JP4956016B2 - Apparatus and method for treating organic wastewater containing hardly biodegradable substances - Google Patents

Apparatus and method for treating organic wastewater containing hardly biodegradable substances Download PDF

Info

Publication number
JP4956016B2
JP4956016B2 JP2006051919A JP2006051919A JP4956016B2 JP 4956016 B2 JP4956016 B2 JP 4956016B2 JP 2006051919 A JP2006051919 A JP 2006051919A JP 2006051919 A JP2006051919 A JP 2006051919A JP 4956016 B2 JP4956016 B2 JP 4956016B2
Authority
JP
Japan
Prior art keywords
water
biological treatment
treatment
treated water
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006051919A
Other languages
Japanese (ja)
Other versions
JP2007229565A (en
Inventor
祐司 千田
紀夫 山田
ロベルト 正浩 芹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2006051919A priority Critical patent/JP4956016B2/en
Priority to PCT/JP2007/053799 priority patent/WO2007102379A1/en
Publication of JP2007229565A publication Critical patent/JP2007229565A/en
Application granted granted Critical
Publication of JP4956016B2 publication Critical patent/JP4956016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、難生物分解性物質を含む有機性排水の処理装置および処理方法に関する。   The present invention relates to a treatment apparatus and treatment method for organic waste water containing a hardly biodegradable substance.

排水又は廃液は、水溶液、スラリー、エマルジョン、ミセル、懸濁液、濃厚液、汚泥混合液等の各種形態で、民間工業施設、公共施設、第三セクター施設等から排出されている。これらの排水又は廃液は、公共水域に放流する前に水処理を行って無害化する必要がある。排水又は廃液に対して最も一般的に行われている水処理方法は、生物処理であり、処理コストが比較的低いため、広く且つ昔から普及している。生物処理には大きく分けて好気性処理と嫌気性処理がある。前者は、主に排水の化学的酸素要求量(CODCr)が数10〜数千mg/L以下の場合に用いられ、後者は主に排水のCODCr1000mg/L以上の場合に用いられている。また、し尿処理や下水処理などでは、脱窒素処理が好気性処理又は嫌気性処理単独では完結できないため、両者の特徴を生かして、好気性生物処理と嫌気性生物処理とを組み合わせて用いる場合もある。   Wastewater or waste liquid is discharged from private industrial facilities, public facilities, third sector facilities, etc. in various forms such as aqueous solutions, slurries, emulsions, micelles, suspensions, concentrated liquids, sludge mixed liquids and the like. These wastewaters or waste liquids need to be rendered harmless by water treatment before being discharged into public waters. The most commonly used water treatment method for waste water or waste liquid is biological treatment, and since the treatment cost is relatively low, it has been widely used for a long time. Biological treatment is broadly divided into aerobic treatment and anaerobic treatment. The former is mainly used when the chemical oxygen demand (CODCr) of wastewater is several tens to several thousand mg / L or less, and the latter is mainly used when CODCr of wastewater is 1000 mg / L or more. In addition, since denitrification treatment cannot be completed by aerobic treatment or anaerobic treatment alone in human waste treatment or sewage treatment, a combination of aerobic biological treatment and anaerobic biological treatment may be used, taking advantage of both features. is there.

しかしながら、化学物質またはペトロケミカル由来の化学的に合成された物質を含む排水や、下水処理場の有機性汚泥又はメタン発酵汚泥のような硬い細胞壁を持つ菌体が含まれている場合などのように、生物分解性が低い物質を多く含む排水に対しては、生物処理を適用することが困難なことがある。また、リグニン、フミンなどのように、自然起源の物質であっても分子内にベンゼン環官能基を有する高分子である場合などは、生物分解性が非常に低いことがある。   However, such as when wastewater containing chemical substances or chemically synthesized substances derived from petrochemicals or cells with hard cell walls such as organic sludge or methane fermentation sludge from sewage treatment plants are included. In addition, it may be difficult to apply biological treatment to wastewater containing a large amount of substances having low biodegradability. Moreover, even if it is a naturally occurring substance such as lignin and humin, the biodegradability may be very low when it is a polymer having a benzene ring functional group in the molecule.

さらに、染色排水のように排水中に色素成分が含まれていると生物処理が極めて困難になることがある。色素成分は全般的に微生物に対して難生物分解性であるため、色素成分を含む排水を生物処理にかけた場合、CODCr、BODが十分に除去できても、色度がほとんど取れないことがある。   Furthermore, biological treatment may be extremely difficult if a pigment component is contained in the wastewater, such as dyed wastewater. Since pigment components are generally difficult to biodegrade to microorganisms, when wastewater containing pigment components is subjected to biological treatment, even if CODCr and BOD can be removed sufficiently, there may be little chromaticity. .

一般的に且つ本明細書において、「難生物分解性物質」とは生物的に分解困難な物質を指す。   Generally and as used herein, “refractory biodegradable substance” refers to a substance that is difficult to biodegrade.

このような難生物分解性物質の処理方法として、電気化学的処理法が提案されている。電気化学的処理法は制御が比較的容易であり、生物処理と比べて小スケールの設備で処理が可能である。近年、水に溶解する有機物を電気化学的に処理する方法の一例として、導電性ダイヤモンド電極を用いた処理法が注目されている。導電性ダイヤモンド電極は従来の貴金属電極にはない特性をもち、水中で直流電圧を印加すると、水が陽極で酸化されてヒドロキシラジカル(OHラジカル)が生成する。このOHラジカルは非常に高い酸化能力を有するため、ほとんど全ての有機物を炭酸ガスと水にまで分解することが可能である。従来の貴金属電極ではOHラジカルの生成効率は非常に低いが、導電性ダイヤモンド電極を用いると、非常に効率よくOHラジカルを生成可能なことが文献に示されている。(Ghrardini et Al.:Electrochemical Oxidation of 4-chlorophenol for wastewater treatment, J. Electrochemical Society, 148, D78-D82, 2001)。   An electrochemical treatment method has been proposed as a treatment method for such a hardly biodegradable substance. The electrochemical treatment method is relatively easy to control, and can be treated with equipment on a small scale as compared with biological treatment. In recent years, a treatment method using a conductive diamond electrode has attracted attention as an example of a method for electrochemically treating an organic substance dissolved in water. A conductive diamond electrode has characteristics that are not found in conventional noble metal electrodes. When a DC voltage is applied in water, the water is oxidized at the anode to generate hydroxy radicals (OH radicals). Since this OH radical has a very high oxidizing ability, almost all organic substances can be decomposed into carbon dioxide and water. Conventional noble metal electrodes have very low generation efficiency of OH radicals, but it has been shown in the literature that conductive diamond electrodes can generate OH radicals very efficiently. (Ghrardini et al .: Electrochemical Oxidation of 4-chlorophenol for wastewater treatment, J. Electrochemical Society, 148, D78-D82, 2001).

導電性ダイヤモンド電極による水処理では、CODCr1gを分解するために必要な理論電解処理所要電気量は、約3.4Ah/g-CODCrである。実際に電解反応を行う場合の導電性ダイヤモンド電極のセル電圧は、少なくとも4〜5V以上が必要である。運転する電流密度、電解液温度、排水の電気伝導度などにもよるが、セル電圧(単一電解槽の電極間電圧)の一般的な運転値の例を挙げるとすると、7V程度である。従って、CODCr1gを分解するのに必要な電力は3.4Ahx7V=23.8VAhとなり、およそ24Wh/g-CODCr又は24kWh/kg-CODCrに等しく、生物処理に比べると処理コストが高いという問題がある。   In water treatment using a conductive diamond electrode, the required amount of electricity required for theoretical electrolytic treatment to decompose CODCr1g is about 3.4 Ah / g-CODCr. The cell voltage of the conductive diamond electrode when actually carrying out the electrolytic reaction needs to be at least 4 to 5 V or more. Although it depends on the operating current density, the electrolyte temperature, the electrical conductivity of the drainage, etc., an example of a general operating value of the cell voltage (voltage between electrodes of a single electrolytic cell) is about 7V. Therefore, the power required for decomposing CODCr1g is 3.4 Ahx7V = 23.8 VAh, which is approximately equal to 24 Wh / g-CODCr or 24 kWh / kg-CODCr, and there is a problem that the treatment cost is higher than biological treatment.

また、一般的に、有機性排水には難生物分解性物質と易生物分解性物質が含まれている。そのような排水に対して、直接電解処理を施すと、例えば導電性ダイヤモンド電極を用いた電解処理により生じるOHラジカルは、易生物分解性物質、難生物分解性物質の区別なく、非選択的に有機物の酸化処理を行うので、易生物分解性物質の処理にさえも、処理コストの高い電解処理を適用することになり、結果として、処理コストの増大を招く可能性がある。
Ghrardini et Al.:Electrochemical Oxidation of 4-chlorophenol for wastewater treatment, J. Electrochemical Society, 148, D78-D82, 2001
In general, organic waste water contains a hardly biodegradable substance and an easily biodegradable substance. When direct electrolysis is performed on such wastewater, for example, OH radicals generated by electrolysis using a conductive diamond electrode can be selected non-selectively without distinguishing between readily biodegradable substances and hardly biodegradable substances. Since the oxidation treatment of the organic substance is performed, an electrolytic treatment with a high treatment cost is applied even to the treatment of the readily biodegradable substance, and as a result, the treatment cost may increase.
Ghrardini et Al .: Electrochemical Oxidation of 4-chlorophenol for wastewater treatment, J. Electrochemical Society, 148, D78-D82, 2001

本発明の目的は、電気化学的処理法の特性を生かして、排水に含まれる有機物の性質に合わせた低コストの処理方法および装置を提供することにある。   An object of the present invention is to provide a low-cost treatment method and apparatus that matches the properties of organic matter contained in wastewater by utilizing the characteristics of the electrochemical treatment method.

本発明者らは、鋭意研究を行った結果、最初に易生物分解性物質を生物処理し、続いて難生物分解性物質を導電性ダイヤモンド電極を用いて電解処理することにより、易生物分解性物質と難生物分解性物質とを含有する排水を、電解処理単独の場合よりも低電力で処理を行うことができ、さらに、難生物分解性物質の電解処理により、低分子の中間生成物として有機酸(揮発性脂肪酸(VFA)類、以下VFA)等の易生物分解性物質が多く生成し、処理水の生物分解性が向上することを知見し、本発明を完成するに至った。すなわち、電解処理工程で有機物が完全に二酸化炭素と水との分解に至らない程度の電力で電解処理を行って、易生物分解性物質を含む電解処理水を得て、この電解処理水の一部を生物処理工程に返送して生物処理を行うことで、電解処理におけるコストがさらに低下し、処理プロセス全体のコストを引き下げることが可能になる。また、生物処理工程が嫌気処理である場合には、生物処理工程へ導入される易生物分解性物質負荷が増加することで、得られるバイオガス発生量が増加するメリットもある。   As a result of diligent research, the present inventors have first carried out biotreatment of a readily biodegradable substance, and then electrolytically treated the hardly biodegradable substance using a conductive diamond electrode. Wastewater containing substances and hardly biodegradable substances can be treated with lower power than the case of electrolytic treatment alone. A large amount of readily biodegradable substances such as organic acids (volatile fatty acids (VFA), hereinafter referred to as VFA) are produced, and the biodegradability of treated water is improved, and the present invention has been completed. That is, in the electrolytic treatment process, the electrolytic treatment is performed with an electric power that does not completely decompose the carbon dioxide and water to obtain electrolytic treated water containing an easily biodegradable substance. By returning the part to the biological treatment process and performing the biological treatment, the cost in the electrolytic treatment is further reduced, and the cost of the entire treatment process can be reduced. In addition, when the biological treatment process is anaerobic treatment, there is an advantage that the amount of biogas generated is increased by increasing the load of easily biodegradable substances introduced into the biological treatment process.

本発明の第1の態様は、生物処理装置と、該生物処理装置の下流に位置し、導電性ダイヤモンド電極を具備する電解処理槽と、該電解処理槽からの流出水の少なくとも一部を該生物処理装置に戻す返送手段と、を有することを特徴とする難生物分解性物質含有有機性排水処理装置である。   According to a first aspect of the present invention, there is provided a biological treatment apparatus, an electrolytic treatment tank located downstream of the biological treatment apparatus and provided with a conductive diamond electrode, and at least a part of effluent water from the electrolytic treatment tank. An organic wastewater treatment apparatus containing a hardly biodegradable substance, characterized by comprising return means for returning to the biological treatment apparatus.

本発明の第2の態様は、生物処理装置と、該生物処理装置の下流に位置し、導電性ダイヤモンド電極を具備する電解処理槽と、該電解処理槽の下流に位置する濃縮装置と、該濃縮装置からの濃縮水の少なくとも一部を該生物処理装置に戻す返送手段と、を有することを特徴とする難生物分解性物質含有有機性排水処理装置である。   According to a second aspect of the present invention, there is provided a biological treatment apparatus, an electrolytic treatment tank located downstream of the biological treatment apparatus and provided with a conductive diamond electrode, a concentration apparatus located downstream of the electrolytic treatment tank, Returning means for returning at least a part of the concentrated water from the concentrating device to the biological treatment device. An organic wastewater treatment device containing a hardly biodegradable substance.

本発明の第3の態様は、生物処理装置と、該生物処理装置の下流に位置する濃縮装置と、該濃縮装置の濃縮水側の下流に位置し、導電性ダイヤモンド電極を具備する電解処理槽と、該電解処理槽からの流出水を該生物処理装置に戻す返送手段と、を有することを特徴とする難生物分解性物質含有有機性排水処理装置である。   According to a third aspect of the present invention, there is provided a biological treatment apparatus, a concentration apparatus located downstream of the biological treatment apparatus, and an electrolytic treatment tank provided with a conductive diamond electrode, located downstream of the concentrated water side of the concentration apparatus. And a return means for returning the effluent from the electrolytic treatment tank to the biological treatment apparatus.

本発明の第4の態様は、難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物処理工程と、該生物処理水の少なくとも一部を導電性ダイヤモンド電極を用いて電解処理して、電解処理水を得る電解処理工程と、該電解処理水の少なくとも一部を該生物処理工程に戻す返送工程と、を含むことを特徴とする難生物分解性物質含有有機性排水処理方法である。   According to a fourth aspect of the present invention, there is provided a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water; and at least a part of the biologically treated water with a conductive diamond electrode. A non-biodegradable substance-containing organic, comprising: an electrolytic treatment step that uses electrolytic treatment to obtain electrolytic treatment water; and a return step that returns at least a portion of the electrolytic treatment water to the biological treatment step. This is an effluent treatment method.

本発明の第5の態様は、難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物処理工程と、該生物処理水を導電性ダイヤモンド電極を用いて電解処理して、電解処理水を得る電解処理工程と、該電解処理水を濃縮して、濃縮水を得る濃縮工程と、該濃縮水の少なくとも一部を該生物処理工程に戻す返送工程と、を含むことを特徴とする難生物分解性物質含有有機性排水処理方法である。   According to a fifth aspect of the present invention, there is provided a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and electrolytic treatment of the biologically treated water using a conductive diamond electrode. An electrolytic treatment step for obtaining electrolytic treatment water, a concentration step for concentrating the electrolytic treatment water to obtain concentrated water, and a return step for returning at least a part of the concentrated water to the biological treatment step. This is an organic wastewater treatment method containing a hardly biodegradable substance.

本発明の第6の態様は、難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物処理工程と、該生物処理水を濃縮して、濃縮水を得る濃縮工程と、該濃縮水の少なくとも一部を導電性ダイヤモンド電極を用いて電解処理して、電解処理水を得る電解処理工程と、該電解処理水を該生物処理工程に戻す返送工程と、を含むことを特徴とする難生物分解性物質含有有機性排水処理方法である。   The sixth aspect of the present invention is a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and a concentration for concentrating the biologically treated water to obtain concentrated water. And an electrolytic treatment step of electrolytically treating at least a part of the concentrated water using a conductive diamond electrode to obtain electrolytically treated water, and a returning step of returning the electrolytically treated water to the biological treatment step. This is an organic wastewater treatment method containing a hardly biodegradable substance.

本発明の第7の態様は、前記電解処理工程において、理論電解処理所要電気量の10〜90%の電気量を付与することを特徴とする、上述の第4の態様〜第6の態様の有機性排水処理方法である。   According to a seventh aspect of the present invention, in the electrolytic treatment step, the electric quantity of 10 to 90% of the electric quantity required for the theoretical electrolytic treatment is imparted. This is an organic wastewater treatment method.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明によれば、難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物処理工程と、該生物処理水の少なくとも一部を電気分解して、電解処理水を得る電解処理工程と、該電解処理水の少なくとも一部を該生物処理工程に戻す返送工程と、を含むことを特徴とする難生物分解性物質含有有機性排水処理方法が提供される。   According to the present invention, an organic wastewater containing a hardly biodegradable substance is biologically treated to obtain biologically treated water, and at least a part of the biologically treated water is electrolyzed to provide electrolytically treated water. There is provided an organic wastewater treatment method containing a hardly biodegradable substance, characterized by comprising an electrolytic treatment step for obtaining the above and a return step for returning at least a part of the electrolytically treated water to the biological treatment step.

本発明の有機性排水処理方法により処理可能な排水としては、下水処理場や水処理場の汚泥混合液;メタン発酵プロセス等の各種汚泥類;石油精製工場や石油製品工場の排水・廃液;化学薬品工場の排水・廃液;医薬品製造工場や病院の排水・廃液;半導体プロセス(フォトレジスト工程、洗浄工程、鍍金工程)の各種工程排水・廃液;写真現像廃液;機械加工工場の各種使用済み切削油(油性、水溶性)廃液;塗料製造工程の洗浄水・排水;製缶工場、車体工場、板金工場の塗装工程洗浄水・排水;農薬製造工程の排水・廃液;染色排水;染料工場排水;発電所のイオン交換再生排水(コンデミ排水);有機物やアンモニアが含まれる鍍金工場の鍍金廃液や鍍金洗浄水;などを例として挙げることができるが、これらに限定されず、これら以外にも生物処理単独では効果的な排水処理が困難な排水に適用することができる。   Examples of wastewater that can be treated by the organic wastewater treatment method of the present invention include sludge mixed liquids in sewage treatment plants and water treatment plants; various sludges such as methane fermentation processes; wastewater and wastewater from oil refineries and petroleum product plants; Wastewater and wastewater from pharmaceutical factories; wastewater and wastewater from pharmaceutical manufacturing plants and hospitals; wastewater and wastewater from various processes in semiconductor processes (photoresist process, cleaning process, and plating process); photodevelopment wastewater; and various used cutting fluids from machining plants (Oil-based, water-soluble) wastewater; washing water / drainage for paint manufacturing process; painting process washing water / drainage for can manufacturing factory, body factory, sheet metal factory; drainage / waste liquid for agrochemical manufacturing process; dyeing wastewater; dye factory wastewater; Examples include, but are not limited to, ion exchange reclaimed wastewater (condensate wastewater); plating wastewater and plating washing water of plating plants containing organic matter and ammonia. Effective wastewater treatment in the biological treatment alone outside can be applied to difficult drainage.

本発明の生物処理工程は、排水処理分野で通常行われている生物処理でよく、具体的には好気性生物処理工程又は嫌気性生物処理工程を挙げることができる。処理すべき有機性排水の性状に応じて適宜の生物処理工程を用いることができる。   The biological treatment process of the present invention may be a biological treatment usually performed in the wastewater treatment field, and specifically includes an aerobic biological treatment process or an anaerobic biological treatment process. An appropriate biological treatment process can be used according to the properties of the organic waste water to be treated.

本発明において用いることのできる好気性生物処理の方式は特に限定されるものではなく、たとえば、標準的な好気性生物処理である浮遊式(曝気槽に汚泥が浮遊する)活性汚泥処理法であっても良いし、微生物が膜に固定化された生物膜濾過法であってもよい。さらに、活性炭、アンスラサイト(石炭系炭素)、砂などの担体に好気性微生物を固定した方式の好気性生物処理であってもよい。また、浮遊法のバリエーションとして粒状あるいはスポンジ状の親水性ポリマー又は活性炭を担体として微生物を固定化した方式であってもよい。さらには、ひも状、網状又はハニカム状の担体に微生物が固定化された接触酸化方式の好気性生物処理であってもよい。あるいは、空気曝気を行わないで直接空気中から酸素を取り入れる回転円盤式の好気性生物処理であってもよい。回転円盤式好気性生物処理とは、スポンジ等が取りつけられたディスクが、その上半分が排水から空気中に露出した状態で配置されており、このディスクが回転することによって空気中から直接排水中に酸素を取り込むことを特徴とする好気性生物処理法である。   The aerobic biological treatment method that can be used in the present invention is not particularly limited. For example, it is a floating type activated sludge treatment method that is a standard aerobic biological treatment (sludge floats in an aeration tank). Alternatively, a biofilm filtration method in which microorganisms are immobilized on a membrane may be used. Furthermore, the aerobic biological treatment may be performed by aerobic microorganisms immobilized on a carrier such as activated carbon, anthracite (coal-based carbon), or sand. Further, as a variation of the floating method, a method may be used in which microorganisms are immobilized using a granular or sponge-like hydrophilic polymer or activated carbon as a carrier. Further, it may be a catalytic oxidation type aerobic biological treatment in which microorganisms are immobilized on a string-like, net-like or honeycomb-like carrier. Alternatively, it may be a rotating disk type aerobic biological treatment that directly takes in oxygen from the air without performing air aeration. Rotating disc type aerobic biological treatment is a disk on which a sponge or the like is attached, with its upper half exposed from the drainage to the air. By rotating this disc, the disc is drained directly from the air. This is an aerobic biological treatment method characterized by incorporating oxygen into the water.

本発明において用いることのできる嫌気性生物処理の方式としては、標準的な20日間メタン発酵であっても良いし、また55℃程度の温度で運転される高温メタン発酵であってもよい。高温メタン発酵の場合は、生物処理の速度が速いので処理時間を10〜15日間に短縮できるメリットがある。本発明においては、生物処理として、更に、グラニュール(メタン発酵菌を粒状化した塊)を投入したUASB法(Upflow Anaerobic Sludge Blanket)、あるいはさらに高速且つ高負荷の運転ができるEGSB法(Expanded Granular Sludge Bed)を採用することもできる。本発明において生物処理としてこれらの嫌気性処理を行うと、メタンガスの形でエネルギー回収を行うことができるという利点もある。   The anaerobic biological treatment system that can be used in the present invention may be standard 20-day methane fermentation or high-temperature methane fermentation operated at a temperature of about 55 ° C. In the case of high temperature methane fermentation, since the speed of biological treatment is high, there is an advantage that the treatment time can be shortened to 10 to 15 days. In the present invention, as biological treatment, UASB method (Upflow Anaerobic Sludge Blanket) in which granules (granulated methane-fermenting bacteria) are added, or EGSB method (Expanded Granular) that can be operated at higher speed and higher load is used. Sludge Bed) can also be adopted. When these anaerobic treatments are performed as biological treatments in the present invention, there is an advantage that energy recovery can be performed in the form of methane gas.

本発明において、生物処理工程では、有機性排水中の易生物分解性物質が生物処理されて除去される。よって、生物処理工程で得られる生物処理水中には、有機性排水中に存在していた難生物分解性物質が主として残ることになる。この生物処理水は、次いで、電解処理工程に送られて、電解処理される。本発明の電解処理工程は、導電性ダイヤモンド電極を用いることを特徴とする。本発明で用いることができる導電性ダイヤモンド電極としては、当該技術分野において公知の任意構成の導電性ダイヤモンド電極でよい。たとえば、電極基板としてのニッケル(Ni)、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、ジルコニウム(Zr)等の導電性金属材料の表面に導電性ダイヤモンド薄膜を析出させてなる導電性ダイヤモンド電極、電極基板としてのシリコンウエハー等の半導体材料の表面に導電性ダイヤモンドの薄膜を成膜させてなる導電性ダイヤモンド電極、析出させた導電性多結晶ダイヤモンドを板状に形成してなる導電性ダイヤモンド電極などを挙げることができる。なお、導電性ダイヤモンド薄膜は、基板上へダイヤモンド薄膜を成膜する際にホウ素や窒素などのドーパントを所定量ドープして導電性を付与したものであり、ドーパントとしてはホウ素を使用するのが一般的である。なお、本発明において、陽極及び陰極の両方に導電性ダイヤモンド電極を用いてもよく、あるいは陽極のみに導電性ダイヤモンド電極を用いてもよい。   In the present invention, in the biological treatment process, the readily biodegradable substance in the organic waste water is biologically treated and removed. Therefore, in the biologically treated water obtained in the biological treatment process, the hardly biodegradable substances that existed in the organic wastewater remain mainly. This biologically treated water is then sent to the electrolytic treatment step for electrolytic treatment. The electrolytic treatment process of the present invention is characterized by using a conductive diamond electrode. The conductive diamond electrode that can be used in the present invention may be a conductive diamond electrode having any configuration known in the art. For example, a conductive diamond thin film is deposited on the surface of a conductive metal material such as nickel (Ni), tantalum (Ta), titanium (Ti), molybdenum (Mo), tungsten (W), zirconium (Zr) as an electrode substrate Conductive diamond electrode, conductive diamond electrode formed by depositing a thin film of conductive diamond on the surface of a semiconductor material such as a silicon wafer as an electrode substrate, and deposited conductive polycrystalline diamond in a plate shape Examples thereof include conductive diamond electrodes. The conductive diamond thin film is obtained by doping a predetermined amount of a dopant such as boron or nitrogen when the diamond thin film is formed on the substrate to provide conductivity, and boron is generally used as the dopant. Is. In the present invention, a conductive diamond electrode may be used for both the anode and the cathode, or a conductive diamond electrode may be used only for the anode.

本発明の電解処理工程において、導電性ダイヤモンド電極で発生するOHラジカルの密度は、導電性ダイヤモンド電極に付与する電流密度によって制御することができる。電解処理工程において、処理すべき排水のCODCr濃度に応じて複数の異なる電流密度を付与してよい。この場合、CODCr濃度が高い排水に対しては高電流密度を付与し、CODCr濃度が低い排水に対しては低電流密度を付与することで、OHラジカルの過剰発生を防止することができるので、OHラジカルによる導電性ダイヤモンド電極の消耗を減少させ、電極の寿命を延ばすことができると共に、電解電力の節約にもつながる。   In the electrolytic treatment process of the present invention, the density of OH radicals generated at the conductive diamond electrode can be controlled by the current density applied to the conductive diamond electrode. In the electrolytic treatment process, a plurality of different current densities may be applied depending on the CODCr concentration of the wastewater to be treated. In this case, it is possible to prevent excessive generation of OH radicals by giving a high current density to wastewater with a high CODCr concentration and giving a low current density to wastewater with a low CODCr concentration. It reduces the consumption of the conductive diamond electrode due to OH radicals, extends the life of the electrode, and also saves electrolysis power.

電解処理工程において、導電性ダイヤモンド電極と接触する排水の温度は40℃〜95℃、好ましくは60℃〜85℃である。電気伝導度は温度依存性であり、温度が高いほど電気伝導度は高くなり、電気伝導度を高くすると所要電圧を低く維持することができるので、上記範囲とすることが好ましい。電解処理温度を上記範囲に維持するために、外部熱源から熱を加えることもできるが、導電性ダイヤモンド電極を用いた電解反応による排水の温度上昇に伴い発生する熱を効率的に利用することがより好ましい。特に電解槽の入口と出口とに熱交換器を設置して、これらの間で熱交換が行えるようにして電解槽で発生する熱を効率的に再利用することが望ましい。   In the electrolytic treatment step, the temperature of the waste water that contacts the conductive diamond electrode is 40 ° C to 95 ° C, preferably 60 ° C to 85 ° C. The electrical conductivity is temperature dependent. The higher the temperature, the higher the electrical conductivity. When the electrical conductivity is increased, the required voltage can be kept low. In order to maintain the electrolytic treatment temperature within the above range, heat can be applied from an external heat source, but it is possible to efficiently utilize the heat generated with the temperature rise of the wastewater due to the electrolytic reaction using the conductive diamond electrode. More preferred. In particular, it is desirable to install heat exchangers at the inlet and outlet of the electrolytic cell so that the heat generated in the electrolytic cell can be efficiently reused so that heat can be exchanged between them.

電解処理工程において、処理すべき排水中の有機物が二酸化炭素と水にまで無機化される途中で、中間生成物としてVFA等の易生物分解性の低分子中間生成物が多量に生成されて、排水の生物分解性が上昇する。導電性ダイヤモンド電極を用いた電解処理において、易生物分解性物質を多く含む電解処理水を得るためには、理論電解処理所要電気量(3.4Ah/g-CODCr)の10〜90%の電気量、好ましくは30〜80%の電気量を付与すればよい。   In the electrolytic treatment process, organic substances in the wastewater to be treated are mineralized to carbon dioxide and water, and a large amount of easily biodegradable low-molecular intermediate products such as VFA are produced as intermediate products. Increases biodegradability of wastewater. To obtain electrolyzed water containing a lot of readily biodegradable substances in electrolysis using a conductive diamond electrode, the amount of electricity is 10 to 90% of the amount of electricity required for theoretical electrolysis (3.4Ah / g-CODCr). Preferably, the amount of electricity is preferably 30 to 80%.

電解処理水の生物分解性を簡便に推測するために、電解処理水中のBOD/CODCrまたはpHを測定することができる。BOD/CODCrが高いほど、全有機物のうち易生物分解性の割合が高いことを意味するので、排水原水の性状にもよるが、電解処理水中のBOD/CODCrの値が0.3以上、さらに好ましくは0.4以上になるように、電解処理工程で電解処理を行うことが望ましい。また、VFAの割合が多いとpHは低下するので、排水原水の組成にもよるが、pHの値が低いとVFA濃度が高い、つまり、電解処理水に易生物分解性物質が多く含まれている状態と考えることができる。   In order to easily estimate the biodegradability of the electrolyzed water, BOD / CODCr or pH in the electrolyzed water can be measured. The higher the BOD / CODCr, the higher the rate of biodegradability in the total organic matter, so depending on the nature of the raw wastewater, the BOD / CODCr value in the electrolyzed water is 0.3 or more, more preferably It is desirable to perform the electrolytic treatment in the electrolytic treatment step so that it becomes 0.4 or more. In addition, since the pH decreases when the proportion of VFA is high, depending on the composition of the raw wastewater, the VFA concentration is high when the pH value is low, that is, the electrolyzed water contains a lot of readily biodegradable substances. You can think of it as being.

本発明において、電解処理水の少なくとも一部を生物処理工程に戻す。電解処理水の全量を生物処理工程に戻してもよい。生物処理工程に戻す電解処理水の量は、排水原水の初期有機物濃度、電解処理水の濃度許容値、生物処理工程の処理能力などの種々の要因によって変動する。たとえば、排水原水の初期有機物濃度が高い場合には、生物処理工程に戻す電解処理水量を多量にすることで生物処理工程での排水原水を希釈して難生物分解性物質濃度を相対的に低下させることができる。   In the present invention, at least a part of the electrolytically treated water is returned to the biological treatment process. The entire amount of electrolytically treated water may be returned to the biological treatment process. The amount of electrolytically treated water returned to the biological treatment process varies depending on various factors such as the initial organic matter concentration of the raw wastewater, the concentration tolerance of the electrolytic treatment water, and the treatment capacity of the biological treatment process. For example, when the initial organic matter concentration of raw wastewater is high, the amount of electrolytically treated water returned to the biological treatment process is increased to dilute the raw wastewater in the biological treatment process and relatively reduce the concentration of hardly biodegradable substances. Can be made.

また、本発明によれば、別の態様として難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物処理工程と、該生物処理水を電解処理して、電解処理水を得る電解処理工程と、該電解処理水を濃縮して、濃縮水を得る濃縮工程と、該濃縮水の少なくとも一部を該生物処理工程に戻す返送工程と、を含むことを特徴とする難生物分解性物質含有有機性排水処理方法が提供される。   Further, according to the present invention, as another aspect, a biological treatment step of biologically treating organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and electrolytic treatment of the biologically treated water to perform electrolysis An electrolytic treatment step for obtaining treated water, a concentration step for concentrating the electrolytic treatment water to obtain concentrated water, and a return step for returning at least a part of the concentrated water to the biological treatment step. An organic wastewater treatment method containing a non-biodegradable substance is provided.

本態様は、下水道放流基準ではなく河川や海域などの自然環境中に直接放流する排水基準を達成することが求められる高度清浄化処理が望ましい場合に好適である。   This aspect is suitable when it is desirable to perform advanced cleaning treatment that is required to achieve not the sewer discharge standard but the drainage standard for direct discharge into the natural environment such as rivers and sea areas.

本態様においては、電解処理水を濃縮して濃縮水を得て、この濃縮水を生物処理工程に戻すことに特徴がある。濃縮の態様としては、溶解質の濃縮分野で公知の適宜方法を用いることができる。たとえば、逆浸透(RO)膜、ルーズRO膜(NF膜)などの膜分離濃縮、加温あるいは減圧により水分を蒸発させる蒸発濃縮、電気透析による濃縮などを好ましく用いることができ、炭酸カルシウムなどの無機化合物によるスケール発生を抑制することから無機イオンの透過率の高いルーズRO膜(NF膜)分離が最も好ましい。   This embodiment is characterized in that the electrolytically treated water is concentrated to obtain concentrated water, and this concentrated water is returned to the biological treatment process. As an aspect of concentration, an appropriate method known in the field of solute concentration can be used. For example, membrane separation concentration such as reverse osmosis (RO) membrane, loose RO membrane (NF membrane), evaporation concentration that evaporates water by heating or decompression, concentration by electrodialysis, etc. can be preferably used, such as calcium carbonate Loose RO membrane (NF membrane) separation with a high inorganic ion permeability is most preferred because it suppresses the generation of scale by inorganic compounds.

なお、濃縮工程分離水は濃縮の態様に応じて名称が異なり、たとえば膜分離濃縮の場合には透過水、蒸発濃縮の場合には蒸留水、電気透析の場合には脱塩水を意味する。
濃縮水は、電解処理工程で生じる易生物分解性物質を含有し、それらは生物処理工程で容易に分解される。また、濃縮水は、通常の有機性排水に含まれる無機の各種イオン、たとえばカルシウム、マグネシウム、リンなどを含む。これら無機イオンは、生物処理工程で汚泥中に取り込まれ、汚泥中に取り込まれた無機イオンは余剰汚泥として外部に排出することが可能なので、スケールの発生を防止することができる。
Concentration process separated water has a different name depending on the mode of concentration. For example, it means permeated water in the case of membrane separation and concentration, distilled water in the case of evaporation and concentration, and demineralized water in the case of electrodialysis.
Concentrated water contains easily biodegradable substances generated in the electrolytic treatment process, and they are easily decomposed in the biological treatment process. The concentrated water contains various inorganic ions contained in normal organic waste water, such as calcium, magnesium, phosphorus, and the like. Since these inorganic ions are taken into the sludge in the biological treatment process, and the inorganic ions taken into the sludge can be discharged to the outside as surplus sludge, generation of scale can be prevented.

濃縮水がスケール生成の原因となるカルシウム、マグネシウム、リンなどの溶解質を多量に含む場合には、定常的あるいは間欠的に濃縮水の一部を外部に排出したり、生物処理水、電解処理水あるいは濃縮水のいずれか一つ以上を対象に、HAP(ヒドロキシアパタイト、Ca5(OH)(PO4)3)、あるいはMAP(リン酸マグネシウムアンモニウム、Mg(NH4)PO4)処理を行ってカルシウム、マグネシウム、リンなどのスケール生成の原因となる成分を結晶化させて取り除いたりしてもよい。 When concentrated water contains a large amount of solutes such as calcium, magnesium, and phosphorus that cause scale formation, part of the concentrated water is discharged to the outside regularly or biologically treated water, electrolytic treatment HAP (hydroxyapatite, Ca 5 (OH) (PO 4 ) 3 ) or MAP (magnesium ammonium phosphate, Mg (NH 4 ) PO 4 ) treatment for one or more of water or concentrated water The components that cause scale formation such as calcium, magnesium, and phosphorus may be crystallized and removed.

あるいは、濃縮工程の手前で、塩酸・硫酸などの酸を添加して、スケールの生成を防止してもよい。   Alternatively, scale formation may be prevented by adding an acid such as hydrochloric acid or sulfuric acid before the concentration step.

さらに、本発明によれば、別の態様として、難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物処理工程と、該生物処理水を濃縮して、濃縮水を得る濃縮工程と、該濃縮水の少なくとも一部を電解処理して、電解処理水を得る電解処理工程と、該電解処理水を該生物処理工程に戻す返送工程と、を含むことを特徴とする難生物分解性物質含有有機性排水処理方法が提供される。   Furthermore, according to the present invention, as another aspect, a biological treatment step of biologically treating an organic wastewater containing a hardly biodegradable substance to obtain biologically treated water, and concentrating the biologically treated water for concentration A concentration step for obtaining water, an electrolytic treatment step for obtaining electrolytic treatment water by electrolytically treating at least a part of the concentrated water, and a return step for returning the electrolytic treatment water to the biological treatment step. An organic wastewater treatment method containing a non-biodegradable substance is provided.

本態様においては、生物処理水を濃縮した後、電解処理を行い、この電解処理水を生物処理工程に戻すことに特徴がある。電解処理水を生物処理工程に戻すことによって、電解処理によって生成する易生物分解性の低分子中間生成物は生物処理工程で処理されて、濃縮工程には導入されない。換言すれば、濃縮工程分離水には易生物分解性の低分子中間生成物が含まれないので、水質を大幅に向上させることができ、そのまま環境中に放出することが可能となる。   This aspect is characterized in that after the biologically treated water is concentrated, electrolytic treatment is performed, and this electrolytically treated water is returned to the biological treatment step. By returning the electrolytically treated water to the biological treatment step, the easily biodegradable low molecular weight intermediate product produced by the electrolytic treatment is treated in the biological treatment step and not introduced into the concentration step. In other words, the separation water separated from the concentration process does not contain an easily biodegradable low-molecular intermediate product, so that the water quality can be greatly improved and can be directly released into the environment.

本態様の濃縮工程における濃縮倍率は、電解処理工程の処理効率および処理コストに影響する。濃縮水の塩類濃度が高いほど電解処理工程での消費電力は減少し、濃縮水の有機物濃度が低いほど電解処理効率が低下する。   The concentration factor in the concentration step of this aspect affects the processing efficiency and processing cost of the electrolytic processing step. The higher the salt concentration of the concentrated water, the lower the power consumption in the electrolytic treatment process, and the lower the concentration of organic matter in the concentrated water, the lower the electrolytic treatment efficiency.

本発明によれば、難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得、該生物処理水を電解処理して、電解処理水を得、該電解処理水を再び生物処理工程に戻すことによって、生物処理工程での負荷を増加させ、電解処理工程での負荷を低減させることができ、結果的に電解処理に要する電力量を削減することができるので、大幅なコスト削減を達成することができる。また、生物処理工程が嫌気性生物処理工程である場合には、生物処理の負荷の増加と共にバイオガス発生量が増加し、エネルギー回収量が増加するので、電解処理工程で要する電気エネルギーの一部として利用することもできる。さらに、電解処理工程でのジュール熱により水温が上昇した電解処理水を生物処理工程に戻すことにより、生物処理工程で要する熱エネルギーの一部として利用することもできる。このように、本発明の有機性排水の処理方法は、各工程での物質の流れに伴って発生するエネルギーを系の所要エネルギーとして利用することができ、系全体として大幅なエネルギー節約を達成することができる。   According to the present invention, an organic wastewater containing a hardly biodegradable substance is biologically treated to obtain biologically treated water, and the biologically treated water is electrolytically treated to obtain electrolytically treated water. By returning to the biological treatment process again, the load in the biological treatment process can be increased and the load in the electrolytic treatment process can be reduced, resulting in a reduction in the amount of power required for the electrolytic treatment. Cost savings can be achieved. In addition, when the biological treatment process is an anaerobic biological treatment process, the amount of biogas generated increases as the biological treatment load increases, and the amount of energy recovered increases, so part of the electrical energy required for the electrolytic treatment process It can also be used as Furthermore, by returning the electrolytically treated water whose water temperature has risen due to Joule heat in the electrolytic treatment process to the biological treatment process, it can be used as part of the thermal energy required in the biological treatment process. As described above, the organic wastewater treatment method of the present invention can use the energy generated along with the material flow in each process as the required energy of the system, and achieves a significant energy saving as the entire system. be able to.

好ましい実施形態の説明DESCRIPTION OF PREFERRED EMBODIMENTS

以下、添付図面を参照しながら本発明をさらに詳細に説明するが、本発明はこれらに限定されない。   Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings, but the present invention is not limited thereto.

[実施形態1]
図5は、本発明の一態様を示す概略説明図である。図5によれば、難生物分解性物質を含有する有機性排水原水(以下、単に「排水原水」という)1は、まず、生物処理工程(生物処理装置)2に導入され、生物処理工程2において易生物分解性物質が分離・除去され、難生物分解性物質を多く含む生物処理水3が得られる。続いて、生物処理水3は電解処理工程(電解処理槽)4に導入され、電解処理工程(電解処理槽)4において難生物分解性物質がVFAなどの易生物分解性物質、二酸化炭素および水等に分解され、電解処理水5として排出される。電解処理水5は、その一部が電解処理返送水6として、生物処理工程(生物処理装置)2に返送され、電解処理返送水6に含まれる易生物分解性物質は生物処理される。
[Embodiment 1]
FIG. 5 is a schematic explanatory diagram illustrating one embodiment of the present invention. According to FIG. 5, organic wastewater raw water (hereinafter simply referred to as “drainage raw water”) 1 containing a hardly biodegradable substance is first introduced into a biological treatment process (biological treatment apparatus) 2, and biological treatment process 2 , The biodegradable substance is separated and removed, and the biologically treated water 3 containing a large amount of hardly biodegradable substance is obtained. Subsequently, the biologically treated water 3 is introduced into an electrolytic treatment process (electrolytic treatment tank) 4, and the hardly biodegradable substance in the electrolytic treatment process (electrolytic treatment tank) 4 is an easily biodegradable substance such as VFA, carbon dioxide and water. And is discharged as electrolyzed water 5. A part of the electrolytically treated water 5 is returned to the biological treatment process (biological treatment device) 2 as electrolytically treated return water 6, and the readily biodegradable substance contained in the electrolytically treated return water 6 is biologically treated.

生物処理工程2は、当該分野で通常用いられる好気性生物処理工程および/または嫌気性生物処理工程でよい。生物処理工程2で用いることができる生物処理装置は、当該分野で通常用いられる曝気槽などの好気性生物処理槽、嫌気性生物処理槽、沈殿槽などを含む。   The biological treatment step 2 may be an aerobic biological treatment step and / or an anaerobic biological treatment step usually used in the art. The biological treatment apparatus that can be used in the biological treatment step 2 includes an aerobic biological treatment tank such as an aeration tank, an anaerobic biological treatment tank, and a precipitation tank that are usually used in the field.

電解処理槽4は、少なくとも陽極として導電性ダイヤモンド電極(図示せず)を具備していればよく、その形態は特に限定されない。電解処理槽4での導電性ダイヤモンド電極の設置方法としては、できるだけガス抜きを良好に行える構造にすることが好ましい。ガス抜きが良好に行えないと電極間に気泡が溜まって電極間電圧を上昇させる原因となる。従って、電極は、電解処理槽4内に水平に設置するよりは、垂直に設置する方が好ましい。また、電極を電解処理槽4内で水平に設置する場合には、少なくとも陽極となる導電性ダイヤモンド電極及び/又は陰極をメッシュ状、パンチングプレート状、エクスパンドメタル状など、ガス抜きが良好に行える構造にすることが望ましい。電解処理槽4への通電の方法は、モノポーラ(単極)電極方式も可能であるし、バイポーラ電極方式(複極)であってもよい。大きな電極面積が必要な場合はバイポーラの方が、装置がコンパクトになるメリットがある。   The electrolytic treatment tank 4 only needs to include a conductive diamond electrode (not shown) as at least an anode, and the form is not particularly limited. As a method for installing the conductive diamond electrode in the electrolytic treatment tank 4, it is preferable to have a structure in which gas can be removed as well as possible. If degassing cannot be performed satisfactorily, bubbles accumulate between the electrodes, causing the interelectrode voltage to increase. Therefore, it is preferable to install the electrodes vertically rather than horizontally in the electrolytic treatment tank 4. Further, when the electrodes are installed horizontally in the electrolytic treatment tank 4, at least a conductive diamond electrode serving as an anode and / or a cathode, such as a mesh shape, a punching plate shape, or an expanded metal shape, can be well vented. It is desirable to make it. As a method for energizing the electrolytic treatment tank 4, a monopolar (single electrode) electrode method may be used, or a bipolar electrode method (bipolar) may be used. When a large electrode area is required, the bipolar has the advantage of making the device more compact.

電解処理槽4の運転は、バッチ式でも、循環バッチ式でも、連続式でもよい。   The operation of the electrolytic treatment tank 4 may be a batch type, a circulating batch type, or a continuous type.

バッチ式の場合、電解処理槽4は導電性ダイヤモンド電極で形成された陽極と陰極とを具備するタンクの形態でよい。生物処理工程2からの生物処理水3を電解処理槽4に送り、電解処理槽4内で一定時間電解処理を行って、BOD/CODCrが0.3以上になった時点で易生物分解性物質を含有する電解処理水5を得ることができる。   In the case of a batch type, the electrolytic treatment tank 4 may be in the form of a tank having an anode and a cathode formed of conductive diamond electrodes. The biologically treated water 3 from the biological treatment process 2 is sent to the electrolytic treatment tank 4 and subjected to electrolytic treatment in the electrolytic treatment tank 4 for a certain period of time. When BOD / CODCr becomes 0.3 or more, it contains an easily biodegradable substance. The electrolyzed water 5 to be obtained can be obtained.

循環バッチ式の場合、図6に示すように、導電性ダイヤモンド電極で構成された陽極と陰極とを具備する電解セル4aをタンク4bの外部に設けて、ポンプ等で排水をタンク4bから電解セル4aに送液し、電解セル4aの処理水を排水タンク4bに戻すように構成することができる。この場合、電解セル4a内の陽極と陰極の間に、ポンプ送液による排水の強制的な流れができるため、排水タンクにただ電極を浸漬配置した場合よりも電解効率が良好に保てる。この循環バッチ式においても、タンク内の排水のBOD/CODCrが0.3以上になった時点で易生物分解性物質を含有する電解処理水5を得ることができる。   In the case of the circulating batch type, as shown in FIG. 6, an electrolytic cell 4a having an anode and a cathode composed of conductive diamond electrodes is provided outside the tank 4b, and drainage is performed from the tank 4b by a pump or the like. The liquid can be sent to 4a and the treated water of the electrolytic cell 4a can be returned to the drainage tank 4b. In this case, since the drainage of the pumped liquid can be forced between the anode and the cathode in the electrolysis cell 4a, the electrolysis efficiency can be maintained better than when the electrodes are simply immersed in the drainage tank. Also in this circulation batch type, the electrolyzed water 5 containing an easily biodegradable substance can be obtained when the BOD / CODCr of the waste water in the tank becomes 0.3 or more.

連続式の場合、バッチ式の電極を具備するタンクおよび/または循環バッチ式の電解セルとタンクの組み合わせの電解処理槽4を複数個直列に配置し、各電解処理槽4で所定の滞留時間が確保されるようにする。電解処理槽を複数個直列に配置して処理を行う場合、一段目の電解処理槽で処理された排水を次の電解処理槽に送液して、この電解処理槽でも同じく導電性ダイヤモンド電極を用いた電解処理を行うという構成になる。このような構成の電解処理槽においては、最終段の電解処理槽から得られる処理水が電解処理水5となる。このような構成の電解処理槽4においては、排水のCODCr濃度によって、各段の電解セルの運転条件を設定できるというメリットがある。たとえば、1段目には生物処理工程からの高濃度CODCr領域の排水が流入するので高電流密度電解処理槽とし、2段目以降は低濃度CODCr領域の排水が流入するので低電流密度電解処理槽とすることで、より効率的な導電性ダイヤモンド電極を用いた電解処理運転を行うことができる。   In the case of the continuous type, a plurality of tanks having batch-type electrodes and / or a combination of a circulation batch-type electrolytic cell and a tank are arranged in series, and each electrolytic treatment tank 4 has a predetermined residence time. To be secured. When performing treatment by arranging a plurality of electrolytic treatment tanks in series, the wastewater treated in the first-stage electrolytic treatment tank is sent to the next electrolytic treatment tank, and in this electrolytic treatment tank, the conductive diamond electrode is similarly formed. It becomes the structure of performing the used electrolytic treatment. In the electrolytic treatment tank having such a configuration, the treated water obtained from the final electrolytic treatment tank is the electrolytic treated water 5. In the electrolytic treatment tank 4 having such a configuration, there is an advantage that the operating conditions of the electrolytic cell in each stage can be set depending on the CODCr concentration of the waste water. For example, wastewater from the high-concentration CODCr region from the biological treatment process flows into the first stage, so it becomes a high-current density electrolytic treatment tank. By setting it as a tank, the electrolytic treatment operation using a more efficient conductive diamond electrode can be performed.

[実施形態2]
図7は、本発明の別の実施形態を示す概略説明図である。実施形態1における電解処理水5の水質は、充分に清澄でない場合があり、下水道放流する場合の排除基準は満足するものの、河川、あるいは海域など環境中に直接放流にするための排水基準を満足できない可能性がある。処理済水を環境中に直接放流する場合には、実施形態1の電解処理水5の後段に、濃縮工程(濃縮装置)8を設けることで、処理済水質の向上を図ることができる。
[Embodiment 2]
FIG. 7 is a schematic explanatory view showing another embodiment of the present invention. The quality of the electrolytically treated water 5 in the first embodiment may not be sufficiently clear, and although the exclusion standard when discharging into the sewer is satisfied, it satisfies the drainage standard for direct discharge into the environment such as rivers or sea areas. It may not be possible. When the treated water is directly discharged into the environment, the quality of the treated water can be improved by providing a concentration step (concentration device) 8 after the electrolytically treated water 5 of the first embodiment.

図7に示す実施形態では、排水原水1は生物処理工程(生物処理装置)2に導入されて、易生物分解性物質が分離・除去され、難生物分解性物質を多く含む生物処理水3が得られる。生物処理水3は電解処理工程(電解処理槽)4に流入し、電解処理工程(電解処理槽)4において難生物分解性物質が分解され、電解処理水5として排出される。電解処理水5は濃縮工程(濃縮装置)8に導入され、濃縮水9と濃縮工程分離水10が得られる。濃縮水9はその一部あるいは全部が生物処理工程(生物処理装置)2に返送される。濃縮装置8は、溶解質の濃縮装置、例えばRO膜、ルーズRO膜(NF膜)などの膜分離濃縮装置、加温あるいは減圧により水分を蒸発させる蒸発濃縮装置、電気透析などの濃縮装置でよい。濃縮工程分離水10とは、濃縮工程が膜分離方法である場合には透過水、蒸発濃縮方法では蒸留水、電気透析である場合には脱塩水を意味する。   In the embodiment shown in FIG. 7, the raw wastewater 1 is introduced into a biological treatment process (biological treatment device) 2 to separate and remove easily biodegradable substances, and biologically treated water 3 containing a large amount of hardly biodegradable substances. can get. The biologically treated water 3 flows into the electrolytic treatment process (electrolytic treatment tank) 4, the hardly biodegradable substance is decomposed in the electrolytic treatment process (electrolytic treatment tank) 4, and is discharged as the electrolytic treatment water 5. The electrolytically treated water 5 is introduced into a concentration process (concentration device) 8 to obtain concentrated water 9 and concentrated process separation water 10. Part or all of the concentrated water 9 is returned to the biological treatment process (biological treatment apparatus) 2. The concentration device 8 may be a solute concentration device, for example, a membrane separation concentration device such as an RO membrane or a loose RO membrane (NF membrane), an evaporation concentration device that evaporates water by heating or decompression, or a concentration device such as electrodialysis. . The concentration process separation water 10 means permeated water when the concentration process is a membrane separation method, distilled water when the concentration process is an evaporative concentration method, and desalted water when the concentration process is electrodialysis.

濃縮水9に含まれる易生物分解性物質は、生物処理工程(生物処理装置)2で容易に処理することができる。また、濃縮水9に含まれるカルシウム、マグネシウム、リンなどのスケール生成の原因となる成分は、生物処理工程(生物処理装置)2で汚泥に取り込まれて、余剰汚泥として外部に排出することができる。生物処理工程(生物処理装置)2が嫌気・好気処理槽を含む場合は、より多くのリンを余剰汚泥に固定することができる。   The readily biodegradable substance contained in the concentrated water 9 can be easily treated in the biological treatment process (biological treatment apparatus) 2. In addition, components that cause scale generation such as calcium, magnesium, and phosphorus contained in the concentrated water 9 can be taken into sludge in the biological treatment step (biological treatment device) 2 and discharged to the outside as excess sludge. . When the biological treatment process (biological treatment apparatus) 2 includes an anaerobic / aerobic treatment tank, more phosphorus can be fixed to the excess sludge.

また、図11に点線で示すように、スケール生成防止のために、生物処理水3、電解処理水5あるいは濃縮水9のいずれか一つ以上を対象に、HAP(ヒドロキシアパタイト、Ca5(OH)(PO4)3)、あるいはMAP(リン酸マグネシウムアンモニウム、Mg(NH4)PO4)処理を晶析槽11で行い、カルシウム、マグネシウム、リンなどのスケール生成の原因となる成分を結晶の形で水中から除去する構成とすることもできる。 Further, as shown by a dotted line in FIG. 11, in order to prevent scale formation, any one or more of the biologically treated water 3, the electrolytically treated water 5, and the concentrated water 9 is targeted for HAP (hydroxyapatite, Ca 5 (OH). ) (PO 4 ) 3 ) or MAP (magnesium ammonium phosphate, Mg (NH 4 ) PO 4 ) treatment is carried out in the crystallization tank 11, and components that cause scale formation such as calcium, magnesium, phosphorus, etc. It can also be set as the structure removed from water in the form.

あるいは、濃縮装置8の手前で、塩酸・硫酸などの酸を添加し、スケールの生成を防止する構成とすることもできる。   Alternatively, it is possible to add an acid such as hydrochloric acid or sulfuric acid before the concentrating device 8 to prevent scale formation.

[実施形態3]
図8は、また別の本発明の実施形態を示す概略説明図である。実施形態2においては、電解処理槽4の下流に濃縮装置8があるため、電解処理水5に含まれる易生物分解性物質を濃縮装置8に導入することになる。電解処理槽4で生じる中間生成物のなかでも、ギ酸(分子量46、沸点101℃)、酢酸(分子量60、沸点118℃)などは、分子量が小さく、沸点も比較的低いため、膜分離処理、とくにルーズRO膜による濃縮処理では透過水側へ、蒸発濃縮処理では、蒸留水側に一部移動することが考えられ、目標とする濃縮工程分離水10の水質が満足されない可能性がある。本実施形態は、濃縮工程分離水10の水質を向上させるために好適である。
[Embodiment 3]
FIG. 8 is a schematic explanatory view showing another embodiment of the present invention. In the second embodiment, since the concentration device 8 is downstream of the electrolytic treatment tank 4, an easily biodegradable substance contained in the electrolytic treatment water 5 is introduced into the concentration device 8. Among the intermediate products generated in the electrolytic treatment tank 4, formic acid (molecular weight 46, boiling point 101 ° C.), acetic acid (molecular weight 60, boiling point 118 ° C.), etc. have low molecular weight and relatively low boiling point. In particular, it is conceivable that a part of the concentrated RO separation membrane is moved to the permeate side, and the evaporative concentration process is partly moved to the distilled water side. This embodiment is suitable for improving the water quality of the concentration process separation water 10.

図8に示す実施形態では、排水原水1は生物処理工程(生物処理装置)2に導入されて、易生物分解性物質が分離・除去され、難生物分解性物質を多く含む生物処理水3が得られる。生物処理水3は、濃出工程(濃縮装置)8に導入され、濃縮水9と濃縮工程分離水10が得られる。濃縮水9はその一部あるいは全部が電解処理工程(電解処理槽)4に導入され、電解処理工程(電解処理槽)4において難生物分解性物質が分解され、易生物分解性物質を含む電解処理水5が得られる。電解処理水5は続いて、生物処理工程(生物処理装置)2に戻され、電解処理水5に含まれる易生物分解性物質は分離・除去される。本実施形態では、電解処理水5に含まれる低分子の中間生成物は濃縮工程(濃縮装置)8に導入されないため、濃縮工程分離水10の水質を大幅に向上させることができる。   In the embodiment shown in FIG. 8, the raw waste water 1 is introduced into a biological treatment process (biological treatment device) 2 to separate and remove easily biodegradable substances, and biological treated water 3 containing a large amount of hardly biodegradable substances. can get. The biologically treated water 3 is introduced into a concentration step (concentration device) 8 to obtain concentrated water 9 and concentrated step separation water 10. Part or all of the concentrated water 9 is introduced into the electrolytic treatment step (electrolytic treatment tank) 4, and the hardly biodegradable substance is decomposed in the electrolytic treatment step (electrolytic treatment tank) 4, and electrolysis containing the readily biodegradable substance is performed. Treated water 5 is obtained. Subsequently, the electrolytically treated water 5 is returned to the biological treatment process (biological treatment device) 2, and the readily biodegradable substance contained in the electrolytically treated water 5 is separated and removed. In this embodiment, since the low molecular intermediate product contained in the electrolytically treated water 5 is not introduced into the concentration step (concentration device) 8, the water quality of the concentration step separation water 10 can be greatly improved.

以下、実施例により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

工場排水Aを対象に、ダイヤモンド電極を用いた電解処理を行い、電解処理に伴う処理水の生物分解性の変化を調べた。工場排水AはCODCrが7500(mg/L)、BODが1450(mg/L)、BOD/CODCrは約0.2と、難生物分解性物質を多く含む排水であった。   Electrolytic treatment using a diamond electrode was conducted for industrial wastewater A, and changes in the biodegradability of the treated water accompanying the electrolytic treatment were investigated. Industrial wastewater A was a wastewater containing a lot of non-biodegradable substances with CODCr of 7500 (mg / L), BOD of 1450 (mg / L) and BOD / CODCr of about 0.2.

電解処理槽として導電性ダイヤモンド電極を陽極、チタン電極を陰極とした電解処理槽を用いた。ダイヤモンド電極はシリコンウエハー基材にホットフィラメントCVD法により導電性ダイヤモンドを成膜したものである。電極面積は約140cm2、電流値は14Aとした。実験は循環バッチ式で行い、初期水量は3L、タンクから電解セルへのポンプ送液流量は1L/minとした。 As the electrolytic treatment tank, an electrolytic treatment tank using a conductive diamond electrode as an anode and a titanium electrode as a cathode was used. The diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by a hot filament CVD method. The electrode area was about 140 cm 2 and the current value was 14 A. The experiment was carried out in a circulating batch system, with an initial water volume of 3 L and a pump flow rate from the tank to the electrolysis cell of 1 L / min.

図1に、投入電気量(Ah/g-CODCr)とCODCr(mg/L)、BOD(mg/L)の関係を、図2には、投入電気量(Ah/g-CODCr)とBOD/CODCrの関係を示す。   Fig. 1 shows the relationship between the input electricity (Ah / g-CODCr), CODCr (mg / L), and BOD (mg / L), and Fig. 2 shows the input electricity (Ah / g-CODCr) and BOD / The relationship of CODCr is shown.

電解処理を開始すると、CODCrはほぼ直線的に減少するが、BODは約1.5Ah/g-CODCrの投入電気量までは増加し、その後投入電気量の増加と共に減少し、約5Ah/g-CODCrでCODCr、BODともにほぼ0になった。BOD/CODCrは実験初期は約0.2であったが、2Ah/g-CODCrの電気量を投入すると0.5程度にまで増加し、処理水の生物分解性が向上した。投入電気量が2Ah/g-CODCrを超えるとBOD/CODCrは減少した。   When the electrolytic treatment is started, CODCr decreases almost linearly, but BOD increases up to about 1.5 Ah / g-CODCr input power, then decreases with increasing input power, about 5 Ah / g-CODCr. Both CODCr and BOD became almost zero. BOD / CODCr was about 0.2 at the beginning of the experiment, but when the amount of electricity of 2Ah / g-CODCr was added, it increased to about 0.5, and the biodegradability of the treated water was improved. When the amount of electricity input exceeded 2Ah / g-CODCr, BOD / CODCr decreased.

図3に、投入電気量(Ah/g-CODCr)とVFA(mg/L)との関係を、図4には、投入電気量(Ah/g-CODCr)とpHの関係を示す。最も多く生成したVFAはギ酸であり、ついで、酢酸、乳酸がほぼ同量であった。これらの濃度を合計したものをVFA濃度として図3に示す。投入電気量が約2Ah/g-CODCrまでは、電気量の増加と共にVFA生成量が増加し、pHは低下したが、投入電気量が約2Ah/g-CODCrを越えると電気量の増加と共にVFA生成量が減少し、pHは上昇した。投入電気量が約3Ah/g-CODCrを越えるとVFAは急激に減少した。処理水の生物分解性が向上したのは、VFAが生成したためである。   Fig. 3 shows the relationship between the input electricity (Ah / g-CODCr) and VFA (mg / L), and Fig. 4 shows the relationship between the input electricity (Ah / g-CODCr) and pH. The most produced VFA was formic acid, followed by almost the same amount of acetic acid and lactic acid. The sum of these concentrations is shown in FIG. 3 as the VFA concentration. Up to about 2Ah / g-CODCr, the amount of VFA generated increased with the increase in the amount of electricity, and the pH decreased.However, when the amount of input electricity exceeded about 2Ah / g-CODCr, the VFA increased with an increase in the amount of electricity. The amount produced decreased and the pH increased. When the amount of electricity input exceeded about 3Ah / g-CODCr, VFA decreased rapidly. The reason why the biodegradability of treated water was improved was that VFA was generated.

工場排水Bを対象に試験を行った。試験は図5に示す処理フローで行った。生物処理工程(生物処理装置)2では、中温メタン発酵を行った。電解処理工程(電解処理槽)4として導電性ダイヤモンド電極を陽極、チタン電極を陰極とした電解処理槽を用いた。ダイヤモンド電極はシリコンウエハー基材にホットフィラメントCVD法により導電性ダイヤモンドを成膜したものである。電極面積は約280cm2であった。対照として、図9に示す電解処理工程(電解処理槽)4から生物処理工程(生物処理装置)2への返送を行わない処理フローで試験を行った。 A test was conducted on industrial wastewater B. The test was performed according to the processing flow shown in FIG. In the biological treatment process (biological treatment device) 2, medium temperature methane fermentation was performed. As the electrolytic treatment step (electrolytic treatment bath) 4, an electrolytic treatment bath using a conductive diamond electrode as an anode and a titanium electrode as a cathode was used. The diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by a hot filament CVD method. The electrode area was about 280 cm 2 . As a control, the test was performed in a treatment flow in which the return from the electrolytic treatment step (electrolytic treatment tank) 4 shown in FIG. 9 to the biological treatment step (biological treatment apparatus) 2 was not performed.

試験結果の比較を表1に示す。表1の実験1、実験2は図5に示す処理フローで試験を行った結果、実験3は図9に示す処理フローで試験を行った結果である。実験1においては、電解処理返送水6の流量を原水流量の3倍に、実験2においては原水流量の6倍にした。なお、表中の「流入水」は排水原水1を、「流出水」は電解処理水5を表す。   A comparison of the test results is shown in Table 1. Experiment 1 and Experiment 2 in Table 1 are the results of testing with the processing flow shown in FIG. 5, and Experiment 3 is the result of testing with the processing flow shown in FIG. In Experiment 1, the flow rate of the electrolyzed return water 6 was set to 3 times the raw water flow rate, and in Experiment 2, the flow rate of the raw water was 6 times. In the table, “inflow water” represents the wastewater raw water 1, and “outflow water” represents the electrolyzed water 5.

Figure 0004956016
Figure 0004956016

実験1は実験3に比べて電解処理工程(電解処理槽)4における所要電解電力は約30%低く、メタン発酵による発生メタンガスは、約1.3倍多かった。また、返送流量を増加させることで、発生するメタンガスはさらに増加し、電解電力は低下した。   Experiment 1 required about 30% lower electrolysis power in the electrolytic treatment process (electrolytic treatment tank) 4 than Experiment 3, and the generated methane gas from methane fermentation was about 1.3 times higher. Moreover, by increasing the return flow rate, the generated methane gas further increased and the electrolysis power decreased.

工場排水Cを対象に試験を行った。試験は図7に示す処理フローで行った。生物処理工程(生物処理装置)2では、中温メタン発酵を行った。電解処理工程(電解処理槽)4として導電性ダイヤモンド電極を陽極、チタン電極を陰極とした電解処理槽を用い、濃縮工程(濃縮装置)8としてルーズRO膜(製品名:日東電工製NTR-7250)を具備する膜分離濃縮装置を用いた。ダイヤモンド電極はシリコンウエハー基材にホットフィラメントCVD法により導電性ダイヤモンドを成膜したものである。   A test was conducted on industrial wastewater C. The test was performed according to the processing flow shown in FIG. In the biological treatment process (biological treatment device) 2, medium temperature methane fermentation was performed. The electrolytic treatment tank (electrolytic treatment tank) 4 is an electrolytic treatment tank using a conductive diamond electrode as an anode and the titanium electrode as a cathode. The concentration process (concentration device) 8 is a loose RO membrane (product name: NTR-7250 manufactured by Nitto Denko). ) Was used. The diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by a hot filament CVD method.

電極面積は約280cm2で、電流値は6Aとした。対象として、図5に示す処理フローで試験を行った。 The electrode area was about 280 cm 2 and the current value was 6 A. As an object, the test was performed according to the processing flow shown in FIG.

試験結果の比較を表2に示す。表2の実験4は図7に示す処理フローで試験を行った結果、実験5は図5に示す処理フローで試験を行った結果である。実験4においては、濃縮工程(濃縮装置)8における濃縮倍率を3倍にし、濃縮水9を原水流量の3倍で生物処理工程(生物処理装置)2へ返送した。実験5においては、電解処理返送水6の流量を原水流量の3倍にし生物処理工程(生物処理装置)2へ返送した。表中の「流入水」は排水原水1を、「流出水」は図7に示すフローにおいては濃縮工程分離水10を、図5に示すフローにおいては電解処理水5を表す。   A comparison of the test results is shown in Table 2. Experiment 4 in Table 2 is a result of testing with the processing flow shown in FIG. 7, and Experiment 5 is a result of testing with the processing flow shown in FIG. In Experiment 4, the concentration rate in the concentration step (concentration device) 8 was tripled, and the concentrated water 9 was returned to the biological treatment step (biological treatment device) 2 at three times the raw water flow rate. In Experiment 5, the flow rate of the electrolytic treatment return water 6 was made three times the raw water flow rate and returned to the biological treatment process (biological treatment device) 2. In the table, “inflow water” represents the raw waste water 1, “outflow water” represents the concentration process separation water 10 in the flow shown in FIG. 7, and electrolytic treatment water 5 in the flow shown in FIG. 5.

Figure 0004956016
Figure 0004956016

実験4は実験5に比べて、流出水がさらに清浄化されていた。さらに発生メタンガス量も1.5倍多かった。また、実験4では濃縮工程(濃縮装置)8で無機イオンが濃縮されて電気伝導度が上昇するので、電解処理工程(電解処理槽)4で所定の電流を流すのに必要な電圧は実験5と比べて低かった。   In Experiment 4, the effluent was further purified compared to Experiment 5. Furthermore, the amount of methane gas generated was 1.5 times higher. Further, in Experiment 4, since the inorganic ions are concentrated in the concentration process (concentration device) 8 and the electrical conductivity is increased, the voltage required to pass a predetermined current in the electrolytic treatment process (electrolysis process tank) 4 is determined in Experiment 5. It was low compared with.

比較的低いCODCr濃度の工場排水Dを対象に試験を行った。試験は図8に示す処理フローで行った。生物処理工程2では、標準活性汚泥処理を行った。濃縮装置8としてはルーズRO膜(製品名:日東電工製NTR-7250)を具備する膜分離濃縮装置を用い、電解処理槽4としては導電性ダイヤモンド電極を陽極、チタン電極を陰極とした電解処理槽を用いた。ダイヤモンド電極はシリコンウエハー基材にホットフィラメントCVD法により導電性ダイヤモンドを成膜したものである。電極面積は約280cm2であった。対照として、図7に示す処理フロー、および電解処理水5を生物処理工程(生物処理装置)2ではなく、再び濃縮工程(濃縮装置)8に導入する処理フロー(図10)でも試験を行った。図10に示す処理フローでは、炭酸カルシウムによるスケール生成を防止するために、濃縮装置8の手前で硫酸を加えてpHを5程度に下げることが必要であった。図8および図7に示す処理フローでは、カルシウムは生物処理工程2から余剰汚泥とともに除去されたため、硫酸の添加は不要であった。各処理フローにおいて、濃縮装置8における濃縮倍率は3倍にした。 Tests were conducted on industrial wastewater D with a relatively low CODCr concentration. The test was performed according to the processing flow shown in FIG. In the biological treatment process 2, standard activated sludge treatment was performed. As the concentrating device 8, a membrane separation concentrating device having a loose RO membrane (product name: NTR-7250 manufactured by Nitto Denko) is used, and as the electrolytic treatment tank 4, electrolytic treatment using a conductive diamond electrode as an anode and a titanium electrode as a cathode A tank was used. The diamond electrode is formed by depositing conductive diamond on a silicon wafer substrate by a hot filament CVD method. The electrode area was about 280 cm 2 . As a control, the treatment flow shown in FIG. 7 and the treatment flow (FIG. 10) in which the electrolytically treated water 5 is introduced again into the concentration step (concentration device) 8 instead of the biological treatment step (biological treatment device) 2 were also tested. . In the processing flow shown in FIG. 10, it was necessary to lower the pH to about 5 by adding sulfuric acid before the concentrating device 8 in order to prevent scale formation by calcium carbonate. In the treatment flow shown in FIGS. 8 and 7, since calcium was removed together with the excess sludge from the biological treatment step 2, addition of sulfuric acid was unnecessary. In each processing flow, the concentration factor in the concentrator 8 was tripled.

表3に試験結果を示す。実験6は図8に示す処理フローによる処理結果、実験7は図7に示す処理フローによる試験結果、実験8は図10に示す処理フローによる試験結果をそれぞれ表す。なお、表中の「流入水」は排水原水1を、「流出水」は濃縮工程分離水(透過水)10をそれぞれ表す。   Table 3 shows the test results. Experiment 6 represents the processing result according to the processing flow shown in FIG. 8, Experiment 7 represents the testing result according to the processing flow shown in FIG. 7, and Experiment 8 represents the testing result according to the processing flow shown in FIG. In the table, “influent water” represents the raw drainage water 1 and “outflow water” represents the concentration process separation water (permeated water) 10.

表3より、実験6は、実験7および実験8と比べて流出水が高度に清浄化されていた。これは、実験6では、電解処理水5に含まれるVFAなどの易生物分解性の低分子中間生成物が生物処理工程(生物処理装置)2に導入されて、濃縮工程(濃縮装置)8には導入されなかったからである。実験7および実験8では、電解処理水5が濃縮工程(濃縮装置)8に導入され、電解処理水5に含まれるVFAの一部がルーズRO膜を透過した。     From Table 3, the runoff water in Experiment 6 was highly purified compared to Experiment 7 and Experiment 8. This is because, in Experiment 6, an easily biodegradable low-molecular intermediate product such as VFA contained in the electrolytically treated water 5 is introduced into the biological treatment process (biological treatment apparatus) 2, and is added to the concentration process (concentration apparatus) 8. This is because was not introduced. In Experiment 7 and Experiment 8, the electrolyzed water 5 was introduced into the concentration step (concentrator) 8, and a part of the VFA contained in the electrolyzed water 5 permeated the loose RO membrane.

Figure 0004956016
Figure 0004956016

図1は、導電性ダイヤモンド電極を用いた電解処理における投入電気量(Ah/g-CODCr)とCODCr (mg/L)およびBOD(mg/L)との関係の一例を示すグラフである。FIG. 1 is a graph showing an example of the relationship between the amount of electricity input (Ah / g-CODCr), CODCr (mg / L), and BOD (mg / L) in electrolytic treatment using a conductive diamond electrode. 図2は、導電性ダイヤモンド電極を用いた電解処理における投入電気量(Ah/g-CODCr)と BOD/ CODCrとの関係の一例を示すグラフである。FIG. 2 is a graph showing an example of the relationship between the amount of electricity charged (Ah / g-CODCr) and BOD / CODCr in electrolytic treatment using a conductive diamond electrode. 図3は、導電性ダイヤモンド電極を用いた電解処理における投入電気量(Ah/g-CODCr)とVFA(mg/L)との関係の一例を示すグラフである。FIG. 3 is a graph showing an example of the relationship between the amount of electricity input (Ah / g-CODCr) and VFA (mg / L) in electrolytic treatment using a conductive diamond electrode. 図4は、導電性ダイヤモンド電極を用いた電解処理における投入電気量(Ah/g-CODCr)と pHとの関係の一例を示すグラフである。FIG. 4 is a graph showing an example of the relationship between the input electric quantity (Ah / g-CODCr) and pH in the electrolytic treatment using a conductive diamond electrode. 図5は、本発明の第1の実施形態による処理フローの概略説明図である。FIG. 5 is a schematic explanatory diagram of a processing flow according to the first embodiment of the present invention. 図6は、本発明で用いる循環バッチ式電解処理槽の一例を示す概略説明図である。FIG. 6 is a schematic explanatory view showing an example of a circulating batch type electrolytic treatment tank used in the present invention. 図7は、本発明の第2の実施形態による処理フローの概略説明図である。FIG. 7 is a schematic explanatory diagram of a processing flow according to the second embodiment of the present invention. 図8は、本発明の第3の実施形態による処理フローの概略説明図である。FIG. 8 is a schematic explanatory diagram of a processing flow according to the third embodiment of the present invention. 図9は、実施例1で対照として用いた従来例による処理フローの概略説明図である。FIG. 9 is a schematic explanatory diagram of a processing flow according to a conventional example used as a control in the first embodiment. 図10は、実施例3で対照として用いた電解処理水を生物処理工程に送らない処理フローの概略説明図である。FIG. 10 is a schematic explanatory diagram of a processing flow in which the electrolytically treated water used as a control in Example 3 is not sent to the biological treatment process. 図11は、本発明の第2の実施形態による一部変形処理フローの概略説明図である。FIG. 11 is a schematic explanatory diagram of a partial deformation process flow according to the second embodiment of the present invention.

符号の説明Explanation of symbols

1:排水原水
2:生物処理工程(生物処理装置)
3:生物処理水
4:電解処理工程(電解処理槽)
5:電解処理水
6:電解処理返送水
8:濃縮工程(濃縮装置)
9:濃縮水
10:濃縮工程分離水(透過水)
11:晶析槽
1: Raw wastewater 2: Biological treatment process (biological treatment equipment)
3: Biologically treated water 4: Electrolytic treatment process (electrolytic treatment tank)
5: Electrolyzed water 6: Electrolyzed return water 8: Concentration step (concentrator)
9: Concentrated water 10: Concentrated process separation water (permeated water)
11: Crystallization tank

Claims (7)

生物処理装置と、
該生物処理装置の下流に位置し、該生物処理装置で得られる生物処理水を電解処理する導電性ダイヤモンド電極を具備する電解処理槽と、
該電解処理槽からの流出水の少なくとも一部を該生物処理装置に戻す返送手段と、
を有することを特徴とする難生物分解性物質含有有機性排水処理装置。
A biological treatment device;
An electrolytic treatment tank provided with a conductive diamond electrode located downstream of the biological treatment device and electrolytically treating biologically treated water obtained by the biological treatment device ;
Return means for returning at least part of the effluent from the electrolytic treatment tank to the biological treatment apparatus;
An organic wastewater treatment apparatus containing a hardly biodegradable substance.
生物処理装置と、
該生物処理装置の下流に位置する導電性ダイヤモンド電極を具備する電解処理槽と、
該電解処理槽の下流に位置する濃縮装置と、
該濃縮装置からの濃縮水の少なくとも一部を該生物処理装置に戻す返送手段と、
を有することを特徴とする難生物分解性物質含有有機性排水処理装置。
A biological treatment device;
An electrolytic treatment tank comprising a conductive diamond electrode located downstream of the biological treatment apparatus;
A concentrator located downstream of the electrolytic treatment tank;
Return means for returning at least a portion of the concentrated water from the concentrator to the biological treatment device;
An organic wastewater treatment apparatus containing a hardly biodegradable substance.
生物処理装置と、
該生物処理装置の下流に位置し、該生物処理装置で得られる生物処理水を濃縮する濃縮装置と、
該濃縮装置の濃縮水側の下流に位置し、濃縮された生物処理水を電解処理する導電性ダイヤモンド電極を具備する電解処理槽と、
該電解処理槽からの流出水を該生物処理装置に戻す返送手段と
を有することを特徴とする難生物分解性物質含有有機性排水処理装置。
A biological treatment device;
A concentration device that is located downstream of the biological treatment device and concentrates biological treatment water obtained by the biological treatment device;
An electrolytic treatment tank provided with a conductive diamond electrode located on the downstream side of the concentrated water side of the concentrator and electrolytically treating the concentrated biological treated water ;
Returning means for returning effluent water from the electrolytic treatment tank to the biological treatment apparatus.
難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物処理工程と、
該生物処理水の少なくとも一部を導電性ダイヤモンド電極を用いて電解処理して、電解処理水を得る電解処理工程と、
該電解処理水の少なくとも一部を該生物処理工程に戻す返送工程と、
を含むことを特徴とする難生物分解性物質含有有機性排水処理方法。
A biological treatment process for obtaining biologically treated water by biologically treating organic wastewater containing a hardly biodegradable substance;
An electrolytic treatment process for obtaining electrolytically treated water by subjecting at least a part of the biologically treated water to electrolytic treatment using a conductive diamond electrode;
Returning at least a portion of the electrolytically treated water to the biological treatment step;
An organic wastewater treatment method containing a non-biodegradable substance, comprising:
難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物処理工程と、
該生物処理水を導電性ダイヤモンド電極を用いて電解処理して、電解処理水を得る電解処理工程と、
該電解処理水を濃縮して、濃縮水を得る濃縮工程と、
該濃縮水の少なくとも一部を該生物処理工程に戻す返送工程と、
を含むことを特徴とする難生物分解性物質含有有機性排水処理方法。
A biological treatment process for obtaining biologically treated water by biologically treating organic wastewater containing a hardly biodegradable substance;
Electrolytic treatment of the biologically treated water using a conductive diamond electrode to obtain electrolytically treated water;
A concentration step of concentrating the electrolytically treated water to obtain concentrated water;
Returning at least a portion of the concentrated water to the biological treatment process;
An organic wastewater treatment method containing a non-biodegradable substance, comprising:
難生物分解性物質を含有する有機性排水を生物処理して、生物処理水を得る生物処理工程と、
該生物処理水を濃縮して、濃縮水を得る濃縮工程と、
該濃縮水の少なくとも一部を導電性ダイヤモンド電極を用いて電解処理して、電解処理水を得る電解処理工程と、
該電解処理水を該生物処理工程に戻す返送工程と、
を含むことを特徴とする難生物分解性物質含有有機性排水処理方法。
A biological treatment process for obtaining biologically treated water by biologically treating organic wastewater containing a hardly biodegradable substance;
A concentration step of concentrating the biologically treated water to obtain concentrated water;
An electrolytic treatment process for obtaining electrolytically treated water by electrolytically treating at least a part of the concentrated water using a conductive diamond electrode;
Returning the electrolytically treated water to the biological treatment step;
An organic wastewater treatment method containing a non-biodegradable substance, comprising:
前記電解処理工程において、理論電解処理所要電気量の10〜90%の電気量を付与することを特徴とする、請求項4〜6の何れか1項に記載の有機性排水処理方法。   The organic wastewater treatment method according to any one of claims 4 to 6, wherein in the electrolytic treatment step, an amount of electricity of 10 to 90% of the amount of electricity required for the theoretical electrolytic treatment is applied.
JP2006051919A 2006-02-28 2006-02-28 Apparatus and method for treating organic wastewater containing hardly biodegradable substances Active JP4956016B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006051919A JP4956016B2 (en) 2006-02-28 2006-02-28 Apparatus and method for treating organic wastewater containing hardly biodegradable substances
PCT/JP2007/053799 WO2007102379A1 (en) 2006-02-28 2007-02-28 Apparatus for treating organic waste water containing microbiologically degradable matters and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051919A JP4956016B2 (en) 2006-02-28 2006-02-28 Apparatus and method for treating organic wastewater containing hardly biodegradable substances

Publications (2)

Publication Number Publication Date
JP2007229565A JP2007229565A (en) 2007-09-13
JP4956016B2 true JP4956016B2 (en) 2012-06-20

Family

ID=38474811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051919A Active JP4956016B2 (en) 2006-02-28 2006-02-28 Apparatus and method for treating organic wastewater containing hardly biodegradable substances

Country Status (2)

Country Link
JP (1) JP4956016B2 (en)
WO (1) WO2007102379A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119406A (en) * 2007-11-16 2009-06-04 Hitachi Plant Technologies Ltd Wastewater treatment method and apparatus
WO2014045840A1 (en) * 2012-09-18 2014-03-27 国立大学法人東京大学 Water treatment system, filtration membrane module, and water treatment method
CN104140142A (en) * 2014-07-18 2014-11-12 中国海洋石油总公司 Coupling treatment method for fracturing flow-back fluid
CN105217740B (en) * 2015-10-26 2017-12-05 浙江工业大学 A kind of Electrochemical hydriding processing method of the waste water of fluorinated aromatic hydrocarbon containing low concentration
CN105198047B (en) * 2015-10-26 2017-12-05 浙江工业大学 A kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents
JP6750930B6 (en) * 2016-10-03 2020-09-30 誠一 金 Sewage purification system
JP6902818B2 (en) * 2018-08-17 2021-07-14 株式会社オメガ Wastewater treatment method
CN110255827B (en) * 2019-07-08 2021-11-30 华北理工大学 Antibiotic wastewater treatment process and system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089916A (en) * 2002-09-02 2004-03-25 Matsushita Electric Ind Co Ltd Treatment method for wastewater containing organic matter
JP2004344806A (en) * 2003-05-23 2004-12-09 Fuji Photo Film Co Ltd Photographic waste solution treatment method
JP2005087789A (en) * 2003-09-12 2005-04-07 Fuji Photo Film Co Ltd Waste water treatment method
JP2005087860A (en) * 2003-09-17 2005-04-07 Fuji Photo Film Co Ltd Treatment method for leachate from industrial waste disposal plant
JP2005118695A (en) * 2003-10-17 2005-05-12 Ebara Corp Method and apparatus for reducing biosludge
JP2005125251A (en) * 2003-10-24 2005-05-19 Kurita Water Ind Ltd Water treatment method and water treatment apparatus
JP2005169174A (en) * 2003-12-08 2005-06-30 Kurita Water Ind Ltd Water treatment method and apparatus
JP2005177585A (en) * 2003-12-18 2005-07-07 Fuji Photo Film Co Ltd Method for treating waste photographic processing liquid
JP2005262035A (en) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd Method for treating photographic waste water
JP2005262133A (en) * 2004-03-19 2005-09-29 Ebara Corp Electrochemical processing apparatus and method of substance contained in water
JP2006068617A (en) * 2004-09-01 2006-03-16 Ebara Corp Method and apparatus for treating water medium
JP2007000838A (en) * 2005-06-27 2007-01-11 Fujifilm Holdings Corp Method for treating waste water containing ammonia

Also Published As

Publication number Publication date
JP2007229565A (en) 2007-09-13
WO2007102379A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
CN102786183B (en) Method for processing garbage leachate
JP4956016B2 (en) Apparatus and method for treating organic wastewater containing hardly biodegradable substances
Hasan et al. Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater
Prosnansky et al. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration
Zuo et al. Coupling microfiltration membrane with biocathode microbial desalination cell enhances advanced purification and long-term stability for treatment of domestic wastewater
CN102786182B (en) Device for processing landfill leachate
CN102344227B (en) Hairwork waste water cyclic utilization device and treatment method thereof
CN104016547B (en) A kind of coking waste water deep treatment zero-emission process
CN102603119B (en) Garbage leachate treatment device and treatment method thereof
CN101624249B (en) Method for removing nitrate through membrane electrolysis electrochemical hydrogen autotrophic denitrification
CN102120678B (en) Sewage recycling device based on electrolysis and membrane biological reactor technology and method thereof
CN102874960A (en) Device and method for treating high-salinity and degradation-resistant organic industrial waste water by performing photoelectrical synchro coupling and catalytic oxidation on three-dimensional particles
CN101048349A (en) Method and apparatus for treating aqueous medium
Wang et al. In situ investigation of processing property in combination with integration of microbial fuel cell and tubular membrane bioreactor
Meshksar et al. Membrane technology for brewery wastewater treatment
CN112520915A (en) Anode electrodialysis method for synchronously recovering nitrogen and phosphorus in biogas slurry and removing antibiotics
Wang et al. Integrating sludge microbial fuel cell with inclined plate settling and membrane filtration for electricity generation, efficient sludge reduction and high wastewater quality
CN107381712A (en) Difficult degradation, high-salt wastewater strengthen the photoelectricity catalytic ozonation method administered
CN202610073U (en) Processing apparatus of garbage percolating liquid
JP2006346540A (en) Method and apparatus for treating waste water
CN211471172U (en) Organic wastewater treatment system
Wang et al. Electrochemical oxidation using BDD anodes combined with biological aerated filter for biotreated coking wastewater treatment
Wu et al. Anaerobic offsite Fe2+ releasing for electrocoagulation in ABMBR: Membrane fouling mitigation, nutrients removal and anodes protection
KR101306509B1 (en) Energy self-sufficient advanced wastewater treatment system by combination of microbial fuel cells and microbial electrolysis cells
CN203781882U (en) Oxidation-flocculation complex bed device for landfill leachate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Ref document number: 4956016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250