸(HCl)が生成され、陽極3Xには電子が残る。
2Cl + HO → HOCl + HCl + 2e
By applying a voltage between the anode 3X and the cathode 3Y, hypochlorous acid (HOCl) is reacted with chloride ion (Cl ) and water (H 2 O) at the anode 3X as shown in the following formula. Accompanying this, hydrochloric acid (HCl) is generated, and electrons remain in the anode 3X.
2Cl + H 2 O → HOCl + HCl + 2e

また、陰極3Yでは、以下の式に示すように、後述のフェントン型反応で生成されたものを含む被処理水Sの中の三価鉄イオン(Fe3+)が陰極3Yから電子を受けて二価鉄イオン(Fe2+)となる還元反応が生じる。
Fe3+ + e → Fe2+
In the cathode 3Y, as shown in the following formula, trivalent iron ions (Fe 3+ ) in the water to be treated S including those generated by the Fenton-type reaction described later receive electrons from the cathode 3Y and A reduction reaction to produce valent iron ions (Fe 2+ ) occurs.
Fe 3+ + e → Fe 2+

陽極3Xで生成された次亜塩素酸は、被処理水Sの中の二価鉄イオン、すなわち陰極3Yで生成された二価鉄イオンと、以下の式で示すような反応(フェントン型反応)を起こし、OHラジカルとそれに付随して塩化物イオンと三価鉄イオンが生成される。
Fe2+ + HOCl → Fe3+ + Cl + ・OH
被処理水Sに溶存している有機化合物は、このOHラジカルにより促進酸化されて分解される。ここで、陽極3Xにおいて次亜塩素酸が徐々に発生し、その次亜塩素酸からOHラジカルが生成され、そのOHラジカルの多くは有機化合物の分解に供される。従って、有機化合物を効率的に分解することができる。
Hypochlorous acid generated at the anode 3X reacts with divalent iron ions in the treated water S, that is, divalent iron ions generated at the cathode 3Y, as shown by the following formula (Fenton type reaction). OH radicals and accompanying chloride ions and trivalent iron ions are generated.
Fe 2+ + HOCl → Fe 3+ + Cl + OH
The organic compound dissolved in the water to be treated S is accelerated and oxidized by the OH radicals and decomposed. Here, hypochlorous acid is gradually generated at the anode 3X, OH radicals are generated from the hypochlorous acid, and most of the OH radicals are subjected to decomposition of the organic compound. Therefore, the organic compound can be efficiently decomposed.

促進酸化工程において、pHは、後述の実験結果で説明するように、3以下が好ましい。また、陽極3Xと陰極3Yの間に流れる電流の電流密度は、後述の実験結果で説明するように、電流効率の点では8.5mA/cm以下に設定するのが好ましい。また、1日の処理量の点では、1mA/cm以上に設定するのが好ましい。 In the accelerated oxidation step, the pH is preferably 3 or less, as will be described in the experimental results described later. Further, the current density of the current flowing between the anode 3X and the cathode 3Y is preferably set to 8.5 mA / cm 2 or less in terms of current efficiency, as will be described in the experimental results described later. Moreover, it is preferable to set to 1 mA / cm < 2 > or more from the point of the daily processing amount.

中和工程では、促進酸化工程が完了した水槽2の被処理水Sに中和剤(例えば、水酸化ナトリウム(NaOH))を添加してpHが4以上となるように中和する。そうすることによって、水酸化鉄の沈殿物Dが生成される。また、陽極3Xと陰極3Yの間に電圧を印加する期間を設けて陽極3Xと陰極3Yの間に電流を継続して流すことによって三価鉄イオンの生成を促進し、水酸化鉄の沈殿物Dの生成を早めることができる。水排出工程では、沈殿物Dを残して被処理水を排出する。なお、排出された被処理水に後処理を行うことも可能であるが、後処理を行わない場合はpHを8以下にしておくのが好ましい。その後、沈殿物Dが存在する状態で、新しい被処理水Sを注入してpHを酸性に調整すると、水酸化鉄から鉄イオンが生成される。このようにして、水酸化鉄を鉄イオンとして再利用し、新しい被処理水Sについて同様にして促進酸化工程、中和工程、水排出工程を行うことになる。   In the neutralization step, a neutralizing agent (for example, sodium hydroxide (NaOH)) is added to the water to be treated S of the water tank 2 in which the accelerated oxidation step has been completed, and neutralized so that the pH becomes 4 or more. By doing so, a precipitate D of iron hydroxide is produced. In addition, a period for applying a voltage between the anode 3X and the cathode 3Y is provided, and a current is continuously passed between the anode 3X and the cathode 3Y to promote the generation of trivalent iron ions, thereby causing precipitation of iron hydroxide. The generation of D can be accelerated. In the water discharge step, the water to be treated is discharged leaving the precipitate D. In addition, although it is possible to perform a post-treatment on the discharged water to be treated, it is preferable to set the pH to 8 or less when the post-treatment is not performed. Thereafter, in the state where the precipitate D is present, when new water to be treated S is injected and the pH is adjusted to be acidic, iron ions are generated from iron hydroxide. In this way, iron hydroxide is reused as iron ions, and the new treated water S is similarly subjected to the accelerated oxidation step, neutralization step, and water discharge step.

このように、この水処理方法は、簡便な水処理装置1を使用するので、初期コストの低減が可能である。また、この水処理方法で用いる鉄イオン源が中和工程で得られる水酸化鉄を再利用可能であること、外部から添加する塩化物イオン源が被処理水Sに大量の塩化物イオンが元々含まれている場合には不要であること、外部から塩化物イオン源を添加する場合でも塩化ナトリウムなどの塩化物イオン源は安価であること、鉄イオン源や塩化物イオン源は過酸化水素のような取り扱い上の危険性が高い薬剤でないこと、等の理由から運転コストの低減が可能である。   Thus, since this water treatment method uses the simple water treatment apparatus 1, the initial cost can be reduced. In addition, the iron ion source used in this water treatment method can reuse iron hydroxide obtained in the neutralization step, and the chloride ion source added from the outside has a large amount of chloride ions in the treated water S originally. If it is contained, it is not necessary. Even when a chloride ion source is added from the outside, a chloride ion source such as sodium chloride is inexpensive, and an iron ion source or a chloride ion source is hydrogen peroxide. The operating cost can be reduced because it is not a chemical with high handling risk.

なお、水処理装置1の具体的な形態は、被処理水Sの種類や量又は場所による。例えば、海岸の近傍に在る工場の排水が被処理水Sの場合は、海水を塩化物イオン源として被処理水Sに添加するような形態とすることが可能である。   In addition, the specific form of the water treatment apparatus 1 depends on the type, amount or location of the water to be treated S. For example, when the wastewater of the factory in the vicinity of the coast is the treated water S, it is possible to add seawater as the chloride ion source to the treated water S.

次に、本願発明者が行った実験を以下に具体的に説明する。   Next, an experiment conducted by the present inventor will be specifically described below.

図3はこの実験の実験装置の構成を示す模式図である。水槽2の内側に設置された陽極3Xと陰極3Yは、有効電極面積72.3cmの板状電極とした。陽極3XはRuO/Ti電極であり、陰極3Yはステンレス(SUS304)電極である。電圧印加手段4は、電流値を設定してその値に応じて陽極3Xと陰極3Yの間に電圧(4V程度)を印加するものとした。被処理水Sの攪拌のため、マグネチックスターラー5が設けられている。マグネチックスターラー5は、水槽2の内底に載置されて回転することにより被処理水Sを攪拌する攪拌子5Aとそれを駆動するマグネチックスターラー本体5Bから成る。pHの調整のためには、pH調整用の硫酸(HSO)が収容されている硫酸容器6Aと、硫酸容器6Aからの硫酸を水槽2に送出するポンプ6Bと、水槽2の中の被処理水Sに浸されてpHを計測するpHセンサー6Cと、その計測値に基づいてポンプ6Bの作動・非作動を制御するpHコントローラ6Dと、が設けられている。 FIG. 3 is a schematic diagram showing the configuration of the experimental apparatus for this experiment. The anode 3X and the cathode 3Y installed inside the water tank 2 were plate-like electrodes having an effective electrode area of 72.3 cm 2 . The anode 3X is a RuO 2 / Ti electrode, and the cathode 3Y is a stainless steel (SUS304) electrode. The voltage applying means 4 sets a current value and applies a voltage (about 4 V) between the anode 3X and the cathode 3Y according to the value. For stirring the treated water S, a magnetic stirrer 5 is provided. The magnetic stirrer 5 includes a stirrer 5A that is placed on the inner bottom of the water tank 2 and rotates to stir the water to be treated S, and a magnetic stirrer body 5B that drives the stirrer 5A. In order to adjust the pH, a sulfuric acid container 6A containing sulfuric acid for adjusting pH (H 2 SO 4 ), a pump 6B for sending sulfuric acid from the sulfuric acid container 6A to the water tank 2, A pH sensor 6C that measures the pH by being immersed in the water to be treated S, and a pH controller 6D that controls the operation / non-operation of the pump 6B based on the measured value are provided.

分解すべき有機化合物として1,4−ジオキサン(1,4−dioxane)を用いた。水槽2の中に、1,4−ジオキサンが溶存する被処理水Sを1L注入し、塩化ナトリウム(NaCl)と塩化鉄(FeCl)を添加し、初期状態において、1,4−ジオキサンが20mM、Clが281mM、三価鉄イオンが後述するそれぞれの実験に応じた所定濃度となるようにした。促進酸化工程の実験では、被処理水Sを攪拌し、pHが2になるように調整しながら、電流値をそれぞれの実験に応じた所定値に設定して陽極3Xと陰極3Yの間に電圧を印加し、1,4−ジオキサンの濃度を計測した。 1,4-Dioxane was used as the organic compound to be decomposed. 1 L of treated water S in which 1,4-dioxane is dissolved is injected into the water tank 2, sodium chloride (NaCl) and iron chloride (FeCl 3 ) are added, and 1,4-dioxane is 20 mM in the initial state. , Cl was 281 mM, and trivalent iron ions were adjusted to a predetermined concentration according to each experiment described later. In the experiment of the accelerated oxidation process, while the water to be treated S is stirred and adjusted to have a pH of 2, the current value is set to a predetermined value according to each experiment, and a voltage is applied between the anode 3X and the cathode 3Y. And the concentration of 1,4-dioxane was measured.

先ず、陽極3Xと陰極3Yの間に流れる電流の電流密度をパラメータとして変えたときの促進酸化工程の実験について説明する。図4は、そのときの1,4−ジオキサンの濃度の時間的推移を示すものである。初期状態の三価鉄イオンの濃度は2mMとした。電流は、0.1A、0.2A、0.5A、1.0A、1.5A、2.0Aというように変えた。従って、電流密度は、1.38mA/cm、2.77mA/cm、6.92mA/cm、13.8mA/cm、20.8mA/cm、27.7mA/cm(各々図中のデータa、b、c、d、e、fが対応)というように変えたことになる。 First, an experiment of the accelerated oxidation process when the current density of the current flowing between the anode 3X and the cathode 3Y is changed as a parameter will be described. FIG. 4 shows the temporal transition of the concentration of 1,4-dioxane at that time. The concentration of trivalent iron ions in the initial state was 2 mM. The current was changed to 0.1A, 0.2A, 0.5A, 1.0A, 1.5A, 2.0A. Therefore, the current density is 1.38 mA / cm 2 , 2.77 mA / cm 2 , 6.92 mA / cm 2 , 13.8 mA / cm 2 , 20.8 mA / cm 2 , 27.7 mA / cm 2 The data a, b, c, d, e, and f in the middle correspond to each other).

図4より、1,4−ジオキサンの濃度は、いずれの電流密度でもほぼ直線的に、すなわち0次反応的に減少しており、例えば、電流密度が6.92mA/cmでは60分後に5.36mM(27%)が減少している。0次反応的に減少していることから、陽極3Xで次亜塩素酸、陰極3Yで二価鉄イオンが継続的に電解生成されていることが分かる。 From FIG. 4, the concentration of 1,4-dioxane decreases almost linearly at any current density, that is, in the zeroth order reaction. For example, when the current density is 6.92 mA / cm 2 , the concentration decreases to 5 after 60 minutes. .36 mM (27%) is decreasing. From the decrease in the zero-order reaction, it can be seen that hypochlorous acid is continuously generated by electrolysis at the anode 3X and divalent iron ions are continuously generated at the cathode 3Y.

電流密度が6.92mA/cmまでのデータでは、電流密度が増加すると、1,4−ジオキサンの減少速度も大きくなる。しかし、電流密度が13.8mA/cmでは6.92mA/cmのときよりも1,4−ジオキサンの減少速度は小さくなっている。更に、電流密度が増加すると、1,4−ジオキサンの減少速度は小さくなる傾向にある。ここで、電流密度が13.8mA/cm以上のときの陰極3Yの状態を観察すると、その表面に赤褐色の付着物が認められた。このことから、電流密度が13.8mA/cm以上では、水の電気分解に伴い、陰極3Y近傍のpHが上昇し、陰極3Yの表面に水酸化鉄が付着したものと考えられる。その結果、陰極3Yにおける二価鉄イオンの生成が抑制されてフェントン型反応に必要な二価鉄イオンが十分に供されなかったと考えられる。 In data with a current density up to 6.92 mA / cm 2 , the decrease rate of 1,4-dioxane increases as the current density increases. However, the decrease rate of 1,4-dioxane is smaller at a current density of 13.8 mA / cm 2 than when it is 6.92 mA / cm 2 . Furthermore, the decrease rate of 1,4-dioxane tends to decrease as the current density increases. Here, when the state of the cathode 3Y when the current density was 13.8 mA / cm 2 or more was observed, reddish brown deposits were observed on the surface thereof. From this, it is considered that when the current density is 13.8 mA / cm 2 or more, the pH in the vicinity of the cathode 3Y increases with the electrolysis of water, and iron hydroxide is adhered to the surface of the cathode 3Y. As a result, it is considered that the production of divalent iron ions at the cathode 3Y was suppressed, and the divalent iron ions necessary for the Fenton reaction were not sufficiently provided.

図5は、図4のデータから電流効率を求め、電流密度に対する電流効率を示したものである。なお、横軸はLOGスケールにしてある。以下の式で電流効率CEを求めた。
CE=100×((C−C) × V)÷(I × T ÷ 2F)
とCはそれぞれ、1,4−ジオキサンの初期の濃度と計測時の濃度である。Vは被処理水Sの容積(すなわち、1L)、Iは電流値、Tは通電時間、Fはファラデー定数(すなわち、96485クーロン/モル)である。(C−C) × Vは実際の1,4−ジオキサンの減少量である。I × T ÷ 2Fは流れる電流から見たOHラジカルの生成量、すなわち、1,4−ジオキサンの減少量の理論値である。2で割っているのは、次亜塩素酸1モルの生成には2モルの電子が必要だからである。
FIG. 5 shows the current efficiency with respect to the current density obtained from the data of FIG. The horizontal axis is a LOG scale. The current efficiency CE was determined by the following formula.
CE = 100 × ((C 0 −C) × V) ÷ (I × T ÷ 2F)
C 0 and C are the initial concentration of 1,4-dioxane and the concentration at the time of measurement, respectively. V is the volume of treated water S (ie, 1 L), I is the current value, T is the energization time, and F is the Faraday constant (ie, 96485 coulomb / mol). (C 0 -C) × V is an actual decrease amount of 1,4-dioxane. I × T ÷ 2F is a theoretical value of the amount of OH radicals generated from the flowing current, that is, the amount of decrease in 1,4-dioxane. Dividing by 2 is because 2 mol of electrons are required to produce 1 mol of hypochlorous acid.

図5より、電流密度が1.38mA/cm及び2.77mA/cmならば、電流効率が100%に近いところにあるので、OHラジカルを生成して有機化合物を効率的に分解していることが分かる。また、電流効率は電流密度の増大とともに低下する傾向にある。電流効率は、電流密度が6.92mA/cmと13.8mA/cmの間で急激に低下している。図5より、電流密度が8.5mA/cm以下ならば、50%以上の電流効率が得られることが分かる。従って、電流効率の点では、電流密度は8.5mA/cm以下に設定するのが好ましい。 From FIG. 5, when the current density is 1.38 mA / cm 2 and 2.77 mA / cm 2 , the current efficiency is close to 100%. Therefore, OH radicals are generated and organic compounds are efficiently decomposed. I understand that. Also, current efficiency tends to decrease with increasing current density. The current efficiency decreases rapidly when the current density is between 6.92 mA / cm 2 and 13.8 mA / cm 2 . FIG. 5 shows that a current efficiency of 50% or more can be obtained when the current density is 8.5 mA / cm 2 or less. Accordingly, in terms of current efficiency, the current density is preferably set to 8.5 mA / cm 2 or less.

一方、電流密度が低ければ、電流効率は高いが、当然ながら、図4に示したように1,4−ジオキサンの減少速度も小さい。電流密度が1mA/cm以上ならば、1日の適切な稼働時間で全ての1,4−ジオキサンを処理完了することが可能であると考えられるので、処理量の点では、電流密度は、1mA/cm以上に設定するのが好ましい。 On the other hand, if the current density is low, the current efficiency is high, but naturally, the decrease rate of 1,4-dioxane is also small as shown in FIG. If the current density is 1 mA / cm 2 or more, it is considered possible to complete the processing of all 1,4-dioxane in an appropriate operating time of one day, so in terms of throughput, the current density is It is preferable to set it to 1 mA / cm 2 or more.

次に、初期状態の三価鉄イオン濃度をパラメータとして変えたときの促進酸化工程の実験について説明する。図6はそのときの1,4−ジオキサンの濃度の時間的推移を示すものである。図6(a)は電流密度1.38mA/cm、図6(b)は電流密度6.92mA/cmに設定したものである。三価鉄イオン濃度は、0.5mM、1.0mM、2.0mM、4.0mM(各々図中のデータg、h、i、jが対応)というように変えた。 Next, an experiment of the accelerated oxidation process when the trivalent iron ion concentration in the initial state is changed as a parameter will be described. FIG. 6 shows the time transition of the concentration of 1,4-dioxane at that time. FIG. 6A shows a current density set to 1.38 mA / cm 2 , and FIG. 6B shows a current density set to 6.92 mA / cm 2 . The trivalent iron ion concentration was changed to 0.5 mM, 1.0 mM, 2.0 mM, 4.0 mM (data g, h, i, and j in the figure correspond to each).

図6(a)では、1,4−ジオキサンの減少速度について鉄イオン濃度依存性が認められず、図6(b)では鉄イオン濃度の増大とともに1,4−ジオキサンの減少速度が大きくなることが認められた。電流密度が低い条件では、次亜塩素酸の電解供給が律速であるのに対し、電流密度が高い条件では陽極3X近傍における鉄イオンの拡散が律速となっていたと考えられる。   In FIG. 6 (a), the iron ion concentration dependency is not recognized for the decrease rate of 1,4-dioxane, and in FIG. 6 (b), the decrease rate of 1,4-dioxane increases as the iron ion concentration increases. Was recognized. Under the condition where the current density is low, the electrolytic supply of hypochlorous acid is rate-limiting, whereas under the condition where the current density is high, the diffusion of iron ions in the vicinity of the anode 3X is considered to be rate-limiting.

なお、図6(b)では、三価鉄イオン濃度が1mM以上では、三価鉄イオン濃度が増大しても1,4−ジオキサンの減少速度はさほど大きくなっていない。よって、電流密度6.92mA/cmよりも電流密度が少し大きい上記の電流密度8.5mA/cmまでは、1mM以上の鉄イオン濃度とすれば鉄イオンの拡散による律速を緩和できると考えられる。 In FIG. 6B, when the trivalent iron ion concentration is 1 mM or more, the decrease rate of 1,4-dioxane is not so great even if the trivalent iron ion concentration is increased. Therefore, considered that until the current density 6.92mA / cm 2 above the current density of 8.5 mA / cm 2 current density slightly greater than can relieve rate-limiting due to diffusion of iron ions if the iron ion concentration of more than 1mM It is done.

次に、pHが4になるように調整したときの促進酸化工程の実験について説明する。図7はそのときの1,4−ジオキサンの濃度の時間的推移を示すものである。電流密度は6.92mA/cmである。図7のとおり、1,4−ジオキサンはほとんど減少しなかった。なお、pHが3になるように調整したときはpHが2のときとほぼ同様であった。 Next, an experiment of the accelerated oxidation process when the pH is adjusted to 4 will be described. FIG. 7 shows the temporal transition of the concentration of 1,4-dioxane at that time. The current density is 6.92 mA / cm 2 . As shown in FIG. 7, 1,4-dioxane was hardly reduced. When the pH was adjusted to 3, it was almost the same as when the pH was 2.

次に、促進酸化工程後の中和工程と水排出工程の実験について説明する。初期状態の三価鉄イオン濃度2mM、電流密度6.92mA/cmの条件で促進酸化工程が完了した水槽2内の被処理水Sに、中和剤として水酸化ナトリウム(NaOH)を添加してpHが4以上なるように中和した(中和工程)。そして、10分間継続して陽極3Xと陰極3Yの間に電圧を印加し、水酸化鉄の沈殿物Dを生成させた。沈殿物Dを残し、被処理水Sを処理済みの水として排出した(水排出工程)。ここで、水酸化鉄の沈殿物Dの形での鉄の回収率を求めたところ、約95%であった。更に、沈殿物Dが存在する状態で、新しい被処理水Sを注入し、塩化ナトリウムを添加し、pHが2になるように調整しながら促進酸化工程の実験を行うと、前述と同様の結果が得られることを確認した。これにより、促進酸化工程後の中和工程により得られた水酸化鉄は鉄イオンとして再利用可能であることが分かる。 Next, the experiment of the neutralization process after the accelerated oxidation process and the water discharge process will be described. Sodium hydroxide (NaOH) is added as a neutralizing agent to the water to be treated S in the water tank 2 in which the accelerated oxidation process has been completed under conditions of an initial trivalent iron ion concentration of 2 mM and a current density of 6.92 mA / cm 2. The solution was neutralized so that the pH was 4 or more (neutralization step). Then, a voltage was applied between the anode 3X and the cathode 3Y continuously for 10 minutes to generate a precipitate D of iron hydroxide. The deposit D was left and the treated water S was discharged as treated water (water discharge step). Here, the recovery rate of iron in the form of iron hydroxide precipitate D was found to be about 95%. Furthermore, in the state where the precipitate D is present, a new treatment water S is injected, sodium chloride is added, and an experiment of the accelerated oxidation process is performed while adjusting the pH to be 2. It was confirmed that Thereby, it turns out that the iron hydroxide obtained by the neutralization process after an acceleration | stimulation oxidation process is recyclable as an iron ion.

以上、本発明の実施形態に係る水処理方法について説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、促進酸化工程のみを行って、中和工程や水排出工程は別の装置でそれに類した或いはそれに変わる処理を行うようにすることも可能である。また、分解すべき有機化合物は実験に用いた1,4−ジオキサンに限られないことは勿論である。   As mentioned above, although the water treatment method which concerns on embodiment of this invention was demonstrated, this invention is not restricted to what was described in the above-mentioned embodiment, Various in the range of the matter described in the claim Design changes are possible. For example, it is possible to perform only the accelerated oxidation process and perform a process similar to or different from the neutralization process and the water discharge process in another apparatus. Of course, the organic compound to be decomposed is not limited to 1,4-dioxane used in the experiment.

本発明の実施形態に係る水処理方法を実現する水処理装置の模式図である。It is a schematic diagram of the water treatment apparatus which implement | achieves the water treatment method which concerns on embodiment of this invention. 同上の水処理方法の各工程間の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow between each process of the water treatment method same as the above. 同上の水処理方法の実験の実験装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the experiment apparatus of experiment of a water treatment method same as the above. 同上の1つの実験の有機化合物の濃度の時間的推移を示す特性図である。It is a characteristic view which shows the time transition of the density | concentration of the organic compound of one experiment same as the above. 同上の1つの実験の電流密度に対する電流効率を示す特性図である。It is a characteristic view which shows the current efficiency with respect to the current density of one experiment same as the above. 同上の別の実験の有機化合物の濃度の時間的推移を示す特性図である。It is a characteristic view which shows the time transition of the density | concentration of the organic compound of another experiment same as the above. 同上の更に別の実験の有機化合物の濃度の時間的推移を示す特性図である。It is a characteristic view which shows the time transition of the density | concentration of the organic compound of another experiment same as the above.

1 水処理装置
2 水槽
3X 陽極
3Y 陰極
4 電圧印加手段
S 被処理水
DESCRIPTION OF SYMBOLS 1 Water treatment apparatus 2 Water tank 3X Anode 3Y Cathode 4 Voltage application means S Water to be treated

Claims (4)

添加された鉄イオン源と添加された塩化物イオン源から水槽に注入された被処理水に鉄イオンと塩化物イオンを存在せしめ、pHを3以下になるように調整しながら、この被処理水に浸された陽極と陰極の間に電圧を印加して設定した所定値の電流を流すことによって、
陽極で塩化物イオンと水とを反応させて次亜塩素酸を生成し、
陰極で三価鉄イオンを還元して二価鉄イオンを生成し、
それらの次亜塩素酸と二価鉄イオンとを反応させて生成したOHラジカルによって被処理水に溶存している有機化合物を促進酸化して分解する促進酸化工程を含むことを特徴とする水処理方法。
Allowed presence of chloride ions and iron ions from added with added iron ion source source of chloride ions in the water to be treated is injected into the water tank, while adjusting so that the 3 below pH, the water to be treated By passing a current of a predetermined value set by applying a voltage between the anode and the cathode immersed in
Reaction of chloride ion and water at the anode to produce hypochlorous acid,
Reducing trivalent iron ions at the cathode to produce divalent iron ions,
Water treatment characterized by including an accelerated oxidation step in which organic compounds dissolved in water to be treated are accelerated and decomposed by OH radicals generated by reacting hypochlorous acid with divalent iron ions. Method.
請求項に記載の水処理方法において、
前記促進酸化工程では陽極と陰極との間の電流密度を8.5mA/cm以下に設定することを特徴とする水処理方法。
The water treatment method according to claim 1 ,
In the accelerated oxidation step, the water treatment method is characterized in that the current density between the anode and the cathode is set to 8.5 mA / cm 2 or less.
請求項1又は2に記載の水処理方法において、
前記水槽に中和剤を添加して被処理水を中和することにより、水酸化鉄を沈殿させる中和工程と、
沈殿した水酸化鉄を残して被処理水を排出する水排出工程と、
を更に備えることを特徴とする水処理方法。
The water treatment method according to claim 1 or 2 ,
A neutralization step of precipitating iron hydroxide by neutralizing the water to be treated by adding a neutralizing agent to the water tank;
A water discharge process for discharging the treated water leaving the precipitated iron hydroxide,
A water treatment method, further comprising:
請求項に記載の水処理方法において、
前記中和工程では陽極と陰極の間に電圧を印加する期間が設けられていることを特徴とする水処理方法。
The water treatment method according to claim 3 ,
In the neutralization step, a period for applying a voltage between the anode and the cathode is provided.
JP2008198587A 2008-07-31 2008-07-31 Water treatment method Active JP4966928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008198587A JP4966928B2 (en) 2008-07-31 2008-07-31 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008198587A JP4966928B2 (en) 2008-07-31 2008-07-31 Water treatment method

Publications (3)

Publication Number Publication Date
JP2010036062A JP2010036062A (en) 2010-02-18
JP2010036062A5 JP2010036062A5 (en) 2011-11-04
JP4966928B2 true JP4966928B2 (en) 2012-07-04

Family

ID=42009158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198587A Active JP4966928B2 (en) 2008-07-31 2008-07-31 Water treatment method

Country Status (1)

Country Link
JP (1) JP4966928B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385270B2 (en) * 2014-12-24 2018-09-05 学校法人 龍谷大学 Accelerated oxidizing water treatment method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923875B2 (en) * 1976-05-11 1984-06-05 栗田工業株式会社 Processing method for chemical cleaning waste liquid
JP2000079395A (en) * 1998-07-08 2000-03-21 Mitsubishi Heavy Ind Ltd Treatment of wastewater
JP2003145161A (en) * 2001-06-25 2003-05-20 Kurita Water Ind Ltd Water treatment apparatus and water treatment method
JP2003230883A (en) * 2002-02-08 2003-08-19 Sanyo Electric Co Ltd Wastewater treatment method and wastewater treatment system
JP2003275766A (en) * 2002-03-26 2003-09-30 Bio Carrier Technology:Kk Method for cleaning waste water and apparatus for the same
JP2004181446A (en) * 2003-04-21 2004-07-02 Kurita Water Ind Ltd Wastewater treatment method
JP2005230707A (en) * 2004-02-20 2005-09-02 Mitsubishi Heavy Ind Ltd Electrochemical reaction method and apparatus
CN100467394C (en) * 2007-03-19 2009-03-11 大庆石油学院 Method for removing polyacrylamide and other organic matters in oilfield exploration water and electrochemical reactor

Also Published As

Publication number Publication date
JP2010036062A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
CN101734817B (en) Method for treating organic chemical waste water
KR101026641B1 (en) Non-degradable Waste Water Treatment Apparatus using Electrolysis and Photo-fenton Oxidation Process
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
Khataee et al. Decolorization of CI Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: a comparative study
Exposito et al. Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound
CN104085962A (en) Method and device for electrochemical in-situ production of hydroxyl radical
Huang et al. Oxalic acid mineralization by electrochemical oxidation processes
CN105731604A (en) Advanced treatment method for electroplating wastewater
JP2008200636A (en) Water treatment method and apparatus
JP2005193202A (en) Water treatment method and water treatment system
JP4920255B2 (en) Water treatment method and system
CN102515401B (en) Cyanide wastewater degradation system and cyanide wastewater degradation method thereof
JP4966928B2 (en) Water treatment method
KR101533979B1 (en) Treatment of wastewater containing ethanolamine in secondary system of nuclear power plant
CN106829873A (en) The ferrous silicic acid complex activate molecular oxygen method for producing hydrogen peroxide in situ
JP2007185579A (en) Water treatment method and system
JP6385270B2 (en) Accelerated oxidizing water treatment method
US20240010529A1 (en) Combined electrochemical advanced oxidation process for removal of organic contamination in water
JP2008012497A (en) Water treatment apparatus and water treatment method
JP3664135B2 (en) Organic waste liquid treatment method
JP2015139752A (en) Method and apparatus for treating waste water
Jang et al. Improved electricity generation by a microbial fuel cell after pretreatment of ammonium and nitrate in livestock wastewater with microbubbles and a catalyst
CN101941748A (en) Titanium anode uncoated reactor
Elsahwi et al. Electrochemical oxidation of ammonia-laden wastewater in the mining industry
JP2008105012A (en) Treatment method and treatment apparatus of ammonia nitrogen-containing drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4966928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250