JP4965788B2 - 四重極質量分析器構成を含む質量分析計 - Google Patents

四重極質量分析器構成を含む質量分析計 Download PDF

Info

Publication number
JP4965788B2
JP4965788B2 JP2001587462A JP2001587462A JP4965788B2 JP 4965788 B2 JP4965788 B2 JP 4965788B2 JP 2001587462 A JP2001587462 A JP 2001587462A JP 2001587462 A JP2001587462 A JP 2001587462A JP 4965788 B2 JP4965788 B2 JP 4965788B2
Authority
JP
Japan
Prior art keywords
quadrupole
ions
electrodes
mass spectrometer
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001587462A
Other languages
English (en)
Other versions
JP2004515882A (ja
Inventor
カリニチェンコ,ユーリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Australia Pty Ltd
Original Assignee
Varian Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Australia Pty Ltd filed Critical Varian Australia Pty Ltd
Publication of JP2004515882A publication Critical patent/JP2004515882A/ja
Application granted granted Critical
Publication of JP4965788B2 publication Critical patent/JP4965788B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/063Multipole ion guides, e.g. quadrupoles, hexapoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/061Ion deflecting means, e.g. ion gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【0001】
[技術分野]
この発明は、改良された四重極質量分析器構成を含む質量分析計に関する。この発明は、誘導結合プラズマイオン源を有する誘導結合プラズマ−質量分析計(ICP−MS)に関して主として説明されるが、この発明は、他のタイプのイオン源を用いる他のタイプの質量分析計を包含することを理解されたい。それらの例は以下に開示される。
【0002】
[背景]
公開された国際出願WO00/17909(PCT/AU99/00766)は、イオン透過の代わりにイオン反射光学系を有する質量分析計を開示している。該質量分析計は、分析試料中に存在する化学元素を表わすイオンを含む粒子を供給するイオン源と、源からイオンのビームを発生して、たとえば90°などのある角度をなしてそのビームからイオンを反射する反射静電界を確立するためおよびイオンを質量分析器の入口に集束するための、イオン源と質量分析器との間のイオン光学系とを含む。
【0003】
ICP−MS器具に具体化されるようなWO00/17909の発明は、比較的原子質量が高い元素同位体の検出に対する良好な感度を与える(たとえば、原子質量が232であるトリウムの感度は、リットル当りマイクログラム当り1秒当り650,000カウントを超えた)ことがわかっている。しかしながら、低い原子質量を有する元素同位体に対する感度は比較的低い(たとえば、原子質量が9であるベリリウムの感度は、リットル当りマイクログラム当り1秒当り10,000カウント未満であった)。さらに、バックグラウンドカウント率(選択された質量電荷比で検出されたカウント率、ただしこれは、その選択された質量電荷比を有するイオンが存在しないとされた場合のものである)は所望されるよりも高くかつ、イオン光学電極に印加される電圧が増加されて集束を改善し、原子質量の低い同位体の検出に対する感度を高めると、バックグラウンドカウント率は不利に増加した。
【0004】
ICP−MSにおける元素同位体の可能な最良の検出限界(LOD)は以下によって与えられる。
【0005】
LOD=3×(バックグラウンドカウント率/測定時間)1/2/感度
このように、原子質量が低い元素同位体に対する比較的高いバックグラウンドカウント率および比較的低い感度は、そのような原子質量が低い同位体の検出限界が不所望に高いことを意味する。
【0006】
イオン反射光学系を用いる質量分析計の使用がこの問題を目立たせているが、(以下に説明されるように、高いバックグラウンドカウント率を引起すメカニズムであると考えられるものを鑑みると)イオン反射光学系を用いない質量分析計において同じ問題が存在すると考えられる。
【0007】
四重極質量分析器の入口に、ロッドの短く真っ直ぐな4つのセクションの別個の組を配置し、それらに印加される無線周波数(rf)電圧のみでまたは実質的に0であるAC対DC電圧の比でそれらを動作させることは公知である。そのようなロッドの組はしばしば「フリンジロッド」として公知である。なぜならそれらの機能は、四重極質量分析器の入口でのフリンジ電界の影響を軽減し、こうして質量分析器中へのイオンの透過の効率を向上させることだからである(ピーター・エイチ・ドーソン(Peter H Dawson)の書籍「四重極質量分析法およびその応用」(“Quadrupole Mass Spectrometry and its Applications”)エルゼビア・サイエンティフィック出版(Elsevier Scientific Publishing Co.,)、1976年、105頁および図1(b);ならびに米国特許第3,371,204号の先行する開示(ウィルソン・エム・ブルーベーカー)(Wilson M Brubaker)を参照)。これらの真っ直ぐなフリンジロッドは四重極質量分析における過度のバックグラウンドの問題に直接に関係しているわけではないが、その問題を解決しようとして、同様の構造が含まれている。
【0008】
このように、米国特許第3,473,020号(ウィルソン・エム・ブルーベーカー)は、曲線状入口セクションおよび直線状セクションを有する四重極マスフィルタを開示している。荷電された粒子源は、粒子(通常はイオン)を分析器の中に方向付けて、ここでそれらを分解し、分けられたビームが次に検出器セクションに方向付けられる。曲線状四重極セクションは、低い分解能を有する強い集束モードで動作可能であるため、小さな質量範囲にあるイオンがこのセクションから分解能の高い四重極直線状セクションに透過される。曲線状入口セクションも、分析器検出器に達する荷電粒子源からの光子の数を減じ、こうして分析器の出力での信号対ノイズ比の実質的な向上をもたらす。この構成は、源から発する中性粒子および光子も除去する。これらの粒子は、カーブ付き四重極セクションの静電界の影響を受けず、したがって真っ直ぐ前方に進み続け、カーブ付き電極ロッドに当るからである。その後の米国特許第3,410,997号で、ブルーベーカーは、線形四重極質量分析器の出口で同様のカーブ付き四重極セクションを用いて、源からの光子からイオンを分離することを開示している。このカーブ付き四重極セクションはAC電圧でのみ動作され得ることが開示されている。
【0009】
上記書籍「四重極質量分析法およびその応用」の34−35頁で、ピーター・エイチ・ドーソンは、バックグラウンド信号は微量濃度を測定する能力を限定しかつ、「視線」分析器を容易に通過する励起された中性粒子に起因する、と述べている。さらに、「カーブ付き四重極…またはカーブ付きセクションは…この問題を回避するためにも用いられている」と述べている。
【0010】
欧州特許出願0 237 259 A2(ジェイ・イー・ピー・サイカ)(J.E.P. Syka)は、出力ノイズを減じるために質量分析四重極の前方に置かれた折曲げ四重極を含むタンデム型四重極質量分析計構成を開示している。この折曲げ四重極は、イオン源においてまたは折曲げ四重極の前方の(子イオンを発生するための)衝突セルから生成される高速の中性粒子を除去する。サイカの発明で、折曲げ四重極は、有孔プレートおよび静電レンズによって質量分析四重極から分離される。折曲げ四重極は「フリンジロッド」の組として働くのではない。
【0011】
ディ・ジェイ・ダグラス(D.J. Douglas)は、その論文「ICP−MSに関するいくつかの現在の展望」(“Some Current Perspectives on ICP-MS”)(Canadian Journal of Spectroscopy, Vol.34, No.2, 1989, pp38-49)において、誘導結合プラズマ質量分析における高レベルのバックグラウンドノイズを減じようと探求するのに関連して、分析四重極の出口での(彼が「折曲げクワッド」と称する)カーブ付き(90°)RF限定四重極の使用を報告したが、これは、米国特許第3,410,997号でブルーベーカーが開示したのと本質的に同じ構成である。しかしながら、ダグラスは、バックグラウンドノイズ(すなわちカウント率)は質量の強い相関であり、すなわち、高い質量のイオンについては、バックグラウンドは劇的に減じられたが、低い質量のものについては、バックグラウンドは高いままであった(これは、WO00/17909の発明に関して前述された問題と同様である)と述べている。ダグラスは、「一見したところ、分析四重極の出口で、源からの光子または準安定原子は質量の低いイオンをどうにか発生し、これらは、効率的に検出器に透過されて高いバックグラウンドレベルを生じた。RFクワッドに対する電圧が(質量の高い分析対象に対応して)高い場合、これらの質量の低いイオンは不安定な軌道を有し、透過されなかった。したがって、“折曲げクワッド”は、バックグラウンドの問題をほとんど全く解決しなかった。」(同上41頁)と述べている。
【0012】
米国特許第5,939,718号(エヌ・ヤマダ他)(N. Yamada et al)は、マスフィルタの前方に位置された多重極(少なくとも4つの電極ロッド)イオンビームガイドを含むイオンレンズセクションとイオン検出セクションとを有するICP−MSを開示している。いくつかの実施例では(図9−図12)、イオンビームガイドのロッドは、イオンビームの移動方向に対して傾けられるかまたは曲げられて、「誘導結合プラズマからの光の光子が直接にマスフィルタに入るのを防止する…その結果、直接光からのノイズを減じることができ…S/N比および測定精度を大きく高めることができる。」このように、この特許は、米国第3,473,020号(ブルーベーカー)で扱われたのと本質的に同じ問題を扱いかつ、ほぼ同じではあるが、誘導結合プラズマ質量分析計に特に適用される解決策をクレームしている。
【0013】
ヤマダらの米国特許第5,939,718号の開示によると、折曲げイオンガイドは有孔プレートによって質量分析四重極から分離される。したがって、折曲げイオンガイドは「フリンジロッド」の組として働くのではない。この開孔により、ヤマダらの米国特許第5,939,718号のマスフィルタはイオンガイドからイオンを直接に受けない。代わりに、イオンガイドがイオンレンズ真空チャンバの中に位置され、マスフィルタが分析器真空チャンバ中に位置されるため、イオンは2つのチャンバ間の開孔を通らなければならない。そのような有孔プレートはイオンガイドおよびマスフィルタと関連する電界に歪みをもたらし、これは(後述されるように、WO00/17909の発明に関する高いバックグラウンドカウント率を引起すメカニズムであると考えられるものを特に鑑みると)、2つのチャンバ中の異なる真空レベルとともに、イオンに対する何らかの不所望な影響を生じ、したがってバックグラウンドノイズに寄与し得る。
【0014】
上に開示された先行技術文献は、カーブ付きまたは傾斜付きイオンガイドを用いて、源から発する不所望な粒子(すなわち中性粒子および光子)を除去することを示している。そのようなイオンガイドの効果は、イオン源から「軸を外れて」または「視線」から外にマスフィルタおよび/またはイオン検出器を位置することである。それらは、源から発する中性粒子および光子が除去済みである構成の中で依然として生じている高いバックグラウンドカウント率の問題を扱っていない。
【0015】
この発明の背景の本明細書の説明は、この発明の文脈を説明するために含まれている。これは、この出願またはその請求項の優先日付において、オーストラリアにおいて、参照された文献のいずれかが公開され、公知でありまたは通常一般的知識の一部であったということを認めるものと解釈されるべきではない。
【0016】
この発明の目的は、原子質量の低い元素同位体の改良された(すなわち低い)検出限界を有する、四重極質量分析器を用いる質量分析計を提供することである。該質量分析計はイオン透過またはイオン反射光学系のいずれかを用い得る。
【0017】
[発明の開示]
この発明に従うと、質量分析計が提供され、これは、中性粒子および光子とともに、サンプル中の化学元素を表わすイオンを含む粒子を発生するための源と、
源から粒子を受けるため、第1の真空領域に収容されるイオン光学系とを含み、イオン光学系は、
源からの第1の方向の前記イオンのビームを方向付けるための静電界を確立するための少なくとも1つの第1の電極およびイオンのビームを第1の方向からある角度をなして向きを変えるための静電界を確立するための少なくとも1つの第2の電極とを含み、それにより、源から発する中性粒子および光子は第1の方向に進み続けてイオンのビームから分離され、さらに
第2の真空領域に収容される四重極質量分析器構成を含み、これは、
オンのビームを受けるための四重極フリンジ電極の組、および四重極フリンジ電極の組から直接にイオンを受けるための線形四重極質量分析器を含み、さらに
線形四重極質量分析器からイオンを受けるため、第2の真空領域に収容されるイオン検出器を含み、
四重極フリンジ電極の組は、イオンが線形四重極質量分析器の中を通る前にイオンの向きを変えて、線形四重極質量分析器の入口を遮蔽するように構成され
当該質量分析計は、第2の真空領域内の圧力が、第1の真空領域内の圧力より低くなるように構成される。
【0018】
先行の段落に開示されたように、源からの中性粒子および光子が除去された後、線形質量分析器のすぐ前方の四重極フリンジ電極の構成された組を用いることにより、原子質量の低い元素同位体の検出限界を大きく向上させることがわかった。これは主に、前にあるイオン光学要素の電圧が原子質量が低い同位体の透過に有利な値に設定されるときですら、四重極質量分析器構成の四重極フリンジ電極の構成された組が、バックグラウンドカウント率を非常に低い数字に減じるという効果を有するからである。四重極フリンジ電極の組がなければ、そのような電圧でのバックグラウンドカウント率は受入られないほどに高い。したがって、フリンジ電極の構成された組を用いることにより、バックグラウンドカウント率の低下とともに、質量の低い同位体に対する感度の上昇が可能になる。これらの要因の両者とも、原子質量の低い同位体の改良された検出限界に寄与する。
【0019】
考えられるのは、バックグラウンドカウント率の減少は、エネルギを有する中性粒子が線形四重極質量分析器の中に入らないようにする構成の四重極フリンジ電極によるものであり、なお、そのようなエネルギを有する中性粒子は分析計中の残留ガスを通るサンプルイオンの加速によって発生されるのであるが、このことは、それらのサンプルイオンがイオン透過またはイオン反射光学系のいずれによって方向付けられても起こり得るということである。高いバックグラウンドを生じる種のもとが何であっても、国際出願WO00/17909に開示される発明の場合、先行技術に教示されているように、これらの種がイオン源から直接に入来できないのは明らかである。したがって、第1または第2の真空領域中で残留ガスを通る第2の方向へのイオンの加速により、それらのイオンのいくつかが残留ガスの原子と(たとえば共鳴電荷交換によって)相互作用し、こうして高エネルギの中性原子を発生すると考えられる。これらは、線形四重極質量分析器に入れば、原子が当る金属面と相互作用し、こうしてイオン検出器の中に入るイオンを生成し、したがってバックグラウンドカウント率を増加させてしまう。したがって、質量分析器構成の四重極フリンジ電極セクションの構成は、そのように発生された高エネルギーの中性原子が線形四重極質量分析器セクションに入らないようにするのに十分な、サンプルイオンの方向変更(diversion)を生じさせるようなものである。すなわち、四重極フリンジ電極の組の構成は、たまたま中性化され得るどのイオンもある弾道を進み続け、その結果それらがフリンジ電極に当り、こうして、それらがイオン検出器に到達しなくなるようなものである。
【0020】
このように、四重極フリンジ電極の組の電極は、イオンが線形四重極質量分析器の中を通る前に、イオンの入来方向へのそれらの移動から四重極フリンジ電極の組の中へサンプルイオンの向きを変えるように構成され、入来方向から見たときに質量分析器入口を遮蔽して、第1または第2の真空領域中の残留ガスを通る、入来方向のイオンビームの通過によって場合によっては生じる中性粒子が線形四重極質量分析器に入らないようにする。
【0021】
さらに、この発明の四重極フリンジ電極の組を通る際、イオンは線形四重極質量分析器の中を直接に通る。すなわち、四重極フリンジ電極の構成された組および線形質量分析器の四重極電極は同じ真空領域に収容され、バックグラウンドガスとのイオンの衝突を最小化するために両者とも同じ低圧に保たれる。このように、この発明のこの特徴は、四重極フリンジ電極の構成された組と線形質量分析器との間の状態、すなわち、この発明が扱う問題に寄与すると考えられる高エネルギー中性粒子の発生の機会を減じる、圧力勾配および均一な静電界分布がない状態を確立する。この構造は、ヤマダらの米国特許第5,939,718号が開示するものとは逆である。
【0022】
高速イオンとバックグラウンドガスとの間の共鳴電荷交換によって形成されたであろう、エネルギを有するどの中性粒子の運動にも2つの成分が存在し得ると考えられる。よりはっきりした成分は、イオンビームが四重極フリンジ電極の組が規定する空間に入るときにイオンビームの移動の方向に沿って存在する。他方のあまりはっきりしない成分は、電荷交換が起こった瞬間にイオンがたどっていた移動方向に沿って存在する。四重極フリンジ電極の組が規定する空間を通って移動するイオンは、フリンジ電極に印加される無線周波数電磁界による正弦加速を受ける。この正弦加速は、各対のうち一方の電極の中心を正反対の電極の中心に接続する2本の線が交差する点が規定するように、フリンジ電極の組の幾何学的中心に沿って存在する経路に垂直な方向の成分を有する。入来するイオンビームの軌道に対する四重極フリンジ電極の組の向きおよび構成は、先ほど説明された運動の2つの可能な成分のいずれかを有する中性粒子からイオン検出器を遮蔽するように選択される。
【0023】
好ましくは、第1の方向に方向付けられるイオンのビームはある角度をなしておよび第2の方向にこの方向から向きを変えられる。この角度の大きさは、源からの光または(イオン以外の)どの他の粒子も検出器に到達する可能性が実質的にないようなものである。これについては10°よりも大きい角度が必要であると考えられる。好ましくは、この角度は実質的なものであり、たとえば約90°の角度を用いてもよい。これに代えて、ある角度をなしてイオンの向きを変えて中性粒子止めを迂回し、次に、中性粒子止めを通った後にビームの中に再集束されて、実質的に第1の方向に進み続けてもよい。
【0024】
好ましくは、第1の組の電極は、第1の方向にイオンビームを方向付けるための静電界を確立するために設けられ、好ましくは、第2の組の電極は、第1の方向から第2の方向にイオンビームの向きを変えるための静電界を確立するために設けられる。好ましくは、第2の少なくとも1つの電極または電極の組は、反射静電界を確立して第1の方向から第2の方向へイオンビームを反射し、それにより、源からの中性粒子および光子から前記反射されたイオンを分離するためのものであり、それらは反射静電界を通って進み続けて除去される。そのような反射静電界を用いることにより、そのような中性粒子および光子の非常に効率的な除去が可能になる。
【0025】
好ましくは、四重極フリンジ電極の組は、カーブを付けられることによりイオンのカーブ付き方向変更経路(divisionary path)を規定する4つの細長い電極を含む。これに代えて、カーブ付きでない電極を設けてもよく、たとえば、後述されるように、傾いた電極ロッドを設けてもよい。
【0026】
好ましくは、細長いカーブ付き四重極フリンジ電極の場合、電極は、イオンが電極の組に入るほぼ同じ方向にイオンがその組を出るように構成される。したがって、カーブ付き四重極フリンジ電極の組を、その入口端および出口端が同一線上ではなくとも実質的に平行であり、ゆがんだほぼ‘s’字形状のゆるくカーブしたセクションで接合されるように構成することが有利である。イオンが開孔を通って集束されかつ線形質量分析器の前方の四重極フリンジ電極の組に入る限り、他の構成が可能である。フリンジ電極は、質量分析器構成に入る中性粒子がたどるのとは異なる経路に沿ってイオンを導くように働くように構成される。それにより、そのような中性粒子が線形四重極質量分析器に入ったり、その後、検出されるであろうイオンを発生したりしないようになり、バックグラウンドカウント率に寄与する。
【0027】
好ましくは、四重極フリンジ電極の組の電極は、イオンがフリンジ電極に入る方向で見ると、少なくとも線形質量分析器、すなわちイオン検出器入口を電極が覆うように構成される。すなわち、カーブ付き四重極フリンジ電極の向きは、どの場所でも、電極の曲げの方向が、電極が印加されるRF電界によって加速するイオンがイオン検出器の方向に加速され得るようなものならば、加速されたイオンと線形質量分析器すなわち検出器の入口との間に電極部分があるようなものである。これにより、加速されたイオンがバックグラウンドガスとの共鳴電荷交換によって中性粒子になる場合に、イオン検出器がフリンジ電極の影に入ることが確実になる。これは、中性粒子からの、イオン検出器の非常に効率的な遮蔽を与える。
【0028】
この発明のよりよい理解のためおよびどのようにそれが実行に移され得るかを示すため、添付図面を参照して、その実施例が非制限的な例示のためにのみ説明される。
【0029】
[詳細な説明]
図1は、誘導結合プラズマトーチなどの、好ましくは空中プラズマイオン源であるイオン発生手段12を含む質量分析計10を示す。イオン発生手段12には分析試料(図示せず)の代表的部分が公知の手段(図示せず)によって供給され、分析試料中に存在する化学元素を表わすイオンを含むプラズマ14を発生する。プラズマ14は、冷却されたサンプラコーン18中の開孔16に当る。開孔16は好ましくは1ミリメートルの直径を有し、ポート22を介して第1の真空ポンプ(図示せず)に接続されるチャンバ20への入口となる。チャンバ20中の圧力は好ましくは2Torrから4Torrの範囲にある。プラズマ14の代表的部分は開孔16を通り、自由噴流膨張(図示せず)を形成する。スキマコーン26中の開孔24は好ましくは0.5mmの直径を有し、開孔16と同軸である。開孔16と24との間の距離は好ましくは6から9mmの範囲にある。開孔24は、(矢印30で示される)ポートを介して第2の真空ポンプ(図示せず)に接続される(部分的に示されかつこの発明に従う「第1の真空領域」を構成する)第2のチャンバ28へのチャンバ20からの入口となる。第2のチャンバ28中の圧力は好ましくは0.0001Torrから0.0003Torrの範囲にある。自由噴流膨張の代表的部分は開孔24を通って第2のチャンバ28の中に入る。
【0030】
第1の電極32は開孔24の下流に位置する。電極32は好ましくは円柱状であり、開孔16および24の中心をつなぐ線の延長上にその軸を有する。電極32は好ましくは−300から−400ボルトの範囲で調節可能な電位にある。中心開孔を有する好ましくはプレート形の第2の電極34は、第1の電極32の下流に位置する。電極34の中心開孔の中心は、開孔16および24の中心をつなぐ線の延長上にあるため、電極32および34は同軸である。電極34は好ましくは電極32と同じ電位にある。中空の円柱の内径と同じ直径の中心開孔を有するプレート上に取付けられる、好ましくは中空の円柱形の第3の電極36は電極34の下流に位置され、それと同軸である。電極36は、図1に示されるように、プレートを中空の円柱の下流に有して位置付けられる。電極36は好ましくは−100から−1000ボルトの範囲で調節可能な電位にある。
【0031】
電極32、34および36の組の効果の組合せは、第1の方向に陽イオン38のビームを発生させかつ方向付けることにある。イオンビーム38は、開孔16および24の中心ならびに電極の組32、34および36の中心を通る線の延長に沿う第1の方向に移動するため、プラズマ14からの光とエネルギを有する中性粒子のビームとを伴う。イオンビーム38は、電極36ならびに第2の組の電極の電極、すなわち電極40およびイオン鏡42の効果を組合わせることにより、光および前記中性粒子とは異なる経路をたどるようにされる。第2の組の電極は必要に応じてさらなる電極43を含んでもよい。イオン鏡42は好ましくは、4つの分離された電極セグメント(図示せず)をその上に有する平坦な輪の形であり、1つの電極セグメントは、前記輪の4つの四分円の各々の中に位置される。4つの電極セグメントの各々は好ましくは、0から+400ボルトの範囲の独立して調節可能な電位を与えられる。イオン鏡42は、1つの電極セグメントの中心を正反対のセグメントの中心につなぐ線が、開孔16および24の中心ならびに電極32、34および36の中心を通る線の延長に対して垂直であるように位置される。電極40は好ましくは平坦なプレートであり、好ましくは−140から−1400ボルトの範囲の調節可能な負の電位を与えられる。オプションの電極43は環状かつ平坦であり、接地されるかまたは小さな負電圧(たとえば0から−50Vの間)がそれに印加されてもよい。電極32、34、36および40ならびにイオン鏡42の4つの独立した電極セグメントの各々に印加される電位の適切な調節により、実質的な角度、たとえば90°をなして、電極43を通って第2の方向におよび開孔44の中へとイオンビーム38の向きを変える(反射する)ことができる。イオンビームが電極36から出るときにイオンビーム38にもともと伴っていたどの光子またはエネルギを有する中性粒子も、それらの元の方向に進み続け、イオン鏡42の大きな中心開孔を通って進む。したがって、これらの光子およびエネルギを有する中性粒子は、イオン検出器46に到達することができない。すなわち、検出器46から一切の出力を生じさせることができない。関心のある元素同位体のイオン以外のどのものからも生じる、検出器46からのどの出力も所望されない。なぜならそれは前記元素同位体に対する検出限界を低下させるからである。
【0032】
輪状電極構造42は、イオン鏡42の対向する電極セグメントの間に差動電圧を印加することにより、イオンビーム38を左右に(すなわち図面の平面の中へまたは外へ)操作することができるという利点も与える。同様に、他の2つの電極セグメントの間に差動電圧を印加することにより、イオンビーム38の焦点を前後に(すなわち、電極40の方に向けてまたはそれから離れる方に)操作することができる。このように、イオンビーム38を電気的に操作して、その焦点を、開孔44を通る、質量分析器構成52中への入口と一致させることが可能である。
【0033】
開孔44は、第3のチャンバ48を好ましくは0.00001Torr未満の圧力に保つ第3の真空ポンプ(図示せず)にポート50を介して接続される(この発明に従う「第2の真空領域」を構成する)第3の真空チャンバ48につながる。チャンバ48は、入口55において、線形四重極質量分析器54の前方にある四重極フリンジ電極の組56(その組の1対が58として標識付けられる)からなる四重極質量分析器構成52を収容し、それにより、線形四重極質量分析器54はフリンジ電極の組56から直接にイオンを受ける。出口開孔60およびイオン検出器46は第3のチャンバ48の中に置かれて、当該技術分野で公知のように、質量分析のために線形四重極質量分析器54により質量電荷比に従ってイオンが分離された後に、イオンビーム38からイオンを受ける。
【0034】
四重極フリンジ電極56は、開孔44からイオン検出器46まで直接的な経路が存在できないように構成される、すなわち形作られかつ位置付けられる。たとえば、図6は、図1の実施例のフリンジ電極56の組の4つの電極の好ましい構成を示す。図6Aは平面図を示し、図6Bは図6Aの矢印Vの方向からの図を示す(フリンジ電極の入口端は影付きで示される)。イオンビーム38は、矢印Vの方向に沿ってフリンジ電極の対58および58Aの間の空間に入る。両側のフリンジ電極58および58Aの各対には、(公知のように)好適な無線周波電圧が供給され、その影響下で、イオンビーム38中のイオンはフリンジ電極58および58Aが規定する空間を通り、こうして、線形質量分析器54ロッドが規定する空間に入らないうちに向きを変えられる。当該技術分野で公知のように、線形質量分析器54中のこの空間を通るイオンの経路は、質量分析器54のロッドに印加されるDC電圧および無線周波数によってならびに各イオンの質量電荷比によって定められ、これにより、異なる質量電荷比を有するビーム38中のイオンがイオン検出器46まで連続して通ることができる。したがって、イオン検出器46は、線形質量分析器54が、特定の質量電荷比を有するイオンを透過するように設定されかつその質量電荷比を有するイオンがイオンビーム38中に存在しないときには、ごく小さな出力(1秒当り1カウントまたはそれ未満)しか発生しない。図6Bは、四重極フリンジ電極58および58Aが線形質量分析器54の入口55を遮蔽する、すなわち、フリンジ電極58および58Aの入口および出口端の突き出た区域が質量分析器54のロッド間の入口区域を覆うのを図示する。
【0035】
このように、図1に示されるような質量分析計10は、中性粒子および光子とともに、サンプル中の化学元素を表わすイオン38を含む粒子を発生するための源12−16−24を含む。イオン光学系32−34−36−40−42−43は第1の真空領域28に収容され、イオンのビーム38を第1の方向に方向付けるための静電界を確立するための第1の組の電極32、34、36と、イオンのビーム38を、第1の方向からある角度をなして第2の方向に向きを変えるための静電界を確立するための第2の組の電極40、42、43とを含む。源から発する中性粒子および光子は第1の方向に進み続けるため、イオンのビーム38から分離される。四重極フリンジ電極56の組および線形四重極質量分析器54を含む四重極質量分析器構成52は、第2の方向のイオンのビーム38を受けるために第2の真空領域48に収容される。線形四重極質量分析器54は四重極フリンジ電極56の組から直接にイオンを受け、イオン検出器46は、イオンの分光分析のために線形四重極質量分析器54からイオンを受け、それにより、公知のように、サンプル中の異なる元素の濃度を定めることができる。四重極質量分析器構成52およびイオン検出器46は第2の真空領域48に収容される。四重極フリンジ電極56の組は、イオンが線形四重極質量分析器54の中を通る前に第2の方向からイオンの向きを変えるように構成され、第2の方向から見て、線形質量分析器入口55を遮蔽する。図1の実施例のフリンジ電極の対58および58Aはカーブを付けられ、それによりカーブ付き方向変更経路を規定する。フリンジ電極の対の入口端および出口端は同一線上にはないが実質的に平行である。すなわち、フリンジ電極58および58Aは緩くカーブを付けられて、歪んだほぼ「S」字形の経路を規定する。
【0036】
この発明は、前述されたような、所望の反射静電界分布を達成するための特定のイオン鏡および第2の組の電極に限られるものではない。必要なのは、イオン鏡構造およびその電極に印加される電圧が、電界の強さが軸方向および径方向に異なって、反射電界形状を確立する静電界を確立することだけである。そのような電界のエネルギ密度分布は、たとえば、高次多次元多項式または3次元放物線もしくは球関数で定義することができる。したがって、イオン鏡の電極に印加される電圧を変化させることだけでなく、電極の数、その形状、その間隔取り、その材料組成、鏡の直径対長さ(すなわち奥行き)の比およびイオン光学系の他の要素が発生する「外部」静電界の使用を変更することがこの発明の範囲内にある。異なる電圧をセグメントに印加して所望の形状の静電界を生じ得るように、周方向にセグメント化された電極を設けることもこの発明の範囲内にある。イオン鏡構造は、当然ながら、源からの中性粒子および光子が反射電界を通る、障害物のない経路を設けなければならない。
【0037】
四重極質量分析器構成52は、公知のように、セラミックブロックを用いてフリンジ電極56の組および質量分析器54のロッドを互いに対して取付けかつ正確に位置決めして、アセンブリとして形成されてもよい。
【0038】
図2から図5に図示されたような実施例では、図1の実施例に対応する特徴および構成要素には同じ参照番号が与えられ、再説明されない。これらの実施例の間の相違はそれぞれのフリンジ電極56の構成にある。したがって、図2および図3は、イオンが四重極フリンジ電極に入る第2の方向の経路とほぼ同じ方向にイオンが四重極フリンジ電極56の組を出て行くような、図1の好ましいカーブ付き構成以外の、フリンジ電極58および58Aのカーブ付き構成を図示する。図4は、フリンジ電極56の組のカーブ付きでない構成を図示する。図5は、前記第2の方向から90°の角度をなしてイオンの向きを変えるためのフリンジ電極56の別のカーブ付き構成を図示する。この実施例は質量分析計の小型設計を可能にする。この実施例の場合、(図面に見られるように)四重極フリンジ電極56の凸側下に障壁を置き、電極から反射し得る中性粒子が線形質量分析器54を迂回することによって検出器46に到達しないようにすることが有利である。
【0039】
この発明を用いて達成される改良点を図示するため、以下の表1は、四重極フリンジ電極56は有しないものの、図1の実施例に従うイオン光学系を有する誘導結合プラズマ質量分析計のいくつかの性能指標と、図1の実施例に従う誘導結合プラズマ質量分析計の対応する値とを示す。
【0040】
【表1】
Figure 0004965788
【0041】
上述の実施例はイオン反射光学系を用いる質量分析計のものであるが、この発明は、たとえば図7に図示されるような、イオン透過光学系を用いる質量分析計においても実現され得る。図7に図示されたような実施例では、図1の実施例に対応する特徴および構成要素には同じ参照番号が与えられ、再説明されない。
【0042】
この実施例では、チャンバ28中で、イオンビーム38は、円柱状の静電レンズ70、72、74および円盤状の中性粒子止め76を含むイオン透過光学系90に入る。当該技術分野で公知のように、静電レンズ70、72、74および中性粒子止め76への適切なDC電圧の印加により、まずイオンビーム38の向きを変える(すなわち、ある角度をなして第1の方向から向きを変える、参照番号38Aを参照)ことができ、それにより、イオンビーム38中のイオンの一部が中性粒子止め76の付近を移動する。イオンビーム38に伴う、プラズマ14からの光子および中性原子は第1の方向(直線80を参照)に進み続け、中性粒子止め76に当る。それにより、これは、前記光子および中性原子から、チャンバ48への入口44を遮蔽する。当該技術分野で公知のように、向きを変えたイオンビーム38Aは、中性粒子止め76を通り過ぎ、レンズ70、72、74および中性粒子止め76からの静電界の組合わさった作用によって集束される(参照番号38Bを参照)。38Cで示されるような集束されたイオンビームは開孔44を通ってチャンバ48に入り、四重極質量分析構成52に進む。このように、折り曲げ四重極フリンジ電極56はイオンのビームを受け、次にイオンは入口55を通って直接に線形四重極質量分析器54の中へ進む。折り曲げフリンジ電極56の作用により、線形四重極質量分析器54およびイオン検出器46は、集束されたイオンビーム38がイオン透過光学系90から開孔44へおよび四重極フリンジ電極56の組の中へ通る間、チャンバ28またはチャンバ48中の残留ガスと集束されたイオンビーム38Cとの相互作用によって場合によっては生成されるバックグラウンド発生中性種から遮蔽される。
【0043】
図7は、イオン透過光学系を用いるように適合された、図1に示されたようなこの発明の実施例を示すが、図1、図2、図3、図4および図5に図示されたようなこの発明のすべてのさまざまな実施例も、図7に例示されたようなイオン透過光学系で用いるように適合可能であることを理解されたい。
【0044】
また、他のイオン透過光学系が公知であり、したがって本明細書中にさらに説明されるものではない。たとえば、第1の方向のイオンビームが、中性粒子止めの後で再集束される代わりに、ある角度をなして第2の方向に向きを変えられる系を設けることができる。必要なのは、イオン光学系が粒子ビームからのサンプルイオンの向きを変えて、ビーム中の中性粒子および光子からのサンプルイオンの分離を達成し、こうして初期フィルタリング段階を提供することである。フリンジ電極の組が線形質量分析器の前方に位置される四重極質量分析計構成を設けることで、そのような質量分析計における第2のフィルタリング段階を提供する。図1から図5の実施例と同じように、イオン透過光学系を有する質量分析計のフリンジ電極は、前述されたような運動の可能な2つの成分のいずれかを有する、発生される、エネルギを有するどの中性粒子も線形質量分析器に入らないようにされるという意味で、線形質量分析器入口を遮蔽しなければならない。
【0045】
異なるイオン化および噴霧化技術を用いて元素または同位体分析のためにイオンを発生する源を設ける他のタイプの質量分析計がこの発明に包含される。ICP源以外のそのような源の例は、マイクロ波プラズマ源およびグロー放電源である。
【0046】
本明細書中に記載された発明は、具体的に記載されたもの以外の変形、変更および/または追加が可能であり、この発明は、添付の請求項の範囲内に入るすべてのそのような変形、変更および/または追加を含むことを理解されたい。
【図面の簡単な説明】
【図1】 イオン反射光学系を含む、この発明の好ましい実施例に従う質量分析計の概略図である。
【図2】 四重極フリンジ電極の組の異なる構成を有する、この発明の代替的な実施例の概略図である。
【図3】 四重極フリンジ電極の組の異なる構成を有する、この発明の代替的な実施例の概略図である。
【図4】 四重極フリンジ電極の組の異なる構成を有する、この発明の代替的な実施例の概略図である。
【図5】 四重極フリンジ電極の組の異なる構成を有する、この発明の代替的な実施例の概略図である。
【図6A】 図1の実施例の四重極フリンジ電極の組の概略的な平面図である。
【図6B】 図1の実施例の四重極フリンジ電極の組の概略的な端面図である。
【図7】 イオン透過光学系を含む、この発明の別の実施例に従う質量分析計の概略図である。

Claims (14)

  1. 質量分析計は、
    中性粒子および光子とともに、サンプル中の化学元素を表わすイオンを含む粒子を発生するための源と、
    源から粒子を受けるため、第1の真空領域に収容されるイオン光学系とを含み、イオン光学系は、
    源からの第1の方向の前記イオンのビームを方向付けるための静電界を確立するための少なくとも1つの第1の電極およびイオンのビームを第1の方向からある角度をなして向きを変えるための静電界を確立するための少なくとも1つの第2の電極を含み、それにより、源から発する中性粒子および光子は第1の方向に進み続けてイオンのビームから分離され、さらに
    第2の真空領域に収容される四重極質量分析器構成を含み、これは、
    オンのビームを受けるための四重極フリンジ電極の組および
    四重極フリンジ電極の組から直接にイオンを受けるための線形四重極質量分析器を含み、さらに
    線形四重極質量分析器からイオンを受けるため、第2の真空領域に収容されるイオン検出器を含み、
    四重極フリンジ電極の組は、イオンが線形四重極質量分析器の中を通る前にイオンの向きを変えて、線形四重極質量分析器入口を遮蔽するように構成される、質量分析計であって、
    当該質量分析計は、第2の真空領域内の圧力が、第1の真空領域内の圧力より低くなるように構成される質量分析計
  2. 少なくとも1つの第2の電極は、イオンのビームを第1の方向からある角度をなして第2の方向に向きを変えるための静電界を確立するためのものであり、四重極質量分析器構成の四重極フリンジ電極の組は、第2の方向のイオンのビームを受けかつ、第2の方向で見たときに、線形四重極質量分析器入口を遮蔽する、請求項1に記載の質量分析計。
  3. イオン光学系は、イオンのビームを第1の方向に方向付けるための静電界を確立するための第1の組の電極と、イオンのビームを第1の方向から前記角度をなして向きを変えるための静電界を確立するための第2の組の電極とを含む、請求項1または2に記載の質量分析計。
  4. イオン光学系の少なくとも1つまたはそれ以上の電極は、イオンのビームを第1の方向から前記角度をなして第2の方向に向きを変えるための反射静電界を確立するためのものである、請求項2に記載の質量分析計。
  5. 四重極フリンジ電極の組の電極は、細長くかつカーブを付けられて、それによりカーブ付き経路を規定して、イオンが線形四重極質量分析器の中を通る前にイオンの向きを変える、請求項1から4のいずれかに記載の質量分析計。
  6. 四重極フリンジ電極の組の電極は、イオンが、それらが四重極フリンジ電極の組に入るのとほぼ同じ方向に四重極フリンジ電極の組を出るようにカーブを付けられ、それにより、四重極フリンジ電極の組の入口端および出口端は同一線上にはないが実質的に平行である、請求項5に記載の質量分析計。
  7. 四重極フリンジ電極の組の電極は、イオンが、それらが入るのとほぼ同じ方向に四重極フリンジ電極の組を出るように二重にカーブを付けられ、それにより、四重極フリンジ電極の組の入口端および出口端は実質的に平行でありかつ同一線上にある、請求項5に記載の質量分析計。
  8. 四重極フリンジ電極の組の電極は、イオンが、それらが入る方向に対してほぼ90°をなす方向に四重極フリンジ電極の組を出るようにカーブを付けられる、請求項5に記載の質量分析計。
  9. 四重極フリンジ電極の組の電極は細長くかつ真直ぐであり、イオンが四重極フリンジ電極の組の中に入る方向に対して傾けられ、それにより、イオンを、それらが線形四重極質量分析器の中を通る前にその方向から向きを変える、請求項1から4のいずれかに記載の質量分析計。
  10. 四重極フリンジ電極の組は、イオンが四重極フリンジ電極の組の中に入る方向で見ると、その組の電極が線形四重極質量分析器入口を少なくとも覆いかつそれにより遮蔽し、それにより検出器も遮蔽するように構成される、請求項1から9のいずれかに記載の質量分析計。
  11. イオンビームが第1の方向から向きを変えられる角度は少なくとも10°である、請求項1から10のいずれかに記載の質量分析計。
  12. 第1の方向と第2の方向との間の角度は実質的、すなわち10°よりも大きい、請求項2に記載の質量分析計。
  13. 実質的な角度は約90°である、請求項12に記載の質量分析計。
  14. 中性粒子および光子とともに、サンプル中の化学元素を表わすイオンを含む粒子を発生するための源は、誘導結合プラズマ源である、請求項1から13のいずれかに記載の質量分析計。
JP2001587462A 2001-04-27 2001-08-17 四重極質量分析器構成を含む質量分析計 Expired - Lifetime JP4965788B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPR4651A AUPR465101A0 (en) 2001-04-27 2001-04-27 "Mass spectrometer"
AUPR4651 2001-04-27
PCT/AU2001/001024 WO2001091159A1 (en) 2001-04-27 2001-08-17 Mass spectrometer including a quadrupole mass analyser arrangement

Publications (2)

Publication Number Publication Date
JP2004515882A JP2004515882A (ja) 2004-05-27
JP4965788B2 true JP4965788B2 (ja) 2012-07-04

Family

ID=3828645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001587462A Expired - Lifetime JP4965788B2 (ja) 2001-04-27 2001-08-17 四重極質量分析器構成を含む質量分析計

Country Status (6)

Country Link
US (1) US6762407B2 (ja)
EP (1) EP1247289B1 (ja)
JP (1) JP4965788B2 (ja)
AU (1) AUPR465101A0 (ja)
CA (1) CA2386044C (ja)
WO (1) WO2001091159A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003270445A1 (en) * 2002-09-10 2004-04-30 The Johns Hopkins University Spectrograph time of flight system for low energy neutral particles
JP3811776B2 (ja) * 2003-01-24 2006-08-23 独立行政法人 宇宙航空研究開発機構 高層中性大気の観測方法、及び高層中性大気の観測装置
US8507850B2 (en) * 2007-05-31 2013-08-13 Perkinelmer Health Sciences, Inc. Multipole ion guide interface for reduced background noise in mass spectrometry
US8101923B2 (en) * 2007-11-12 2012-01-24 Georgia Tech Research Corporation System and method for spatially-resolved chemical analysis using microplasma desorption and ionization of a sample
US7675031B2 (en) * 2008-05-29 2010-03-09 Thermo Finnigan Llc Auxiliary drag field electrodes
GB2473839B (en) * 2009-09-24 2016-06-01 Edwards Ltd Mass spectrometer
DE202010017766U1 (de) * 2009-11-17 2012-07-11 Bruker Daltonik Gmbh Nutzung von Gasströmungen in Massenspektrometern
US8642974B2 (en) * 2009-12-30 2014-02-04 Fei Company Encapsulation of electrodes in solid media for use in conjunction with fluid high voltage isolation
EP2668660A4 (en) * 2011-01-25 2015-12-02 Analytik Jena Ag MASS DEVICE
US8461524B2 (en) * 2011-03-28 2013-06-11 Thermo Finnigan Llc Ion guide with improved gas dynamics and combined noise reduction device
US8796638B2 (en) 2011-06-08 2014-08-05 Mks Instruments, Inc. Mass spectrometry for a gas analysis with a two-stage charged particle deflector lens between a charged particle source and a charged particle analyzer both offset from a central axis of the deflector lens
US8796620B2 (en) 2011-06-08 2014-08-05 Mks Instruments, Inc. Mass spectrometry for gas analysis with a one-stage charged particle deflector lens between a charged particle source and a charged particle analyzer both offset from a central axis of the deflector lens
US8450681B2 (en) * 2011-06-08 2013-05-28 Mks Instruments, Inc. Mass spectrometry for gas analysis in which both a charged particle source and a charged particle analyzer are offset from an axis of a deflector lens, resulting in reduced baseline signal offsets
JP5819539B2 (ja) 2011-11-03 2015-11-24 アナリティク イエナ アーゲーAnalytik Jena Ag 質量分析計におけるイオンガイドの配置
WO2013091019A1 (en) * 2011-12-22 2013-06-27 Bruker Biosciences Pty Ltd Improvements in or relating to mass spectrometry
US9159543B2 (en) * 2012-03-20 2015-10-13 Bruker Chemical Analysis Bv Ion deflector for a mass spectrometer
TWI539154B (zh) * 2012-12-19 2016-06-21 英福康公司 雙重偵測殘餘氣體分析器
JP6449541B2 (ja) 2013-12-27 2019-01-09 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. プラズマ質量分析装置用イオン光学システム
US9558925B2 (en) * 2014-04-18 2017-01-31 Battelle Memorial Institute Device for separating non-ions from ions
US10204773B2 (en) 2015-02-23 2019-02-12 Hitachi High-Technologies Corporation Ion guide and mass spectrometer using same
GB2585327B (en) * 2018-12-12 2023-02-15 Thermo Fisher Scient Bremen Gmbh Cooling plate for ICP-MS
CN110049614B (zh) * 2019-04-28 2021-12-03 中国科学院微电子研究所 微波等离子体装置及等离子体激发方法
JP7343944B2 (ja) * 2021-01-29 2023-09-13 アトナープ株式会社 ガス分析装置および制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410997A (en) * 1964-09-08 1968-11-12 Bell & Howell Co Multipole mass filter
US3371204A (en) * 1966-09-07 1968-02-27 Bell & Howell Co Mass filter with one or more rod electrodes separated into a plurality of insulated segments
US3473020A (en) * 1967-06-19 1969-10-14 Bell & Howell Co Mass analyzer having series aligned curvilinear and rectilinear analyzer sections
EP0237259A3 (en) * 1986-03-07 1989-04-05 Finnigan Corporation Mass spectrometer
JP3367719B2 (ja) * 1993-09-20 2003-01-20 株式会社日立製作所 質量分析計および静電レンズ
JP3189652B2 (ja) * 1995-12-01 2001-07-16 株式会社日立製作所 質量分析装置
JPH1097838A (ja) * 1996-07-30 1998-04-14 Yokogawa Analytical Syst Kk 誘導結合プラズマ質量分析装置
CA2344446C (en) * 1998-09-23 2008-07-08 Varian Australia Pty. Ltd. Ion optical system for a mass spectrometer
JP2000243347A (ja) * 1999-02-18 2000-09-08 Hitachi Ltd イオントラップ型質量分析装置およびイオントラップ質量分析方法

Also Published As

Publication number Publication date
CA2386044A1 (en) 2001-11-29
EP1247289B1 (en) 2004-01-28
JP2004515882A (ja) 2004-05-27
EP1247289A1 (en) 2002-10-09
CA2386044C (en) 2008-07-22
WO2001091159A1 (en) 2001-11-29
US6762407B2 (en) 2004-07-13
EP1247289A4 (en) 2003-01-29
AUPR465101A0 (en) 2001-05-24
US20030155496A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
JP4965788B2 (ja) 四重極質量分析器構成を含む質量分析計
JP4577991B2 (ja) マススペクトロメータのためのイオン光学系
EP0237259A2 (en) Mass spectrometer
EP0490626B1 (en) Mass spectrometer with electrostatic energy filter
EP2943970A1 (en) Mass spectrometer with optimized magnetic shunt
US7465919B1 (en) Ion detection system with neutral noise suppression
CA2897899C (en) Mass spectrometer with improved magnetic sector
US20120312984A1 (en) Mass Spectrometry for Gas Analysis with a One-Stage Charged Particle Deflector Lens Between a Charged Particle Source and a Charged Particle Analyzer Both Offset from a Central Axis of the Deflector Lens
JP2817625B2 (ja) プラズマ質量分析装置
US8450681B2 (en) Mass spectrometry for gas analysis in which both a charged particle source and a charged particle analyzer are offset from an axis of a deflector lens, resulting in reduced baseline signal offsets
AU778228B2 (en) Mass spectrometer including a quadrupole mass analyser arrangement
JP3085381B2 (ja) プラズマイオン化質量分析装置
EP4315392A1 (en) Mass spectrometer and method
EP2718960B1 (en) Mass spectrometry for a gas analysis with a two-stage charged particle deflector lens between a charged particle source and a charged particle analyzer both offset from a central axis of the deflector lens
JPS61107650A (ja) 四重極型質量分析装置
JP4816792B2 (ja) 質量分析装置
AU750860B2 (en) Ion Optical system for a mass spectrometer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070815

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

R150 Certificate of patent or registration of utility model

Ref document number: 4965788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term