JP4951612B2 - Diagnostic device and control device for internal combustion engine - Google Patents
Diagnostic device and control device for internal combustion engine Download PDFInfo
- Publication number
- JP4951612B2 JP4951612B2 JP2008310374A JP2008310374A JP4951612B2 JP 4951612 B2 JP4951612 B2 JP 4951612B2 JP 2008310374 A JP2008310374 A JP 2008310374A JP 2008310374 A JP2008310374 A JP 2008310374A JP 4951612 B2 JP4951612 B2 JP 4951612B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- deterioration
- gain
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
本発明は内燃機関の排気空燃比を検知するリニア空燃比センサの異常を検出する内燃機関の診断装置に関する。 The present invention relates to a diagnostic apparatus for an internal combustion engine that detects an abnormality of a linear air-fuel ratio sensor that detects an exhaust air-fuel ratio of the internal combustion engine.
内燃機関の排気管に触媒を設置し、前記触媒の上流および下流に排気成分を検出する空燃比センサを取り付け、前記空燃比センサの値に基づいて燃料量を補正し、触媒で排気を効率良く浄化する排気系がある。そしてこの排気系の性能は前記触媒の浄化性能や前記空燃比センサの性能に依存するため、これらの性能をモニタする診断装置が備えられている。 A catalyst is installed in the exhaust pipe of the internal combustion engine, an air-fuel ratio sensor for detecting exhaust components is attached upstream and downstream of the catalyst, the fuel amount is corrected based on the value of the air-fuel ratio sensor, and exhaust is efficiently performed with the catalyst. There is an exhaust system to purify. Since the performance of the exhaust system depends on the purification performance of the catalyst and the performance of the air-fuel ratio sensor, a diagnostic device for monitoring these performances is provided.
ここで前記触媒上流の空燃比センサを診断する方法の一例として、空燃比を強制的に加振した際の上流空燃比センサ出力の応答時間をモニタする方法(例えば特許文献1)が提案されている。 Here, as an example of a method of diagnosing the air-fuel ratio sensor upstream of the catalyst, a method of monitoring the response time of the upstream air-fuel ratio sensor output when the air-fuel ratio is forcibly excited is proposed (for example, Patent Document 1). Yes.
従来の空燃比センサでは触媒の浄化効率が最も良い三元点(ストイキ)よりも濃い(リッチ)か薄い(リーン)しか分からなかった。一方、リニア空燃比センサではストイキからどの程度リッチあるいはリーンであるかが検出でき、より精密な空燃比フィードバック制御を実現することができる。ここで、リニア空燃比センサの主な劣化モードを2つあげる。一つ目の応答劣化は、センサの目詰まり等が原因で正常時よりも応答が遅れる故障である。二つ目のゲイン劣化は、センサ素子の被毒や電流検知回路の異常が原因で正常時よりも応答が小さくなったり、逆に大きくなったりする故障である。これら応答劣化やゲイン劣化は、触媒診断での誤判定や空燃比フィードバック制御の異常による排気悪化を引き起こす要因となる。 In the conventional air-fuel ratio sensor, only the rich (lean) or light (lean) of the ternary point (stoichiki) with the best purification efficiency of the catalyst is known. On the other hand, the linear air-fuel ratio sensor can detect how rich or lean the stoichiometry is, and can realize more precise air-fuel ratio feedback control. Here, two main deterioration modes of the linear air-fuel ratio sensor are listed. The first response deterioration is a failure in which the response is delayed from the normal time due to clogging of the sensor or the like. The second gain deterioration is a failure in which the response becomes smaller than normal due to poisoning of the sensor element or abnormality of the current detection circuit, or conversely becomes larger. These deteriorations in response and gain are factors that cause exhaust deterioration due to erroneous determination in catalyst diagnosis or abnormal air-fuel ratio feedback control.
しかし、上記発明は上流空燃比センサの応答遅れの異常(応答劣化)のみを検出する診断方法であり、特に排気空燃比をリニアに検知するリニア空燃比センサにおける検出感度の異常(ゲイン劣化)に対しては十分な考慮をなされていない。 However, the above-described invention is a diagnostic method for detecting only an abnormality (response deterioration) in the response delay of the upstream air-fuel ratio sensor. In particular, the detection sensitivity abnormality (gain deterioration) in the linear air-fuel ratio sensor that linearly detects the exhaust air-fuel ratio is detected. Not enough consideration has been given to this.
本発明はこのような事情を鑑みなされたもので、その目的はリニア空燃比センサの応答劣化とゲイン劣化を分離して検出する内燃機関の診断装置を開示し、かつセンサ異常時の排気悪化や誤診断を防止することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to disclose an internal combustion engine diagnostic device that separately detects response deterioration and gain deterioration of a linear air-fuel ratio sensor, This is to prevent misdiagnosis.
前記目的を達成すべく、リニア空燃比センサの応答異常である応答劣化と検出感度の異常であるゲイン劣化とを分離して検出する応答劣化・ゲイン劣化検出手段を備え、リニア空燃比センサの診断中は通常の空燃比制御よりも低い(周波数1Hz以下)空燃比変動を与える診断用信号生成手段を備える。
In order to achieve the above-mentioned object, a response deterioration / gain deterioration detecting means for separately detecting response deterioration, which is a response abnormality of the linear air-fuel ratio sensor, and gain deterioration, which is an abnormality in detection sensitivity, is provided. Inside, there is provided a diagnostic signal generation means for giving an air-fuel ratio fluctuation lower than the normal air-fuel ratio control (
さらに、本発明は、前記診断用信号生成手段による空燃比変動を、触媒診断にも用いている。 Further, the present invention uses the air-fuel ratio fluctuation by the diagnostic signal generation means also for catalyst diagnosis.
さらに、本発明は、リニア空燃比センサのゲイン劣化を運転に警告する異常警告手段を備える。 Furthermore, the present invention includes an abnormality warning means for warning the operation of gain degradation of the linear air-fuel ratio sensor.
本発明を実施することにより、リニア空燃比センサの故障による排気悪化および誤診断を防止できる。さらに、本発明を実施することにより、リニア空燃比センサの故障による排気悪化や触媒診断の誤診断を防止できる。さらに、本発明を実施することにより、ゲイン劣化のみが発生した場合であっても運転者に異常を警告できる。 By implementing the present invention, exhaust deterioration and erroneous diagnosis due to a failure of the linear air-fuel ratio sensor can be prevented. Furthermore, by implementing the present invention, exhaust deterioration due to failure of the linear air-fuel ratio sensor and erroneous diagnosis of catalyst diagnosis can be prevented. Furthermore, by implementing the present invention, the driver can be warned of an abnormality even when only gain deterioration occurs.
以下本発明の実施形態を、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は、筒内噴射内燃機関107の制御システムにおける全体構成図である。シリンダ107bに導入される吸入空気は、エアクリーナ102の入口部102aから取り入れられ、内燃機関の運転状態計測手段の一つである空気流量計(エアフロセンサ)103を通り、吸気流量を制御する電制スロットル弁105aが収容されたスロットルボディ105を通ってコレクタ106に入る。前記エアフロセンサ103からは、前記吸気流量を表す信号が内燃機関制御装置であるコントロールユニット115に出力されている。
FIG. 1 is an overall configuration diagram of the control system of the direct injection
また、前記スロットルボディ105には、電制スロットル弁105aの開度を検出する内燃機関の運転状態計測手段の一つであるスロットルセンサ104が取り付けられており、その信号もコントロールユニット115に出力されるようになっている。
The throttle body 105 is provided with a throttle sensor 104, which is one of the operating state measuring means of the internal combustion engine for detecting the opening degree of the
前記コレクタ106に吸入された空気は、内燃機関107の各シリンダ107bに接続された各吸気管101に分配された後、前記シリンダ107bの燃焼室107cに導かれる。
The air sucked into the
一方、ガソリン等の燃料は、燃料タンク108から燃料ポンプ109により一次加圧されて燃料圧力レギュレータ110により一定の圧力に調圧されるとともに、高圧燃料ポンプ111でより高い圧力に二次加圧されてコモンレールへ圧送される。
On the other hand, fuel such as gasoline is primarily pressurized from the
前記高圧燃料は各シリンダ107bに設けられているインジェクタ112から燃焼室107cに噴射される。該燃焼室107cに噴射された燃料は、点火コイル113で高電圧化された点火信号により点火プラグ114で着火される。
The high-pressure fuel is injected from the injector 112 provided in each cylinder 107b into the combustion chamber 107c. The fuel injected into the combustion chamber 107 c is ignited by the spark plug 114 by the ignition signal that has been increased in voltage by the
また、排気弁のカムシャフトに取り付けられたカム角センサ116は、カムシャフトの位相を検出するための信号をコントロールユニット115に出力する。ここで、カム角センサは吸気弁側のカムシャフトの取り付けてもよい。また、内燃機関のクランクシャフトの回転と位相を検出するためにクランク角センサ117をクランクシャフト軸上に設け、その出力をコントロールユニット115に入力する。
The
さらに、排気管119中の触媒120の上流に設けられた空燃比センサ118は、排気ガス中の酸素を検出し、その検出信号をコントロールユニット115に出力する。なおここでは筒内噴射内燃機関について説明したが、本発明ではこれに限らずインジェクタ112を吸気ポートに取り付けたポート噴射内燃機関についても適用できる。
Further, an air-
図2から図9を用いて本発明の一実施形態について説明する。 An embodiment of the present invention will be described with reference to FIGS.
図2は触媒上流のリニア空燃比センサ(LAFセンサ)の異常を検出する内燃機関の診断装置の概要を示す。吸気ポートにインジェクタ203を設ける。排気管207に途中に設置された触媒205の上流側にリニア空燃比センサ204を設ける。また、触媒205の下流側に空燃比センサ206を設ける。通常のA/F制御(空燃比を制御する制御モード時)では、周波数1Hzより大きく3Hz以下の周波数で燃料増減を行っている。ここで、A/F制御における周波数について説明する。図1中のコントロールユニット115は、エンジン内部の空燃比を所定の空燃比とするために、排気管内に設置されたリニア空燃比センサにより排気管内の空燃比を検出し、検出された空燃比に基づいて、インジェクタから供給される燃料量を調整する。このときのインジェクタから供給される燃料量増減の周波数がA/F制御における周波数である。
FIG. 2 shows an outline of a diagnostic apparatus for an internal combustion engine that detects an abnormality of a linear air-fuel ratio sensor (LAF sensor) upstream of the catalyst. An
本実施形態の診断装置は診断用信号生成手段B201により1Hz以下の微量な燃料増減を行っているとき(診断モード)の排気空燃比をリニア空燃比センサにより検出し、応答劣化・ゲイン劣化検出手段B202により応答劣化およびゲイン劣化を分離して検出する内燃機関の診断装置を示している。好ましくは、診断モードである低周波範囲は排気悪化,運転性を考慮し、0.3Hz以上であることが望ましい。 The diagnostic apparatus of this embodiment detects the exhaust air / fuel ratio when the fuel is increased or decreased by 1 Hz or less by the diagnostic signal generating means B201 (diagnostic mode) by the linear air / fuel ratio sensor, and the response deterioration / gain deterioration detecting means 2 shows a diagnostic apparatus for an internal combustion engine that separately detects response deterioration and gain deterioration by B202. Preferably, the low frequency range that is the diagnostic mode is 0.3 Hz or more in consideration of exhaust deterioration and drivability.
次に本実施形態の診断原理を説明する。図3はリニア空燃比センサのゲイン特性および位相特性を示す。リニア空燃比センサに関して、それぞれAは正常時、A′は応答劣化時、A″はゲイン劣化時のゲイン特性を示し、また、それぞれBは正常時、B′は応答劣化時、B″はゲイン劣化時の位相特性を示している。つまり、応答劣化とはゲインが正常時よりも図の左(低周波数側)にシフトし(A→A′)、位相が正常よりも遅れる(B→B′)現象のことである。一方、ゲイン劣化とはゲイン特性が正常時よりも下(低ゲイン側)にシフトする(A→A″)現象である。ゲイン劣化では位相が変化しない(BとB″)。ここで通常のA/F制御の周波数(1Hzより大きく3Hz以下)を用いて劣化検出を行うと、応答劣化とゲイン劣化の両方でゲインが変化するため正常と劣化の識別は可能であるが、応答劣化であるかゲイン劣化であるかの識別が非常に困難である(図3のa)。しかし、低周波数範囲c(例えば1Hz以下)ではゲイン劣化時のみゲインが低下し、応答劣化時のみ位相が遅れる。そこで、ゲイン劣化の検出ではゲイン範囲c′に着目し、応答劣化の検出では位相範囲c″に着目することで、応答劣化とゲイン劣化を容易に分離して検出できる。 Next, the diagnostic principle of this embodiment will be described. FIG. 3 shows gain characteristics and phase characteristics of the linear air-fuel ratio sensor. Regarding the linear air-fuel ratio sensors, A is normal, A ′ is response deterioration, A ″ indicates gain characteristics when gain is deteriorated, B is normal, B ′ is response deterioration, and B ″ is gain. The phase characteristic at the time of deterioration is shown. That is, the response deterioration is a phenomenon in which the gain is shifted to the left (low frequency side) in the figure (A → A ′) and the phase is delayed (B → B ′) from the normal state. On the other hand, gain degradation is a phenomenon in which the gain characteristic shifts downward (lower gain side) than when it is normal (A → A ″). The phase does not change (B and B ″) due to gain degradation. Here, if the deterioration detection is performed using the normal A / F control frequency (greater than 1 Hz and 3 Hz or less), the gain changes in both the response deterioration and the gain deterioration, so that normality and deterioration can be distinguished. It is very difficult to discriminate between response deterioration and gain deterioration (a in FIG. 3). However, in the low frequency range c (for example, 1 Hz or less), the gain decreases only when the gain is deteriorated, and the phase is delayed only when the response is deteriorated. Therefore, by focusing attention on the gain range c ′ in detection of gain degradation and focusing on the phase range c ″ in detection of response degradation, response degradation and gain degradation can be easily separated and detected.
図4は図3の原理に基づいた劣化指標の一例を示す。図2に示した診断用信号生成手段により空燃比を低周波数範囲で周期的に振動させる。この場合、応答劣化では生成手段が与えようとした空燃比(目標空燃比)の周期よりもセンサが検出した空燃比(検出空燃比)の周期の方が位相遅れのために長くなる。一方、ゲイン劣化でゲインが低下する場合は、目標空燃比の振幅に対して検出空燃比の振幅がゲイン低下のために小さくなる。従って応答劣化指標として検出空燃比周期と目標空燃比周期の比(応答劣化指標=検出空燃比の周期/目標空燃比の周期)を用いる。また、ゲイン劣化指標として検出空燃比振幅のピークと目標空燃比振幅のピークの比(ゲイン劣化指標=検出空燃比振幅のピーク/目標空燃比振幅のピ−ク)を用いる。これら2つの指標を用いることにより、応答劣化とゲイン劣化をそれぞれの劣化度合いに応じて容易に分離して診断できる。 FIG. 4 shows an example of a deterioration index based on the principle of FIG. The air-fuel ratio is periodically oscillated in the low frequency range by the diagnostic signal generation means shown in FIG. In this case, in the response deterioration, the cycle of the air-fuel ratio (detected air-fuel ratio) detected by the sensor is longer than the cycle of the air-fuel ratio (target air-fuel ratio) that the generating means tries to give due to the phase delay. On the other hand, when the gain decreases due to gain deterioration, the amplitude of the detected air-fuel ratio becomes smaller than the amplitude of the target air-fuel ratio because of the gain decrease. Therefore, the ratio of the detected air-fuel ratio period to the target air-fuel ratio period (response deterioration index = detected air-fuel ratio period / target air-fuel ratio period) is used as the response deterioration index. Further, the ratio of the peak of the detected air-fuel ratio amplitude to the peak of the target air-fuel ratio amplitude (gain deterioration index = the peak of the detected air-fuel ratio amplitude / the peak of the target air-fuel ratio amplitude) is used as the gain deterioration index. By using these two indices, response deterioration and gain deterioration can be easily separated and diagnosed according to the degree of deterioration.
次に図5,図6を用いて従来の空燃比センサ(O2センサ)診断と本実施形態のリニア空燃比センサ診断の比較を行う。従来の空燃比センサ診断ではO2センサを診断対象としていたため、劣化検出対象は応答劣化のみであった。例えば、図5に示すように、横軸を図2に記載の診断用生成信号B201のよって生成される排気空燃比(入力信号)の周波数とし、縦軸を排気管に設置されたセンサが実際に検出するセンサ検出周期(周期)とする。横軸である診断用生成信号B201によって生成される排気空燃比(入力信号)の周波数に対して、縦軸の排気管に設置されたセンサが実際に検出するセンサ検出周期(周期)がある所定値以上であればセンサの応答劣化であると判断する。しかし、従来の方法ではゲイン劣化の検出は正常時と周期がかわらず困難であった。また一方で従来の方法でもゲイン特性から劣化を検出する方法もあり、例えば制御周波数(1Hzより大きく3Hz以下)におけるゲイン特性の低下から劣化を検出する方法がある。しかし、この方法では、図6に示すように、センサが正常であるにもかかわらずゲイン劣化であると判定してしまう可能性がある。bは、わずかな応答劣化が生じているが、センサとしては正常の範囲内である。aは応答劣化は全く生じていないが、ゲイン劣化が顕著に生じており、センサとしては異常の範囲である。従って、ゲイン劣化のみであるaとセンサが正常であるbとの交点Dがある範囲では、正しくゲイン劣化を検出できない。このようなゲイン劣化を検出するためには低周波数(1Hz以下)の入力信号が必要であり、本実施形態では低周波数応答のゲイン特性に着目することで従来の方法では検出できなかったゲイン劣化を検出することができるようになる。 Next, the conventional air-fuel ratio sensor (O 2 sensor) diagnosis and the linear air-fuel ratio sensor diagnosis of this embodiment will be compared with reference to FIGS. In the conventional air-fuel ratio sensor diagnosis, since the O 2 sensor is the diagnosis target, the deterioration detection target is only response deterioration. For example, as shown in FIG. 5, the horizontal axis is the frequency of the exhaust air-fuel ratio (input signal) generated by the diagnostic generation signal B201 shown in FIG. 2, and the vertical axis is a sensor installed in the exhaust pipe. It is set as the sensor detection cycle (cycle) to be detected at the time. With respect to the frequency of the exhaust air-fuel ratio (input signal) generated by the diagnostic generation signal B201 on the horizontal axis, there is a predetermined sensor detection cycle (cycle) that is actually detected by a sensor installed in the exhaust pipe on the vertical axis. If it is greater than or equal to the value, it is determined that the response of the sensor has deteriorated. However, in the conventional method, it is difficult to detect gain deterioration regardless of the period when the gain is normal. On the other hand, there is also a method of detecting deterioration from gain characteristics in the conventional method, for example, a method of detecting deterioration from a decrease in gain characteristics at a control frequency (greater than 1 Hz and 3 Hz or less). However, in this method, as shown in FIG. 6, there is a possibility that it is determined that the gain is deteriorated even though the sensor is normal. Although a slight response deterioration has occurred, b is within a normal range as a sensor. In the case of “a”, no response deterioration occurs, but gain deterioration occurs remarkably, and the sensor is in an abnormal range. Therefore, the gain deterioration cannot be detected correctly in the range where there is an intersection D between a which is only gain deterioration and b where the sensor is normal. In order to detect such gain degradation, an input signal with a low frequency (1 Hz or less) is required. In this embodiment, by focusing on the gain characteristics of the low frequency response, gain degradation that cannot be detected by the conventional method. Can be detected.
図7は本発明を実現するブロック図の一例である。図7のゲイン劣化判定においてはRABF(実空燃比)をB701でハイパスフィルタ(HPF)に通し、直流分やドリフト分を除去する。次にB702で絶対値に変換し、B703で最大値検索をして検出空燃比のピークを演算する。そしてB704の正規化処理で図4に示したゲイン劣化指標を演算し、B705で平均処理によりノイズ除去をして、B706でB705から出力された平均ゲイン劣化指標が所定範囲外にあるときにゲイン劣化と判定し、ゲイン劣化判定フラグを立てる。一方応答劣化判定ではB701のハイパスフィルタ出力をB707のゼロクロス検出でゼロクロス検出を行い、B708の周期演算でゼロクロス検出周期を演算し、B709の正規化処理で図4に示した応答劣化指標を演算し、B710で平均処理によりノイズ除去をしてB711でB710から出力された平均応答劣化指標が所定値よりも大きければ応答劣化と判定し、応答劣化判定フラグを立てる。 FIG. 7 is an example of a block diagram for realizing the present invention. In the gain deterioration determination of FIG. 7, RABF (actual air-fuel ratio) is passed through a high-pass filter (HPF) at B701 to remove a direct current component and a drift component. Next, the absolute value is converted in B702, and the maximum value is searched in B703 to calculate the peak of the detected air-fuel ratio. Then, the gain deterioration index shown in FIG. 4 is calculated in the normalization process of B704, noise is removed by the average process in B705, and the gain is obtained when the average gain deterioration index output from B705 is outside the predetermined range in B706. It is determined that the gain is deteriorated, and a gain deterioration determination flag is set. On the other hand, in the response degradation determination, the B701 high-pass filter output is zero-cross detected by the B707 zero-cross detection, the zero-cross detection period is computed by the B708 period computation, and the response degradation index shown in FIG. 4 is computed by the B709 normalization process. In step B710, noise is removed by averaging processing. If the average response deterioration index output from B710 in B711 is larger than a predetermined value, it is determined that the response is deteriorated, and a response deterioration determination flag is set.
図8は図7におけるタイムチャートの一例であり、フィルタ出力のゼロクロスを検出し、これをトリガとして最大値および周期を演算している様子を示す。この例では1周期で2回の劣化指標演算を実施できるため、より短い時間で劣化検出が可能である。 FIG. 8 is an example of the time chart in FIG. 7 and shows how the zero value of the filter output is detected and the maximum value and period are calculated using this as a trigger. In this example, since deterioration index calculation can be performed twice in one cycle, it is possible to detect deterioration in a shorter time.
図9は、実際に様々な車速で図7に示したブロック図によりリニア空燃比センサの劣化を検知したときの一例である。図9の上段は、ゲイン劣化または応答劣化がある時のゲイン劣化指標を示している。一方、下段はゲイン劣化または応答劣化がある時の応答劣化指標を示している。図9の左側図面の横軸であるゲイン劣化が100%である場合、リニア空燃比センサのゲイン劣化がないことを示し、右側図面の横軸である応答劣化が100ms程度の場合、リニア空燃比センサの応答劣化がないことを示している。この結果から仮にゲイン劣化判定の判定基準を0.7〜1.3とした場合50%以下あるいは150%以上のゲイン劣化をゲイン劣化として検出できる。同様に応答劣化判定の判定基準を1.3とすると300ms以上の応答劣化を応答劣化として検出できる。ここで、応答劣化指標は応答劣化が大きくなるほど増加するがゲイン劣化に対しては感度がないこと、ゲイン劣化指標はゲイン劣化に応じて増減するが応答劣化に関して感度がないことが確認できる。 FIG. 9 is an example when the deterioration of the linear air-fuel ratio sensor is actually detected by the block diagram shown in FIG. 7 at various vehicle speeds. The upper part of FIG. 9 shows the gain degradation index when there is gain degradation or response degradation. On the other hand, the lower part shows the response deterioration index when there is gain deterioration or response deterioration. When the gain deterioration on the horizontal axis of the left drawing of FIG. 9 is 100%, it indicates that there is no gain deterioration of the linear air-fuel ratio sensor. When the response deterioration on the horizontal axis of the right drawing is about 100 ms, the linear air-fuel ratio is It shows that there is no sensor response degradation. From this result, it is possible to detect a gain degradation of 50% or less or 150% or more as a gain degradation if the criterion for determining the gain degradation is 0.7 to 1.3. Similarly, if the criterion for determining response deterioration is 1.3, response deterioration of 300 ms or more can be detected as response deterioration. Here, it can be confirmed that the response deterioration index increases as the response deterioration increases, but has no sensitivity to gain deterioration, and the gain deterioration index increases or decreases according to the gain deterioration, but has no sensitivity with respect to the response deterioration.
次に図10において、センサ劣化と排気悪化の関係を示す一実験結果を示す。図10はリニア空燃比センサによる空燃比フィードバック制御中にリッチあるいはリーンのステップ外乱を与えた際の排気悪化代を示す。このとき、排気管に設置された触媒は正常である。左側の2つの図がゲイン劣化時、一方、右側の2つ図が応答劣化時の結果である。応答劣化はステップ外乱に対して感度がないのに対して、ゲイン劣化ではステップ外乱に対してHCが3倍、NOxが2倍悪化した。これはリニア空燃比センサによるフィードバック制御は偏差をもとに制御しており、ゲイン劣化により偏差が実際とは異なっているため排気が悪化したと考えられる。しかし、触媒は正常であるので、この排気悪化はセンサのゲイン劣化により引き起こされたものである。そこで、これらの劣化度合いに応じてセンサ出力を補正すればゲイン劣化による排気悪化を防止できる。 Next, FIG. 10 shows one experimental result showing the relationship between sensor deterioration and exhaust deterioration. FIG. 10 shows an exhaust deterioration margin when a rich or lean step disturbance is given during air-fuel ratio feedback control by the linear air-fuel ratio sensor. At this time, the catalyst installed in the exhaust pipe is normal. The two diagrams on the left are the results when the gain is degraded, while the two diagrams on the right are the results when the response is degraded. Response degradation is insensitive to step disturbance, while gain degradation worsens HC three times and NOx two times against step disturbance. This is because the feedback control by the linear air-fuel ratio sensor is controlled based on the deviation, and it is considered that the exhaust gas deteriorated because the deviation is different from the actual due to gain deterioration. However, since the catalyst is normal, the exhaust deterioration is caused by sensor gain deterioration. Therefore, if the sensor output is corrected according to the degree of deterioration, exhaust deterioration due to gain deterioration can be prevented.
次に、図11にセンサ補正によりゲイン劣化による排気悪化を防止するシステムの一例を示す。従来のシステムでは空燃比センサの出力を直接空燃比補正手段B1103に用いることで排気空燃比を補正しているが、図11のセンサ劣化検出手段B1101によりゲイン劣化度合いを検出し、センサ出力補正手段B1102により空燃比センサの出力をゲイン劣化度合いに応じて補正する。例えばゲイン劣化指標が正常値から半分になった場合、検出した空燃比の出力を倍にすれば正常時と同様な排気性能が実現できる。このようにゲイン劣化指標をもちいてセンサ出力を補正することで、ゲイン劣化が発生しても排気の悪化を防止するセンサ劣化に対してロバストなシステムを構築できる。また、センサ劣化検出手段B1101によって検出したゲイン劣化に基づいて、警告灯B1106を点灯させ、運転者へ異常を通知する。ここで、警告灯は例えば、トラブルコードの出力やミルの点灯させること等が含まれる。また、音声を用いて運転者に告知しても良い。これらにより、検出感度の異常であるゲイン劣化のみが発生している場合であっても、その劣化を運転者へ警告することが可能となる。 Next, FIG. 11 shows an example of a system that prevents exhaust deterioration due to gain deterioration by sensor correction. In the conventional system, the exhaust air / fuel ratio is corrected by directly using the output of the air / fuel ratio sensor for the air / fuel ratio correcting means B1103. However, the sensor deterioration detecting means B1101 in FIG. In B1102, the output of the air-fuel ratio sensor is corrected according to the degree of gain deterioration. For example, when the gain deterioration index is halved from the normal value, the exhaust performance similar to that in the normal state can be realized by doubling the output of the detected air-fuel ratio. In this way, by correcting the sensor output using the gain deterioration index, it is possible to construct a system that is robust against sensor deterioration that prevents exhaust deterioration even when gain deterioration occurs. Further, based on the gain deterioration detected by the sensor deterioration detection means B1101, the warning lamp B1106 is turned on to notify the driver of the abnormality. Here, the warning lamp includes, for example, outputting a trouble code, turning on a mill, and the like. Moreover, you may notify a driver | operator using an audio | voice. As a result, even when only gain degradation, which is an abnormality in detection sensitivity, has occurred, it is possible to warn the driver of the degradation.
次に図12から図14を用いて本発明の別の実施形態を説明する。 Next, another embodiment of the present invention will be described with reference to FIGS.
図12は触媒診断方式の一例を示す。本方式は、リッチリーン反転手段(B1202)に基づいて診断用生成手段(B1203)によりインジェクタから噴射する燃料を増減させることでセンサの異常を分離して検出する手段を備えるとともに、このときの上流リニア空燃比センサおよび下流空燃比センサの出力から触媒劣化を検出する触媒劣化検出手段(B1201)を備えるものである。なお触媒劣化検出手段(B1201)の触媒劣化指標としては、例えば上流下流センサの軌跡長の比,反転周期の比,反転回数の比,相関などを用いることができる。 FIG. 12 shows an example of a catalyst diagnosis method. This system includes means for separating and detecting the abnormality of the sensor by increasing / decreasing the fuel injected from the injector by the diagnostic generating means (B1203) based on the rich lean inversion means (B1202). Catalyst deterioration detection means (B1201) for detecting catalyst deterioration from the outputs of the linear air-fuel ratio sensor and the downstream air-fuel ratio sensor is provided. As the catalyst deterioration index of the catalyst deterioration detection means (B1201), for example, the ratio of the trajectory lengths of the upstream and downstream sensors, the ratio of the inversion period, the ratio of the number of inversions, the correlation, and the like can be used.
図13は図12に示した触媒診断方式においてセンサが劣化したときの触媒劣化指標を実験により求めた結果を示す。本実験では劣化指標として相関を用い、相関が大きいほど触媒が劣化していることを表す。これは、触媒が劣化すると触媒の酸素吸着能力の低下により下流空燃比センサ出力の振れが大きくなり、この振れと上流空燃比センサ出力の振れとの相関が大きくなることに基づいている。すべての実験において同じ正常触媒を用いた。ゲイン劣化に対しては触媒劣化指標(相関)の感度はないが、応答劣化では応答劣化度合いが大きくなるほど劣化指標(相関)が大きくなっている。そのため、正常触媒においても応答劣化によって触媒劣化と誤判定されてしまう場合がある。これは応答劣化によりリッチリーン反転の周期が長くなり、正常触媒の酸素吸着能力を超える長い周期で空燃比を制御したためである。このときも応答劣化度合いに応じてセンサ出力を補正することで誤診断を防止できる。 FIG. 13 shows the result of experimentally determining the catalyst deterioration index when the sensor deteriorates in the catalyst diagnosis method shown in FIG. In this experiment, correlation is used as a deterioration index, and the larger the correlation is, the more the catalyst is deteriorated. This is based on the fact that when the catalyst is deteriorated, the swing of the downstream air-fuel ratio sensor output becomes large due to the decrease in the oxygen adsorption capacity of the catalyst, and the correlation between this shake and the swing of the upstream air-fuel ratio sensor output becomes large. The same normal catalyst was used in all experiments. Although there is no sensitivity of the catalyst deterioration index (correlation) to gain deterioration, in response deterioration, the deterioration index (correlation) increases as the response deterioration degree increases. Therefore, even a normal catalyst may be erroneously determined as catalyst deterioration due to response deterioration. This is because the rich-lean inversion period becomes longer due to the response deterioration, and the air-fuel ratio is controlled with a long period exceeding the oxygen adsorption capacity of the normal catalyst. Also at this time, erroneous diagnosis can be prevented by correcting the sensor output in accordance with the response deterioration degree.
図14にセンサの補正により触媒の誤判定を防止するシステムの一例を示す。図11と同様なものは説明を省略する。B1401のセンサ劣化検出手段により応答劣化指標を演算して応答劣化度合いを求め、B1402のセンサ出力補正手段によって応答劣化指標に応じてセンサ出力を補正する。例えば、正常なセンサに対して、応答が100ms遅れたならば、位相進み補償により100ms応答を進めればよい。このようにして補正したセンサ出力と下流空燃比センサの出力を用いてB1403の触媒劣化検出手段により触媒劣化指標を演算することにより応答劣化に対してロバストな触媒劣化が実現できる。 FIG. 14 shows an example of a system that prevents erroneous determination of the catalyst by sensor correction. Description of the same components as those in FIG. 11 is omitted. The response deterioration index is calculated by the sensor deterioration detection unit B1401 to obtain the response deterioration degree, and the sensor output correction unit B1402 corrects the sensor output according to the response deterioration index. For example, if the response is delayed by 100 ms with respect to a normal sensor, the response may be advanced by 100 ms by phase advance compensation. By calculating the catalyst deterioration index by the catalyst deterioration detection means of B1403 using the sensor output corrected in this way and the output of the downstream air-fuel ratio sensor, the catalyst deterioration robust against the response deterioration can be realized.
なお図12に示した触媒診断方式において、B1203の診断用信号生成手段において1Hz以下の空燃比変動を生成すれば触媒診断だけでなくリニア空燃比センサの診断も実施できるため、診断時間の短縮および排気低減が実現できる。 In the catalyst diagnosis method shown in FIG. 12, if the air-fuel ratio fluctuation of 1 Hz or less is generated in the diagnostic signal generation means in B1203, not only the catalyst diagnosis but also the linear air-fuel ratio sensor diagnosis can be performed. Reduction of exhaust can be realized.
次に図15を用いて本発明の別の実施形態について説明する。 Next, another embodiment of the present invention will be described with reference to FIG.
図15は燃料系の異常が検知されたときにLAFセンサ診断を禁止するフローチャートである。ステップS1501においては燃料系に異常がないかを判定する。ここでは例えば空燃比フィードバック補正係数が、所定時間の間、その上限あるいは下限値となること、またはアイドル時のアクセル開度フィードバック補正係数が、所定時間の間、その上限あるいは下限値となることによって燃料系の異常を判断すれば良い。ステップS1502において燃料系に異常があるか否かを判定し、異常がある場合はステップS1503に進みLAF診断禁止フラグを1にする。そしてステップS1504ではLAF診断禁止フラグが1であるか否かを判定し、LAF診断禁止フラグが1であればそのまま処理を終了する。LAF診断禁止フラグが1でなければステップS1505に進み、例えば実施例1で説明したようなLAFセンサ診断を実施する。本発明によれば燃料系異常のときにはLAFセンサ診断を禁止することにより燃料系異常によるLAFセンサ診断の誤診断を防止できる。 FIG. 15 is a flowchart for prohibiting the LAF sensor diagnosis when a fuel system abnormality is detected. In step S1501, it is determined whether there is an abnormality in the fuel system. Here, for example, the air-fuel ratio feedback correction coefficient becomes an upper limit or a lower limit value for a predetermined time, or the accelerator opening feedback correction coefficient during idling becomes an upper limit or a lower limit value for a predetermined time. What is necessary is just to judge abnormality of a fuel system. In step S1502, it is determined whether or not there is an abnormality in the fuel system. If there is an abnormality, the process proceeds to step S1503 and the LAF diagnosis prohibition flag is set to 1. In step S1504, it is determined whether the LAF diagnosis prohibition flag is 1. If the LAF diagnosis prohibition flag is 1, the process is terminated as it is. If the LAF diagnosis prohibition flag is not 1, the process advances to step S1505 to execute, for example, the LAF sensor diagnosis as described in the first embodiment. According to the present invention, it is possible to prevent erroneous diagnosis of LAF sensor diagnosis due to fuel system abnormality by prohibiting LAF sensor diagnosis when the fuel system is abnormal.
また以上の説明においては図4に示すような周期的な信号をLAFセンサの診断に用いていたが、本発明は周期的信号だけではなく図16のようなステップ応答でも適用できる。すなわちオープンループで目標空燃比をステップ状に変化させたときの検出空燃比において、応答劣化指標を検出空燃比の時定数、ゲイン劣化指標をステップ変化後の目標空燃比と検出空燃比の平均としても応答劣化とゲイン劣化を分離して検出できる。 In the above description, a periodic signal as shown in FIG. 4 is used for diagnosis of the LAF sensor. However, the present invention can be applied not only to a periodic signal but also to a step response as shown in FIG. That is, in the detected air-fuel ratio when the target air-fuel ratio is changed stepwise in an open loop, the response deterioration index is the time constant of the detected air-fuel ratio, and the gain deterioration index is the average of the target air-fuel ratio after the step change and the detected air-fuel ratio. Can also detect response degradation and gain degradation separately.
101…吸気管、102…エアクリーナ、103…エアフロセンサ、104…スロットルセンサ、105…スロットルボディ、106…コレクタ、107…筒内噴射内燃機関、109…燃料ポンプ、111…高圧燃料ポンプ、112…インジェクタ、113…点火コイル、114…点火プラグ、115…コントロールユニット、116…カム角センサ、117…クランク角センサ、118…空燃比センサ。
DESCRIPTION OF
Claims (5)
前記診断装置は、
空燃比変動を与える診断用信号生成手段と、
前記リニア空燃比センサの応答劣化とゲイン劣化とを分離して検出する手段とを備え、
空燃比を制御する制御モードと前記リニア空燃比センサを診断する診断モードとを有し、前記診断用信号生成手段は、前記診断モードにおいて、0Hzより大きく1Hz以下の空燃比変動を与え、
前記リニア空燃比センサの検出空燃比変動と前記診断用信号生成手段により制御する空燃比変動とに基づいてゲイン劣化を判定することを特徴とする診断装置。 A diagnostic device for an internal combustion engine that is installed in an exhaust pipe of an internal combustion engine and diagnoses a linear air-fuel ratio sensor that detects an air-fuel ratio of exhaust gas,
The diagnostic device comprises:
Diagnostic signal generating means for providing air-fuel ratio fluctuations;
Means for separating and detecting response deterioration and gain deterioration of the linear air-fuel ratio sensor;
Has a control mode for controlling the air-fuel ratio and the diagnostic mode for diagnosing the linear air-fuel ratio sensor, the diagnosis signal generating means is in the diagnostic mode, giving an air-fuel ratio varies significantly below 1Hz than 0 Hz,
A diagnostic apparatus, wherein a gain deterioration is determined based on an air-fuel ratio fluctuation detected by the linear air-fuel ratio sensor and an air-fuel ratio fluctuation controlled by the diagnostic signal generation means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008310374A JP4951612B2 (en) | 2008-12-05 | 2008-12-05 | Diagnostic device and control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008310374A JP4951612B2 (en) | 2008-12-05 | 2008-12-05 | Diagnostic device and control device for internal combustion engine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005048166A Division JP4345688B2 (en) | 2005-02-24 | 2005-02-24 | Diagnostic device and control device for internal combustion engine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011129741A Division JP5194147B2 (en) | 2011-06-10 | 2011-06-10 | Diagnostic device and control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009074556A JP2009074556A (en) | 2009-04-09 |
JP4951612B2 true JP4951612B2 (en) | 2012-06-13 |
Family
ID=40609737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008310374A Expired - Fee Related JP4951612B2 (en) | 2008-12-05 | 2008-12-05 | Diagnostic device and control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4951612B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011088296A1 (en) | 2011-12-12 | 2013-06-13 | Robert Bosch Gmbh | Method and device for monitoring the dynamics of gas sensors |
DE102018219567A1 (en) * | 2018-11-15 | 2020-05-20 | Continental Automotive Gmbh | Method for recognizing a need for adaptation of a compensation factor of an amperometric sensor and amperometric sensor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2581828B2 (en) * | 1990-06-01 | 1997-02-12 | 株式会社日立製作所 | Air-fuel ratio control method for internal combustion engine and control device therefor |
JPH04237851A (en) * | 1991-01-22 | 1992-08-26 | Hitachi Ltd | Air-fuel ratio sensor deterioration diagnostic device |
JP3179920B2 (en) * | 1993-02-12 | 2001-06-25 | 株式会社日立製作所 | Catalyst diagnosis device for internal combustion engine |
US5325711A (en) * | 1993-07-06 | 1994-07-05 | Ford Motor Company | Air-fuel modulation for oxygen sensor monitoring |
JP2806271B2 (en) * | 1994-03-18 | 1998-09-30 | 日産自動車株式会社 | Catalyst deterioration diagnosis device for internal combustion engine |
JP3525545B2 (en) * | 1995-04-14 | 2004-05-10 | 株式会社デンソー | Air-fuel ratio sensor abnormality diagnosis device |
JPH08291740A (en) * | 1995-04-20 | 1996-11-05 | Toyota Motor Corp | Catalyst deterioration detecting device for internal combustion engine |
JPH10176578A (en) * | 1996-05-28 | 1998-06-30 | Matsushita Electric Ind Co Ltd | Air-fuel ratio control device |
JP3607962B2 (en) * | 1996-08-09 | 2005-01-05 | トヨタ自動車株式会社 | Air-fuel ratio sensor deterioration determination device |
-
2008
- 2008-12-05 JP JP2008310374A patent/JP4951612B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009074556A (en) | 2009-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4345688B2 (en) | Diagnostic device and control device for internal combustion engine | |
JP4679335B2 (en) | Control device for internal combustion engine | |
JP4320778B2 (en) | Air-fuel ratio sensor abnormality diagnosis device | |
JP2893308B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2008121533A (en) | Control device of internal combustion engine | |
JP2007262945A (en) | Abnormality diagnosis device for exhaust gas sensor | |
JP2009133260A (en) | Abnormality diagnosis device of internal combustion engine | |
JPH08338286A (en) | Exhaust system failure diagnostic device for internal combustion engine | |
JP2009257236A (en) | Detector for abnormal air-fuel ratio variation between cylinders of multiple cylinder internal combustion engine | |
JP2796413B2 (en) | Method and apparatus for controlling air-fuel ratio of an internal combustion engine | |
JP4951612B2 (en) | Diagnostic device and control device for internal combustion engine | |
WO2009110170A1 (en) | Exhaust system diagnostic apparatus of internal combustion engine | |
JP4365830B2 (en) | Air-fuel ratio sensor diagnostic device for internal combustion engine | |
JP2010163932A (en) | Catalyst degradation diagnostic device for internal combustion engine | |
JP5194147B2 (en) | Diagnostic device and control device for internal combustion engine | |
JP5401590B2 (en) | Diagnostic device and control device for internal combustion engine | |
JP4756382B2 (en) | Deterioration judgment device for exhaust purification system | |
JP6565432B2 (en) | Catalyst deterioration diagnosis device for internal combustion engine | |
JP2006233781A (en) | Catalyst diagnostic device for internal combustion engine | |
JP6276096B2 (en) | Air-fuel ratio imbalance diagnosis device and air-fuel ratio imbalance diagnosis method | |
JP2009013905A (en) | Control device for internal combustion engine | |
JP2010084671A (en) | Air-fuel ratio control device of internal combustion engine | |
JP2006233775A (en) | Exhaust emission control device for internal combustion engine | |
JP4651694B2 (en) | Exhaust purification catalyst deterioration diagnosis device | |
JP4775199B2 (en) | Air-fuel ratio detection device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120312 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4951612 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |