JP4956787B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP4956787B2
JP4956787B2 JP2007086681A JP2007086681A JP4956787B2 JP 4956787 B2 JP4956787 B2 JP 4956787B2 JP 2007086681 A JP2007086681 A JP 2007086681A JP 2007086681 A JP2007086681 A JP 2007086681A JP 4956787 B2 JP4956787 B2 JP 4956787B2
Authority
JP
Japan
Prior art keywords
cooling device
porous body
heat transfer
high heat
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007086681A
Other languages
Japanese (ja)
Other versions
JP2008244398A (en
Inventor
誠 岩島
善則 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007086681A priority Critical patent/JP4956787B2/en
Publication of JP2008244398A publication Critical patent/JP2008244398A/en
Application granted granted Critical
Publication of JP4956787B2 publication Critical patent/JP4956787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、半導体素子等の発熱体を冷却する冷却装置に関する。   The present invention relates to a cooling device for cooling a heating element such as a semiconductor element.

従来、半導体素子の高出力化、高温度化に対応するために、フィン型の冷却装置に代わり、発熱体を冷却する流路内にポーラス部材(多孔質体)を配置し、フィンと比べて冷却効率を向上させる冷却装置が知られている(特許文献1参照)。
特開2001−358270号公報
Conventionally, in order to cope with higher output and higher temperature of a semiconductor element, a porous member (porous body) is disposed in a flow path for cooling a heating element instead of a fin-type cooling device, compared with fins. A cooling device that improves cooling efficiency is known (see Patent Document 1).
JP 2001-358270 A

しかしながら、上記冷却装置では、多孔質体の熱伝達率が高いために、各多孔質体の出入口間での冷媒の温度差が大きくなり、上記冷却装置の冷媒入口側に配置される多孔質体へ供給される冷媒の温度と、上記冷却装置の冷媒出口側に配置される多孔質体へ供給される冷媒の温度との差が大きくなるといった問題があった。   However, in the cooling device, since the heat transfer coefficient of the porous body is high, the temperature difference of the refrigerant between the entrances and exits of each porous body increases, and the porous body disposed on the coolant inlet side of the cooling device. There is a problem that the difference between the temperature of the refrigerant supplied to the refrigerant and the temperature of the refrigerant supplied to the porous body arranged on the refrigerant outlet side of the cooling device becomes large.

本発明は、こうした問題に鑑みてなされたものであり、各高熱伝達率材へ供給される冷媒間の温度差を抑制できる冷却装置を提供することを目的とする。   This invention is made | formed in view of such a problem, and it aims at providing the cooling device which can suppress the temperature difference between the refrigerant | coolants supplied to each high heat transfer coefficient material.

上記目的達成のため、本発明に係る冷却装置では、発熱体から発生する熱を冷媒に伝達する高熱伝達率材の直下に配置された仕切り板に形成された孔を介して、下部流路から高熱伝達率材に、冷媒が供給され、前記高熱伝達率材は、多孔質体であることを特徴としている。 For the purposes achieved, in the cooling device according to the present invention, through the heat generated from a heating element formed in the partition plate arranged directly under the high heat transfer rate material you transfer to the coolant hole, lower flow a high heat transfer coefficient material from the road, the coolant is supplied, the high heat transfer coefficient material is characterized porous der Rukoto.

本発明により、複数の高熱伝達率材の直下に配置された仕切り板に形成された孔を介して、下部流路から高熱伝達率材に、冷媒を供給しているので、各高熱伝達率材へ供給される冷媒間の温度差を抑制することができる。これから、各高熱伝達率材へ供給される冷媒の温度をより均一化できる。   According to the present invention, since the refrigerant is supplied from the lower flow path to the high heat transfer coefficient material through the holes formed in the partition plates arranged immediately below the plurality of high heat transfer coefficient materials, each high heat transfer coefficient material The temperature difference between the refrigerants supplied to can be suppressed. From this, the temperature of the refrigerant supplied to each high heat transfer coefficient material can be made more uniform.

以下に、本発明の第1乃至第6の実施形態に係る冷却装置について、図1乃至図7を参照して説明する。   Hereinafter, a cooling device according to first to sixth embodiments of the present invention will be described with reference to FIGS. 1 to 7.

(第1の実施形態)
まず、第1の実施形態に係る冷却装置について図1を参照して説明する。図1は本発明の第1の実施形態に係る冷却装置の構造を示す図、図2は図1に示す冷却装置のAA断面図である。なお、図1では冷却板1、絶縁板2および半導体素子3を透視した状態を示している。図1および図2に示すように、第1の実施形態に係る冷却装置は、発熱体である半導体素子3から発生する熱を冷媒に伝達する複数の高熱伝達率材である6個の多孔質体5と、冷媒が流れる流路10を分割し、上部流路10bと下部流路10aに仕切る仕切り板6と、仕切り板6に形成された6個の孔7とを備えている。また、全多孔質体5は仕切り板6上に配置され、多孔質体5における仕切り板6と対向する端部は冷却板1と接合し、冷却板1上に6個の絶縁板2を介して、6個の半導体素子3が配置されている。また、各半導体素子3の直下に、各絶縁板2、各多孔質体5、各孔7が配置されている。また、流路10の一方には、下部流路10aに冷媒を流入するための冷媒入口8が形成され、流路10の他方には、上部流路10bから冷媒を流出させるための冷媒出口4が形成されている。ここで、冷却板1は主に銅やアルミニウム等の熱伝達率の高い金属からなり、冷却板1上に配置された絶縁板2はセラミック基板等からなる。また、半導体素子3はIGBTやダイオード等の大電流を流す素子である。一方、多孔質体5は図1に示したように、円柱状に形成されている。更に、多孔質体5には、冷媒が多孔質体5内を通過できるように、他の気孔と一部が接続される(オープンセル型の)球状の気孔が多数形成されている。また、孔7は多孔質体5よりも小さく形成されている。なお、6個の半導体素子3は全く同じ仕様である。同様に、6個の絶縁板2、6個の多孔質体5、6個の孔7は各々全く同じ仕様である。よって、6個の半導体素子3の大きさおよび発熱量の大きさは全く同じであり、6個の多孔質体5の気孔率(単位面積当たりの気孔数および気孔の直径)は全く同じである。
(First embodiment)
First, the cooling device according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a structure of a cooling device according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of the cooling device shown in FIG. 1 shows a state in which the cooling plate 1, the insulating plate 2, and the semiconductor element 3 are seen through. As shown in FIGS. 1 and 2, the cooling device according to the first embodiment includes six porous materials that are a plurality of high heat transfer coefficient materials that transfer heat generated from the semiconductor element 3 that is a heating element to the refrigerant. A body 5, a partition plate 6 that divides a flow path 10 through which a refrigerant flows and divides the flow path 10 into an upper flow path 10 b and a lower flow path 10 a, and six holes 7 formed in the partition plate 6 are provided. Further, the total porous body 5 is disposed on the partition plate 6, the end of the porous body 5 facing the partition plate 6 is joined to the cooling plate 1, and six insulating plates 2 are interposed on the cooling plate 1. Thus, six semiconductor elements 3 are arranged. Further, immediately below each semiconductor element 3, each insulating plate 2, each porous body 5, and each hole 7 are arranged. In addition, a refrigerant inlet 8 for allowing the refrigerant to flow into the lower flow path 10a is formed in one of the flow paths 10, and a refrigerant outlet 4 for allowing the refrigerant to flow out of the upper flow path 10b is formed in the other of the flow paths 10. Is formed. Here, the cooling plate 1 is mainly made of a metal having a high heat transfer coefficient such as copper or aluminum, and the insulating plate 2 disposed on the cooling plate 1 is made of a ceramic substrate or the like. Further, the semiconductor element 3 is an element that allows a large current to flow, such as an IGBT or a diode. On the other hand, the porous body 5 is formed in a columnar shape as shown in FIG. Further, the porous body 5 is formed with many spherical pores (open cell type) that are partially connected to other pores so that the refrigerant can pass through the porous body 5. The holes 7 are formed smaller than the porous body 5. The six semiconductor elements 3 have exactly the same specifications. Similarly, the six insulating plates 2, the six porous bodies 5, and the six holes 7 have exactly the same specifications. Therefore, the size of the six semiconductor elements 3 and the magnitude of the heat generation amount are exactly the same, and the porosity (the number of pores per unit area and the diameter of the pores) of the six porous bodies 5 is exactly the same. .

次に、第1の実施形態に係る冷却装置における冷媒経路について説明する。第1の実施形態では、冷媒として冷却水を用いている。冷媒は、冷媒入口8から流入した後、図1および図2中の矢印の向きに流れ、冷媒出口4から流出される。すなわち、冷却装置外部から供給された冷媒は、冷媒入口8から下部流路10aに流入し、仕切り板6の孔7を介して、下部流路10aから多孔質体5に下から上に垂直に供給される。多孔質体5に供給された冷媒は、多孔質体5における孔側端部から孔7と対向する端部に向けて、多孔質体5の気孔内を通過する。その際、冷媒は多孔質体5を冷却する。更に、気孔内を通過した冷媒は、多孔質体5における孔7と対向する端部で冷却板1に当たる。冷却板1における多孔質体5との接合面に当たった後、多孔質体5の内周部である中心部から外周部に向かって当該接合面に沿って押し流され、多孔質体5から上部流路10bに流入する。その際、冷媒は冷却板1を直接冷却する。その後、上部流路10bに流入した冷媒は、冷媒出口4方向に流れ、最終的に冷媒出口4から冷却装置外部に流出する。上記一連の冷媒経路により、絶縁板2、冷却板1および多孔質体5に伝達された半導体素子3で発生した熱は、冷媒入口8−下部流路10a−仕切り板6の孔7−多孔質体5の気孔−冷却板1と多孔質体5との接合面-上部流路10b−冷媒出口4を流れる冷媒に伝達される。結果として、半導体素子3が放熱、冷却される。   Next, the refrigerant path in the cooling device according to the first embodiment will be described. In the first embodiment, cooling water is used as the refrigerant. The refrigerant flows from the refrigerant inlet 8, then flows in the direction of the arrow in FIGS. 1 and 2, and flows out from the refrigerant outlet 4. That is, the refrigerant supplied from the outside of the cooling device flows into the lower flow path 10 a from the refrigerant inlet 8, and vertically passes from the lower flow path 10 a to the porous body 5 through the holes 7 of the partition plate 6. Supplied. The refrigerant supplied to the porous body 5 passes through the pores of the porous body 5 from the hole-side end of the porous body 5 toward the end facing the hole 7. At that time, the refrigerant cools the porous body 5. Furthermore, the refrigerant that has passed through the pores strikes the cooling plate 1 at the end of the porous body 5 facing the holes 7. After hitting the joint surface of the cooling plate 1 with the porous body 5, it is swept along the joint surface from the central portion, which is the inner peripheral portion of the porous body 5, toward the outer peripheral portion. It flows into the flow path 10b. At that time, the refrigerant directly cools the cooling plate 1. Thereafter, the refrigerant flowing into the upper flow path 10b flows in the direction of the refrigerant outlet 4, and finally flows out from the refrigerant outlet 4 to the outside of the cooling device. The heat generated in the semiconductor element 3 transmitted to the insulating plate 2, the cooling plate 1, and the porous body 5 by the series of refrigerant paths is the refrigerant inlet 8 -the lower flow path 10 a -the hole 7 of the partition plate 6 -the porous body. The pores of the body 5 -the joint surface between the cooling plate 1 and the porous body 5 -the upper flow path 10b -is transferred to the refrigerant flowing through the refrigerant outlet 4. As a result, the semiconductor element 3 is radiated and cooled.

以上より、第1の実施形態に係る冷却装置では、流路10を下部流路10aと上部流路10bに仕切る仕切り板6上に6個の多孔質体5が配置され、6個の孔7を介して、下部流路10aから6個の多孔質体5に下から上に垂直に同時に冷媒が供給されるので、各多孔質体5へ供給される冷媒間の温度差を抑制することができる。これから、各多孔質体5へ供給される冷媒の温度をより均一化できる。また、第1の実施形態に係る冷却装置では、上記のように、6個の半導体素子3の大きさおよび発熱量の大きさは全く同じであり、6個の多孔質体5の気孔率(単位面積当たりの気孔数および気孔の直径)は全く同じであることから、各多孔質体5へ供給される冷媒間の温度差を抑制することで、半導体素子3間の温度差を抑制できる。よって、半導体素子3間の電気的特性(オン抵抗やスイッチング損失等)の均一性を確保することができる。   As described above, in the cooling device according to the first embodiment, the six porous bodies 5 are arranged on the partition plate 6 that partitions the flow path 10 into the lower flow path 10 a and the upper flow path 10 b, and the six holes 7. Since the refrigerant is simultaneously supplied vertically from the bottom to the six porous bodies 5 through the lower flow path 10a, the temperature difference between the refrigerants supplied to the porous bodies 5 can be suppressed. it can. From this, the temperature of the refrigerant supplied to each porous body 5 can be made more uniform. In the cooling device according to the first embodiment, as described above, the size of the six semiconductor elements 3 and the size of the heat generation amount are exactly the same, and the porosity ( Since the number of pores per unit area and the diameter of the pores) are exactly the same, the temperature difference between the semiconductor elements 3 can be suppressed by suppressing the temperature difference between the refrigerants supplied to each porous body 5. Therefore, it is possible to ensure uniformity of electrical characteristics (on resistance, switching loss, etc.) between the semiconductor elements 3.

また、第1の実施形態に係る冷却装置では、仕切り板6上に配置された6個の多孔質体5に下部流路10aから垂直に同時に冷媒が供給されるので、冷媒経路に対して、6個の多孔質体5を並列に配置できる。これから、従来の冷却装置、すなわち、冷媒経路に対して複数の多孔質体を直列に配置した冷却装置と比較して、冷媒入口8から冷媒出口4までの圧力損失を低減することができる。更に、第1の実施形態に係る冷却装置では、多孔質体5に供給された冷媒は、多孔質体5における孔7と対向する端部と接合する冷却板1に当たった後、多孔質体5の中心部から外周部に向かって、冷却板1における多孔質体5との接合面に沿って押し流されるので、半導体素子3全体を均一に冷却することができる。   In the cooling device according to the first embodiment, since the refrigerant is simultaneously supplied vertically from the lower flow path 10a to the six porous bodies 5 arranged on the partition plate 6, Six porous bodies 5 can be arranged in parallel. From this, the pressure loss from the refrigerant inlet 8 to the refrigerant outlet 4 can be reduced as compared with a conventional cooling apparatus, that is, a cooling apparatus in which a plurality of porous bodies are arranged in series with respect to the refrigerant path. Furthermore, in the cooling device according to the first embodiment, the refrigerant supplied to the porous body 5 hits the cooling plate 1 that joins the end of the porous body 5 facing the holes 7, and then the porous body 5. 5, the entire semiconductor element 3 can be cooled uniformly because it is forced to flow along the joint surface of the cooling plate 1 with the porous body 5 from the central portion to the outer peripheral portion.

また、第1の実施形態に係る冷却装置では、冷媒入口8から仕切り板6の孔7までの圧力損失および上部流路10bから冷媒出口4までの圧力損失は、多孔質体5の圧力損失に対し無視できる程小さくなるため、各多孔質体5に、同じ流量および同じ流速の冷媒を供給することができる。更に、各多孔質体5から上部流路10bに流入した冷媒は、他の多孔質体5に影響する(供給される)ことなしに、冷媒出口4から流出できる。   In the cooling device according to the first embodiment, the pressure loss from the refrigerant inlet 8 to the hole 7 of the partition plate 6 and the pressure loss from the upper flow path 10 b to the refrigerant outlet 4 are the pressure loss of the porous body 5. On the other hand, since it becomes negligibly small, it is possible to supply each porous body 5 with the same flow rate and the same flow rate of the refrigerant. Furthermore, the refrigerant that has flowed into the upper flow path 10 b from each porous body 5 can flow out from the refrigerant outlet 4 without affecting (supplied) the other porous bodies 5.

また、第1の実施形態に係る冷却装置では、仕切り板6の孔7を多孔質体5よりも小さくしたため、冷媒入口8から下部流路10aに流入した冷媒と、上部流路10bから冷媒出口4に流出する冷媒が混ざることがなく、各多孔質体5に供給する冷媒を同一温度にできる。更に、冷媒を効率良く、冷却板1における多孔質体5との接合面に当てることができる。よって、冷却性能を向上することができる。   In the cooling device according to the first embodiment, since the holes 7 of the partition plate 6 are made smaller than the porous body 5, the refrigerant that has flowed into the lower flow path 10a from the refrigerant inlet 8 and the refrigerant outlet from the upper flow path 10b. The refrigerant flowing out to 4 is not mixed, and the refrigerant supplied to each porous body 5 can be at the same temperature. Furthermore, the coolant can be efficiently applied to the joint surface of the cooling plate 1 with the porous body 5. Therefore, the cooling performance can be improved.

(第2の実施形態)
次に、第2の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と異なる点を中心に図3を参照して説明する。また、第2の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と同様の構造には同じ番号を付し、説明を省略する。図3は、本発明の第2の実施形態に係る冷却装置の多孔質体周辺部を示す断面図である。図3は、図2の多孔質体周辺部C相当の図を示している。第2の実施形態に係る冷却装置は、第1の実施形態と異なり、多孔質体5の代わりに、多孔質体11を用いている。そして、多孔質体11が多孔質体5と異なる点は、仕切り板側端部の面積よりも仕切り板6と対向する端部の面積が小さく形成されていることだけである。これにより、第1の実施形態と同様の効果を取得することができる。なお、孔7は多孔質体11よりも小さく形成されている。更に、多孔質体11を用いることで、多孔質体11の中心部の圧力損失に対し、多孔質体11の外周部の圧力損失が大きく設定されるため、冷媒を効率良く、冷却板1における多孔質体11との接合面に当てることができる。よって、冷却性能を向上することができる。
(Second Embodiment)
Next, the cooling device according to the second embodiment will be described with reference to FIG. 3 with a focus on differences from the cooling device according to the first embodiment. Moreover, about the cooling device which concerns on 2nd Embodiment, the same number is attached | subjected to the structure similar to the cooling device which concerns on 1st Embodiment, and description is abbreviate | omitted. FIG. 3 is a cross-sectional view showing the periphery of the porous body of the cooling device according to the second embodiment of the present invention. FIG. 3 shows a view corresponding to the porous body peripheral portion C in FIG. Unlike the first embodiment, the cooling device according to the second embodiment uses a porous body 11 instead of the porous body 5. The only difference between the porous body 11 and the porous body 5 is that the area of the end facing the partition plate 6 is smaller than the area of the end on the partition plate side. Thereby, the effect similar to 1st Embodiment is acquirable. The holes 7 are formed smaller than the porous body 11. Furthermore, since the pressure loss at the outer peripheral portion of the porous body 11 is set larger than the pressure loss at the central portion of the porous body 11 by using the porous body 11, the refrigerant can be efficiently used in the cooling plate 1. The contact surface with the porous body 11 can be applied. Therefore, the cooling performance can be improved.

(第3の実施形態)
次に、第3の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と異なる点を中心に図4を参照して説明する。また、第3の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と同様の構造には同じ番号を付し、説明を省略する。図4は、本発明の第3の実施形態に係る冷却装置の多孔質体周辺部を示す平面図である。図4は、図1の多孔質体周辺部B相当の図を示している。第3の実施形態に係る冷却装置は、第1の実施形態と異なり、多孔質体5の代わりに、多孔質体12を用いている。そして、多孔質体12が多孔質体5と異なる点は、上部流路10bの冷媒出口4と反対方向に部分的に突出した卵型の柱に形成されていることだけである。これにより、第1の実施形態と同様の効果を取得することができる。なお、孔7は多孔質体12よりも小さく形成されている。更に、多孔質体12を用いることで、多孔質体12の孔側端部から冷媒出口4側の上部流路10bまでの圧力損失に対し、多孔質体12の孔側端部から冷媒出口4の反対側の上部流路10bまでの圧力損失が大きく設定されるため、冷媒を効率良く冷媒出口4側に排出することができ、冷媒の流れをよりスムーズにできる。
(Third embodiment)
Next, a cooling device according to a third embodiment will be described with reference to FIG. 4 with a focus on differences from the cooling device according to the first embodiment. Moreover, about the cooling device which concerns on 3rd Embodiment, the same number is attached | subjected to the structure similar to the cooling device which concerns on 1st Embodiment, and description is abbreviate | omitted. FIG. 4 is a plan view showing the porous body peripheral portion of the cooling device according to the third embodiment of the present invention. FIG. 4 shows a view corresponding to the porous body peripheral portion B of FIG. Unlike the first embodiment, the cooling device according to the third embodiment uses a porous body 12 instead of the porous body 5. The only difference between the porous body 12 and the porous body 5 is that the porous body 12 is formed in an egg-shaped column partially protruding in the direction opposite to the refrigerant outlet 4 of the upper flow path 10b. Thereby, the effect similar to 1st Embodiment is acquirable. The holes 7 are formed smaller than the porous body 12. Further, by using the porous body 12, the refrigerant outlet 4 from the hole side end of the porous body 12 against the pressure loss from the hole side end of the porous body 12 to the upper flow path 10 b on the refrigerant outlet 4 side. Since the pressure loss up to the upper flow path 10b on the opposite side is set large, the refrigerant can be efficiently discharged to the refrigerant outlet 4 side, and the flow of the refrigerant can be made smoother.

(第4の実施形態)
次に、第4の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と異なる点を中心に図5を参照して説明する。また、第4の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と同様の構造には同じ番号を付し、説明を省略する。図5は、本発明の第4の実施形態に係る冷却装置の構造を示す断面図である。図5は、図2相当の図である。
(Fourth embodiment)
Next, a cooling device according to a fourth embodiment will be described with reference to FIG. 5 with a focus on differences from the cooling device according to the first embodiment. Moreover, about the cooling device which concerns on 4th Embodiment, the same number is attached | subjected to the structure similar to the cooling device which concerns on 1st Embodiment, and description is abbreviate | omitted. FIG. 5 is a sectional view showing the structure of a cooling device according to the fourth embodiment of the present invention. FIG. 5 is a view corresponding to FIG.

第4の実施形態に係る冷却装置では、仕切り板6に形成された孔71と、孔71の直上に配置された多孔質体51と、多孔質体51の直上に冷却板1を介して配置された絶縁板21と、絶縁板21の直上に配置された半導体素子31と、仕切り板6に形成された孔72と、孔72の直上に配置された多孔質体52と、多孔質体52の直上に冷却板1を介して配置された絶縁板22と、絶縁板22の直上に配置された半導体素子32と、仕切り板6に形成された孔73と、孔73の直上に配置された多孔質体53と、多孔質体53の直上に冷却板1を介して配置された絶縁板23と、絶縁板23の直上に配置された半導体素子33とを備えている。ここで、半導体素子31乃至33は、半導体素子3と大きさおよび発熱量の大きさ以外全く同じである。更に、絶縁板21乃至23は絶縁板2と大きさ以外全く同じであり、多孔質体51乃至53は多孔質体5と大きさ以外全く同じであり、孔71乃至73は孔7と大きさ以外全く同じである。また、孔71は多孔質体51よりも小さく形成され、孔72は多孔質体52よりも小さく形成され、孔73は多孔質体53よりも小さく形成されている。また、第4の実施形態に係る冷却装置における冷媒経路は、第1の実施形態と同様である。これにより、第1の実施形態と同様の効果を取得することができる。   In the cooling device according to the fourth embodiment, the holes 71 formed in the partition plate 6, the porous body 51 disposed immediately above the holes 71, and the cooling plate 1 are disposed directly above the porous body 51. Insulating plate 21, semiconductor element 31 disposed immediately above insulating plate 21, hole 72 formed in partition plate 6, porous body 52 disposed immediately above hole 72, and porous body 52 Insulating plate 22 disposed immediately above cooling plate 1, semiconductor element 32 disposed immediately above insulating plate 22, hole 73 formed in partition plate 6, and disposed directly above hole 73 A porous body 53, an insulating plate 23 disposed directly above the porous body 53 via the cooling plate 1, and a semiconductor element 33 disposed directly above the insulating plate 23 are provided. Here, the semiconductor elements 31 to 33 are exactly the same as the semiconductor element 3 except for the size and the amount of heat generation. Further, the insulating plates 21 to 23 are exactly the same as the insulating plate 2 except for the size, the porous bodies 51 to 53 are exactly the same as the porous body 5 except for the size, and the holes 71 to 73 are the same size as the hole 7. Except the same. The holes 71 are formed smaller than the porous body 51, the holes 72 are formed smaller than the porous body 52, and the holes 73 are formed smaller than the porous body 53. The refrigerant path in the cooling device according to the fourth embodiment is the same as that of the first embodiment. Thereby, the effect similar to 1st Embodiment is acquirable.

更に、第4の実施形態に係る冷却装置では、半導体素子31乃至33の大きさが夫々異なっており、半導体素子33>半導体素子32>半導体素子31の関係となっている。半導体素子31乃至33に合わせて、絶縁板21乃至23の大きさ、多孔質体51乃至53の大きさおよび孔71乃至73の大きさも異なっている。そして、絶縁板23>絶縁板22>絶縁板21、多孔質体53>多孔質体52>多孔質体51、孔73>孔72>孔71の関係となっている。すなわち、第4の実施形態に係る冷却装置では、多孔質体51乃至53の大きさ、孔71乃至73の大きさを、半導体素子31乃至33の大きさに比例させている。これにより、半導体素子31乃至33の大きさが夫々異なっても、半導体素子31乃至33全体を均一に冷却することができる。   Furthermore, in the cooling device according to the fourth embodiment, the sizes of the semiconductor elements 31 to 33 are different, and the relationship of the semiconductor element 33> the semiconductor element 32> the semiconductor element 31 is satisfied. According to the semiconductor elements 31 to 33, the sizes of the insulating plates 21 to 23, the sizes of the porous bodies 51 to 53, and the sizes of the holes 71 to 73 are also different. Insulating plate 23> insulating plate 22> insulating plate 21, porous body 53> porous body 52> porous body 51, hole 73> hole 72> hole 71. That is, in the cooling device according to the fourth embodiment, the sizes of the porous bodies 51 to 53 and the sizes of the holes 71 to 73 are proportional to the sizes of the semiconductor elements 31 to 33. Thereby, even if the sizes of the semiconductor elements 31 to 33 are different, the entire semiconductor elements 31 to 33 can be cooled uniformly.

(第5の実施形態)
次に、第5の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と異なる点を中心に図6を参照して説明する。また、第5の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と同様の構造には同じ番号を付し、説明を省略する。図6は、本発明の第5の実施形態に係る冷却装置の構造を示す断面図である。図6は、図2相当の図である。
(Fifth embodiment)
Next, a cooling device according to a fifth embodiment will be described with reference to FIG. 6 with a focus on differences from the cooling device according to the first embodiment. Moreover, about the cooling device which concerns on 5th Embodiment, the same number is attached | subjected to the structure similar to the cooling device which concerns on 1st Embodiment, and description is abbreviate | omitted. FIG. 6 is a cross-sectional view showing the structure of a cooling device according to the fifth embodiment of the present invention. FIG. 6 is a view corresponding to FIG.

第5の実施形態に係る冷却装置では、仕切り板6に形成された孔74と、孔74の直上に配置された多孔質体54と、多孔質体54の直上に冷却板1を介して配置された絶縁板24と、絶縁板24の直上に配置された半導体素子34と、仕切り板6に形成された孔75と、孔75の直上に配置された多孔質体55と、多孔質体55の直上に冷却板1を介して配置された絶縁板25と、絶縁板25の直上に配置された半導体素子35と、仕切り板6に形成された孔76と、孔76の直上に配置された多孔質体56と、多孔質体56の直上に冷却板1を介して配置された絶縁板26と、絶縁板26の直上に配置された半導体素子36とを備えている。ここで、半導体素子34乃至36は、半導体素子3と発熱量の大きさ以外全く同じである。更に、絶縁板24乃至26は絶縁板2と全く同じであり、多孔質体54乃至56は多孔質体5と大きさ以外全く同じであり、孔74乃至76は孔7と大きさ以外全く同じである。また、孔74は多孔質体54よりも小さく形成され、孔75は多孔質体55よりも小さく形成され、孔76は多孔質体56よりも小さく形成されている。また、第5の実施形態に係る冷却装置における冷媒経路は、第1の実施形態と同様である。これにより、第1の実施形態と同様の効果を取得することができる。   In the cooling device according to the fifth embodiment, the holes 74 formed in the partition plate 6, the porous body 54 disposed immediately above the holes 74, and the cooling plate 1 are disposed directly above the porous body 54. Insulating plate 24, semiconductor element 34 disposed immediately above insulating plate 24, hole 75 formed in partition plate 6, porous body 55 disposed immediately above hole 75, and porous body 55 An insulating plate 25 disposed immediately above the cooling plate 1, a semiconductor element 35 disposed immediately above the insulating plate 25, a hole 76 formed in the partition plate 6, and a hole 76 disposed directly above the hole 76. A porous body 56, an insulating plate 26 disposed directly above the porous body 56 via the cooling plate 1, and a semiconductor element 36 disposed directly above the insulating plate 26 are provided. Here, the semiconductor elements 34 to 36 are exactly the same as the semiconductor element 3 except for the amount of heat generation. Further, the insulating plates 24 to 26 are exactly the same as the insulating plate 2, the porous bodies 54 to 56 are exactly the same as the porous body 5 except for the size, and the holes 74 to 76 are exactly the same as the hole 7 except for the size. It is. The hole 74 is formed smaller than the porous body 54, the hole 75 is formed smaller than the porous body 55, and the hole 76 is formed smaller than the porous body 56. The refrigerant path in the cooling device according to the fifth embodiment is the same as that in the first embodiment. Thereby, the effect similar to 1st Embodiment is acquirable.

