JP3664135B2 - Organic waste liquid treatment method - Google Patents

Organic waste liquid treatment method Download PDF

Info

Publication number
JP3664135B2
JP3664135B2 JP2002001103A JP2002001103A JP3664135B2 JP 3664135 B2 JP3664135 B2 JP 3664135B2 JP 2002001103 A JP2002001103 A JP 2002001103A JP 2002001103 A JP2002001103 A JP 2002001103A JP 3664135 B2 JP3664135 B2 JP 3664135B2
Authority
JP
Japan
Prior art keywords
waste liquid
treatment
electrolytic
ppm
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002001103A
Other languages
Japanese (ja)
Other versions
JP2003200171A (en
Inventor
政弘 吉永
直和 熊谷
隆了 屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2002001103A priority Critical patent/JP3664135B2/en
Publication of JP2003200171A publication Critical patent/JP2003200171A/en
Application granted granted Critical
Publication of JP3664135B2 publication Critical patent/JP3664135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機廃液、とりわけ、塩酸に加えてエタノールアミン、ヒドラジンおよびアンモニアの1種または2種以上を含有する廃液を、電気分解と紫外線分解とを組み合わせた処理により、高い効率をもって分解する、省エネルギーの処理方法に関する。
【0002】
【従来の技術】
現在、PWR(沸騰水型原子炉)の二次系の水質管理としては、SG(蒸気発生器)伝熱管の腐食損傷を防止するため、アンモニアやヒドラジンを添加する、AVT(全揮発性薬品処理)が実施されている。しかし、最近のSG伝熱管の調査によると、伝熱管二次側への付着スケールの厚さが経年的に増加する傾向にあり、伝熱性能およびクレビス環境の悪化が予想され、SGへのスケールの付着を防止するための、給水中の鉄濃度を低減する対策など、水管理が重要な課題となっている。
【0003】
給水の鉄濃度を低減するためには、鉄イオン発生源における腐食の抑制が必要である。現行のAVT処理でpH調整剤として用いられているアンモニアは、その気液分配係数が1以上であるから、気相と液相でのpHバランスが気相側に高く振れ、液相部でのpHが低くなる。その結果、液相部での鉄の溶出が増加するという問題を生じている。アンモニアの注入量を増加して高いpHで管理することにより、液相部のpHを高くするという方法もあるが、この場合、気相部のアンモニア濃度がさらに高くなるため、銅系の材料の腐食量が増大するという新たな問題を招く。
【0004】
気液分配係数がほぼ1であるエタノールアミン(ETA)の注入を行なえば、気相部と液相部のpHがほぼ等しくなるように制御でき、銅系材料の腐食を伴わずに鉄の溶出を抑えることが可能になるため、給水中の鉄濃度を低減する効果があると期待されている。しかしながら、ボイラー水系には、浄化装置としてイオン交換樹脂塔が必要であり、ETAの注入管理を実施するとETAがイオン交換樹脂に補足され、樹脂再生の際に、ETA、塩酸、アンモニアおよびヒドラジンを含有し、CODが10000ppm程度に達する有機廃液が排出される。この廃液の処理が円滑に行なえないと、ETAの注入管理を実施するわけにはいかない。しかし、ETAを含有する有機廃液の処理技術は確立されていないのが現状であって、その開発が望まれて来た。
【0005】
この種の廃液の処理については、生物法、触媒酸化法、電解酸化法などが試みられている。たとえば電解酸化法に関しては、特開平9-239371号、特開平11−216472号、特開平11−216473号、特開平11−347559号などの技術がある。
【0006】
特開平9−239371号には、「エタノールアミンを含有する塩酸廃液を、微酸性で無隔膜電解してエタノールアミンを除去することを特徴とするエタノールアミン含有塩酸廃液の処理方法」が開示され、「前記微酸性が、pH5〜7である」という条件、さらに、「前記電解処理が、無隔膜電解室にエタノールアミン含有塩酸を循環供給して連続的に行われる」ことを特徴として追加した技術が提案されている。
【0007】
特開平11−216472号では、「エタノールアミン含有水を、塩化物イオン共存下に電解処理したのち、金属酸化物触媒と接触させ、さらに、電解処理工程で生成した水素ガスを導入して、還元触媒と接触させることを特徴とするエタノールアミン含有水の処理方法」なる技術が開示されている。
【0008】
特開平11−216473号には、「エタノールアミン含有水を、塩化物イオン濃度10,000mg/リットル以上の水質条件において、通水線速度(LV)20m/h以上で電解反応槽に通水して、電解処理することを特徴とするエタノールアミン含有水の処理方法」が記載されている。
【0009】
特開平11−347559号では「エタノールアミン含有水を、塩化物イオン共存下に電解処理したのち、金属酸化物触媒と接触させて処理する方法であって、電気分解を複数回行うことを特徴とするエタノールアミン含有水の処理方法」が開示され、さらに「電気分解を行ったのち、電解処理水中のガスを分離し、再び電気分解する」ことを条件として付加した技術が開示されている。
【0010】
元来、電解を行なえば、陽極で酸化反応が進行し、陰極で還元反応が進行する。たとえば塩化ナトリウム含む水溶液を電解すると、陽極では式1に示すように、塩素イオンが酸化されて塩素ガスが形成され、
2Cl- → Cl2 +2e ‐‐‐‐‐(式1)
陰極では式2に示すように、水素イオンが還元され、水素ガスが形成される。
2H + 2e → H2 ‐‐‐‐‐(式2)
【0011】
塩素ガスは、塩化ナトリウム溶液中に溶けて次亜塩素酸ナトリウムとなる。塩素ガスまたは次亜塩素酸ナトリウムは強力な酸化剤として知られており、これら酸化剤を生成することができる陽極表面は、非常に高い酸化環境にある。したがって、有機物を含む廃液を電解すると、有機物は陽極表面で酸化分解されて、炭酸ガスと水になるということが知られている。
【0012】
実際には、電解反応は電極表面上の反応、すなわち二次元反応であるため、廃液中の有機物濃度が希薄になってくると、なかなか有機物濃度が下がらない傾向にある。このため、流速を上げる、あるいは乱流を起こすなどの方法で、有機物ができるだけ電極表面に接触するようにする手段が講じられている。特開平11−216473号において、上記のように「通水線速度20m/h以上」と限定しているのは、そうした理由からである。
【0013】
しかし、電解処理だけで、放水規制値のCOD10ppm以下とすることは難しい。たとえば、ETA:10,000ppm、NH:455ppm、N:909ppm、Cl:18,000ppmを含み、NaOHでpH11〜12に調整した模擬廃液30リットルを原水タンクに充填し、電解槽に350ml/minで送液して、原水タンクと電解槽のみを循環させた場合のデータを示す。電解に用いた電極は、白金70モル%−酸化イリジウム30モル%のコーティングを施した、チタン基板電極である。電解処理の運転条件は、電流密度20A/dm2(電解電流50A、陽極面積2.5dm2×5系列直列)、運転中の電解槽内の液温度は50〜60℃に保った。
【0014】
その結果は図1に示すとおりであって、全体として、500whr/リットルのエネルギーを投入してもCOD40ppmにしかならず、液が希薄になればなるほど、より多くの投入エネルギーが必要となることがわかる。また、副反応によって発生する次亜塩素酸の濃度は、COD成分が希薄になると、急激に上昇することがわかる。ところが、酸化剤である次亜塩素酸濃度が上昇しても、COD濃度はさほど減少しない。これは、次亜塩素酸の酸化力では分解し難いCOD成分が残留していることを示す。
【0015】
特開平11-216472号および特開平11−347559号に記載された酸化触媒は、副反応により発生する次亜塩素酸ソーダから、下記の式3〜5に示すような反応を経て、より酸化力の高い活性酸素を発生させ、これを利用するものである。
Ni+NaClO→2NiO+NaCl (3)
2NiO +NaClO→Ni +NaCl+2O (4)
総括反応 2NaClO→2NaCl+2O (5)
【0016】
特開平11−347559号記載の方法では、電解処理工程と酸化触媒処理工程とを複数回繰り返すこと、すなわち液を循環させることで、酸化触媒により活性酸素を作り出す次亜塩素酸ナトリウムを補給しながら処理を行なう。
【0017】
しかしながら、式3〜5の反応に際して、ニッケル等の金属のイオンが、廃水に混入する。具体的には、前述条件で30リットルの溶液を電解槽→酸化触媒塔を循環させると、溶出したニッケルイオンは次亜塩素酸により酸化され、再び酸化ニッケルとなる。このため電解槽を通過してきた廃液は、黒色の酸化ニッケルが懸濁した液となる。一例では、溶液中のニッケルイオン濃度が、循環3回目で3.1ppm、循環4回目で12ppmとなった。この酸化ニッケルは、電解槽内の電極表面に析出して、短絡、あるいは閉塞などの、電解を阻害する因子として働くという問題がある。
【0018】
【発明が解決しようとする課題】
本発明の目的は、上述した従来技術の問題を解決し、導電率100μS/cm以上、COD1000ppm以上の廃液、とりわけ、塩酸に加えて、エタノールアミン、ヒドラジンおよびアンモニアの1種または2種以上を含有する廃液を、電気分解と紫外線照射とを組み合わせによって処理し、高い効率をもって有機物を分解することができ、省エネルギーの要請にこたえる処理方法を提供することにある。
【0019】
【課題を解決するための手段】
本発明の有機廃液の処理方法は、図2に示すフローを特徴とする。すなわち、導電率100μS/cm以上、COD(化学的酸素要求量)1000ppm以上の有機物を含む廃液を処理する方法であって、第一工程において、廃液を原水タンク(1)に蓄え、必要により塩化ナトリウムのような塩素イオンを含有する物質を添加して、塩素イオン5000ppm以上を含む液とし、送液ポンプ(2)により原水タンク(1)から電解槽(3)に廃液を送り込む。電解槽で、第一工程として、白金族金属または白金族金属の酸化物とバルブメタルとの複合酸化物をコーティングしたチタン電極を陽極として用いて電解処理し、廃液中に含まれる有機物の直接酸化分解反応と、副反応により発生する次亜塩素酸ナトリウムによる間接酸化とを行なう。続いて、ほぼ単分子化した有機物を含有する、第一工程からの電解処理水を紫外線反応槽(4)に送り、第二工程として、紫外線による直接分解と、電解副反応で生じた次亜塩素酸ナトリウムを紫外線で分解して発生する活性酸素を利用した分解とを行なう。廃液は、第一工程と第二工程とを循環させて、分解を進める。
【0020】
【発明の実施の形態】
ここで、「バルブメタル」とは、チタン、タンタルのような、弁の材料として好んで使用される金属を指す。
【0021】
本発明の処理方法は、上述した開発の経緯から明らかなように、原子力発電所のボイラー水系の浄化装置から排出される、塩酸に加えて、エタノールアミン、ヒドラジンおよびアンモニアの1種または2種以上を含有する廃液の処理に、有利に適用することができる。
【0022】
廃液を電解法で処理する場合、陽極電位を高い酸化電位にする必要がある。電解法の廃液処理において、特開2001‐38391号に見るように、溶解性の鉄電極を用いる方法が提案されているが、この場合は鉄の電極電位−0.44V近傍の酸化力しかなく、陽極表面で有機物を分解するというよりも、むしろ、鉄を溶出させて有機物を凝集沈殿させることが主たる狙いである。
【0023】
本発明においては、高い酸化力を実現するために、不溶性電極、具体的には白金族金属または白金族金属の酸化物およびタンタル、チタンなどのバルブメタルとの複合酸化物をコーティングしたチタン電極を陽極として用いる。これが本発明の第一の特徴である。鉛合金電極、黒鉛電極もCOD成分の分解には有効ではあるが、鉛の溶出や電極の消耗があるため、電解分解法には適切ではない。
【0024】
第二の特徴は、廃液を、電解処理の工程と紫外線照射の工程とに循環させることにある。この循環により、電解の副反応として発生する次亜塩素酸ナトリウムが紫外線により分解し、式6に示すように活性酸素が発生する。

Figure 0003664135
この活性酸素により、希薄となったCOD成分は、溶液中で酸化分解される。電解と紫外線照射との工程間を循環させて処理することを本発明の特徴としている理由は、図3に見るように、電解処理によって、CODが5000ppmであった溶液のCODが、約1/10の450ppmとなった時点で、紫外線処理を施しても、それ以上はCODが減少しにくくなるという事実にある。具体的にいえば、投入エネルギーを560whr/リットルとしても、循環をさせなければCODは高々100ppmまでしか下がらないのに対して、本発明のように、電解と紫外線照射との間を循環させて処理すると、410whr/リットルの投入エネルギーで、CODが7.4ppm に下がる。
【0025】
本発明の実施にあたって、第一工程の電解の電流密度は、高くすればするほど、後記の実施データに見るように、分解速度が速くなる。しかしながら、投入エネルギー量で表すと、これも後記する実施データが示すように、逆に電流密度が低いほど、投入エネルギーが少なくて済む。処理に要する時間と投入エネルギーとの関係からみれば、20A/dm2程度が、もっとも適切な電流値であると言える。
【0026】
処理液のpHについては、pHが高ければ高いほど、分解効率が高いことが判明している。ただし、pHをあまり高くすると、最終処理完了後に中和に必要な酸が多量になる。同時に、電極材料の寿命にも影響が出てくるので、通常はpH11〜12程度が好ましい。
【0027】
処理温度も、高いほど分解効率が高くなるが、実操業にとっては、50〜60℃程度がもっとも適切な値となる。紫外線照射用のUVランプとしては、10−3〜10−2Torrの低圧水銀ランプを用いることが望ましい。
【0028】
【実施例】
電解による分解の実験データを示した模擬廃液を対象に、
(1)同じ条件の電解処理だけを行なう
(2)電解処理に続いて紫外線処理を、非循環的に行なう
(3)本発明に従って、電解処理と紫外線処理とを、液を循環させなが
ら行なう
の各場合について実験した。模擬廃液は、ETA:10,000ppm、NH:455ppm、N:909ppm、Cl:18,000ppmを含み、NaOHでpH11〜12に調整した溶液である。電解に用いた電極は、図1の実験と同様、白金70モル%−酸化イリジウム30モル%のコーティングを施した、チタン基板電極である。
【0029】
この模擬廃液30リットルを原水タンクに充填し、電解槽に350ml/minで送液した。電解処理の運転条件は、電流密度20A/dm2(電解電流50A、陽極面積2.5dm2×5系列直列)、運転中の電解槽内の液温度は、50〜60℃に保った。紫外線照射処理に用いたランプは、出力110Wの10- 〜10- Torrの低圧水銀ランプである。
【0030】
前記処理(1)は、原水タンクと電解槽のみを循環させ、(2)は、これに紫外線処理を後続させ、(3)は、廃液が紫外線反応槽を経て原水タンクに戻るようにし、原水タンク→電解槽→紫外線反応槽→原水タンクという循環ループを形成した。
【0031】
操作(1)と操作(2)の比較は、図3に示したとおりである。このグラフに見るように、単なる電解処理と本発明の電解⇔紫外線照射循環処理は、CODが数100ppmに至るまでは、ほぼ同等の分解曲線を示す。しかし、電解処理だけの場合は、希薄な濃度になったときに、分解効率が極端に落ちる。
【0032】
副反応により発生する次亜塩素酸ソーダの酸化力を利用して分解できれば、陽極表面という二次元の反応ではなく、薬剤反応、すなわち三次元反応となり、効率よく分解することが期待できるが、電解処理により低分子化した有機物の中には、次亜塩素酸の酸化力をもってしても分解されにくい物質が生成しており、次亜塩素酸の酸化力を高める必要がある。前述したように、酸化触媒を用いて次亜塩素酸を分解し、発生した活性酸素の酸化力で分解する方法もあるが、酸化触媒からの金属イオンの溶出があるため、廃水処理としては適切な方法ではない。
【0033】
操作(2)と操作(3)との対比は、図4に示す結果となった。このようにして、図3および図4のデータ、すなわち、電解処理だけの場合の分解曲線、電解処理と紫外線処理をバッチ処理で行なった場合の分解曲線、そして本発明による、電解処理と紫外線処理とを循環的に行なった場合の分解曲線を比べれば、本発明による処理方法、すなわち、第一工程としての電解処理とそれに続く第二工程の紫外線照射を行なう処理を実施すれば、CODの減少が順調に進み、投入したエネルギーに対して高率の高い、省エネルギーの要求に沿った分解が実現できることがわかる。
【0034】
しかも、酸化触媒を用いて循環する方法において問題であった、金属の溶出もない。さらに、COD成分が目標値まで減少した場合にも、副反応の生成物である次亜塩素酸ナトリウムを、紫外線で分解し切るということも実現する。
【0035】
電解の電流密度を、10,20,40A/dm2と変化させたときの、電解時間とCODとの関係は、図5に示すとおりであって、前述のように、電流密度が高い方が、分解速度が速い。データを投入エネルギーで整理してプロットすると、図6に見るとおりであって、電流密度が低い方が、投入エネルギーとしては少ない。
【0036】
【発明の効果】
本発明の廃液の処理方法は、導電率100μS/cm以上、COD(化学的酸素要求量)1000ppm以上の有機物を含む廃液、とりわけ、塩酸に加えてエタノールアミン、ヒドラジンおよびアンモニアの1種または2種以上を含有する廃液を処理するに当り、廃液を、電解処理と紫外線処理との間を循環させることにより、少ない投入エネルギーで、したがって省エネルギーで、効率の高い分解処理が実現する。省エネルギーであるから、当然に低コストで実施でき、二次廃水に金属イオンが溶出するという問題もない。
【図面の簡単な説明】
【図1】 有機物を含む廃液を電解処理した場合の、投入エネルギーと廃液のCODおよび有効塩素濃度との関係を示すグラフ。
【図2】 本発明の処理方法のフローチャート。
【図3】 有機物を含む廃液を電解処理に続いて紫外線照射処理した場合と、本発明に従って電解処理と紫外線照射処理との間で循環的に処理した場合とを比較した、投入エネルギーと廃液のCODの低減効果との関係を示すグラフ。
【図4】 有機物を含む廃液を電解処理した場合の、投入エネルギーと廃液のCODとの関係を示すグラフ。
【図5】 有機物を含む廃液を、本発明に従って電解−紫外線照射処理した場合の、電解時間と廃液のCODとの関係を、異なる電流密度に関して示すグラフ。
【図6】 有機物を含む廃液を本発明に従って電解−紫外線照射処理した場合の、投入エネルギーと廃液のCODとの関係を、異なる電流密度に関して示すグラフ。
【符号の説明】
1 原水タンク
2 送液ポンプ
3 電解槽
4 紫外線反応槽[0001]
BACKGROUND OF THE INVENTION
The present invention decomposes organic waste liquid, in particular, waste liquid containing one or more of ethanolamine, hydrazine and ammonia in addition to hydrochloric acid with high efficiency by treatment combining electrolysis and ultraviolet decomposition. The present invention relates to an energy saving processing method.
[0002]
[Prior art]
Currently, PWR (boiling water reactor) secondary water quality management is based on the addition of ammonia and hydrazine to prevent corrosion damage to SG (steam generator) heat transfer tubes. ) Has been implemented. However, according to a recent survey of SG heat transfer tubes, the thickness of the scale attached to the secondary side of the heat transfer tubes tends to increase over time, and heat transfer performance and the clevis environment are expected to deteriorate. Water management has become an important issue, such as measures to reduce the iron concentration in feed water to prevent adhesion of water.
[0003]
In order to reduce the iron concentration of feed water, it is necessary to suppress corrosion in the iron ion generation source. Ammonia used as a pH adjuster in the current AVT treatment has a gas-liquid partition coefficient of 1 or more, so the pH balance between the gas phase and the liquid phase fluctuates to the gas phase side, and in the liquid phase part. The pH is lowered. As a result, there arises a problem that the elution of iron in the liquid phase portion increases. There is also a method of increasing the pH of the liquid phase part by increasing the injection amount of ammonia and managing it at a high pH, but in this case, the ammonia concentration in the gas phase part is further increased. This leads to a new problem that the amount of corrosion increases.
[0004]
By injecting ethanolamine (ETA) with a gas-liquid partition coefficient of approximately 1, the pH of the gas phase and liquid phase can be controlled to be approximately the same, and iron can be eluted without causing corrosion of the copper-based material. It is expected to have an effect of reducing the iron concentration in the water supply. However, the boiler water system requires an ion exchange resin tower as a purification device. When ETA injection control is performed, ETA is supplemented by the ion exchange resin, and contains ETA, hydrochloric acid, ammonia, and hydrazine during resin regeneration. Then, the organic waste liquid whose COD reaches about 10,000 ppm is discharged. If this waste liquid cannot be treated smoothly, ETA injection management cannot be carried out. However, the treatment technology for organic waste liquid containing ETA has not been established, and development of such technology has been desired.
[0005]
For the treatment of this type of waste liquid, biological methods, catalytic oxidation methods, electrolytic oxidation methods and the like have been tried. For example, regarding the electrolytic oxidation method, there are technologies such as JP-A-9-239371, JP-A-11-216472, JP-A-11-216473, and JP-A-11-347559.
[0006]
JP-A-9-239371 discloses a `` treatment method of ethanolamine-containing hydrochloric acid waste liquid characterized in that ethanolamine is removed by subjecting the hydrochloric acid waste liquid containing ethanolamine to slightly acidic and non-membrane electrolysis, '' The technique added that the condition that “the slightly acidic acid is pH 5 to 7”, and further that “the electrolytic treatment is continuously performed by circulating and supplying ethanolamine-containing hydrochloric acid to the diaphragm electrolysis chamber” Has been proposed.
[0007]
In JP-A-11-216472, “ethanolamine-containing water is subjected to electrolytic treatment in the presence of chloride ions, then brought into contact with a metal oxide catalyst, and further introduced with hydrogen gas generated in the electrolytic treatment step for reduction. A technique of “a method for treating ethanolamine-containing water characterized by contacting with a catalyst” is disclosed.
[0008]
In Japanese Patent Laid-Open No. 11-216473, “ethanolamine-containing water is passed through an electrolytic reaction tank at a water flow rate (LV) of 20 m / h or more under water quality conditions with a chloride ion concentration of 10,000 mg / liter or more. And a method for treating ethanolamine-containing water, which is characterized by subjecting it to electrolytic treatment.
[0009]
In JP-A-11-347559, “a method in which ethanolamine-containing water is subjected to electrolytic treatment in the presence of chloride ions and then brought into contact with a metal oxide catalyst, characterized by performing electrolysis a plurality of times. Further, a technique is disclosed that is added under the condition that after electrolysis, the gas in the electrolytically treated water is separated and electrolyzed again.
[0010]
Originally, if electrolysis is performed, an oxidation reaction proceeds at the anode and a reduction reaction proceeds at the cathode. For example, when an aqueous solution containing sodium chloride is electrolyzed, chlorine ions are oxidized at the anode to form chlorine gas as shown in Equation 1,
2Cl → Cl 2 + 2e −−−−− (Formula 1)
At the cathode, as shown in Equation 2, hydrogen ions are reduced to form hydrogen gas.
2H + + 2e → H 2 ----- (Formula 2)
[0011]
Chlorine gas dissolves in the sodium chloride solution and becomes sodium hypochlorite. Chlorine gas or sodium hypochlorite is known as a powerful oxidant, and the anode surface capable of producing these oxidants is in a very high oxidizing environment. Therefore, it is known that when waste liquid containing organic matter is electrolyzed, the organic matter is oxidized and decomposed on the anode surface to become carbon dioxide gas and water.
[0012]
Actually, since the electrolytic reaction is a reaction on the electrode surface, that is, a two-dimensional reaction, when the organic substance concentration in the waste liquid becomes dilute, the organic substance concentration tends not to decrease easily. For this reason, measures are taken to bring the organic matter into contact with the electrode surface as much as possible by increasing the flow velocity or causing turbulence. For this reason, Japanese Patent Application Laid-Open No. 11-216473 is limited to “water passage speed of 20 m / h or more” as described above.
[0013]
However, it is difficult to set the COD to 10 ppm or less, which is the water discharge regulation value, only by electrolytic treatment. For example, 30 mL of simulated waste liquid containing ETA: 10,000 ppm, NH 3 : 455 ppm, N 2 H 4 : 909 ppm, Cl : 18,000 ppm and adjusted to pH 11 to 12 with NaOH is filled in the raw water tank, and the electrolytic cell Shows the data when liquid was fed at 350 ml / min and only the raw water tank and the electrolytic cell were circulated. The electrode used for the electrolysis is a titanium substrate electrode coated with 70 mol% platinum-30 mol% iridium oxide. The operating conditions of the electrolytic treatment were current density 20 A / dm 2 (electrolytic current 50 A, anode area 2.5 dm 2 × 5 series in series), and the liquid temperature in the electrolytic cell during operation was kept at 50 to 60 ° C.
[0014]
The result is as shown in FIG. 1, and as a whole, even when the energy of 500 whr / liter is input, the COD is only 40 ppm, and it can be understood that as the liquid becomes thinner, more input energy is required. It can also be seen that the concentration of hypochlorous acid generated by the side reaction increases rapidly when the COD component becomes dilute. However, even if the concentration of hypochlorous acid, which is an oxidizing agent, increases, the COD concentration does not decrease so much. This indicates that a COD component that is difficult to decompose by the oxidizing power of hypochlorous acid remains.
[0015]
The oxidation catalysts described in JP-A-11-216472 and JP-A-11-347559 are produced from sodium hypochlorite generated by a side reaction through a reaction represented by the following formulas 3 to 5, and more oxidizing power. It generates high active oxygen and uses it.
Ni 2 O 3 + NaClO → 2NiO 2 + NaCl (3)
2NiO 2 + NaClO → Ni 2 O 3 + NaCl + 2O * (4)
Overall reaction 2NaClO → 2NaCl + 2O * (5)
[0016]
In the method described in JP-A-11-347559, the electrolytic treatment step and the oxidation catalyst treatment step are repeated a plurality of times, that is, the solution is circulated, while supplying sodium hypochlorite that produces active oxygen by the oxidation catalyst. Perform processing.
[0017]
However, during the reactions of Formulas 3-5, metal ions such as nickel are mixed into the wastewater. Specifically, when 30 liters of solution is circulated through the electrolytic cell → the oxidation catalyst tower under the above conditions, the eluted nickel ions are oxidized by hypochlorous acid and become nickel oxide again. For this reason, the waste liquid which has passed through the electrolytic cell becomes a liquid in which black nickel oxide is suspended. In one example, the nickel ion concentration in the solution was 3.1 ppm at the third circulation and 12 ppm at the fourth circulation. There is a problem that this nickel oxide is deposited on the electrode surface in the electrolytic cell and acts as a factor that inhibits electrolysis, such as short circuit or blockage.
[0018]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems of the prior art, and to contain waste liquid having a conductivity of 100 μS / cm or more and COD of 1000 ppm or more, in particular, one or more of ethanolamine, hydrazine and ammonia in addition to hydrochloric acid. It is an object of the present invention to provide a processing method that can process waste liquid by combining electrolysis and ultraviolet irradiation, decompose organic substances with high efficiency, and meet energy saving requirements.
[0019]
[Means for Solving the Problems]
The organic waste liquid treatment method of the present invention is characterized by the flow shown in FIG. That is, a method for treating a waste liquid containing an organic substance having a conductivity of 100 μS / cm or more and a COD (chemical oxygen demand) of 1000 ppm or more. In the first step, the waste liquid is stored in the raw water tank (1) and, if necessary, chlorinated. A substance containing chlorine ions such as sodium is added to obtain a liquid containing 5000 ppm or more of chlorine ions, and the waste liquid is fed from the raw water tank (1) to the electrolytic cell (3) by the liquid feed pump (2). In the electrolytic cell, as the first step, the titanium electrode coated with platinum group metal or platinum group metal oxide and valve metal is used as the anode for electrolytic treatment, and direct oxidation of organic substances contained in the waste liquid A decomposition reaction and an indirect oxidation with sodium hypochlorite generated by a side reaction are performed. Subsequently, the electrolyzed water from the first step containing the substantially monomolecular organic substance is sent to the ultraviolet reaction tank (4), and as the second step, hypothesis generated by direct decomposition by ultraviolet rays and electrolytic side reaction. Decomposition using active oxygen generated by decomposing sodium chlorate with ultraviolet rays. The waste liquid is circulated through the first step and the second step to proceed with decomposition.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Here, the “valve metal” refers to a metal that is preferably used as a valve material, such as titanium or tantalum.
[0021]
As is apparent from the development process described above, the treatment method of the present invention is one or more of ethanolamine, hydrazine, and ammonia in addition to hydrochloric acid discharged from the boiler water purification system of a nuclear power plant. The present invention can be advantageously applied to the treatment of waste liquid containing
[0022]
When the waste liquid is treated by an electrolytic method, it is necessary to set the anode potential to a high oxidation potential. As shown in Japanese Patent Laid-Open No. 2001-38391, a method using a soluble iron electrode has been proposed in the waste liquid treatment of electrolysis, but in this case, there is only an oxidizing power in the vicinity of an electrode potential of iron of −0.44V. Rather than decomposing organic matter on the anode surface, the main aim is to elute iron to coagulate and precipitate organic matter.
[0023]
In the present invention, in order to achieve high oxidizing power, an insoluble electrode, specifically, a titanium electrode coated with a platinum group metal or a platinum group metal oxide and a composite oxide with a valve metal such as tantalum or titanium is used. Used as anode. This is the first feature of the present invention. Lead alloy electrodes and graphite electrodes are also effective for decomposing COD components, but are not suitable for electrolytic decomposition because of lead elution and electrode consumption.
[0024]
The second feature is that the waste liquid is circulated between the electrolytic treatment process and the ultraviolet irradiation process. By this circulation, sodium hypochlorite generated as a side reaction of electrolysis is decomposed by ultraviolet rays, and active oxygen is generated as shown in Equation 6.
Figure 0003664135
The diluted COD component is oxidized and decomposed in the solution by the active oxygen. The reason for the feature of the present invention to circulate the process between the electrolysis and ultraviolet irradiation processes is that, as shown in FIG. Even when UV treatment is performed at the time when it reaches 10 450 ppm, the COD is less likely to decrease. Specifically, even if the input energy is set to 560 whr / liter, the COD can only be reduced to 100 ppm at most if it is not circulated, whereas it is circulated between electrolysis and ultraviolet irradiation as in the present invention. Processing reduces the COD to 7.4 ppm with an input energy of 410 whr / liter.
[0025]
In the practice of the present invention, the higher the current density of the electrolysis in the first step, the faster the decomposition rate as seen in the implementation data described later. However, in terms of the input energy amount, as shown in the implementation data described later, conversely, the lower the current density, the smaller the input energy. From the relationship between the time required for processing and the input energy, it can be said that about 20 A / dm 2 is the most appropriate current value.
[0026]
Regarding the pH of the treatment liquid, it has been found that the higher the pH, the higher the decomposition efficiency. However, if the pH is too high, a large amount of acid is required for neutralization after completion of the final treatment. At the same time, the life of the electrode material is also affected, so usually a pH of about 11 to 12 is preferred.
[0027]
The higher the processing temperature is, the higher the decomposition efficiency is. However, for actual operation, about 50 to 60 ° C. is the most appropriate value. As a UV lamp for ultraviolet irradiation, it is desirable to use a low pressure mercury lamp of 10 −3 to 10 −2 Torr.
[0028]
【Example】
For the simulated waste liquid that showed experimental data of electrolytic decomposition,
(1) Perform only electrolytic treatment under the same conditions (2) Perform ultraviolet treatment following electrolytic treatment non-circularly (3) Perform electrolytic treatment and ultraviolet treatment according to the present invention while circulating the liquid Experiments were conducted in each case. The simulated waste liquid is a solution containing ETA: 10,000 ppm, NH 3 : 455 ppm, N 2 H 4 : 909 ppm, Cl : 18,000 ppm and adjusted to pH 11 to 12 with NaOH. The electrode used for electrolysis is a titanium substrate electrode coated with 70 mol% platinum-30 mol% iridium oxide, as in the experiment of FIG.
[0029]
30 liters of this simulated waste liquid was filled in the raw water tank and sent to the electrolytic cell at 350 ml / min. The operating conditions of the electrolytic treatment were a current density of 20 A / dm 2 (electrolytic current 50 A, anode area 2.5 dm 2 × 5 series in series), and the liquid temperature in the electrolytic cell during operation was kept at 50 to 60 ° C. Lamp used in the ultraviolet irradiation treatment, output 110W of 10 - 3-10 - a 2 Torr of low-pressure mercury lamp.
[0030]
In the treatment (1), only the raw water tank and the electrolytic tank are circulated, (2) is followed by ultraviolet treatment, and (3) is such that the waste liquid returns to the raw water tank through the ultraviolet reaction tank. A circulation loop of tank → electrolysis tank → ultraviolet reaction tank → raw water tank was formed.
[0031]
The comparison between the operation (1) and the operation (2) is as shown in FIG. As seen in this graph, the simple electrolytic treatment and the electrolytic ultraviolet irradiation circulation treatment of the present invention show substantially the same decomposition curves until the COD reaches several hundred ppm. However, in the case of only electrolytic treatment, the decomposition efficiency is extremely lowered when the concentration becomes dilute.
[0032]
If it can be decomposed using the oxidizing power of sodium hypochlorite generated by side reaction, it will be a chemical reaction, that is, a three-dimensional reaction, rather than a two-dimensional reaction on the anode surface, and it can be expected to decompose efficiently. Among the organic substances whose molecular weight has been reduced by the treatment, substances that are difficult to decompose even with the oxidizing power of hypochlorous acid are generated, and it is necessary to increase the oxidizing power of hypochlorous acid. As described above, there is a method of decomposing hypochlorous acid using an oxidation catalyst and decomposing with the oxidizing power of the generated active oxygen, but it is suitable for wastewater treatment because metal ions are eluted from the oxidation catalyst. It ’s not the right way.
[0033]
The comparison between the operation (2) and the operation (3) was as shown in FIG. Thus, the data of FIGS. 3 and 4, that is, the decomposition curve in the case of only the electrolytic treatment, the decomposition curve in the case of performing the electrolytic treatment and the ultraviolet treatment in batch processing, and the electrolytic treatment and the ultraviolet treatment according to the present invention. If the decomposition method is compared in a cyclic manner, the treatment method according to the present invention, that is, the electrolytic treatment as the first step and the subsequent ultraviolet ray treatment in the second step is performed, the COD is reduced. It is understood that the decomposition can be realized in accordance with the energy saving requirement with a high rate with respect to the input energy.
[0034]
Moreover, there is no metal elution, which is a problem in the method of circulating using an oxidation catalyst. Furthermore, even when the COD component is reduced to the target value, it is also possible to completely decompose sodium hypochlorite, which is a product of the side reaction, with ultraviolet rays.
[0035]
The relationship between the electrolysis time and COD when the electrolysis current density is changed to 10, 20, 40 A / dm 2 is as shown in FIG. 5. As described above, the higher the current density, the higher the current density. , Decomposition speed is fast. When the data is arranged by the input energy and plotted, as shown in FIG. 6, the lower the current density, the less the input energy.
[0036]
【The invention's effect】
The waste liquid treatment method of the present invention is a waste liquid containing an organic substance having a conductivity of 100 μS / cm or more and a COD (chemical oxygen demand) of 1000 ppm or more, particularly one or two of ethanolamine, hydrazine and ammonia in addition to hydrochloric acid. In treating the waste liquid containing the above, the waste liquid is circulated between the electrolytic treatment and the ultraviolet treatment, thereby realizing an efficient decomposition process with less input energy and hence energy saving. Since it is energy saving, it can be carried out at a low cost and there is no problem that metal ions are eluted in the secondary wastewater.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between input energy and COD and effective chlorine concentration of waste liquid when electrolytic treatment is performed on waste liquid containing organic substances.
FIG. 2 is a flowchart of a processing method of the present invention.
FIG. 3 shows a comparison between the case where the waste liquid containing the organic substance is subjected to the ultraviolet irradiation treatment after the electrolytic treatment and the case where the waste liquid containing the organic matter is cyclically treated between the electrolytic treatment and the ultraviolet irradiation treatment according to the present invention. The graph which shows the relationship with the reduction effect of COD.
FIG. 4 is a graph showing the relationship between input energy and COD of waste liquid when waste liquid containing organic substances is subjected to electrolytic treatment.
FIG. 5 is a graph showing the relationship between the electrolysis time and the COD of the waste liquid when the waste liquid containing the organic substance is subjected to the electrolysis-ultraviolet irradiation treatment according to the present invention with respect to different current densities.
FIG. 6 is a graph showing the relationship between the input energy and the COD of the waste liquid when the waste liquid containing the organic substance is subjected to electrolytic-ultraviolet irradiation treatment according to the present invention with respect to different current densities.
[Explanation of symbols]
1 Raw water tank 2 Liquid feed pump 3 Electrolysis tank 4 Ultraviolet reaction tank

Claims (2)

導電率100μS/cm以上、COD(化学的酸素要求量)1000ppm以上の有機物を含む廃液を処理する方法であって、第一工程において、廃液を、塩素イオン5000ppm以上を含む液とし、白金族金属または白金族金属の酸化物とバルブメタルとの複合酸化物をコーティングしたチタン電極を陽極として用いた電解槽へ通液して電解処理を行ない、第二工程において、第一工程からの電解処理水を紫外線反応槽に通液して分解を行ない、廃液を第一工程および第二工程循環させて処理することを特徴とする有機廃液の処理方法。A method for treating a waste liquid containing an organic substance having a conductivity of 100 μS / cm or more and COD (chemical oxygen demand) of 1000 ppm or more, and in the first step, the waste liquid is a liquid containing chlorine ions of 5000 ppm or more, and a platinum group metal Alternatively, the titanium electrode coated with a composite oxide of platinum group metal oxide and valve metal is passed through an electrolytic cell using as an anode for electrolytic treatment, and in the second step, the electrolyzed water from the first step the performs degradation was passed through the UV reactor, the method of treating organic waste which comprises treating by circulating effluent in the first step and the second step. 有機物を含む廃液が、塩酸に加えてエタノールアミン、ヒドラジンおよびアンモニアの1種または2種以上を含有する廃液であって、この廃液のpHを10〜11に調整した後、廃液を第一工程および第二工程に循環させて処理する請求項1の有機廃液の処理方法。The waste liquid containing organic matter is a waste liquid containing one or more of ethanolamine, hydrazine and ammonia in addition to hydrochloric acid, and after adjusting the pH of the waste liquid to 10 to 11, the waste liquid is treated in the first step and The method for treating an organic waste liquid according to claim 1, wherein the treatment is performed by circulating in the second step.
JP2002001103A 2002-01-08 2002-01-08 Organic waste liquid treatment method Expired - Lifetime JP3664135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002001103A JP3664135B2 (en) 2002-01-08 2002-01-08 Organic waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001103A JP3664135B2 (en) 2002-01-08 2002-01-08 Organic waste liquid treatment method

Publications (2)

Publication Number Publication Date
JP2003200171A JP2003200171A (en) 2003-07-15
JP3664135B2 true JP3664135B2 (en) 2005-06-22

Family

ID=27641316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002001103A Expired - Lifetime JP3664135B2 (en) 2002-01-08 2002-01-08 Organic waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP3664135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105858823A (en) * 2016-05-12 2016-08-17 安徽国能亿盛环保科技有限公司 Phenol-containing wastewater treatment process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160241A (en) * 2005-12-15 2007-06-28 Omega:Kk Hypohalous acid decomposing method
JP2008259930A (en) * 2007-04-10 2008-10-30 Hitachi Plant Technologies Ltd Method for treating organic solvent-containing waste water
JP2008264668A (en) * 2007-04-19 2008-11-06 Unitika Ltd Method and apparatus for electrolytic treatment of wastewater
AU2010251701B2 (en) * 2009-05-22 2012-11-15 579453 Ontario Inc. Water analysis
GB2515324A (en) * 2013-06-19 2014-12-24 Ramsey Yousif Haddad Electrolytic advance oxidation processes to treat wastewater, brackish and saline water without hydrogen evolution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105858823A (en) * 2016-05-12 2016-08-17 安徽国能亿盛环保科技有限公司 Phenol-containing wastewater treatment process

Also Published As

Publication number Publication date
JP2003200171A (en) 2003-07-15

Similar Documents

Publication Publication Date Title
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
JP3716042B2 (en) Acid water production method and electrolytic cell
EP1295853B1 (en) Method of treating water and apparatus therefor
TWI564434B (en) An apparatus and method for electrochemical production of oxidant related compounds
JP4932529B2 (en) Water treatment method
KR101269948B1 (en) Apparatus and method for nitrogen wastewater treatment
JP3664135B2 (en) Organic waste liquid treatment method
JP2005193202A (en) Water treatment method and water treatment system
US7241373B2 (en) Nitrogen treating method
EP1982960B1 (en) Water treatment process
JP3984414B2 (en) NH3-containing wastewater treatment apparatus and treatment method
KR101046942B1 (en) Water treatment method using electrolysis
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
CN112340905B (en) Method and device for multi-wavelength ultraviolet-electrochemical sectional treatment of wastewater
JP2008264668A (en) Method and apparatus for electrolytic treatment of wastewater
JP3722537B2 (en) Organic sludge oxidation treatment method and equipment
JP2006272060A (en) Continuous treatment method and device for waste water containing nitrate nitrogen
JP2012040524A (en) Electrolytic treatment apparatus and electrolytic treatment method
KR101941943B1 (en) Method and apparatus of treating ammonia wastewater
JPH11347558A (en) Method and apparatus for electrolytic treatment of nitrogen oxide-containing water
JP2009028629A (en) Treatment method of waste water containing nitrate nitrogen and calcium ion
CN110065998B (en) Electrochemical disinfection method for drinking water for inhibiting generation of bromine byproducts
JP2007051318A (en) Apparatus for electrolyzing saline solution
JP3534367B2 (en) Wastewater treatment method and apparatus
JP2006239590A (en) Treatment method and treatment device for oxidizable substance-containing waste water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250