JP4952744B2 - 可変波長分散補償器および光受信モジュール - Google Patents

可変波長分散補償器および光受信モジュール Download PDF

Info

Publication number
JP4952744B2
JP4952744B2 JP2009142329A JP2009142329A JP4952744B2 JP 4952744 B2 JP4952744 B2 JP 4952744B2 JP 2009142329 A JP2009142329 A JP 2009142329A JP 2009142329 A JP2009142329 A JP 2009142329A JP 4952744 B2 JP4952744 B2 JP 4952744B2
Authority
JP
Japan
Prior art keywords
dispersion compensation
dispersion
unit
band
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009142329A
Other languages
English (en)
Other versions
JP2010288200A (ja
Inventor
美紀 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009142329A priority Critical patent/JP4952744B2/ja
Priority to US12/795,958 priority patent/US20100316392A1/en
Publication of JP2010288200A publication Critical patent/JP2010288200A/ja
Application granted granted Critical
Publication of JP4952744B2 publication Critical patent/JP4952744B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2519Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using Bragg gratings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光通信に利用される信号光の波長分散補償を行う可変波長分散補償器、および該可変波長分散補償器を適用した光受信モジュールに関する。
光通信システムにおいて、送受信される信号光の伝送速度が40ギガビット毎秒(Gb/s)以上になると、その信号光のパルス幅は数ピコ秒と狭くなる。このため、伝送路に用いられる光ファイバの僅かな波長分散(Chromatic Dispersion)による信号波形の歪みが、信号光の伝送特性を著しく劣化させることになる。また、伝送路の波長分散値は、温度等の環境の変化に伴って時間的に変動するので、該波長分散値の時間的な変動も信号光の伝送特性に悪影響を及ぼす。
上記のような波長分散による伝送特性劣化に対しては、波長分散補償技術の適用が有効である。従来の波長分散補償は、伝送路上に分散補償ファイバを配置し、伝送路の波長分散による波形歪みを分散補償ファイバで補償する構成がよく知られている。また、波長の異なる複数の信号光(チャネル)が合波された波長多重(Wavelength Division Multiplexing:WDM)信号光の波長分散補償については、WDM信号光が伝送されるWDM光路上に分散補償ファイバを配置するだけでなく、WDM光路を伝送されたWDM信号光を分波して受信する光受信装置内についても、分波後の単一波長の信号光が伝播する各光路上に、可変波長分散補償器(Tunable Dispersion Compensator:TDC)をそれぞれ備えるようにするのが有効である。各光路上のTDCでは、WDM光路上の分散補償ファイバで補償しきれずに累積した残留分散が補償されるように、各々の信号光の波長に応じて好ましい分散補償が行われる(例えば、特許文献1,2参照)。
上記TDCとしては、エタロン(Etalon)、ファイバブラッググレーティング(Fiber Bragg Grating:FBG)、VIPA(Virtually Imaged Phased Array)などの光デバイスを利用した種々の構成が知られている。エタロンは、平行平板の両面に形成した半透過膜間で多重反射した光が干渉することにより周期的な損失波長特性および群遅延特性を得ており、機械的または温度等により光路長を変化させることで波長分散量を可変にしている。FBGは、光ファイバのコアの屈折率を周期的に変化させることでグレーティングを形成し、ブラッグ回折を発生させて反射フィルタの機能をもたせたものであり、ブラッグ回折のピッチを徐々に変えて反射光の戻り時間を波長に応じて変化させることで波長分散を発生させ、該FBGが形成されているファイバの温度を変化させるかまたはファイバに応力を加えてFBGのピッチを変えることにより波長分散量を可変にしている。VIPAは、薄いガラス板(VIPA板)の片面に半透過膜、他面に反射膜を形成したエタロンを回折格子として用いたものであり、該VIPAから波長に応じて異なる方向に出射される光を3次元ミラーで反射してVIPAに戻すことで波長分散を発生させ、該3次元ミラーの位置を移動して波長ごとに光学距離を変化させることで波長分散量を可変にしている。
ところで、前述した光受信装置で受信されるWDM信号光については、伝送速度の高速化や長距離化(多スパン化)、フォトニックネットワークの複雑化(例えば、光アド・ドロップ構成、ハブ構成、異種伝送路の組合せ)などにより、各波長の信号光に累積する残留分散が増える傾向にある。このため、光受信装置内の各光路上に配置されるTDCは、各波長の信号光に対する分散補償量の絶対値が大きくなる。つまり、伝送路上における分散補償の過不足分が受信端にしわ寄せされることになるため、光受信装置内の各TDCについては、分散補償量の可変幅がプラス側にもマイナス側にも広いことが求められる。従来、分散補償量の絶対値の大きなTDCを実現するための構成例としては、複数個の分散補償素子を光路に沿って直列に配置するものなどが知られている(例えば、特許文献2,3参照)。
特許第3396270号公報 特開2005−234264号公報 国際公開第01/084749号パンフレット
しかし、上記のような従来のTDCについては、分散補償量の絶対値が大きくなると、分散補償を有効に行うことのできる波長若しくは周波数の帯域(以下、分散補償帯域」とする)が狭くなってしまい、TDCによる分散補償によって好ましい伝送特性を実現することが困難になるという課題がある。
この課題について詳しく説明すると、TDCの分散補償帯域は、波長若しくは周波数に対して群遅延が線形的に変化する帯域に対応しており、この分散補償帯域が信号光のスペクトル幅よりも広いことが重要になる。一方、信号光スペクトルの広がりは、伝送速度の高速化によって顕著になる。TDCの分散補償帯域が信号光のスペクトル幅よりも狭くなると、分散補償帯域外の領域にあるスペクトル成分に対して所望の精度で分散補償を行うことができなくなるため、当該信号光の伝送特性に劣化が生じる。
ここで、TDCの分散補償量と分散補償帯域の関係について具体的に説明する。
図1は、複数個(ここでは5個とする)のエタロン素子を光路に沿って直列に配置した従来のTDCについての群遅延特性の一例を示した図である。TDC全体の群遅延特性GD1−5は、個々のエタロン素子の群遅延特性GD〜GDの重ね合わせによって実現される。この群遅延特性GD1−5の傾きが分散補償量に対応している。
図1上段のグラフは、分散補償量の絶対値が小さい場合を示している。この場合、各エタロン素子の温度調整等によって、各々の群遅延特性GD〜GDのピークの波長間隔が比較的広い状態にされることで、重ね合わせ後の群遅延特性GD1−5の傾きを小さくしている。この状態での分散補償帯域は、群遅延特性GD1−5が線形的に変化する帯域CBとなる。
一方、図1下段のグラフは、分散補償量の絶対値が大きい場合を示している。この場合、各エタロン素子の群遅延特性GD〜GDは、分散補償量の絶対値が小さい場合に比べて各々のピークの波長間隔が狭い状態にされることにより、重ね合わせ後の群遅延特性GD1−5の傾きを大きくしている。この状態での分散補償帯域CB’は、分散補償量の絶対値が小さい場合の分散補償帯域CBと比較して狭くなる。
図2は、従来のTDCにおける分散補償量を+500ps/nmから+1500ps/nmまでの範囲で段階的に設定したときの群遅延特性の変化を例示したものである。図2の例より、群遅延特性の傾きが大きくなり分散補償量が増大する程、分散補償帯域が狭くなる様子が分かる。
また、従来のTDCは、上記のような分散補償量の絶対値の増大による分散補償帯域の狭小化によって生じる伝送特性の劣化という課題に加えて、複数個の分散補償素子の直列配置により分散補償量の可変幅を拡大させる構成であるので、挿入損失の増加、および、TDC全体のサイズの大型化なども問題になる。挿入損失の増加については、例えば、TDCと一緒に光増幅器を適用し、該光増幅器の利得を増加させることで対処可能である。しかしながら、サイズの大型化については、分散補償量の可変幅拡大という要求とサイズの縮小という要求とはトレードオフの関係にあり、双方の要求を同時に満たすことは容易ではない。
TDCのサイズ縮小の要求に応えることは、前述した光受信装置内の分波後の各波長に対応した光路上にTDCを配置する場合に特に重要である。すなわち、光受信装置において、受信するWDM信号光の各チャネルに対応した光受信モジュールに割り当てることが可能な実装スペースは、一般的に装置全体の大きさに制約される。各チャネルの光受信モジュールには、TDCや、該TDCの挿入損失を補償する光増幅器、光受信器などの種々の機能部品が実装されることになるので、これらの機能部品を所定のスペース内に実装することが困難になる可能性がある。このため、個々の機能部品の小型化を図ることが重要な課題になる。
また、上記所定のスペース内に所要の機能部品を実装できたとしても、各機能部品が密に実装されることにより、装置内の通風が悪くなり温度が上昇し、個々の機能部品に定められた許容温度を超過するおそれがある。このような状況は、光受信装置の性能および信頼性を劣化させることは勿論のこと、光受信装置そのものが設計できなくなるという熱設計上の課題もある。
本発明は上記の点に着目してなされたもので、分散補償量の絶対値が大きくなっても所要の分散補償帯域を確保できる可変波長分散補償器を提供することを第1の目的とする。そして、該可変波長分散補償器の小型化を実現することを第2の目的とする。
上記の目的を達成するため、本発明は、信号光の波長分散補償を行う可変波長分散補償器を提供する。この可変波長分散補償器の一態様は、入力ポートおよび出力ポートの間の光路上に配置され、前記入力ポートに入力される単一波長の信号光の中心波長を含む第1分散補償帯域を有し、可変の分散補償量により前記信号光の波長分散補償を行う第1分散補償部と、前記光路上に配置され、前記第1分散補償部の第1分散補償帯域のうち線形性を有する帯域とは重複しない帯域に前記第1分散補償帯域とは異なる可変の第2分散補償帯域を有し、可変の分散補償量により前記信号光の波長分散補償を行う第2分散補償部と、前記信号光について補償すべき波長分散の値に応じて、前記第1分散補償部の分散補償量を制御し、該第1分散補償部における分散補償量の絶対値が予め定めた閾値よりも大きいとき、前記第2分散補償部の第2分散補償帯域が、前記第1分散補償部の第1分散補償帯域の短波長側端部および長波長側端部のうちの少なくとも一方に隣接し、かつ、前記信号光のスペクトルの最短波長成分または最長波長成分を含むように、前記第2分散補償部の第2分散補償帯域を制御すると共に、前記第2分散補償部の前記第2分散補償帯域における群遅延特性により前記第1分散補償部の前記第2分散補償帯域における群遅延特性を打ち消して、前記第2分散補償帯域における分散補償量前記第1分散補償部の前記第1分散補償帯域における分散補償量に応じた値になるように、前記第2分散補償部の分散補償量を制御する一方、前記第1分散補償部における分散補償量の絶対値が前記閾値以下のときには、前記第2分散補償部の分散補償量を0ps/nmに制御する制御部と、を備えている。
上記のような可変波長分散補償器では、第1分散補償部に設定する分散補償量の絶対値が予め定めた閾値よりも大きくなって第1分散補償帯域が狭くなる場合でも、その第1分散補償部における分散補償量に連動させて、制御部により、第2分散補償部の分散補償量および第2分散補償帯域が制御されることで、第1分散補償部における第1分散補償帯域の不足分が第2分散補償部によって補われる。これにより、第1および第2分散補償部を組み合わせた全体の特性として、信号光のスペクトル幅よりも広い所要の分散補償帯域を確保することができるようになるので、高速の信号光に対応可能で分散補償量の可変幅の広い可変波長分散補償器を実現することが可能になる。
従来のTDCについての群遅延特性の一例を示す図である。 従来のTDCにおける分散補償量と分散補償帯域の関係の一例を示す図である。 第1実施形態のTDCの構成を示すブロック図である。 第1実施形態における第1,2分散補償部の群遅延特性の一例、および分散補償帯域と信号光スペクトルの関係を示す図である。 第1実施形態のTDCに関連した他の構成例を示すブロック図である。 第2実施形態のTDCを適用した光受信モジュールの構成例を示すブロック図である。 第2実施形態のTDCの具体的な構成例を示すブロック図である。 第2実施形態における第1分散補償部の群遅延特性および群遅延リップル特性を例示した図である。 図8に対応した第2分散補償部の群遅延特性および群遅延リップル特性を例示した図である。 図8および図9の組み合わせに対応したTDC全体の群遅延特性および群遅延リップル特性を示した図である。 第2実施形態における第1,2分散補償部の群遅延特性が周期性を有することを示した図である。 図6の光受信モジュールにおける第1,2分散補償部の設定動作の一例を示すフローチャートである。 第2実施形態における第1,2分散補償部の分散補償量および分散補償帯域の相互の関係を模式的に示した図である。 第2実施形態における分散補償量の各設定値に対応した、第1,2分散補償部の群遅延特性と分散補償帯域の関係を例示した図である。 図14についてTDC全体での群遅延特性と分散補償帯域の関係を示した図である。 第2実施形態における長波長側に対応したFBG部の制御動作を説明するための図である。 第2実施形態に関連したTDCの他の構成例を示すブロック図である。 第2実施形態に関連したTDCの別の構成例を示すブロック図である。 図18のTDCにおける第1,2分散補償部の群遅延特性を示した図である。 第1分散補償部の分散補償帯域の両端近傍にガードバンドを設けた一例を示す図である。 図6の光受信モジュールに関連する応用例の構成を示すブロック図である。 図21における第2分散補償部の具体的な構成例を示す図である。
以下、本発明の実施形態について添付図面を参照しながら詳細に説明する。
図3は、本発明による可変波長分散補償器(TDC)の第1実施形態の構成を示すブロック図である。
図3において、本実施形態のTDCは、例えば、入力ポートINおよび出力ポートOUTの間の光路P上に直列に配置された第1分散補償部1および第2分散補償部2と、第1分散補償部1における分散補償量を制御する第1制御部3と、第2分散補償部2における分散補償量および分散補償帯域を制御する第2制御部4と、外部からの情報を基にTDC全体で設定する分散補償量を認識して第1および第2制御部に指示を送る補償量認識部5とを備える。ここでは、第1,2制御部3,4および補償量認識部5が、制御部としての機能を持つ。
第1分散補償部1は、入力ポートINに入力され得る信号光のスペクトルの中心波長を含む帯域の波長分散補償を行う。この第1分散補償部1は、前述した従来のTDCと同様に、分散補償量が可変であり、設定される分散補償量の絶対値が増大すると、波長に対して群遅延が線形的に変化する分散補償帯域が狭くなる特性を持つ。上記第1分散補償部1は、分散補償量の可変幅がプラス側にもマイナス側にも広くなるように、信号光の光路Pに沿って公知の分散補償素子を複数個直列に接続した構成とするのが好ましい。該複数個の分散補償素子の具体例としては、挿入損失および群遅延リップルが比較的小さい、エタロン、誘電体多層膜または平面光波回路(Planar Lightwave Circuit:PLC)を用いた素子などが好適である。ただし、第1分散補償部1に用いられる分散補償素子が上記具体例に限定されることを意味するものではない。
第2分散補償部2は、入力ポートINに入力される信号光のスペクトルの短波長側端部および長波長側端部のうちの少なくとも一方を含む帯域の波長分散補償を行う。この第2分散補償部2は、分散補償量が可変であると共に、該分散補償量とは独立に分散補償帯域を変化させるとことが可能な構成となっている。第2分散補償部2は、上記第1分散補償部1と同様の分散補償素子、または上記第1分散補償部1とは異なる分散補償素子を、少なくとも1つ具備しており、該分散補償素子がここでは第1分散補償部1の出力側に配置されている。なお、第2分散補償部2は、第1分散補償部1の入力側に配置してもよく、信号光の光路P上における第1,2分散補償部1,2の配置順は任意である。
第1制御部3は、補償量認識部5からの指示に従い、第1分散補償部1における分散補償量を制御する。第2制御部4は、補償量認識部5からの指示に従い、第1分散補償部1に設定された分散補償量に連動して、第2分散補償部2における分散補償量および分散補償帯域を制御する。なお、第1,2制御部3,4による第1,2分散補償部1,2の制御の詳細については後述する。
補償量認識部5は、例えば、入力ポートINに入力される信号光の波長情報および該信号光が伝播してきた伝送路に関する情報が外部から与えられ、その情報を基にTDC全体で補償すべき波長分散の値を認識する。そして、補償量認識部5は、認識した波長分散値に応じて、第1分散補償部1に対する分散補償量の設定値、並びに、第2分散補償部2に対する分散補償量および分散補償帯域の設定値を決定し、各々の設定値を対応する制御部3,4に指示する。
次に、第1実施形態の動作について説明する。
上記のような構成のTDCでは、補償量認識部5において、外部からの情報を基に、入力ポートINに入力される信号光に対してTDC全体で補償すべき波長分散値が認識されると、該波長分散値に対応させて第1分散補償部1に設定する分散補償量が決められる。第1分散補償部1の分散補償量が決まると、前述の図2に示した場合と同様な第1分散補償部1における分散補償量と分散補償帯域との関係より、当該分散補償量に対応した第1分散補償部1の分散補償帯域が判断される。なお、第1分散補償部1における分散補償量と分散補償帯域との関係については、第1分散補償部1に用いる分散補償素子の種類および構成が決まれば事前に求めることが可能である。
そして、第1分散補償部1の分散補償帯域が信号光のスペクトル幅に応じて定まる所要帯域よりも狭い場合、当該分散補償帯域の不足分が第2分散補償部2によって補われるように、第2分散補償部2における分散補償量および分散補償帯域が決められる。つまり、第1および第2分散補償部1,2の組み合わせによって所要の分散補償帯域が実現されるように、第1分散補償部1に設定する分散補償量に連動させて、第2分散補償部2に設定する分散補償量および分散補償帯域が最適化される。なお、第1分散補償部1に設定する分散補償量に対応した分散補償帯域が所要帯域以上となる場合には、第2分散補償部2の分散補償量が0ps/nmに設定される。
図4は、第1および第2分散補償部1,2の群遅延特性の一例(上段)、および各分散補償部1,2の分散補償帯域と信号光スペクトルの関係(下段)を示した図である。図4の例において、第1分散補償部1に設定される分散補償量(群遅延特性GD1の傾き)に対応した分散補償帯域CB1は、ITU等の規格に従う信号光の中心波長を含んではいるが、該信号光のスペクトル幅よりも狭くなっている。このため、信号光の短波長側および長波長側の各端部のスペクトル成分について、第1分散補償部1の分散補償帯域CB1が不足した状態となる。そこで、第2分散補償部2の分散補償帯域CB2,CB2を第1分散補償部1の分散補償帯域CB1の両端に隣接するように設定して、各々の分散補償帯域CB1,CB2,CB2を足し合わせた帯域CBが信号光のスペクトル幅よりも広くなるようにする。このとき、第2分散補償部2の群遅延特性GD2,GD2は、第1分散補償部1における群遅延特性(分散補償帯域CB1より外側に位置する線形性の崩れた群遅延特性)を打ち消し、各々の傾きが第1分散補償部1における分散補償帯域CB1内の群遅延特性GD1の傾きに近づくように設定する。
上記のようにして第1および第2分散補償部1,2の設定値が補償量認識部5でそれぞれ決定されると、各々の設定値が対応する制御部3,4に伝えられ、各制御部3,4による各分散補償部1,2の制御が行われる。これにより、入力ポートINに入力される信号光の波長分散補償が、第1および第2分散補償部1,2のトータルの群遅延特性に従って行われるようになる。
したがって、第1実施形態のTDCによれば、分散補償量の絶対値が大きくなって第1分散補償部1の分散補償帯域が狭くなる場合でも、第1分散補償部1に設定する分散補償量に連動して第2分散補償部2の分散補償量および分散補償帯域を制御するようにしたことで、信号光のスペクトル幅よりも広い所要の分散補償帯域をTDC全体で確保することができる。よって、高速の信号光に対応可能で分散補償量の可変幅の広いTDCを実現することが可能になる。
なお、上記第1実施形態では、入力ポートINおよび出力ポートOUTの間の光路P上に第1および第2分散補償部1,2が直列に配置される構成例を示したが、例えば図5に示すように、分波器6と合波器7を用いて第1および第2分散補償部1,2を並列に配置することも可能である。
図5の構成では、入力ポートINに入力される信号光が、分波器6において第1分散補償部1の分散補償帯域に対応した成分と、第2分散補償部2の分散補償帯域に対応した成分とに分波されて、各分散補償部1,2に与えられる。各分散補償部1,2で分散補償された各々の成分は、合波器7で一つに合波されて出力ポートOUTから出力される。なお、分波器6の分波特性および合波器7の合波特性は、第2分散補償部2の分散補償帯域と同様に、第1分散補償部1に設定する分散補償量に連動して可変制御されるものとする。
次に、本発明によるTDCの第2実施形態について説明する。
図6は、第2実施形態のTDCを適用した光受信モジュールの構成例を示すブロック図である。
図6において、第2実施形態のTDCは、前述した第1実施形態の構成について、入力ポートINおよび第1分散補償部1の間の光路P上に光サーキュレータ8を挿入し、かつ、第2分散補償部2の出力側に反射ミラー9を設けることにより、反射型の構成とされている。このTDCを用いた光受信モジュールは、例えば、TDCの入力ポートINの前段に光増幅部110を備えると共に、TDCの出力ポートOUTの後段に出力モニタ部120および光受信部130を備えている。
図7は、上記図6に示したTDCの具体的な構成例を示すブロック図である。
図7の構成例において、光サーキュレータ8は、3つのポートP1,P2,P3を有し、第1ポートP1が入力ポートINに接続され、第2ポートP2が第1分散補償部1に接続され、第3ポートP3が出力ポートOUTに接続されている。この光サーキュレータ8は、各ポート間で光を一方向に伝達する特性を持ち、第1ポートP1に入力される光を第2ポートP2に出力し、第2ポートP2に入力される光を第3ポートP3に出力する。なお、一般的な光カプラおよび光アイソレータを組み合わせることにより、上記光サーキュレータ1と同様の機能を実現することも可能である。
第1分散補償部1は、光サーキュレータ8の第2ポートP2に接続する光路上に、例えば、複数個(ここでは4個とする)のエタロン素子11,12,13,14が直列に配置されている。各エタロン素子11〜14には、温度制御回路(TEMP)11A,12A,13A,14Aがそれぞれ設けられている。各温度制御回路11A〜14Aは、第1制御部2(図6)から出力される制御信号に従って、各エタロン素子11〜14の温度を調整することにより、第1分散補償部1における分散補償量を変化させる。各エタロン素子11〜14の組み合わせによって実現される第1分散補償部1の分散補償帯域は、分散補償量が変化しても、入力ポートINに入力される信号光の中心波長(例えば、ITU規格に準拠したグリッド波長等)を必ず含むように設計されている。
第2分散補償部2は、第1分散補償部1の各エタロン素子11〜14を順に通過した信号光が伝搬する光路上に、少なくとも1つ(ここでは2つとする)のファイバブラッググレーティング(FBG)部21,22が直列に配置されている。各FBG部21,22は、前記光路の長手方向に沿う所要部分の屈折率を周期的に変化させることでグレーティングを形成し、ブラッグ回折を発生させて反射フィルタの機能を持たせたものである。該各FBG部21,22は、グレーティング(ブラッグ回折)のピッチを徐々に変えて反射光の戻り時間を波長に応じて変化させることで波長分散を発生させる。第2分散補償部2の分散補償帯域は、入力ポートINに入力される信号光のスペクトルについて、短波長側および長波長側の各端部付近に位置する波長領域を含むように設計されている。ここでは、FBG部21の分散補償帯域が、信号光スペクトルの短波長側の端部付近の波長領域をカバーし、FBG部22の分散補償帯域が、信号光スペクトルの長波長側の端部付近の波長領域をカバーするようになっている。なお、ファイバグレーティングを用いた波長分散補償器の動作原理および特性に関しては、例えば「次世代高速通信用分散補償ファイバグレーティング」、フジクラ技報、2004年4月、第106号に詳しく記述されているため、ここでの説明を省略する。
上記各FBG部21,22にも、上記各エタロン素子11〜14と同様にして、温度制御回路(TEMP)21A,22Aがそれぞれ設けられている。各温度制御回路21A,22Aは、第2制御部4(図6)から出力される制御信号に従って、各FBG部21,22の温度を調整することにより、第2分散補償部2における分散補償量および分散補償帯域をそれぞれ変化させる。
反射ミラー9は、第2分散補償部2を通過した信号光、つまり、第2分散補償部2の分散補償帯域外の波長を有する信号光を反射する。該反射光は、第2分散補償部2側に戻され、第2および第1分散補償部2,1を往路とは逆方向に通過する。
光受信モジュールの光増幅部110(図6)は、光受信モジュールに入力される信号光を増幅してTDCの入力ポートINに与える。この光増幅部110の利得は、出力モニタ部120で検出される信号光パワーが予め設定したレベルで一定になるように制御されている。
出力モニタ部120は、TDCの出力ポートOUTから出力される信号光の一部を分岐器121でモニタ光として分岐し、該モニタ光のパワーを出力モニタ122で検出して、該検出パワーを示す信号を光増幅部110に出力する。
光受信部130は、TDCの出力ポートOUTから出力され、分岐器121を通過した信号光を受信器131で受信する。受信器131は、受信した信号光について一般的なデータ再生処理を行う。ここでは、受信器131のデータ再生処理において、公知の誤り訂正符号を用いた前方誤り訂正(Forward Error Correction:FEC)処理が行われるものとし、該FEC処理の際に検出される誤りの発生数がFECカウンター132に伝えられる。FECカウンター132は、所定時間内に検出される誤りの発生数をカウントし、該カウント値を示す信号をTDCの補償量認識部5に出力する。
なお、上記TDCを用いた光受信モジュールは、例えば、WDM光路を伝送されたWDM信号光を分波して受信する光受信装置内において、分波後の単一波長の信号光が伝播する各光路上にそれぞれ具備される。ただし、光受信モジュールの使用が上記の一例に限定されることを意味するものではない。
次に、第2実施形態によるTDCの動作について説明する。
上記図7に示した構成のTDCでは、補償量認識部5において、外部からの情報を基に、入力ポートINに入力される信号光に対してTDC全体で補償すべき波長分散値が認識されると、該波長分散値に対応させて第1分散補償部1の各エタロン素子11〜14にそれぞれ設定する分散補償量が決められる。このとき、各エタロン素子11〜14における信号光の分散補償が、往路(図7中の右方向)だけでなく復路(図7中の左方向)でも行われることを考慮して、各々の分散補償量が設定される。つまり、第1分散補償部1での分散補償が信号光の往復で行われることにより、分散補償が片道で行われる場合と比べて、第1分散補償部1に設定する分散補償量の絶対値は小さくなる。これにより、分散補償量の絶対値の増大による分散補償帯域の狭小化が抑えられため、可変幅のより広い分散補償が可能になる。また、信号光の分散補償が往復で行われることで、直列に接続するエタロン素子の個数を減らすことができるので、TDCの小型化も可能になる。
信号光の往復に対応した第1分散補償部1の分散補償量が決まると、第1分散補償部1における分散補償量と分散補償帯域との関係(前述の図2参照)より、当該分散補償量に対応した第1分散補償部1の分散補償帯域が判断される。図8は、ある分散補償量に対応した第1分散補償部1の群遅延特性および群遅延リップル特性を例示した図である。この図8の例では、ITU規格に準拠した信号光のスペクトル(上段)の中心波長に対して、第1分散補償部1の群遅延特性GD1(中段)は、群遅延が線形的に変化する分散補償帯域CB1の略中心が位置するようになっている。しかし、第1分散補償部1の分散補償帯域CB1は、信号光のスペクトル幅よりも狭くなっており、分散補償帯域CB1の外側の波長領域で正および負の群遅延リップルが発生する(下段)。このため、第1分散補償部1のみで分散補償を行った場合、群遅延リップル幅の大きな信号光が得られることになる。群遅延リップルは、群遅延特性の線形近似からの差として表される細かい振動成分のことであり、群遅延リップルの振動幅が大きくなると、分散補償の精度が低下することになる。
上記図8に示したような第1分散補償部1の分散補償量の設定に対しては、第1分散補償部1における分散補償帯域の不足分が補われるように、第2分散補償部2の各FBG部21,22の分散補償帯域が決められると共に、当該分散補償帯域における第1分散補償部1の群遅延特性を打ち消して所要の波長分散値が実現されるように、各FBG部21,22の分散補償量が決められる。
図9は、上記図8の設定例に対応した第2分散補償部2の群遅延特性および群遅延リップル特性を例示した図である。図9の中段に示すように、第2分散補償部2のFBG部21の分散補償帯域CB2は、第1分散補償部1の分散補償帯域CB1の短波長側の端部に隣接し、かつ、信号光スペクトルの最短波長成分を含むように設定される。また、FBG部21の群遅延特性GD2は、その平均的傾きが第1分散補償部1の分散補償帯域CB1内における群遅延特性GD1の傾きに近づくように設定される。一方、第2分散補償部2のFBG部22の分散補償帯域CB2は、第1分散補償部1の分散補償帯域CB1の長波長側の端部に隣接し、かつ、信号光スペクトルの最長波長成分を含むように設定される。また、FBG部22の群遅延特性GD2は、分散補償帯域CB2に対応する第1分散補償部1の群遅延特性を打ち消して、平均的傾きが第1分散補償部1の分散補償帯域CB1内における群遅延特性GD1の傾きに近づくように設定される。
なお、各FBG部21,22の群遅延特性GD2,GD2は、エタロン素子11〜14の組み合わせによる群遅延特性GD1と比べて群遅延リップルが発生し易い。その理由は、FBGの場合、周期的な屈折率変化を用いて反射構造を形成しており、その製造過程における、露光レーザの強度変動や、露光中の光ファイバと位相マスクの位置ずれなどによりリップル成分を低減することが難しいためである。図9の中段および下段では波線を用いて各FBG部21,22における群遅延リップルの発生を模式的に表している。図9中段のグラフにおいて各群遅延特性GD2,GD2の平均的傾きを表した太線に対する波線のずれ量が、群遅延リップルの発生量に相当することになる。したがって、図9の下段に示すように、第2分散補償部2の全体で発生する群遅延リップルの幅は、前述の図8下段に示した第1分散補償部1における群遅延リップルの幅と比べて狭くなる。
図10は、上記図8および図9の組み合わせに対応したTDC全体の群遅延特性および群遅延リップル特性を示した図である。図10のグラフからも明らかなように、第1および第2分散補償部1,2の組み合わせによって、信号光のスペクトル幅よりも広い分散補償帯域CB1+CB2+CB2が確保されると同時に、該分散補償帯域内で発生する群遅延リップルが効果的に抑えられるようになることが分かる。
なお、上記図8〜図10の説明では、ITU規格に準拠した1つの信号光に対応させて第1および第2分散補償部1,2の特性を説明したが、図11に示すように、第1および第2分散補償部1,2の群遅延特性GD1,GD2,GD2は周期性を有しているので、本実施形態のTDCにより、ITUグリッド上の複数の信号光に対応した分散補償を行うことが可能である。
上記のような第1および第2分散補償部1,2の設定は、TDCが図6に示したような光受信モジュールに適用される場合、光受信部130で処理される信号光の受信特性(図6の構成例では、FEC処理時の誤りの発生数)をモニタしながら行うことが可能である。以下、図6の光受信モジュールにおける第1および第2分散補償部1,2の設定動作の一例について、図12のフローチャートを参照しながら説明する。
光受信モジュールでは、まず、入力される信号光が、初期設定された光増幅部61およびTDCを介して光受信部130の受信器131で受信され、FEC処理時に検出される誤り発生数のカウント値がFECカウンター132からTDCの補償量認識部5に伝えられる(図12のS1)。なお、FECカウンター132から補償量認識部5へのカウント値の伝達は、所要の検出サイクルに従って継続的に行われるものとする。
TDCの補償量認識部5は、FECカウンター132からのカウント値を受けて、該カウント値が減少するように、第1分散補償部1の分散補償量を変化させる指示を第1制御部3に出力する(S2)。このとき、第1分散補償部1の変化後の分散補償量に対応した分散補償帯域が第2分散補償部2の分散補償帯域と重なる場合には、第2分散補償部2の分散補償帯域を変化させる指示を第2制御部4に出力し、第1および第2分散補償部1,2の各分散補償帯域が重複しないようにする(S3)。
そして、補償量認識部5は、第1および第2制御部3,4による第1および第2分散補償部1,2の制御が安定した状態で、FECカウンター132からのカウント値を確認し、該カウント値が最小になるまで上記S2,S3の処理を繰り返し行い、最小のカウント値が得られたときの第1分散補償部1の分散補償量を最適値として定める(S4)。続いて、補償量認識部5は、第1分散補償部1の分散補償量の最適値について、その絶対値が予め設定した閾値以下であるか否かの判定を行う(S5)。この判定に用いる閾値としては、例えば図13の上段に模式的に示した第1分散補償部1の分散補償量と分散補償帯域の関係を利用して、分散補償帯域の下限値Aに対応する分散補償量Bを設定することが可能である。なお、分散補償帯域の下限値Aは、信号光のスペクトル幅や光受信モジュールが適用されるシステムの伝送性能などに応じて定められる。
第1分散補償部1の分散補償量の最適値(絶対値)が閾値B以下の場合、すなわち、第1分散補償部1における分散補償帯域CB1が、下限値Aに等しくなるか、若しくは下限値Aよりも広くなるとき、補償量認識部5は、第2分散補償部2の分散補償量を0ps/nmに設定する指示を第2制御部4に出力する(図12のS6)。一方、第1分散補償部1の分散補償量の最適値(絶対値)が閾値Bよりも大きい場合、すなわち、第1分散補償部1における分散補償帯域CB1が下限値Aよりも狭くなるとき、補償量認識部5は、第1分散補償部1の群遅延特性を打ち消し、第2分散補償部2の分散補償帯域CB2,CB2内でも上記最適値と同等な分散補償量が実現されるように、第2分散補償部2の分散補償量を設定する指示を第2制御部4に出力する(S7)。
上記一連の処理により、図13の中段に示すように、第1分散補償部1に設定する分散補償量が閾値B以下の場合には、第1分散補償部1の分散補償量に関係なく第2分散補償部2の分散補償量が0ps/nmに設定されるのに対して、第1分散補償部1の分散補償量が閾値Bを超えた場合には、第1分散補償部1の分散補償量に応じて第2分散補償部2の分散補償量が設定される。また、第2分散補償部2の分散補償帯域については、図13の下段に示すように、第1分散補償部1に設定する分散補償量が閾値B以下の場合には、分散補償なし(0ps/nmで動作)となり、第1分散補償部1の分散補償量が閾値Bを超えると、第1分散補償部1の分散補償帯域の狭小化を補うように、第2分散補償部2の分散補償帯域が拡張される。
図14は、第1分散補償部1の分散補償量を+500〜+1500ps/nmの範囲で設定した場合における各分散補償部1,2の群遅延特性と分散補償帯域の関係を例示した図である。図14の例では、第1分散補償部1に設定する分散補償量が+700ps/nm以下の場合、第1分散補償部1の分散補償帯域CB1500,CB1700は、前述した分散補償帯域の下限値Aよりも広くなるものとしている。このため、+700ps/nm以下の場合に対応した第2分散補償部2の群遅延特性GD2500,GD2700は、傾きが零(0ps/nm)に設定されている。
第1分散補償部1に設定する分散補償量が+1000ps/nmになると、第1分散補償部1の分散補償帯域CB11000は、短波長側および長波長側の両方で帯域が不足するようになる。このため、第2分散補償部2のFBG部21,22について、短波長側の不足分が補われるようにFBG部21の分散補償帯域CB2S1000が最適化されると共に、長波長側の不足分が補われるようにFBG部22の分散補償帯域CB2L1000が最適化される。また、第2分散補償部2の群遅延特性GD21000は、各分散補償帯域CB2S1000,CB2L1000内における傾きが+1000ps/nmとなるように設定される。なお、図14の例では、説明を分かり易くするために、第1分散補償部1の分散補償帯域CB1外における群遅延特性GD1を無視(傾きが零)としている。
第1分散補償部1に設定する分散補償量が+1500ps/nmに増大すると、第1分散補償部1の分散補償帯域CB11500は、短波長側および長波長側の不足分がそれぞれ増大する。このため、該不足分の増大に応じて、第2分散補償部2の各FBG部21,22の分散補償帯域CB2S1500,CB2L1500が拡張される。また、第2分散補償部2の群遅延特性GD21500は、各分散補償帯域CB2S1500,CB2L1500内における傾きが+1500ps/nmとなるように設定される。
図15は、上記図14に示した第1および第2分散補償部1,2の群遅延特性を組み合わせた、TDC全体での群遅延特性と分散補償帯域の関係を示した図である。この図15より明らかなように、TDC全体の分散補償量が変化しても、各分散補償量に対応した分散補償帯域CB500〜CB1500として下限値Aより広い帯域が確保されることが分かる。
次の表1は、上記図14および図15に対応した具体的な数値の一例を纏めたものである。この数値例では、分散補償帯域の下限値Aを40GHz、分散補償量の閾値を700ps/nmに設定している。
Figure 0004952744
ここで、前述の図14下段に示した第2分散補償部2の群遅延特性と分散補償帯域の関係に対応させて、第2制御部2による第2分散補償部2の制御動作について具体的に説明する。図16は、長波長側に対応したFBG部22の制御動作を説明するための図である。なお、FBG部22の制御動作と同様にして、短波長側に対応したFBG部21の制御動作も考えることができる。
一般に、FBGを用いて分散補償を行う場合、FBGの長手方向の位置に応じて温度を調整することで温度勾配を制御する、或いは、FBGに付加する応力を制御することによって、分散補償量または分散補償帯域を変化させることが可能である。例えば、横内孝史、外9名,「二段階方式によるファイバグレーティングの温度補償」,電子情報通信学会論文誌C,Vol.J87-C,No.9,pp.696-702,2004には、FBGの温度特性に関する内容が詳しく説明されている。また、寺澤一彦、外6名,「光ファイバグレーティングを用いた歪センシング用ケーブル構造に関する検討」,三菱電線工業時報,第98号,2001年10月,pp.18-22、および、源地武士、外2名,「ファイバグレーティングによる光ケーブル内歪み分布測定」,三菱電線工業時報,第96号,平成12年2月,pp.49-53には、応力付加によるFBGの特性変化に関する内容が詳しく説明されている。図7および図16に示した構成例では、温度制御回路22AによってFBG部22の温度勾配が制御されることで、FBG部22の分散補償量および分散補償帯域をそれぞれ可変にしている。
上記のようなFBG部22に対し、前述した図14の例と同様にして第1分散補償部1の分散補償量が+1000ps/nmに設定された場合、FBG部22で反射される信号光のスペクトル成分が分散補償帯域CB2L1000に限定されると共に、該分散補償帯域CB2L1000内における群遅延特性GD2L1000の傾きが+1000ps/nmに近づくように、FBG部22の温度勾配が制御される。また、第1分散補償部1の分散補償量が+1500ps/nmに設定された場合には、FBG部22で反射される信号光のスペクトル成分が分散補償帯域CB2L1500に拡張されると共に、該分散補償帯域CB2L1500内における群遅延特性GD2L1500の傾きが+1500ps/nmに近づくように、FBG部22の温度勾配が制御される。これに対して、第1分散補償部1の分散補償量が+700ps/nmに設定された場合には、FBG部22で反射される信号光のスペクトル成分がなくなる、すなわち、FBG部22での分散補償量が0ps/nmとなるように、FBG部22の温度勾配が制御される。
以上説明したように第2実施形態のTDCによれば、高速化により信号光のスペクトル幅が広くなっても、第1分散補償部1に設定する分散補償量に連動させて、第2分散補償部2の各FBG部21,22の分散補償量および分散補償帯域をそれぞれ適切に設定することで、該信号光の波長分散補償を広い可変範囲に亘って高い精度で行うことができる。また、光サーキュレータ8および反射ミラー9を用いて信号光が第1分散補償部1を往復する構成としたことで、少数のエタロン素子の直列接続により絶対値の大きな分散補償量が得られるようになるので、小型で可変幅の広いTDCを実現することが可能になる。さらに、第2分散補償部2に適用しているFBG部21,22は、エタロン素子と比べて、実装サイズや挿入損失が小さく、かつ、狭い帯域についての反射特性(反射波長および反射量)が高精度に実現できるという特長があるので、より小型で高性能なTDCの実現が可能である。上記のようなTDCを用いて光受信モジュールを構成し、光受信部130で処理される信号光の受信特性をモニタしながらTDCにおける第1および第2分散補償部1,2の各設定値を最適化すれば、高速の信号光を高い精度で波長分散補償して確実に受信処理することが可能になる。
なお、上記第2実施形態では、第1分散補償部1と反射ミラー9の間の光路上に第2分散補償部2のFBG部21,22を配置する構成例(図7)を示したが、例えば図17に示すように、FBG部21,22のうちの一方(ここではFBG部21)を光サーキュレータ8と第1分散補償部1の間の光路上に配置してもよい。また、図示しないが、FBG部21,22の両方を光サーキュレータ8と第1分散補償部1の間の光路上に配置することも可能である。前述したように各FBG部21,22の分散補償帯域は、第1分散補償部1の分散補償帯域と重ならないように設定されるので、第1分散補償部1の入力側にFBG部が配置されていても、該FBG部の分散補償帯域外の信号光スペクトル成分はFBG部を通過して第1分散補償部1に与えられる。よって、第1分散補償部1に対するFBG部21,22の配置に関係なく、上記第2実施形態の場合と同様の作用効果を得ることができる。
また、上記第2実施形態では、第1分散補償部1の分散補償帯域の不足について、短波長側および長波長側の双方の不足分が第2分散補償部2の分散補償帯域により補われるように、短波長側に対応したFBG部21と長波長側に対応したFBG部22とを直列に配置する構成例を説明した。この構成例の他にも、例えば、図18のTDC構成および図19の第1,2分散補償部の群遅延特性GD1,GD2に示すように、短波長側および長波長側の各帯域のうちで、第1分散補償部1の群遅延リップルが大きい側の帯域(図18および図19の例では長波長側の帯域)のみを選択して、第2分散補償部2(FBG部22)による分散補償を行うようにすることも可能である。この場合、信号光の波長分散補償の精度は第2実施形態の場合と比べて多少低下することになるが、第1分散補償部1だけで信号光の波長分散補償を行う場合と比べれば精度の改善効果は十分に得られる。
さらに、上記第2実施形態では、第2分散補償部2の分散補償帯域が、第1分散補償部1の分散補償帯域の両端に隣接するように設定される場合を説明したが、例えば図20に示すように、第1分散補償部1の分散補償帯域CB1の両端近傍に分散補償が行われないガードバンドGB ,GB を設けるようにしてもよい。この場合、第2分散補償部2の分散補償帯域CB2,CB2は、第1分散補償部1の分散補償帯域CB1の両端よりガードバンドGB ,GB 分だけ離して設定される。つまり、第2分散補償部2のガードバンドGB ,GB に対応する分散補償量が0ps/nmに設定される。上記のようなガードバンドGB ,GB を設けることによって、第1および第2分散補償部1,2の製造誤差に起因して各々の分散補償帯域が重なり合うことで大きな群遅延リップルが発生してしまうことが回避されるようになる。ガードバンドGB ,GB 自体は、TDC全体の分散補償帯域に比べて十分に狭い帯域であるので、上記群遅延リップルの回避効果によって波長分散補償の精度を一層高めることが可能である。
次に、上述した光受信モジュール(図6)に関連する応用例について説明する。
図21は、TDCを適用した光受信モジュールの応用例の構成を示すブロック図である。
図21の応用例は、上述した第2実施形態のTDCにおける第2分散補償部2に代えて、信号光が伝播する光路に希土類イオンをドープして光増幅媒体としての機能を具備させた第2分散補償部2’を適用し、該第2分散補償部2’を光サーキュレータ8と第1分散補償部1の間に配置している。なお、上記第2分散補償部2’以外の構成要素は、図6に示した場合と同様である。
上記第2分散補償部2’は、例えば図22に示すように、各FBG部21,22が形成される光ファイバ23のコア部に希土類イオンが所要の濃度でドープされている。この希土類イオンがコア部にドープされた光ファイバ23は、一般的なFBGに使用されるシングルモードファイバ(Single Mode Fiber:SMF)のコア径(通常10μm)よりも小さなコア径(例えば、5μm)を有している。コア径の小さい光ファイバを用いる理由は、光ファイバの中心部分にドープされた希土類イオンに対して、信号光よりも波長の短い励起光を効率良くオーバーラップさせるためである。前記励起光は、TDCの入力ポートINに接続された光増幅部110として、前方励起型の希土類ドープ光ファイバ増幅器が適用されている場合、該光増幅部110の残留励起光を利用することが可能である。具体的には、光増幅部110の出力ポートから出力される残留励起光が、光サーキュレータ8を介して光ファイバ23に導かれ、コア部の希土類イオンを励起する。図22の右側は、光ファイバ23の断面方向についての励起光の強度分布を例示しており、励起光がコア部に集中していることが分かる。これにより、所望の利得が短い光路長で実現可能になる。
上記のような構成の光受信モジュールでは、TDCの第2分散補償部2’が、分散補償媒体としての機能と光増幅媒体としての機能を兼ね備えることになり、光増幅部110の残留励起光を活用して第2分散補償部2’でも信号光が増幅されるようになるので、受信した信号光の増幅を効率的に行うことができる。
なお、上記光受信モジュールの応用例では、第2分散補償部2’のFBG部21,22が形成される光路(光ファイバ23)に希土類イオンをドープするようにしたが、これ以外にも、例えば第1分散補償部1の各エタロン素子の間を接続する光路に希土類イオンをドープして、第1分散補償部1に光増幅媒体としての機能を具備させることも可能である。また、光増幅部110の残留励起光を利用して第2分散補償部2’で信号光を増幅するようにしたが、第2分散補償部2’に励起光を供給する励起光源を別途設けるようにしてもよい。
以上の各実施形態に関して、さらに以下の付記を開示する。
(付記1) 信号光の波長分散補償を行う可変波長分散補償器であって、
入力ポートおよび出力ポートの間の光路上に配置され、前記入力ポートに入力される信号光の中心波長を含む分散補償帯域を有し、可変の分散補償量により前記信号光の波長分散補償を行う第1分散補償部と、
前記光路上に配置され、前記第1分散補償部の分散補償帯域とは異なる可変の分散補償帯域を有し、可変の分散補償量により前記信号光の波長分散補償を行う第2分散補償部と、
前記信号光について補償すべき波長分散の値に応じて、前記第1分散補償部の分散補償量を制御すると共に、当該第1分散補償部における分散補償量に連動させて、前記第2分散補償部の分散補償量および分散補償帯域を制御する制御部と、
を備えたことを特徴とする可変波長分散補償器。
(付記2) 付記1に記載の可変波長分散補償器であって、
前記制御部は、前記第1分散補償部における分散補償量の絶対値が予め定めた閾値よりも大きいとき、前記第2分散補償部の分散補償帯域が、前記第1分散補償部の分散補償帯域の短波長側端部および長波長側端部のうちの少なくとも一方に隣接し、かつ、前記信号光のスペクトルの最短波長成分または最長波長成分を含むように、前記第2分散補償部の分散補償帯域を制御することを特徴とする可変波長分散補償器。
(付記3) 付記2に記載の可変波長分散補償器であって、
前記制御部は、前記第2分散補償部の分散補償帯域が、前記第1分散補償部の分散補償帯域の短波長側端部および長波長側端部のうちで前記第1分散補償部における群遅延リップルが相対的に大きい側の端部に隣接するように、前記第2分散補償部の分散補償帯域を制御することを特徴とする可変波長分散補償器。
(付記4) 付記2または3に記載の可変波長分散補償器であって、
前記制御部は、前記第1分散補償部における分散補償量の絶対値が前記閾値よりも大きいとき、前記第2分散補償部の分散補償量を前記第1分散補償部の分散補償量に応じた値に制御し、前記第1分散補償部における分散補償量の絶対値が前記閾値以下のとき、前記第2分散補償部の分散補償量を0ps/nmに制御することを特徴とする可変波長分散補償器。
(付記5) 付記2〜4のいずれか1つに記載の可変波長分散補償器であって、
前記閾値は、前記信号光のスペクトル幅を基に定めた分散補償帯域の下限値に対応する、前記第1分散補償部の分散補償量の絶対値が設定されることを特徴とする可変波長分散補償器。
(付記6) 付記2〜5のいずれか1つに記載の可変波長分散補償器であって、
前記制御部は、前記第1分散補償部の分散補償帯域と前記第2分散補償部の分散補償帯域との境界部分に、分散補償を行わないガードバンドが形成されるように、前記第2分散補償部の分散補償帯域を制御することを特徴とする可変波長分散補償器。
(付記7) 付記1〜6のいずれか1つに記載の可変波長分散補償器であって、
前記第1および第2分散補償部は、前記光路上に直列に配置されていることを特徴とする可変波長分散補償器。
(付記8) 付記7に記載の可変波長分散補償器であって、
前記光路上に、3つのポートを有する光サーキュレータおよび前記信号光を反射する反射ミラーを備え、
前記光サーキュレータは、第1ポートが前記入力ポートに接続され、第2ポートが前記第1および第2分散補償部を通る光路の一端に接続され、第3ポートが前記出力ポートに接続されており、
前記反射ミラーは、前記第1および第2分散補償部を通る光路の他端に位置し、前記第1および第2分散補償部を通過した信号光を反射して前記第1および第2分散補償部に戻すことを特徴とする可変波長分散補償器。
(付記9) 付記8に記載の可変波長分散補償器であって、
前記第2分散補償部は、少なくとも1つのファイバブラッググレーティング部を具備し、前記光路を伝搬する信号光のスペクトルのうちの前記第1分散補償部の分散補償帯域外の成分を前記ファイバブラッググレーティング部により波長に応じて反射することを特徴とする可変波長分散補償器。
(付記10) 付記8または9に記載の可変波長分散補償器であって、
前記第1分散補償部は、直列に接続された複数個のエタロン素子を具備することを特徴とする可変波長分散補償器。
(付記11) 付記1〜6のいずれか1つに記載の可変波長分散補償器であって、
前記第1および第2分散補償部は、分波器および合波器を用いて前記光路上に並列に配置されていることを特徴とする可変波長分散補償器。
(付記12) 付記1〜11のいずれか1つに記載の可変波長分散補償器を備えたことを特徴とする光受信モジュール。
(付記13) 付記12に記載の光受信モジュールであって、
入力される信号光を増幅して前記可変波長分散補償器に出力する光増幅部と、
前記可変波長分散補償器で分散補償された信号光を受信してデータの再生処理を行う光受信部と、を備え、
前記可変波長分散補償器の前記制御部は、前記光受信部で処理される信号光の受信特性に応じて、前記第1分散補償部の分散補償量、並びに、前記第2分散補償部の分散補償量および分散補償帯域を制御することを特徴とする光受信モジュール。
(付記14) 付記13に記載の光受信モジュールであって、
前記可変波長分散補償器から出力される信号光のパワーをモニタする出力モニタ部を備え、
前記光増幅部は、前記出力モニタ部でモニタされる信号光パワーが一定になるように利得が制御されることを特徴とする光受信モジュール。
(付記15) 付記12〜14に記載の光受信モジュールであって、
前記可変波長分散補償器は、前記第1および第2分散補償を通る光路の少なくとも一部に希土類イオンがドープされており、希土類イオンを励起する励起光が前記光路に与えられることで当該光路を伝播する信号光が増幅されることを特徴とする光受信モジュール。
1…第1分散補償部
2,2’…第2分散補償部
3…第1制御部
4…第2制御部
5…補償量認識部
6…分波器
7…合波器
8…光サーキュレータ
9…反射ミラー
11〜14…エタロン素子
11A〜14A,21A,22A…温度制御回路(TEMP)
21,22…FBG部
23…光ファイバ
110…光増幅部
120…出力モニタ部
121…分岐器
122…出力モニタ
130…光受信部
131…受信器
132…FECカウンター
IN…入力ポート
OUT…出力ポート
P…光路
GD1,GD2,GD2…群遅延特性
CB1,CB2,CB2…分散補償帯域

Claims (10)

  1. 信号光の波長分散補償を行う可変波長分散補償器であって、
    入力ポートおよび出力ポートの間の光路上に配置され、前記入力ポートに入力される単一波長の信号光の中心波長を含む第1分散補償帯域を有し、可変の分散補償量により前記信号光の波長分散補償を行う第1分散補償部と、
    前記光路上に配置され、前記第1分散補償部の第1分散補償帯域のうち線形性を有する帯域とは重複しない帯域に前記第1分散補償帯域とは異なる可変の第2分散補償帯域を有し、可変の分散補償量により前記信号光の波長分散補償を行う第2分散補償部と、
    前記信号光について補償すべき波長分散の値に応じて、前記第1分散補償部の分散補償量を制御し、該第1分散補償部における分散補償量の絶対値が予め定めた閾値よりも大きいとき、前記第2分散補償部の第2分散補償帯域が、前記第1分散補償部の第1分散補償帯域の短波長側端部および長波長側端部のうちの少なくとも一方に隣接し、かつ、前記信号光のスペクトルの最短波長成分または最長波長成分を含むように、前記第2分散補償部の第2分散補償帯域を制御すると共に、前記第2分散補償部の前記第2分散補償帯域における群遅延特性により前記第1分散補償部の前記第2分散補償帯域における群遅延特性を打ち消して、前記第2分散補償帯域における分散補償量前記第1分散補償部の前記第1分散補償帯域における分散補償量に応じた値になるように、前記第2分散補償部の分散補償量を制御する一方、前記第1分散補償部における分散補償量の絶対値が前記閾値以下のときには、前記第2分散補償部の分散補償量を0ps/nmに制御する制御部と、
    を備えたことを特徴とする可変波長分散補償器。
  2. 請求項に記載の可変波長分散補償器であって、
    前記制御部は、前記第2分散補償部の第2分散補償帯域が、前記第1分散補償部の第1分散補償帯域の短波長側端部および長波長側端部のうちで前記第1分散補償部における群遅延リップルが相対的に大きい側の端部に隣接するように、前記第2分散補償部の第2分散補償帯域を制御することを特徴とする可変波長分散補償器。
  3. 請求項1または2に記載の可変波長分散補償器であって、
    前記制御部は、前記第1分散補償部の第1分散補償帯域と前記第2分散補償部の第2分散補償帯域との境界部分に、分散補償を行わない分散量が0ps/nmになるガードバンドが形成されるように、前記第2分散補償部の第2分散補償帯域を制御することを特徴とする可変波長分散補償器。
  4. 請求項1〜のいずれか1つに記載の可変波長分散補償器であって、
    前記第1および第2分散補償部は、前記光路上に直列に配置されていることを特徴とする可変波長分散補償器。
  5. 請求項に記載の可変波長分散補償器であって、
    前記光路上に、3つのポートを有する光サーキュレータおよび前記信号光を反射する反射ミラーを備え、
    前記光サーキュレータは、第1ポートが前記入力ポートに接続され、第2ポートが前記第1および第2分散補償部を通る光路の一端に接続され、第3ポートが前記出力ポートに接続されており、
    前記反射ミラーは、前記第1および第2分散補償部を通る光路の他端に位置し、前記第1および第2分散補償部を通過した信号光を反射して前記第1および第2分散補償部に戻すことを特徴とする可変波長分散補償器。
  6. 請求項5に記載の可変波長分散補償器であって、
    前記第1分散補償部は、直列に接続された複数個のエタロン素子を具備し、
    前記第2分散補償部は、少なくとも1つのファイバブラッググレーティング部を具備し、前記光路を伝搬する信号光のスペクトルのうちの前記第1分散補償部の第1分散補償帯域外の成分を前記ファイバブラッググレーティング部により波長に応じて反射することを特徴とする可変波長分散補償器。
  7. 請求項1〜のいずれか1つに記載の可変波長分散補償器であって、
    前記第1および第2分散補償部は、分波器および合波器を用いて前記光路上に並列に配置されており、
    前記分波器は、前記入力ポートに入力される前記信号光を、前記第1分散補償部の第1分散補償帯域に対応した第1成分と、該第1成分とは異なる第2成分とに分波し、該分波した第1成分の光を前記第1分散補償部に与えると共に、第2成分の光を前記第2分散補償部に与え、
    前記合波器は、前記第1分散補償部で分散補償された第1成分の光と、前記第2分散補償部で分散補償された第2成分の光とを合波することを特徴とする可変波長分散補償器。
  8. 請求項1〜7のいずれか1つに記載の可変波長分散補償器であって、
    前記第1および第2分散補償部は、各々の群遅延特性が周期性を有しているとき、該周期性に対応する波長グリッド上に配置された複数波長の信号光の分散補償を行うことが可能であることを特徴とする可変波長分散補償器。
  9. 請求項1〜8のいずれか1つに記載の可変波長分散補償器を備えたことを特徴とする光受信モジュール。
  10. 請求項9に記載の光受信モジュールであって、
    入力される信号光を増幅して前記可変波長分散補償器に出力する光増幅部と、
    前記可変波長分散補償器で分散補償された信号光を受信してデータの再生処理を行う光受信部と、を備え、
    前記可変波長分散補償器の前記制御部は、前記光受信部で処理される信号光の受信特性に応じて、前記第1分散補償部の分散補償量、並びに、前記第2分散補償部の分散補償量および第2分散補償帯域を制御することを特徴とする光受信モジュール。
JP2009142329A 2009-06-15 2009-06-15 可変波長分散補償器および光受信モジュール Expired - Fee Related JP4952744B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009142329A JP4952744B2 (ja) 2009-06-15 2009-06-15 可変波長分散補償器および光受信モジュール
US12/795,958 US20100316392A1 (en) 2009-06-15 2010-06-08 Tunable dispersion compensation apparatus, optical reception module and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142329A JP4952744B2 (ja) 2009-06-15 2009-06-15 可変波長分散補償器および光受信モジュール

Publications (2)

Publication Number Publication Date
JP2010288200A JP2010288200A (ja) 2010-12-24
JP4952744B2 true JP4952744B2 (ja) 2012-06-13

Family

ID=43306550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142329A Expired - Fee Related JP4952744B2 (ja) 2009-06-15 2009-06-15 可変波長分散補償器および光受信モジュール

Country Status (2)

Country Link
US (1) US20100316392A1 (ja)
JP (1) JP4952744B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5810696B2 (ja) * 2011-07-12 2015-11-11 富士通株式会社 可変分散補償装置、光受信装置、及び可変分散補償制御方法
JP6031866B2 (ja) * 2012-07-20 2016-11-24 富士通株式会社 光受信装置及び特性補償方法
CN107682085B (zh) * 2017-10-23 2024-02-20 无锡路通视信网络股份有限公司 一种光纤色散电补偿以及平坦度补偿电路及方法
US20230246712A1 (en) * 2020-05-18 2023-08-03 Nippon Telegraph And Telephone Corporation Optical transmission system and optical transmission method

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396270B2 (ja) * 1993-08-10 2003-04-14 富士通株式会社 光分散補償方式
JP3846918B2 (ja) * 1994-08-02 2006-11-15 富士通株式会社 光伝送システム、光多重伝送システム及びその周辺技術
IT1283405B1 (it) * 1996-03-11 1998-04-21 Pirelli Cavi S P A Ora Pirelli Metodo di compensazione selettiva della dispersione cromatica di segnali ottici
US6081360A (en) * 1997-08-20 2000-06-27 Fujitsu Limited Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level
CN1154841C (zh) * 1997-11-28 2004-06-23 富士通株式会社 偏振模色散检测方法以及色散补偿控制设备和色散补偿控制方法
US5982963A (en) * 1997-12-15 1999-11-09 University Of Southern California Tunable nonlinearly chirped grating
US6804467B2 (en) * 1999-11-05 2004-10-12 Jds Uniphase Inc. Chromatic dispersion compensation device
GB0002286D0 (en) * 2000-02-01 2000-03-22 Cit Alcatel Optical dispersion compensation
US6356684B1 (en) * 2000-04-14 2002-03-12 General Dynamics Advanced Technology Systems, Inc. Adjustable optical fiber grating dispersion compensators
WO2001084749A1 (fr) * 2000-04-28 2001-11-08 Oyokoden Lab Co., Ltd. Dispositif de compensation de la dispersion optique, et procede de compensation de la dispersion optique utilisant ledit dispositif
JP2001320328A (ja) * 2000-05-02 2001-11-16 Oyokoden Lab Co Ltd 光通信方法
US6980738B1 (en) * 2001-01-26 2005-12-27 Ciena Corporation Method and system for providing tunable dispersion compensation
GB2373386A (en) * 2001-03-16 2002-09-18 Fujitsu Network Comm Inc Compensation for higher order chromatic dispersion
US6522450B2 (en) * 2001-04-25 2003-02-18 Corning Incorporated Loss-less tunable per-channel dispersion compensator
US6879755B2 (en) * 2001-07-25 2005-04-12 Teraxion Inc. Optical structure for the compensation of chromatic dispersion and dispersion slope in a light signal
JP2003046443A (ja) * 2001-08-03 2003-02-14 Mitsubishi Electric Corp 可変分散補償装置、可変分散補償機能付き光受信器、および光通信システム
US6584249B1 (en) * 2001-10-17 2003-06-24 Oplink Communications, Inc. Miniature optical dispersion compensator with low insertion loss
US6804057B1 (en) * 2002-02-06 2004-10-12 Novera Optics, Inc. Various methods and apparatuses for a tunable chromatic dispersion compensator
JP2003258726A (ja) * 2002-03-01 2003-09-12 Nec Corp 分散補償回路及び光受信装置
CA2395905A1 (en) * 2002-07-26 2004-01-26 Teraxion Inc. Multi-grating tunable chromatic dispersion compensator
US6947633B2 (en) * 2002-10-28 2005-09-20 Optovia Corporation Dispersion compensation
US6961492B2 (en) * 2003-09-17 2005-11-01 Lucent Technologies Inc. Tunable dispersion compensator
US6941045B2 (en) * 2003-09-17 2005-09-06 Lucent Technologies Inc. Tunable dispersion compensator
US7555220B2 (en) * 2003-10-22 2009-06-30 Infinera Corporation Chromatic dispersion compensator (CDC) in a photonic integrated circuit (PIC) chip and method of operation
US7251396B2 (en) * 2005-02-16 2007-07-31 Universite Laval Device for tailoring the chromatic dispersion of a light signal
US7106923B1 (en) * 2005-03-31 2006-09-12 Lucent Technologies, Inc Dispersion compensator
US7412125B2 (en) * 2005-04-28 2008-08-12 Tellabs Operations, Inc. Optical dispersion compensation
EP1962119A1 (en) * 2007-02-20 2008-08-27 Proximion Fiber Systems AB Channelized dispersion compensation module
US8068736B2 (en) * 2007-03-28 2011-11-29 The Furukawa Electric Co., Ltd. Tunable dispersion compensator
JP4648363B2 (ja) * 2007-06-13 2011-03-09 株式会社日立製作所 光伝送装置および光伝送装置制御方法
JP2009122235A (ja) * 2007-11-13 2009-06-04 Fujitsu Ltd 分散補償装置

Also Published As

Publication number Publication date
US20100316392A1 (en) 2010-12-16
JP2010288200A (ja) 2010-12-24

Similar Documents

Publication Publication Date Title
EP1624596B1 (en) Optical amplifier and monitoring circuit
EP1569020B1 (en) Optical multiplexing method and optical multiplexer, and optical amplifier using the same
JP5267119B2 (ja) 光受信装置および波長多重伝送システム
JP4952744B2 (ja) 可変波長分散補償器および光受信モジュール
JP2009177074A (ja) 光増幅装置および制御方法
US6624927B1 (en) Raman optical amplifiers
JP2015167158A (ja) マルチコアファイバ増幅器
US6674773B1 (en) Multi-wavelength Raman laser
JPH11275020A (ja) 波長多重光伝送システム及び波長多重光伝送システムに使用される光デバイス用損失差補償器の設計方法並びに波長多重光伝送システムの構築方法
EP3516746B1 (en) Optical amplifier and control method therefor
WO2004077700A1 (ja) 波長多重励起ラマンアンプの制御装置、制御方法およびその制御プログラム
US6859306B2 (en) Method, apparatus and system for reducing gain ripple in a raman-amplified WDM system
WO2017085822A1 (ja) 光増幅装置
JP4698746B2 (ja) 波長分散補償器
EP1237306A1 (en) Optical transmission system using Raman amplifiers with unifrom gain
US8514484B2 (en) Optical amplifier and optical fiber
JP3468097B2 (ja) 超広帯域波長分散補償・増幅デバイス
JP4062024B2 (ja) 光部品、光増幅器モジュールおよび光伝送システム。
JP2002267848A (ja) 可変光減衰器、光モジュール、光増幅器及び光通信システム
US20230142798A1 (en) Raman amplifier, raman amplification method, and raman amplification system
EP4138316A1 (en) Semiconductor based system and method for broad bandwidth transmission
JP5142024B2 (ja) 光増幅装置
US20050078357A1 (en) Optical amplifier and optical communication system including the same
US6937389B1 (en) Optical communication systems and optical amplifiers employing periodic combiners and methods
WO2020234922A1 (ja) 光増幅装置及び光ノード装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees