JPS5923875B2 - Processing method for chemical cleaning waste liquid - Google Patents

Processing method for chemical cleaning waste liquid

Info

Publication number
JPS5923875B2
JPS5923875B2 JP5286376A JP5286376A JPS5923875B2 JP S5923875 B2 JPS5923875 B2 JP S5923875B2 JP 5286376 A JP5286376 A JP 5286376A JP 5286376 A JP5286376 A JP 5286376A JP S5923875 B2 JPS5923875 B2 JP S5923875B2
Authority
JP
Japan
Prior art keywords
waste liquid
treatment
chemical cleaning
cod
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5286376A
Other languages
Japanese (ja)
Other versions
JPS52135879A (en
Inventor
忠 玉川
清治 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP5286376A priority Critical patent/JPS5923875B2/en
Publication of JPS52135879A publication Critical patent/JPS52135879A/en
Publication of JPS5923875B2 publication Critical patent/JPS5923875B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は化学洗浄廃液(以下、化洗廃液と略記する。[Detailed description of the invention] The present invention uses chemical cleaning waste liquid (hereinafter abbreviated as chemical cleaning waste liquid).

)の処理法に関するものであり、さらに詳しくは、有機
物質および重金属類を含有する化洗廃液より有機物質お
よび重金属類を除去する化洗廃液の処理方法に関するも
のである。
), and more specifically, it relates to a method for treating chemical washing waste liquid that removes organic substances and heavy metals from chemical washing waste liquid containing organic substances and heavy metals.

ボイラ、熱交換器その他のプラントの金属表面に付着し
た金属酸化物スケールなどの付着物を除去するために、
通常、塩酸、硫酸、スルファミノ酸などの無機酸類やク
エン酸、ギ酸、グリコール酸、エチレンジアミン四酢酸
、ホスホン酸などの有機酸類またはそれらの水溶性塩に
よる化学洗浄が行われる。
To remove deposits such as metal oxide scale on the metal surfaces of boilers, heat exchangers, and other plants.
Usually, chemical cleaning is performed using inorganic acids such as hydrochloric acid, sulfuric acid, and sulfamino acid, organic acids such as citric acid, formic acid, glycolic acid, ethylenediaminetetraacetic acid, and phosphonic acid, or water-soluble salts thereof.

また、高圧ボイラなどに付着する金属銅スケールを除去
する目的で、チオ尿素などの有機の銅溶解剤(封鎖剤)
が上記酸類に添加して用いられる。
In addition, organic copper dissolving agents (sequestering agents) such as thiourea are used to remove metallic copper scale that adheres to high-pressure boilers, etc.
is added to the above acids.

さらに、これら洗浄液による金属母材の腐食を抑制する
ために、それぞれの洗浄薬剤に応じた腐食抑制剤が使用
され、一般にそれら腐食抑制剤としては、有機系の薬剤
が用いられる。
Furthermore, in order to suppress the corrosion of the metal base material caused by these cleaning solutions, corrosion inhibitors are used depending on the respective cleaning chemicals, and organic chemicals are generally used as the corrosion inhibitors.

このような化学洗浄によって生じる化洗廃液中には、化
学洗浄剤としてそれ自体化学的酸素要求量(COD)の
高い有機酸類を用いた場合はもとより、無機酸類を用い
た場合でも、銅溶解剤や腐食抑制剤などの有機の添加剤
に基因するCOD成分が含有され、さらに化学洗浄によ
って除去された金属スケール等に基因する重金属イオン
が多量に含まれている。
The chemical cleaning waste generated from such chemical cleaning contains copper dissolving agents, not only when organic acids with high chemical oxygen demand (COD) are used as chemical cleaning agents, but also when inorganic acids are used as chemical cleaning agents. It contains COD components originating from organic additives such as and corrosion inhibitors, and further contains large amounts of heavy metal ions originating from metal scale removed by chemical cleaning.

公害防止上、この化洗廃液をそのまま放流することはで
きず、COD成分および重金属イオンを除去するために
多くの試みがなされている。
To prevent pollution, this chemical washing waste liquid cannot be discharged as it is, and many attempts have been made to remove COD components and heavy metal ions.

化洗廃液中のCOD成分を除去する方法としては、たと
えば、クエン酸を含む廃液にカルシウム塩を添加して不
溶性のクエン酸カルシウムとして析出分離する方法や、
エチレンジアミン四酢酸塩を含む廃液に酸を加え、溶解
度の小さいエチレンジアミン四酢酸(EDTA・4H)
として析出分離する方法などが試みられているが、これ
らの方法では、クエン酸やエチレンジアミン四酢酸に基
因するCODを、ある程度は減らすことができても、腐
食抑制剤をはじめ洗浄助剤に基因するCOD成分の除去
は全く期待できない。
Examples of methods for removing COD components from chemical washing waste include a method in which calcium salt is added to a waste solution containing citric acid to precipitate and separate it as insoluble calcium citrate;
Add acid to the waste liquid containing ethylenediaminetetraacetate to obtain ethylenediaminetetraacetic acid (EDTA・4H), which has low solubility.
However, although these methods can reduce COD caused by citric acid and ethylenediaminetetraacetic acid to some extent, COD caused by corrosion inhibitors and other cleaning aids have been tried. Removal of COD components cannot be expected at all.

また、過酸化水素などの酸化剤によってCOD成分を酸
化分解する方法も検討されているが、近年の排水規制の
強化に対応し得る廃液の処理方法として、十分満足すべ
きものには至っていない。
Additionally, a method of oxidizing and decomposing COD components using an oxidizing agent such as hydrogen peroxide has been studied, but this method has not yet been fully satisfactory as a waste liquid treatment method that can meet the recent tightening of wastewater regulations.

また化洗廃液中の重金属イオンを除去する方法としては
、中和凝集処理法などが試みられているが、この方法に
よって得られるスラッジは濃縮性や脱水性が悪い上、脱
離液中にも多量のCOD成分が含有されているため、脱
離液についても何らかの処理が必要となっている。
In addition, as a method for removing heavy metal ions from chemical washing waste, methods such as neutralization and coagulation have been attempted, but the sludge obtained by this method has poor concentration and dewatering properties, and also Since it contains a large amount of COD components, some kind of treatment is also required for the desorbed liquid.

本発明はこれらの情勢に鑑み、新規で効率の良い化洗廃
液の処理方法を提供するものである。
In view of these circumstances, the present invention provides a new and efficient method for treating chemical washing waste liquid.

本発明は有機物質および重金属類を含有する化学洗浄廃
液を酸化剤に接触させた後、重金属類を分離することな
(、不溶性電極を陽極として電解処理して有機物質を分
解し、生成する重金属フロックを除去することを特徴と
する化学洗浄廃液の処理方法である。
The present invention involves bringing chemical cleaning waste containing organic substances and heavy metals into contact with an oxidizing agent, and then electrolytically treating the organic substances using an insoluble electrode as an anode to decompose the heavy metals produced. This is a method for treating chemical cleaning waste liquid characterized by removing flocs.

すなわち、スケール成分の溶解によって溶出した重金属
イオンとともに多量のCOD成分を含む化洗廃液を処理
するに際し、あらかじめ廃液に酸化剤を加えて比較的易
分解性のCOD成分を酸化分解した後、重金属を含む同
処理液に必要に応じて塩化ナトリウム等の電解質を加え
て、不溶性電極を陽極として電解処理することにより残
存するCOD成分を分解するとともに、重金属イオンを
分離性のよいフロックに転換させ、これを分離除去する
In other words, when treating chemical washing wastewater that contains a large amount of COD components along with heavy metal ions eluted by dissolving scale components, an oxidizing agent is added to the wastewater in advance to oxidize and decompose relatively easily decomposable COD components, and then the heavy metals are removed. If necessary, an electrolyte such as sodium chloride is added to the same treatment solution, and the remaining COD components are decomposed by electrolytic treatment using an insoluble electrode as an anode, and heavy metal ions are converted into flocs with good separability. Separate and remove.

上記の酸化剤による接触処理は、重金属(多くはFe2
+イオン)を含む廃液に直接酸化剤を添加する方法で行
なわれる。
The contact treatment with the above oxidizing agent is performed using heavy metals (mostly Fe2
This is done by adding an oxidizing agent directly to the waste liquid containing (+ ions).

酸化剤としては、廃液中の有機物を酸化分解できるもの
であればよ(、例えば次亜塩素酸塩、過塩素酸塩、過硫
酸塩、過酸化水素などが使用できる。
Any oxidizing agent may be used as long as it can oxidize and decompose the organic matter in the waste liquid (eg, hypochlorite, perchlorate, persulfate, hydrogen peroxide, etc.).

酸化剤の種類によって、酸化反応が最も効率的に行なわ
れるpHが異なるから、用いる酸化剤に応じ、廃液のp
Hをあらかじめ所望のpHに調整した後、酸化剤を加え
ることが望ましい。
The pH at which the oxidation reaction occurs most efficiently varies depending on the type of oxidizing agent, so the pH of the waste liquid depends on the oxidizing agent used.
It is desirable to add the oxidizing agent after adjusting the H to the desired pH in advance.

たとえば、過酸化水素であれば、フェントン反応で知ら
れる如くFe2+イオンの共存下ではpH2〜5の範囲
において、すぐれた酸化効果が得られる。
For example, with hydrogen peroxide, an excellent oxidizing effect can be obtained in the pH range of 2 to 5 in the presence of Fe2+ ions, as known from the Fenton reaction.

添加する酸化剤の量は、廃液のCOD値を測定して決定
すればよく、COD値と当量もしくは若干過剰量を添加
すればよい。
The amount of the oxidizing agent to be added may be determined by measuring the COD value of the waste liquid, and may be added in an amount equivalent to or slightly in excess of the COD value.

この酸化処理工程においては、鉄イオン、銅イオンなど
の重金属イオンが触媒となり、フェントン反応その他の
酸化反応によって廃液中の有機成分のうち、一部は完全
に水と炭酸ガスに酸化分解され、一部は分解されぬまま
、あるいは酸化反応によって物質形態が変化しただけで
廃液中に残存する。
In this oxidation treatment process, heavy metal ions such as iron ions and copper ions act as catalysts, and some of the organic components in the waste liquid are completely oxidized and decomposed into water and carbon dioxide through Fenton reaction and other oxidation reactions. The components remain in the waste liquid undecomposed or only after their physical form has changed due to an oxidation reaction.

酸化処理液中には完全酸化を受けない物質が存在するた
め、酸化剤による処理だけでは廃液のCOD処理方法と
して十分ではない。
Since there are substances in the oxidized liquid that are not completely oxidized, treatment with an oxidizing agent alone is not sufficient as a COD treatment method for waste liquid.

本発明は、酸化剤で処理した処理液(一次処理液)を、
さらに不溶性電極を陽極として電解処理することによっ
て残存する有機成分を完全に分解除去するものであり、
この際−次処理液の重金属類を分離することなく電解を
行なう。
The present invention uses a treatment liquid (primary treatment liquid) treated with an oxidizing agent,
Furthermore, remaining organic components are completely decomposed and removed by electrolytic treatment using an insoluble electrode as an anode.
At this time, electrolysis is performed without separating heavy metals from the subsequent treatment solution.

電解処理は一次処理液中に設置した陰陽両電極に整流器
より直流を印加する方法で行なわれる。
Electrolytic treatment is performed by applying direct current from a rectifier to both negative and negative electrodes placed in the primary treatment solution.

電極は陽極にたとえば白金、黒鉛、フェライトなどの不
溶性電極を、陰極には鉄や不銹鋼などを用いる。
The anode is an insoluble electrode made of platinum, graphite, ferrite, or the like, and the cathode is made of iron, stainless steel, or the like.

電解条件は廃液の総量、廃液中のCOD成分の種類と量
および電解処理完了までの許容時間などにより決定され
るが、通常、電圧3〜100v、電流密度1〜30 A
/ cLrr? 、電流濃度0.1〜20 A#の範
囲に設定すればよい。
The electrolysis conditions are determined by the total amount of waste liquid, the type and amount of COD components in the waste liquid, and the allowable time until the electrolytic treatment is completed, but usually the voltage is 3 to 100 V and the current density is 1 to 30 A.
/cLrr? , the current concentration may be set in the range of 0.1 to 20 A#.

電極板の大きさ、枚数および電解槽の容量などは、上記
電解条件の範囲内で任意に設定することができる。
The size and number of electrode plates, the capacity of the electrolytic cell, etc. can be arbitrarily set within the range of the above electrolysis conditions.

この場合、一次処理液をそのまへ電解することも可能で
あり、とくに塩酸や硫酸などを含む廃液の場合は、一次
処理液中に多量の電解質を含むのでそのま〜電解しても
全く問題ないが、クエン酸やグリコール酸などの有機酸
類を主剤とする洗浄廃液の場合は、一次処理液中の電解
質濃度が低いので、新たに電解質を加えてから電解処理
するとより好都合である。
In this case, it is possible to electrolyze the primary treatment liquid as it is; especially in the case of waste liquid containing hydrochloric acid or sulfuric acid, there is no problem in electrolyzing it as it is because the primary treatment liquid contains a large amount of electrolyte. However, in the case of cleaning waste liquid containing organic acids such as citric acid or glycolic acid as a main ingredient, since the electrolyte concentration in the primary treatment liquid is low, it is more convenient to add new electrolyte and then perform electrolytic treatment.

電解質としては、塩化ナトリウム、硫酸ナトリウム、硝
酸ナトリウムなどが使用できるが、とりわけ塩化物は有
用である。
As the electrolyte, sodium chloride, sodium sulfate, sodium nitrate, etc. can be used, and chlorides are particularly useful.

一般に電解の際には電極へのスケールの生成を防止する
ため前処理により重金属を除去して電解することが行な
われている。
Generally, during electrolysis, heavy metals are removed by pretreatment to prevent scale formation on the electrodes before electrolysis.

本発明の電解処理において、一次処理液中に含まれる重
金属類(Feが主体)を分離除去することなく電解処理
することにより効率よく電解を行ない、しかも重金属類
を脱水性のよいフロックに転換させることができる。
In the electrolytic treatment of the present invention, the heavy metals (mainly Fe) contained in the primary treatment liquid are electrolytically treated without being separated and removed, thereby efficiently electrolyzing and converting the heavy metals into flocs with good dehydration properties. be able to.

もし、一次処理液中に含まれる重金属類を中和凝集処理
法などにより除去すると濃縮性や脱水性の悪いスラッジ
が得られ、脱離液中にも多量のCOD成分が含有され、
脱離液についても、更に何らかの処理が必要となる。
If the heavy metals contained in the primary treatment liquid are removed by neutralization and coagulation, a sludge with poor concentration and dewatering properties will be obtained, and the removed liquid will also contain a large amount of COD components.
The desorbed liquid also requires some further treatment.

重金属を含んだま〜電解処理することにより、一次処理
液中のCOD成分は重金属の触媒作用により全て完全酸
化分解を受け、また一次処理液中に残存したクエン酸や
エチレンジアミン四酢酸などとキレート化合物を形成し
、中和処理などによる除去が困難であった重金属イオン
を沈降性、脱水性のよいフロックに転換する。
By electrolytically treating a medium containing heavy metals, all COD components in the primary treatment liquid undergo complete oxidative decomposition due to the catalytic action of the heavy metals, and chelate compounds such as citric acid and ethylenediaminetetraacetic acid remaining in the primary treatment liquid are removed. Heavy metal ions that form and are difficult to remove through neutralization are converted into flocs with good sedimentation and dehydration properties.

電解により生じた重金属フロックの分離は沈降分離濾過
などの通常の固液分離手段により行なわれる。
Separation of heavy metal flocs produced by electrolysis is carried out by ordinary solid-liquid separation means such as sedimentation separation and filtration.

COD成分および重金属イオンを含有していた化洗廃液
は、本発明方法を適用することによりCOD成分および
重金属イオンが、はぼ完全に除去され、生成した処理水
をそのま〜放流することができる。
By applying the method of the present invention, COD components and heavy metal ions are almost completely removed from chemical washing waste liquid that contained COD components and heavy metal ions, and the generated treated water can be discharged as is. .

COD成分および重金属イオンを含有する化洗廃液を、
酸化処理することなく直接電解する方法もあり、この直
接電解法によってもCOD成分および重金属イオンの除
去は可能である。
Chemical washing waste liquid containing COD components and heavy metal ions is
There is also a method of direct electrolysis without oxidation treatment, and it is also possible to remove COD components and heavy metal ions by this direct electrolysis method.

しかし、本発明方法は、直接電解処理方法に比べて処理
効率がよ(、処理時間が短くなる利点を有する。
However, the method of the present invention has the advantage of higher treatment efficiency (and shorter treatment time) than the direct electrolytic treatment method.

廃液中の有機物には電解による酸化効率の悪いもの(例
えば高分子の有機物)があるが、本発明ではあらかじめ
酸化剤と接触させることにより、それらの物質を電解に
より分解しやすい形に変え(例えば低分子化)るため、
電解による処理効率は直接電解法に比べ高い。
Some organic substances in the waste liquid are poorly oxidized by electrolysis (e.g., polymeric organic substances), but in the present invention, by bringing them into contact with an oxidizing agent in advance, these substances are converted into a form that can be easily decomposed by electrolysis (e.g. (low molecular weight),
The treatment efficiency of electrolysis is higher than that of direct electrolysis.

また本発明の2段処理においては、一次処理によって廃
液中のかなりのCOD成分が除去され、電解にかかるC
OD負荷が少ないため電解処理は比較的短時間で終了す
る。
In addition, in the two-stage treatment of the present invention, a considerable amount of COD components in the waste liquid is removed in the first treatment, and the COD components involved in electrolysis are removed.
Since the OD load is small, the electrolytic treatment is completed in a relatively short time.

これに対し直接電解処理する方式では、COD負荷がき
わめて高いため電解に長時間を要し、発熱、ガス発生量
も大きくなり、効率が悪い。
On the other hand, in the method of direct electrolytic treatment, the COD load is extremely high, so the electrolysis takes a long time, heat generation and gas generation amount are large, and the efficiency is poor.

2段処理法における酸化剤による接触処理は、廃液量が
いかに多くとも一括処理が可能であるから、比較的短時
間で完了できるが、電解処理は設備上処理容量に限界が
あるため全廃液を処理するには長時間を要す。
Contact treatment using an oxidizing agent in the two-stage treatment method can be completed in a relatively short time because no matter how large the amount of waste liquid is, it can be treated all at once, but electrolytic treatment has a limited treatment capacity due to equipment, so it is necessary to treat all waste liquid in one go. It takes a long time to process.

以上詳述した様に、本発明は化洗廃液中に含まれる重金
属イオンの触媒作用を利用した酸化処理と、それに続く
電解処理によりCOD成分および重金属イオンを効率よ
く除去することを可能にしたものである。
As detailed above, the present invention makes it possible to efficiently remove COD components and heavy metal ions through oxidation treatment that utilizes the catalytic action of heavy metal ions contained in chemical washing waste liquid, followed by electrolytic treatment. It is.

以下、実施例により本発明をさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 クエン酸0.5%、クリコール酸0.5%、インヒビタ
ーとしてイビット(住友化学工業(株)製)を0.1%
、チオ尿素を0.3%および鉄イオンを2000ppm
含有する化洗廃液(COD:8500ppm 、TOC
:4800ppm、pH=3.5)に酸化剤として過酸
化水素を2%(純過酸化水素として)加え2時間接触処
理した。
Example 1 0.5% citric acid, 0.5% glycolic acid, 0.1% Ivit (manufactured by Sumitomo Chemical Co., Ltd.) as an inhibitor
, 0.3% thiourea and 2000 ppm iron ions.
Contains chemical washing waste liquid (COD: 8500ppm, TOC
4,800 ppm, pH=3.5) was added with 2% (as pure hydrogen peroxide) hydrogen peroxide as an oxidizing agent and subjected to contact treatment for 2 hours.

その結果、処理液のCODは1l100pp、TOCは
1500ppm となった。
As a result, the COD of the treatment liquid was 1 liter, 100 ppm, and the TOC was 1,500 ppm.

この処理液を250−とり、塩化ナトリウムを3%加え
た後白金板をν 電極として、直流で電流密度8A/c
am″、電流濃度8 A#で5時間電解した。
Take this treatment solution at 250°C, add 3% sodium chloride, and then use a platinum plate as a ν electrode with a DC current density of 8A/c.
am″ and a current concentration of 8 A# for 5 hours.

その結果、処理液のCOD、TOCはいずれも10pp
m以下まで低下した。
As a result, the COD and TOC of the processing solution were both 10pp.
It decreased to below m.

また電解中に生成した鉄フロックは沈降性も良好で容易
に固液分離することができた。
In addition, the iron flocs produced during electrolysis had good sedimentation properties and could be easily separated into solid and liquid.

1 次に過酸化水素処理液ならびに電解処理液を用いて
脱水試験を行ない、スラッジの脱水性を比較した。
1 Next, a dehydration test was conducted using the hydrogen peroxide treatment solution and the electrolytic treatment solution, and the dehydration properties of the sludge were compared.

過酸化水素処理液はNaOHでpH11付近に調整し、
また電解処理液(pH=9)はそのまま、; いずれも
一昼夜放置した後、沈降したスラッジを採取し両者のS
S濃度を2.4%に調整してからリーフテストを行なっ
た。
The hydrogen peroxide treatment solution was adjusted to pH around 11 with NaOH,
In addition, the electrolytic treatment solution (pH = 9) was left as it was; after leaving it for a day and night, the settled sludge was collected and the S of both
A leaf test was conducted after adjusting the S concentration to 2.4%.

濾過助剤としてCa (OH)2を用いて試験した結果
、電解処理液スラッジの1過速度は過酸化水素処理液ス
ラッジの約1.5〜2・ 倍の値を示した。
As a result of a test using Ca(OH)2 as a filter aid, the 1 overrate of the electrolytically treated liquid sludge was about 1.5 to 2 times that of the hydrogen peroxide treated liquid sludge.

さらにr液を比較しても前者が濃赤褐色〜無色に近かっ
たのに対し、後者は濃赤褐色を呈した。
Furthermore, when comparing the r liquid, the former was dark reddish brown to almost colorless, whereas the latter was dark reddish brown.

また、ケーキの剥離性も前者の方がはるかに良好であっ
た。
Moreover, the peelability of the cake was also much better in the former case.

これらのことは、重金属フロックが電解処理の□ 過程
で改質され、きわめてr過性のよいスラッジが生成する
ためである。
This is because the heavy metal flocs are modified during the electrolytic treatment process, producing a sludge with extremely high r-permeability.

実施例 2 グリコール酸1%、ギ酸0.5%、イビット0.15%
および鉄イオン3000ppmを含有する化洗廃液(C
OD: 6400ppm、TOC:5100pPm)に
酸化剤として次亜塩素酸ナトリウムを3%(NaOCl
として)加え、2時間接触処理した。
Example 2 Glycolic acid 1%, formic acid 0.5%, Ivit 0.15%
and chemical washing waste liquid containing 3000 ppm of iron ions (C
OD: 6400 ppm, TOC: 5100 pPm) and 3% sodium hypochlorite (NaOCl) as an oxidizing agent.
) and was subjected to contact treatment for 2 hours.

その結果、CODは1l100ppまで低下した。As a result, the COD decreased to 1l100pp.

その処理液を250m1とり、実施例1と同一条件で5
時間電解処理した結果、COD。
Take 250 ml of the treatment solution and use it under the same conditions as in Example 1.
As a result of time electrolytic treatment, COD.

TOCはいずれも10 以下となった。The TOC was 10 or less in all cases.

電解pm 中に生成した鉄フロックは沈降性も良好で容易に固液分
離することができた。
The iron flocs produced during electrolytic PM had good sedimentation properties and could be easily separated into solid and liquid.

Claims (1)

【特許請求の範囲】 1 有機物質および重金属類を含有する化学洗浄廃液を
酸化剤に接触させた後、重金属類を分離することなく、
不溶性電極を陽極として電解処理して有機物質を分解し
、生成する重金属フロックを除去することを特徴とする
化学洗浄廃液の処理方法。 2、特許請求の範囲第1項記載の方法において、酸化剤
は過酸化水素または次亜塩素酸す) IJウムである化
学洗浄廃液の処理方法。 3 特許請求の範囲第1項または第2項において、電解
処理に際して電解質を加えて電解する化学洗浄廃液の処
理方法。
[Claims] 1. After contacting a chemical cleaning waste liquid containing organic substances and heavy metals with an oxidizing agent, without separating the heavy metals,
A method for treating chemical cleaning waste liquid characterized by electrolytically treating an insoluble electrode as an anode to decompose organic substances and remove generated heavy metal flocs. 2. The method according to claim 1, wherein the oxidizing agent is hydrogen peroxide or hypochlorous acid. 3. A method for treating chemical cleaning waste liquid according to claim 1 or 2, in which an electrolyte is added and electrolyzed during the electrolytic treatment.
JP5286376A 1976-05-11 1976-05-11 Processing method for chemical cleaning waste liquid Expired JPS5923875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5286376A JPS5923875B2 (en) 1976-05-11 1976-05-11 Processing method for chemical cleaning waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5286376A JPS5923875B2 (en) 1976-05-11 1976-05-11 Processing method for chemical cleaning waste liquid

Publications (2)

Publication Number Publication Date
JPS52135879A JPS52135879A (en) 1977-11-14
JPS5923875B2 true JPS5923875B2 (en) 1984-06-05

Family

ID=12926695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5286376A Expired JPS5923875B2 (en) 1976-05-11 1976-05-11 Processing method for chemical cleaning waste liquid

Country Status (1)

Country Link
JP (1) JPS5923875B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976593A (en) * 1982-10-21 1984-05-01 Ebara Infilco Co Ltd Treatment of chemical washing waste liquor containing edta
JPS6093999A (en) * 1983-10-28 1985-05-25 日立プラント建設株式会社 Method of treating chemically decontaminated waste liquor
WO2001030704A1 (en) * 1999-10-28 2001-05-03 Kazuto Hashizume Improved process for water treatment
JP4966928B2 (en) * 2008-07-31 2012-07-04 学校法人 龍谷大学 Water treatment method

Also Published As

Publication number Publication date
JPS52135879A (en) 1977-11-14

Similar Documents

Publication Publication Date Title
US20220073383A1 (en) Removal of phosphorus and nitrogen from water
Yeh et al. Removal of Cu EDTA compounds via electrochemical process with coagulation
US4064022A (en) Method of recovering metals from sludges
JPS5923875B2 (en) Processing method for chemical cleaning waste liquid
KR100372849B1 (en) Advanced apparatus for treating wastewater using the electrolysis and coagulation
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
US6436275B1 (en) Electrochemical reduction of nitrate in the presence of an amide
CN111333152A (en) Method for treating high-concentration nickel-phosphorus-containing organic waste liquid through electrolytic oxidation
Shanthi et al. Domestic sewage treatment using batch stirred tank electrochemical reactor
JPH0783871B2 (en) Electrolytic process for reducing the organic content of aqueous compositions and apparatus therefor
Al-Nuaimi et al. Chromium (VI) removal from wastewater by electrocoagulation process using taguchi method: batch experiments
KR100545306B1 (en) Electrochemical process for wastewater containing nitric acid
JP2009028629A (en) Treatment method of waste water containing nitrate nitrogen and calcium ion
Jeyaseelan et al. Clean technology for treatment of photographic wastes and silver recovery
JPS5845316B2 (en) Waste liquid treatment method
JP3921612B2 (en) Co-electrolytic treatment of COD components in wastewater
RU2093474C1 (en) Method of purification of sewage containing emulsified petroleum products
JPS63162100A (en) Electrolytic treatment of sludge
JPH11235597A (en) Treatment of waste liquid containing organic substance and heavy metal compound
JPH09239371A (en) Treatment of ethanolamine-containing waste dilute hydrochloric acid
SU1675216A1 (en) Method of cleaning sewage from lead ions
SU865828A1 (en) Method of purifying mineralized water from hydrogen sulfide
KR0170612B1 (en) Method for the electrolysis treatment of waste water containing heavy metal
SU1713959A1 (en) Method of neutralization of chromium and copper electrolytes
Qu et al. Double catholyte electrochemical approach for preparing ferrate-aluminum: a compound oxidant-coagulant for water purification