更に、第5の実施形態に係る冷却装置では、半導体素子31乃至33の発熱量の大きさが夫々異なっており、半導体素子36>半導体素子35>半導体素子34の関係となっている。半導体素子34乃至36の発熱量の大きさに合わせて、多孔質体54乃至56の大きさおよび孔74乃至76の大きさも異なっている。そして、多孔質体56>多孔質体55>多孔質体54、孔76>孔75>孔74の関係となっている。すなわち、第5の実施形態に係る冷却装置では、多孔質体54乃至56の大きさ、孔74乃至76の大きさを、半導体素子34乃至36の発熱量の大きさに比例させている。これにより、半導体素子34乃至36の発熱量の大きさが夫々異なっても、半導体素子34乃至36の温度を均一にすることができる。よって、半導体素子34乃至36間の電気的特性(オン抵抗やスイッチング損失等)の均一性を確保することができる。   Furthermore, in the cooling device according to the fifth embodiment, the magnitudes of heat generation of the semiconductor elements 31 to 33 are different, and the relationship of semiconductor element 36> semiconductor element 35> semiconductor element 34 is established. The sizes of the porous bodies 54 to 56 and the sizes of the holes 74 to 76 are also different according to the amount of heat generated by the semiconductor elements 34 to 36. The relationship is porous body 56> porous body 55> porous body 54, hole 76> hole 75> hole 74. That is, in the cooling device according to the fifth embodiment, the size of the porous bodies 54 to 56 and the size of the holes 74 to 76 are proportional to the amount of heat generated by the semiconductor elements 34 to 36. Thereby, even if the magnitude | size of the emitted-heat amount of the semiconductor elements 34 thru | or 36 differs, the temperature of the semiconductor elements 34 thru | or 36 can be made uniform. Therefore, it is possible to ensure uniformity of electrical characteristics (on resistance, switching loss, etc.) between the semiconductor elements 34 to 36.

(第6の実施形態)
次に、第6の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と異なる点を中心に図7を参照して説明する。また、第6の実施形態に係る冷却装置について、第1の実施形態に係る冷却装置と同様の構造には同じ番号を付し、説明を省略する。図7は、本発明の第6の実施形態に係る冷却装置の多孔質体周辺部を示す図である。図7(A)は図2の多孔質体周辺部C相当の図を示し、図7(B)は図1の多孔質体周辺部B相当の図を示している。第6の実施形態に係る冷却装置では、仕切り板6に形成された孔77および78と、孔77および78の直上に配置された楕円形の柱の多孔質体57と、多孔質体57の直上に冷却板1を介して配置された絶縁板27と、絶縁板27の直上に配置された半導体素子37および38とを備えている。これにより、半導体素子37の直下に孔77が配置され、半導体素子38の直下に孔78が配置される。
(Sixth embodiment)
Next, a cooling device according to a sixth embodiment will be described with reference to FIG. 7 with a focus on differences from the cooling device according to the first embodiment. Moreover, about the cooling device which concerns on 6th Embodiment, the same number is attached | subjected to the structure similar to the cooling device which concerns on 1st Embodiment, and description is abbreviate | omitted. FIG. 7 is a view showing a porous body peripheral portion of the cooling device according to the sixth embodiment of the present invention. 7A shows a view corresponding to the porous body peripheral portion C in FIG. 2, and FIG. 7B shows a view corresponding to the porous body peripheral portion B in FIG. In the cooling device according to the sixth embodiment, the holes 77 and 78 formed in the partition plate 6, the elliptical column porous body 57 disposed immediately above the holes 77 and 78, and the porous body 57 An insulating plate 27 disposed directly above the cooling plate 1 and semiconductor elements 37 and 38 disposed immediately above the insulating plate 27 are provided. As a result, the hole 77 is disposed immediately below the semiconductor element 37, and the hole 78 is disposed directly below the semiconductor element 38.

ここで、半導体素子37としてIGBTを、半導体素子38としてダイオードを各々想定している。更に、絶縁板27は絶縁板2と大きさ以外全く同じであり、多孔質体57は多孔質体5と形状および大きさ以外全く同じであり、孔77および78は孔7と大きさ以外全く同じである。また、孔77は多孔質体57よりも小さく形成され、孔78は多孔質体57よりも小さく形成されている。また、第6の実施形態に係る冷却装置における冷媒経路は、第1の実施形態と同様である。これにより、第1の実施形態と同様の効果を取得することができる。   Here, an IGBT is assumed as the semiconductor element 37, and a diode is assumed as the semiconductor element 38. Further, the insulating plate 27 is exactly the same as the insulating plate 2 except for the size, the porous body 57 is exactly the same as the porous body 5 except for the shape and size, and the holes 77 and 78 are exactly the same as the hole 7 except for the size. The same. The holes 77 are formed smaller than the porous body 57, and the holes 78 are formed smaller than the porous body 57. The refrigerant path in the cooling device according to the sixth embodiment is the same as that in the first embodiment. Thereby, the effect similar to 1st Embodiment is acquirable.

更に、第6の実施形態に係る冷却装置では、複数の発熱体である半導体素子37および38に対して、複数の多孔質体のうちの1個である多孔質体57が配置され、複数の多孔質体のうちの1個である多孔質体57に対して、複数の孔である孔77および78が配置されているので、IGBTである半導体素子37とダイオードである半導体素子38のペア性が強く、交互に発熱を生じる関係、すなわち、片方が発熱している時は他方は発熱しない関係にある場合には、多孔質体57における発熱していない半導体素子(例えば、半導体素子38)の直下の部分を通過した冷媒を、発熱している半導体素子(例えば、半導体素子37)の冷却に使用することができる。結果的に、半導体素子37および38の温度上昇を低く抑えることができる。   Furthermore, in the cooling device according to the sixth embodiment, a porous body 57 that is one of the plurality of porous bodies is disposed with respect to the semiconductor elements 37 and 38 that are the plurality of heating elements, and Since the holes 77 and 78 that are a plurality of holes are arranged with respect to the porous body 57 that is one of the porous bodies, the pair property of the semiconductor element 37 that is an IGBT and the semiconductor element 38 that is a diode. In the case where there is a strong relationship and heat is generated alternately, that is, when one is generating heat and the other is not generating heat, the non-heat generating semiconductor element (for example, the semiconductor element 38) of the porous body 57 The refrigerant that has passed through the portion immediately below can be used for cooling a semiconductor element that generates heat (for example, the semiconductor element 37). As a result, the temperature rise of the semiconductor elements 37 and 38 can be suppressed low.

なお、以上に述べた実施形態は、本発明の実施の一例であり、本発明の範囲はこれらに限定されるものでなく、特許請求の範囲に記載した範囲内で、他の様々な実施形態に適用可能である。例えば、第1乃至第6の実施形態に係る冷却装置では、冷却板1を主に銅やアルミニウムから形成しているが、特にこれに限定されるものでなく、熱伝達率の高い金属であれば、いずれの材料から形成しても良い。同様に、絶縁板2、21乃至27をセラミック基板から形成しているが、特にこれに限定されるものでなく、絶縁材料であれば、いずれの材料から形成しても良い。   The embodiment described above is an example of the implementation of the present invention, and the scope of the present invention is not limited thereto, and other various embodiments are within the scope described in the claims. It is applicable to. For example, in the cooling devices according to the first to sixth embodiments, the cooling plate 1 is mainly made of copper or aluminum. However, the cooling plate 1 is not particularly limited to this and may be a metal having a high heat transfer coefficient. Any material may be used. Similarly, although the insulating plates 2 and 21 to 27 are formed from a ceramic substrate, the present invention is not particularly limited to this, and any insulating material may be used as long as it is an insulating material.

また、第1乃至第5の実施形態に係る冷却装置では、半導体素子3、31乃至36として、IGBTまたはダイオードを用いているが、特にこれに限定されるものでなく、他の発熱体でも適用可能である。同様に、第6の実施形態に係る冷却装置では、半導体素子37としてIGBTを、半導体素子38としてダイオードを用いているが、特にこれに限定されるものでなく、ペア性が強く、交互に発熱を生じる関係、すなわち、片方が発熱している時は他方は発熱しない関係にある発熱体であれば、他の発熱体でも適用可能である。   In the cooling devices according to the first to fifth embodiments, IGBTs or diodes are used as the semiconductor elements 3 and 31 to 36. However, the present invention is not limited to this, and other heating elements are also applicable. Is possible. Similarly, in the cooling device according to the sixth embodiment, an IGBT is used as the semiconductor element 37 and a diode is used as the semiconductor element 38. However, the present invention is not limited to this, and the pair property is strong and alternately generates heat. Any other heating element is applicable as long as the heating element is in a relationship that generates heat, that is, when one is generating heat and the other is not generating heat.

また、第1乃至第3の実施形態に係る冷却装置では、6個の絶縁板2、6個の半導体素子3、6個の多孔質体5、11および12、6個の孔7が配置されているが、特にこれに限定されるものでなく、複数であれば、何個でも良い。同様に、第4の実施形態に係る冷却装置では、半導体素子31乃至33、絶縁板21乃至23、多孔質体51乃至53および孔71乃至73を各々2組配置しているが、特にこれに限定されるものでなく、何組でも良い。同様に、第5の実施形態に係る冷却装置では、半導体素子34乃至36、絶縁板24乃至26、多孔質体54乃至56および孔74乃至76を各々2組配置しているが、特にこれに限定されるものでなく、何組でも良い。更に、第6の実施形態に係る冷却装置では、半導体素子37および38、絶縁板27、多孔質体57、孔77および78を各々6組配置しているが、特にこれに限定されるものでなく、何組でも良い。   In the cooling device according to the first to third embodiments, six insulating plates 2, six semiconductor elements 3, six porous bodies 5, 11 and 12, and six holes 7 are arranged. However, it is not particularly limited to this, and any number may be used as long as there are a plurality. Similarly, in the cooling device according to the fourth embodiment, the semiconductor elements 31 to 33, the insulating plates 21 to 23, the porous bodies 51 to 53, and the holes 71 to 73 are arranged in two sets, respectively. It is not limited and any number of pairs is acceptable. Similarly, in the cooling device according to the fifth embodiment, the semiconductor elements 34 to 36, the insulating plates 24 to 26, the porous bodies 54 to 56, and the holes 74 to 76 are arranged in two sets, respectively. It is not limited and any number of pairs is acceptable. Furthermore, in the cooling device according to the sixth embodiment, six sets of the semiconductor elements 37 and 38, the insulating plate 27, the porous body 57, and the holes 77 and 78 are arranged, but the present invention is particularly limited to this. There can be any number of pairs.

また、第6の実施形態に係る冷却装置では、多孔質体57に対して2個の孔77および78を仕切り板6に形成しているが、特にこれに限定されるものでなく、1個の孔でも、同様の効果を取得できる。   Further, in the cooling device according to the sixth embodiment, the two holes 77 and 78 are formed in the partition plate 6 with respect to the porous body 57, but the present invention is not particularly limited thereto, and one hole is provided. The same effect can be obtained with the holes.

また、第1乃至第5の実施形態に係る冷却装置では、1個の半導体素子に対して、1個の多孔質体を配置しているが、特にこれに限定されるものでなく、1個の半導体素子に対して、複数の多孔質体を配置しても良い。   In the cooling devices according to the first to fifth embodiments, one porous body is arranged for one semiconductor element. However, the present invention is not particularly limited to this, and one piece is provided. A plurality of porous bodies may be arranged for the semiconductor element.

また、第2の実施形態に係る冷却装置では、円柱状の多孔質体5における仕切り板側端部の面積よりも仕切り板6と対向する端部の面積を小さく形成した立体である多孔質体11を用いているが、特にこれに限定されるものでなく、多角柱における仕切り板側端部の面積よりも仕切り板6と対向する端部の面積を小さく形成した立体からなる多孔質体を用いても良い。また、例えば、図8乃至図13に示す変形例でも良い。以下、図8乃至図13に示す変形例について説明する。図8乃至図13は、図2に示す冷却装置の多孔質体周辺部Cの変形例を示す断面図である。図8は、多孔質体5の中心を通る断面における孔側端部が凹形状に切り欠かれた立体である多孔質体13を用いた変形例である。図9は、多孔質体5の仕切り板側端部の側面に、壁91を配置した変形例である。なお、壁91の高さは均一である。図10は、多孔質体5の代わりに、単位面積当たりの気孔数が大きい大気孔数層14bを内周部である中心部に有し、単位面積当たりの気孔数が小さい小気孔数層14aを外周部に有する円柱状の多孔質体14を用いた変形例である。これにより、外周部より内周部の気孔率を高くしている。図11は、多孔質体5の代わりに、気孔の直径が大きい大気孔径層15bを内周部である中心部に有し、気孔の直径が小さい小気孔径層15aを外周部に有する円柱状の多孔質体15を用いた変形例である。これにより、外周部より内周部の気孔率を高くしている。図12は、気孔率の低い第1の層である単位面積当たりの気孔数が小さい小気孔数層16aと気孔率の高い第2の層である単位面積当たりの気孔数が大きい大気孔数層16bとを備え、中心を通る断面における仕切り板6側に凹形状の小気孔数層16aが配置され、小気孔数層16a方向に突出した凸形状に形成された大気孔数層16bが小気孔数層16aの直上に接合された円柱状の多孔質体16を、多孔質体5の代わりに用いた変形例である。図13は、気孔率の低い第1の層である気孔の直径が小さい小気孔径層17aと気孔率の高い第2の層である気孔の直径が大きい大気孔径層17bとを備え、中心を通る断面における仕切り板6側に凹形状の小気孔径層17aが配置され、小気孔径層17a方向に突出した凸形状に形成した大気孔径層17bが小気孔径層17aの直上に接合された円柱状の多孔質体17を、多孔質体5の代わりに用いた変形例である。上述した図8乃至図13の変形例でも、第2の実施形態と同様の効果を取得できる。   In the cooling device according to the second embodiment, the porous body is a solid body in which the area of the end facing the partition plate 6 is smaller than the area of the end on the partition plate side in the cylindrical porous body 5. 11 is used, but the present invention is not particularly limited to this. A porous body made of a solid body in which the area of the end facing the partition plate 6 is smaller than the area of the end on the partition plate side in the polygonal column. It may be used. For example, the modification shown in FIGS. 8 to 13 may be used. Hereinafter, modified examples shown in FIGS. 8 to 13 will be described. 8 to 13 are cross-sectional views showing modifications of the porous body peripheral portion C of the cooling device shown in FIG. FIG. 8 is a modification using a porous body 13 that is a solid body in which the hole side end portion in a cross section passing through the center of the porous body 5 is cut into a concave shape. FIG. 9 is a modification in which a wall 91 is disposed on the side surface of the end portion on the partition plate side of the porous body 5. The height of the wall 91 is uniform. FIG. 10 shows a small pore number layer 14a having a pore number layer 14b having a large number of pores per unit area in a central portion which is an inner peripheral portion and having a small number of pores per unit area instead of the porous body 5. It is the modification using the cylindrical porous body 14 which has the outer peripheral part. Thereby, the porosity of an inner peripheral part is made higher than an outer peripheral part. In FIG. 11, instead of the porous body 5, a cylindrical shape having an air hole diameter layer 15 b having a large pore diameter in the central portion which is the inner peripheral portion and a small pore diameter layer 15 a having a small pore diameter in the outer peripheral portion. This is a modification using the porous body 15. Thereby, the porosity of an inner peripheral part is made higher than an outer peripheral part. FIG. 12 shows a low-porosity first layer having a small number of pores 16a per unit area and a high-porosity second layer having a large number of pores per unit area. 16b, and a concave small pore number layer 16a is disposed on the partition plate 6 side in a cross section passing through the center, and the air pore number layer 16b formed in a convex shape protruding in the direction of the small pore number layer 16a is a small pore. This is a modified example in which a cylindrical porous body 16 joined immediately above several layers 16 a is used instead of the porous body 5. FIG. 13 includes a small pore diameter layer 17a having a small pore diameter as a first layer having a low porosity and an air pore diameter layer 17b having a large pore diameter as a second layer having a high porosity. A concave-shaped small pore diameter layer 17a is arranged on the partition plate 6 side in the passing section, and an air-pore diameter layer 17b formed in a convex shape protruding in the direction of the small-pore diameter layer 17a is joined immediately above the small-pore diameter layer 17a. This is a modification in which a cylindrical porous body 17 is used instead of the porous body 5. In the modified examples of FIGS. 8 to 13 described above, the same effects as those of the second embodiment can be obtained.

また、第3の実施形態に係る冷却装置では、上部流路10bの冷媒出口4と反対方向に部分的に突出した卵型の柱である多孔質体12を用いているが、特にこれに限定されるものでなく、上部流路10bの冷媒出口4と反対方向に部分的に突出した凸形状を有していれば、他の形状の柱からなる多孔質体を用いても良い。更に、上部流路10bの冷媒出口4と反対方向に部分的に突出した凸形状を有していない場合、例えば、図14乃至図16に示す変形例の場合でも良い。以下、図14乃至図16に示す変形例について説明する。図14乃至図16は、図2に示す冷却装置の多孔質体周辺部Cの変形例を示す断面図である。図14は、多孔質体5の仕切り板側端部の側面に壁92を配置した変形例である。壁92の高さは、上部流路10bの冷媒出口4側よりも冷媒出口4の反対側が高くなっている。図15は、多孔質体5の代わりに、単位面積当たりの気孔数が大きい大気孔数層18bを上部流路10bの冷媒出口4側に有し、単位面積当たりの気孔数が小さい小気孔数層18aを冷媒出口4の反対側に有する円柱状の多孔質体18を用いた変形例である。これにより、上部流路10bの冷媒出口4の反対側よりも冷媒出口4側の気孔率を高くしている。図16は、多孔質体5の代わりに、気孔の直径が大きい大気孔径層19bを上部流路10bの冷媒出口4側に有し、気孔の直径が小さい小気孔径層19aを冷媒出口4の反対側に有する円柱状の多孔質体19を用いた変形例である。これにより、上部流路10bの冷媒出口4の反対側よりも冷媒出口4側の気孔の直径を大きくしている。上述した図14乃至図16の変形例でも、第3の実施形態と同様の効果を取得できる。   Further, in the cooling device according to the third embodiment, the porous body 12 that is an egg-shaped column partially protruding in the direction opposite to the refrigerant outlet 4 of the upper flow path 10b is used, but the invention is particularly limited thereto. However, as long as it has a convex shape that partially protrudes in the direction opposite to the refrigerant outlet 4 of the upper flow path 10b, a porous body made of pillars of other shapes may be used. Furthermore, when it does not have a convex shape that partially protrudes in the direction opposite to the refrigerant outlet 4 of the upper flow path 10b, for example, the modification shown in FIGS. 14 to 16 may be used. Hereinafter, modified examples shown in FIGS. 14 to 16 will be described. 14 to 16 are cross-sectional views showing modifications of the porous body peripheral portion C of the cooling device shown in FIG. FIG. 14 is a modification in which a wall 92 is disposed on the side surface of the end portion on the partition plate side of the porous body 5. The height of the wall 92 is higher on the opposite side of the refrigerant outlet 4 than on the refrigerant outlet 4 side of the upper channel 10b. FIG. 15 shows the number of small pores having a small number of pores per unit area instead of the porous body 5 having an air pore number layer 18b having a large number of pores per unit area on the refrigerant outlet 4 side of the upper flow path 10b. This is a modification using a cylindrical porous body 18 having a layer 18 a on the opposite side of the refrigerant outlet 4. Thereby, the porosity of the refrigerant outlet 4 side is made higher than the side opposite to the refrigerant outlet 4 of the upper channel 10b. In FIG. 16, instead of the porous body 5, an air hole diameter layer 19 b having a large pore diameter is provided on the refrigerant outlet 4 side of the upper flow path 10 b, and a small pore diameter layer 19 a having a small pore diameter is provided at the refrigerant outlet 4. This is a modification using a cylindrical porous body 19 on the opposite side. Thereby, the diameter of the pores on the refrigerant outlet 4 side is made larger than that on the opposite side of the refrigerant outlet 4 of the upper channel 10b. The same effects as those of the third embodiment can also be obtained in the modified examples of FIGS. 14 to 16 described above.

また、第1の実施形態に係る冷却装置および図9乃至図16に示した変形例の多孔質体5、14乃至19は円柱であるが、特にこれに限定されるものでなく、多角柱でも良い。更に、図8に示した変形例の多孔質体13は、多孔質体5の中心を通る断面における孔側端部が凹形状に切り欠かれた立体であるが、特にこれに限定されるものでなく、多角柱の中心を通る断面における孔側端部が凹形状に切り欠かれた立体としても良い。また、図8乃至図16に示した変形例に、上部流路10bの冷媒出口4と反対方向に部分的に突出した凸形状を有する形状または卵型状に多孔質体5、13乃至19を形成した多孔質体を用いることもできる。更に、図8乃至図16に示した変形例に、多孔質体5、13乃至19における仕切り板側端部の面積よりも仕切り板6と対向する端部の面積を小さく形成した立体である多孔質体を用いることもできる。更に、図9乃至図16に示した変形例に、多孔質体5、14乃至19の中心を通る断面における孔側端部が凹形状に切り欠かれた立体である多孔質体を用いることもできる。更に、図10乃至図13、図15および図16に示した変形例に、多孔質体14乃至19の仕切り板側端部の側面に配置された均一の高さの壁91を適用することもできる。更に、図10乃至図13、図15および図16に示した変形例に、多孔質体14乃至19の仕切り板側端部の側面に配置された、上部流路10bの冷媒出口4側よりも冷媒出口4の反対側が高い壁92を適用することもできる。   Further, the cooling device according to the first embodiment and the porous bodies 5 and 14 to 19 of the modifications shown in FIGS. 9 to 16 are cylinders, but are not particularly limited thereto, and may be polygonal columns. good. Further, the porous body 13 of the modified example shown in FIG. 8 is a solid body in which the hole side end portion in the cross section passing through the center of the porous body 5 is cut out in a concave shape, but is particularly limited to this. It is good also as a solid | solid by which the hole side edge part in the cross section which passes along the center of a polygonal column is notched in concave shape. Further, in the modification shown in FIGS. 8 to 16, the porous bodies 5, 13 to 19 are formed in a shape or an egg shape having a convex shape partially protruding in a direction opposite to the refrigerant outlet 4 of the upper flow path 10 b. The formed porous body can also be used. Further, in the modification shown in FIGS. 8 to 16, a three-dimensional porous body in which the area of the end facing the partition plate 6 is smaller than the area of the partition plate side end in the porous bodies 5, 13 to 19. A mass can also be used. Further, in the modification shown in FIGS. 9 to 16, a porous body having a solid shape in which the hole-side end portion in the cross section passing through the centers of the porous bodies 5 and 14 to 19 is notched into a concave shape may be used. it can. Furthermore, a wall 91 having a uniform height disposed on the side surface of the partition plate side end portion of the porous body 14 to 19 may be applied to the modification examples shown in FIGS. 10 to 13, 15 and 16. it can. Further, in the modification shown in FIGS. 10 to 13, 15, and 16, than the refrigerant outlet 4 side of the upper flow path 10 b disposed on the side surface of the end portion on the partition plate side of the porous bodies 14 to 19. It is also possible to apply a wall 92 on the opposite side of the refrigerant outlet 4.

また、第4および第5の実施形態に係る冷却装置では、円柱状の多孔質体51乃至56を用いているが、特にこれに限定されるものでなく、多角柱状の多孔質体を用いても良い。更に、第2の実施形態のように、仕切り板側端部の面積よりも仕切り板6と対向する端部の面積を小さく形成した立体からなる多孔質体を用いても良いし、第3の実施形態のように、上部流路10bの冷媒出口4と反対方向に部分的に突出した凸形状を有する形状の柱または卵型の柱からなる多孔質体を用いても良い。また、図8乃至図16に示した変形例を適用しても良いし、図8乃至図16に示した変形例の多孔質体を多角柱からなる多孔質体に置換した変形例を適用しても良い。更に、上部流路10bの冷媒出口4と反対方向に部分的に突出した凸形状を有する形状または卵型状に多孔質体5、13乃至19を形成した多孔質体を、図8乃至図16に示した変形例に用いた変形例を適用しても良いし、多孔質体5、13乃至19における仕切り板側端部の面積よりも仕切り板6と対向する端部の面積を小さく形成した立体である多孔質体を、図8乃至図16に示した変形例に用いた変形例を適用しても良い。更に、多孔質体5、14乃至19の中心を通る断面における孔側端部が凹形状に切り欠かれた立体である多孔質体を、図9乃至図16に示した変形例に用いた変形例を適用しても良い。更に、多孔質体14乃至19の仕切り板側端部の側面に配置された均一の高さの壁91を、図10乃至図13、図15および図16に示した変形例に配置した変形例を適用しても良い。更に、多孔質体14乃至19の仕切り板側端部の側面に配置された、上部流路10bの冷媒出口4側よりも冷媒出口4の反対側が高い壁92を、図10乃至図13、図15および図16に示した変形例に配置した変形例を適用しても良い。   Further, in the cooling devices according to the fourth and fifth embodiments, the columnar porous bodies 51 to 56 are used. However, the present invention is not limited to this, and a polygonal columnar porous body is used. Also good. Furthermore, as in the second embodiment, a porous body made of a solid body in which the area of the end portion facing the partition plate 6 is smaller than the area of the end portion on the partition plate side may be used. As in the embodiment, a porous body formed of a column having a convex shape or a egg-shaped column partially protruding in a direction opposite to the refrigerant outlet 4 of the upper channel 10b may be used. Also, the modification examples shown in FIGS. 8 to 16 may be applied, or the modification example in which the porous body of the modification examples shown in FIGS. 8 to 16 is replaced with a porous body made of polygonal columns may be applied. May be. Furthermore, the porous body in which the porous bodies 5 and 13 to 19 are formed in a shape having a convex shape or partially projecting in the opposite direction to the refrigerant outlet 4 of the upper flow path 10b is shown in FIGS. The modification example used in the modification example shown in FIG. 6 may be applied, and the area of the end part facing the partition plate 6 is made smaller than the area of the partition plate side end part in the porous bodies 5, 13 to 19. You may apply the modification used for the modification shown in FIG. 8 thru | or 16 for the porous body which is a solid. Furthermore, the porous body which is a solid body in which the hole side end portion in the cross section passing through the centers of the porous bodies 5 and 14 to 19 is cut into a concave shape is used in the modification shown in FIGS. 9 to 16. An example may be applied. Further, a modified example in which the wall 91 having a uniform height disposed on the side surface of the end portion on the partition plate side of the porous bodies 14 to 19 is disposed in the modified examples shown in FIGS. 10 to 13, 15, and 16. May be applied. Furthermore, a wall 92 disposed on the side surface of the end portion on the partition plate side of the porous bodies 14 to 19 is higher on the opposite side of the refrigerant outlet 4 than the refrigerant outlet 4 side of the upper flow path 10b. The modification example arranged in the modification example shown in FIG. 15 and FIG. 16 may be applied.

また、第6の実施形態に係る冷却装置では、楕円形の柱状の多孔質体57を用いているが、特にこれに限定されるものでなく、円柱状または多角柱状の多孔質体を用いても良い。更に、第2の実施形態のように、仕切り板側端部の面積よりも仕切り板6と対向する端部の面積を小さく形成した立体からなる多孔質体を用いても良いし、第3の実施形態のように、上部流路10bの冷媒出口4と反対方向に部分的に突出した凸形状を有する形状の柱または卵型の柱からなる多孔質体を用いても良い。また、図8乃至図16に示した変形例を適用しても良いし、図8乃至図16に示した変形例の多孔質体を多角柱からなる多孔質体に置換した変形例を適用しても良い。更に、上部流路10bの冷媒出口4と反対方向に部分的に突出した凸形状を有する形状または卵型状に多孔質体5、13乃至19を形成した多孔質体を、図8乃至図16に示した変形例に用いた変形例を適用しても良いし、多孔質体5、13乃至19における仕切り板側端部の面積よりも仕切り板6と対向する端部の面積を小さく形成した立体である多孔質体を、図8乃至図16に示した変形例に用いた変形例を適用しても良い。更に、多孔質体5、14乃至19の中心を通る断面における孔側端部が凹形状に切り欠かれた立体である多孔質体を、図9乃至図16に示した変形例に用いた変形例を適用しても良い。更に、多孔質体14乃至19の仕切り板側端部の側面に配置された均一の高さの壁91を、図10乃至図13、図15および図16に示した変形例に配置した変形例を適用しても良い。更に、多孔質体14乃至19の仕切り板側端部の側面に配置された、上部流路10bの冷媒出口4側よりも冷媒出口4の反対側が高い壁92を、図10乃至図13、図15および図16に示した変形例に配置した変形例を適用しても良い。   Further, in the cooling device according to the sixth embodiment, the elliptical columnar porous body 57 is used. However, the present invention is not limited to this, and a cylindrical or polygonal columnar porous body is used. Also good. Furthermore, as in the second embodiment, a porous body made of a solid body in which the area of the end portion facing the partition plate 6 is smaller than the area of the end portion on the partition plate side may be used. As in the embodiment, a porous body formed of a column having a convex shape or a egg-shaped column partially protruding in a direction opposite to the refrigerant outlet 4 of the upper channel 10b may be used. Also, the modification examples shown in FIGS. 8 to 16 may be applied, or the modification example in which the porous body of the modification examples shown in FIGS. 8 to 16 is replaced with a porous body made of polygonal columns may be applied. May be. Furthermore, the porous body in which the porous bodies 5 and 13 to 19 are formed in a shape having a convex shape or partially projecting in the opposite direction to the refrigerant outlet 4 of the upper flow path 10b is shown in FIGS. The modification example used in the modification example shown in FIG. 6 may be applied, and the area of the end part facing the partition plate 6 is made smaller than the area of the partition plate side end part in the porous bodies 5, 13 to 19. You may apply the modification used for the modification shown in FIG. 8 thru | or 16 for the porous body which is a solid. Furthermore, the porous body which is a solid body in which the hole side end portion in the cross section passing through the centers of the porous bodies 5 and 14 to 19 is cut into a concave shape is used in the modification shown in FIGS. 9 to 16. An example may be applied. Further, a modified example in which the wall 91 having a uniform height disposed on the side surface of the end portion on the partition plate side of the porous bodies 14 to 19 is disposed in the modified examples shown in FIGS. 10 to 13, 15, and 16. May be applied. Furthermore, a wall 92 disposed on the side surface of the end portion on the partition plate side of the porous bodies 14 to 19 is higher on the opposite side of the refrigerant outlet 4 than the refrigerant outlet 4 side of the upper flow path 10b. The modification example arranged in the modification example shown in FIG. 15 and FIG. 16 may be applied.

また、第1乃至第6の実施形態に係る冷却装置および図8乃至図16に示した変形例の多孔質体5、11乃至19、51乃至57には、他の気孔と一部が接続される(オープンセル型の)球状の気孔が多数形成されているが、特にこれに限定されるものでなく、冷媒が多孔質体5、11乃至19、51乃至57内を通過できれば、いずれの形状の気孔でも適用可能である。更に、第1乃至第6の実施形態に係る冷却装置および図8乃至図16に示した変形例では、多孔質体5、11乃至19、51乃至57の材料を説示していないが、熱伝達率が高い材料であれば、例えば、銅またはアルミニウム等の金属材料でも良い。   The cooling devices according to the first to sixth embodiments and the porous bodies 5, 11 to 19, 51 to 57 of the modified examples shown in FIGS. 8 to 16 are partially connected to other pores. However, the present invention is not limited to this, and any shape can be used as long as the refrigerant can pass through the porous bodies 5, 11 to 19, 51 to 57. It is also applicable to other pores. Furthermore, in the cooling device according to the first to sixth embodiments and the modification examples shown in FIGS. 8 to 16, the materials of the porous bodies 5, 11 to 19, 51 to 57 are not shown, but heat transfer As long as the material has a high rate, for example, a metal material such as copper or aluminum may be used.

また、第1乃至第6の実施形態に係る冷却装置では、冷媒として、冷却水を用いているが、特にこれに限定されるものでなく、他の流体を用いても良い。   In the cooling devices according to the first to sixth embodiments, cooling water is used as the coolant, but the invention is not particularly limited thereto, and other fluids may be used.

本発明の第1の実施形態に係る冷却装置の構造を示す図The figure which shows the structure of the cooling device which concerns on the 1st Embodiment of this invention 図1に示す冷却装置のAA断面図AA sectional view of the cooling device shown in FIG. 本発明の第2の実施形態に係る冷却装置の多孔質体周辺部を示す断面図Sectional drawing which shows the porous body periphery part of the cooling device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る冷却装置の多孔質体周辺部を示す平面図The top view which shows the porous body periphery part of the cooling device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る冷却装置の構造を示す断面図Sectional drawing which shows the structure of the cooling device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る冷却装置の構造を示す断面図Sectional drawing which shows the structure of the cooling device which concerns on the 5th Embodiment of this invention 本発明の第6の実施形態に係る冷却装置の多孔質体周辺部を示す図The figure which shows the porous body periphery part of the cooling device which concerns on the 6th Embodiment of this invention. 図2に示す冷却装置の多孔質体周辺部の変形例を示す断面図Sectional drawing which shows the modification of the porous body periphery part of the cooling device shown in FIG. 図2に示す冷却装置の多孔質体周辺部の変形例を示す断面図Sectional drawing which shows the modification of the porous body periphery part of the cooling device shown in FIG. 図2に示す冷却装置の多孔質体周辺部の変形例を示す断面図Sectional drawing which shows the modification of the porous body periphery part of the cooling device shown in FIG. 図2に示す冷却装置の多孔質体周辺部の変形例を示す断面図Sectional drawing which shows the modification of the porous body periphery part of the cooling device shown in FIG. 図2に示す冷却装置の多孔質体周辺部の変形例を示す断面図Sectional drawing which shows the modification of the porous body periphery part of the cooling device shown in FIG. 図2に示す冷却装置の多孔質体周辺部の変形例を示す断面図Sectional drawing which shows the modification of the porous body periphery part of the cooling device shown in FIG. 図2に示す冷却装置の多孔質体周辺部の変形例を示す断面図Sectional drawing which shows the modification of the porous body periphery part of the cooling device shown in FIG. 図2に示す冷却装置の多孔質体周辺部の変形例を示す断面図Sectional drawing which shows the modification of the porous body periphery part of the cooling device shown in FIG. 図2に示す冷却装置の多孔質体周辺部の変形例を示す断面図Sectional drawing which shows the modification of the porous body periphery part of the cooling device shown in FIG.

符号の説明Explanation of symbols

1 冷却板、2 絶縁板、3 半導体素子、4 冷媒出口、5 多孔質体、
6 仕切り板、7 孔、8 冷媒入口、
10 流路、10a 下部流路、10b 上部流路、
11、12、13、14、15、16、17、18、19 多孔質体、
14a、16a、18a 小気孔数層、14b、16b、18b 大気孔数層、
15a、17a、19a 小気孔径層、15b、17b、19b 大気孔径層、
21、22、23、24、25、26、27 絶縁板、
31、32、33、34、35、36、37、38 半導体素子、
51、52、53、54、55、56、57 多孔質体、
71、72、73、74、75、76、77、78 孔、91、92 壁、
B 多孔質体周辺部、C 多孔質体周辺部
1 cooling plate, 2 insulating plate, 3 semiconductor element, 4 refrigerant outlet, 5 porous body,
6 partition plate, 7 holes, 8 refrigerant inlet,
10 channel, 10a lower channel, 10b upper channel,
11, 12, 13, 14, 15, 16, 17, 18, 19 porous body,
14a, 16a, 18a Small pore number layer, 14b, 16b, 18b Atmospheric pore number layer,
15a, 17a, 19a Small pore size layer, 15b, 17b, 19b Atmospheric pore size layer,
21, 22, 23, 24, 25, 26, 27 insulation plate,
31, 32, 33, 34, 35, 36, 37, 38 semiconductor element,
51, 52, 53, 54, 55, 56, 57 porous body,
71, 72, 73, 74, 75, 76, 77, 78 holes, 91, 92 walls,
B porous body peripheral part, C porous body peripheral part

Claims (20)

冷媒が流れる流路を分割し、上部流路と下部流路に仕切る仕切り板と、
発熱体から発生する熱を前記冷媒に伝達するため、前記仕切り板上に配置された高熱伝達率材と、
前記仕切り板における前記各高熱伝達率材の直下の位置に形成された孔とを備え、
前記冷媒は、前記下部流路から前記高熱伝達率材に、前記孔を介して供給され
前記高熱伝達率材は、多孔質体であることを特徴とする冷却装置。
A partition plate that divides the flow path through which the refrigerant flows and divides the flow path into an upper flow path and a lower flow path;
For transferring heat generated from the heating element to the refrigerant, and the high heat transfer coefficient material disposed on the partition plate,
A hole formed at a position directly below each high heat transfer coefficient material in the partition plate,
The refrigerant is supplied from the lower flow path to the high heat transfer coefficient material through the holes ,
The high heat transfer rate material, the cooling device comprising a porous body der Rukoto.
前記冷媒は、前記多孔質体内を通過し、前記多孔質体における前記孔と対向する端部で、前記発熱体から発生する前記熱を直接冷却することを特徴とする請求項1に記載の冷却装置。 The refrigerant passes through the porous body, wherein in the in the porous body hole and opposite ends, according to claim 1, characterized that you cool the heat generated from the heating element directly Cooling system. 前記は、前記高熱伝達率材よりも小さいことを特徴とする請求項1乃至のいずれか1項に記載の冷却装置。 The hole is a cooling device according to any one of claims 1 to 2, characterized in that the smaller than the high thermal conductivity material. 前記高熱伝達率材は、多角柱または円柱であることを特徴とする請求項1乃至3のいずれか1項に記載の冷却装置。 The high heat transfer rate material, cooling device according to any one of claims 1 to 3, characterized in that a polygonal or cylindrical. 前記高熱伝達率材は、仕切り板側端部の面積よりも仕切り板と対向する端部の面積が小さい立体であることを特徴とする請求項1乃至のいずれか1項に記載の冷却装置。 The high heat transfer rate material, cooling device according to any one of claims 1 to 3, characterized in that the area of the end portion facing the partition plate than the area of the partition plate side end portion is smaller stereoscopic . 前記高熱伝達率材は、前記上部流路の出口と反対方向に凸形状を有する柱または卵型の柱であることを特徴とする請求項1乃至のいずれか1項に記載の冷却装置。 The high heat transfer rate material, cooling device according to any one of claims 1 to 5, characterized in that in the direction opposite to the outlet of the upper channel is a pillar of the pillar or oval having a convex shape. 前記高熱伝達率材の中心を通る断面における孔側端部が、凹形状に切り欠かれていることを特徴とする請求項1乃至6のいずれか1項に記載の冷却装置。 The hole-side end portion in a cross section passing through the center of the high heat transfer coefficient material, cooling device according to any one of claims 1 to 6, characterized that you have been cut out in a concave shape. 前記高熱伝達率材の仕切り板側端部の側面に、壁を配置することを特徴とする請求項1乃至7のいずれか1項に記載の冷却装置。 Wherein the side surface of the partition plate side end portion of high heat transfer coefficient material, cooling device according to any one of claims 1 to 7, characterized that you place the wall. 記壁の高さは、前記上部流路の出口側よりも該出口の反対側が高いことを特徴とする請求項8に記載の冷却装置。 Before the height of Kikabe the cooling device according to claim 8, wherein the high side opposite the outlet than the outlet side of the upper flow path. 前記高熱伝達率材は、外周部よりも内周部の気孔率が高いことを特徴とする請求項1乃至のいずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 9 , wherein the high heat transfer coefficient material has a higher porosity in an inner peripheral portion than in an outer peripheral portion . 前記高熱伝達率材は、外周部よりも内周部の気孔の直径が大きいことを特徴とする請求項10に記載の冷却装置。 The high heat transfer rate material, cooling device according to claim 10 in which the pore diameter of the inner peripheral portion and wherein the magnitude Ikoto than the outer peripheral portion. 前記高熱伝達率材は、前記上部流路の出口の反対側よりも該出口側の気孔率が高いことを特徴とする請求項1乃至9のいずれか1項に記載の冷却装置。 The high heat transfer rate material, cooling device according to any one of claims 1 to 9 opposite porosity of outlet side of the outlet of the upper passage is characterized by high Ikoto. 前記高熱伝達率材は、前記上部流路の出口の反対側よりも該出口側の気孔の直径大きいことを特徴とする請求項1に記載の冷却装置。 The high heat transfer rate material, cooling device according to claim 1 2 in which the pore diameter of the opposite outlet side of the outlet of the upper flow channel and said size Ikoto. 前記高熱伝達率材は、気孔率の低い第1の層と気孔率の高い第2の層とを備え、
中心を通る断面における仕切り板側に凹形状の前記第1の層が配置され、
前記第1の層方向に突出した凸形状に形成された前記第2の層が、前記第1の層の直上に接合されたことを特徴とする請求項1乃至9のいずれか1項に記載の冷却装置。
The high heat transfer coefficient material comprises a first layer having a low porosity and a second layer having a high porosity,
The concave first layer is arranged on the partition plate side in the cross section passing through the center,
The said 2nd layer formed in the convex shape protruded in the said 1st layer direction was joined just on the said 1st layer, The any one of Claim 1 thru | or 9 characterized by the above- mentioned. Cooling system.
記第1の層気孔の直径よりも、前記第2の層の気孔の直径が大きいことを特徴とする請求項1に記載の冷却装置。 Before SL than the pore diameter of the first layer, the cooling device according to claim 1 4, wherein the pore diameter of the second layer is large. 前記高熱伝達率材および前記孔の大きさは、前記発熱体の大きさに比例することを特徴とする請求項1乃至15のいずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 15 , wherein the size of the high heat transfer coefficient material and the hole is proportional to the size of the heating element . 前記高熱伝達率材および前記孔の大きさは、前記発熱体の発熱量の大きさに比例することを特徴とする請求項1乃至16のいずれか1項に記載の冷却装置。 The size of the high heat transfer coefficient material and the hole, the cooling device according to any one of claims 1 to 16, characterized in that in proportion to the size of the heating value of the heating element. 複数の前記発熱体に対して、複数の前記高熱伝達率材のうちの1個が配置されることを特徴とする請求項1乃至17のいずれか1項に記載の冷却装置。 For a plurality of the heating element, a cooling device according to any one of claims 1 to 17, characterized one is arranged Rukoto of the plurality of the high heat transfer coefficient material. 1個の前記発熱体に対して、複数の前記高熱伝達率材が配置されることを特徴とする請求項1乃至1のいずれか1項に記載の冷却装置。 For one of the heating element, a cooling device according to any one of claims 1 to 1 7, wherein a plurality of the high heat transfer coefficient material is disposed. 複数の前記高熱伝達率材のうちの個に対して、複数の前記が配置されることを特徴とする請求項1乃至1のいずれか1項に記載の冷却装置。 For the one of the plurality of the high heat transfer coefficient material, cooling device according to any one of claims 1 to 1 9, wherein a plurality of said holes are arranged.
JP2007086681A 2007-03-29 2007-03-29 Cooling system Expired - Fee Related JP4956787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086681A JP4956787B2 (en) 2007-03-29 2007-03-29 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086681A JP4956787B2 (en) 2007-03-29 2007-03-29 Cooling system

Publications (2)

Publication Number Publication Date
JP2008244398A JP2008244398A (en) 2008-10-09
JP4956787B2 true JP4956787B2 (en) 2012-06-20

Family

ID=39915317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086681A Expired - Fee Related JP4956787B2 (en) 2007-03-29 2007-03-29 Cooling system

Country Status (1)

Country Link
JP (1) JP4956787B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278130A (en) * 2009-05-27 2010-12-09 Toyota Motor Corp Cooling device for power device, and fuel cell system
JP6075299B2 (en) * 2014-01-14 2017-02-08 トヨタ自動車株式会社 Cooler and its manufacturing method
KR102146491B1 (en) * 2018-08-27 2020-08-21 엘지전자 주식회사 Heat dissipation module

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125855A (en) * 1982-01-21 1983-07-27 Matsushita Electric Works Ltd Cooling structure of semiconductor element
JPH07112035B2 (en) * 1987-06-23 1995-11-29 富士通株式会社 Integrated circuit element cooling device
JPH0227794A (en) * 1988-07-18 1990-01-30 Mitsui Toatsu Chem Inc Drilling of multilayer wiring board
JP2934493B2 (en) * 1990-10-24 1999-08-16 株式会社日立製作所 Electronic equipment cooling device
JPH0669390A (en) * 1992-08-20 1994-03-11 Fujitsu Ltd Heat sinking fin
JPH06334080A (en) * 1993-05-25 1994-12-02 Hitachi Ltd Cooling method for integrated circuit element
JPH08186204A (en) * 1994-11-02 1996-07-16 Nippon Tungsten Co Ltd Heat sink and its manufacture
JP3473794B2 (en) * 1995-03-31 2003-12-08 株式会社豊田中央研究所 Porous material and method for producing the same
JP2894243B2 (en) * 1995-05-24 1999-05-24 住友金属工業株式会社 Heat sink with excellent heat dissipation characteristics
JP4071627B2 (en) * 2000-12-11 2008-04-02 富士通株式会社 Electronic equipment unit
JP4133635B2 (en) * 2003-07-09 2008-08-13 株式会社豊田自動織機 Electrical equipment system, electrical equipment module cooling device and porous radiator for the cooling equipment
GB2404009B (en) * 2003-07-17 2005-06-15 Enfis Ltd Cooling method and apparatus
JP4041437B2 (en) * 2003-07-22 2008-01-30 株式会社日本自動車部品総合研究所 Semiconductor device cooling device
JP2005337517A (en) * 2004-05-24 2005-12-08 Nissan Motor Co Ltd Jet cooler

Also Published As

Publication number Publication date
JP2008244398A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US10209009B2 (en) Heat exchanger including passageways
US8472193B2 (en) Semiconductor device
US20100117209A1 (en) Multiple chips on a semiconductor chip with cooling means
US20120012281A1 (en) Heat sink with multiple vapor chambers
JP2011134979A5 (en)
US20150122465A1 (en) Heat sink device
JP2001035981A (en) Cooler for semiconductor element and power-converting device using it
JP4619387B2 (en) Semiconductor device cooling device
JP4041437B2 (en) Semiconductor device cooling device
JP4956787B2 (en) Cooling system
JP2010016254A (en) Semiconductor device
JP4544187B2 (en) Cooler
JP4013883B2 (en) Heat exchanger
US20210247151A1 (en) Fluid-based cooling device for cooling at least two distinct first heat-generating elements of a heat source assembly
JP2009266936A (en) Stacked cooler
JP2016025097A5 (en)
JP2008300447A (en) Heat radiation device
JPWO2019176620A1 (en) Cooler, power converter unit and cooling system
JP4572911B2 (en) Heat exchanger
CN114885576A (en) Heat dissipation system and electronic component
KR102704167B1 (en) Manifold mini-channel heat sink
KR20140141960A (en) Heat exchanger using thermoelectric element
JP2007115940A (en) Thermal dissipation plate
KR102605791B1 (en) Semiconductor device thermal management module and manufacturing method thereof
WO2017077566A1 (en) Heat sink, cooler using same, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees