JPH04237851A - Air-fuel ratio sensor deterioration diagnostic device - Google Patents

Air-fuel ratio sensor deterioration diagnostic device

Info

Publication number
JPH04237851A
JPH04237851A JP557491A JP557491A JPH04237851A JP H04237851 A JPH04237851 A JP H04237851A JP 557491 A JP557491 A JP 557491A JP 557491 A JP557491 A JP 557491A JP H04237851 A JPH04237851 A JP H04237851A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
ratio sensor
deterioration
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP557491A
Other languages
Japanese (ja)
Inventor
Kazuya Kono
一也 河野
Toshio Ishii
俊夫 石井
Seiji Asano
誠二 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP557491A priority Critical patent/JPH04237851A/en
Publication of JPH04237851A publication Critical patent/JPH04237851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide such an air-fuel ratio sensor deterioration diagnostic device capable of detecting any deterioration in an air-fuel ratio sensor accurately through inexpensive cost. CONSTITUTION:This diagnoser is provided with a sensor 7 installed in an exhaust system 4 of an internal combustion engine 1, a means changing an air-fuel ratio on the basis of a detected value of this sensor 7, a means determining a feedback control factor by changing the air-fuel ratio, and a means detecting a parameter showing an engine driving state such as an intake air quantity or the like, and it is also provided with another means for finding a feedback control factor imparting a theoretical air-fuel ratio from the air-fuel ratio feedback control factor, thus it comes to fruition. With this constitution, a diagnosis of deterioration in the air-fuel ratio sensor is accurately performable, thereby calling upon makers, users and so on to replace the deteriorated sensor, so that an exhaust gas emission control effect is well improved, thus an environmental problem is surmountable.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は内燃機の空燃比センサ劣
化診断に関わり、特に空燃比フィードバック係数より、
理論空燃比を得、その近傍で空燃比を動かし、空燃比セ
ンサの劣化診断を行う装置に関するものである。
[Industrial Application Field] The present invention relates to deterioration diagnosis of an air-fuel ratio sensor of an internal combustion engine, and in particular, it
The present invention relates to a device that obtains a stoichiometric air-fuel ratio, moves the air-fuel ratio in the vicinity of the stoichiometric air-fuel ratio, and diagnoses deterioration of an air-fuel ratio sensor.

【0002】0002

【従来の技術】従来の装置は、特公昭63−29583
5号に記載の様に、触媒コンバータの上流および下流側
に空燃比センサを設け、両方の出力特性を比較すること
により、上流側の空燃比センサ劣化診断を行い、ユーザ
に部品交換を促し、部品劣化によるエミッション悪化を
防止するものであった。
[Prior Art] The conventional device is
As described in No. 5, air-fuel ratio sensors are installed on the upstream and downstream sides of the catalytic converter, and by comparing the output characteristics of both, a deterioration diagnosis of the air-fuel ratio sensor on the upstream side is performed, and the user is prompted to replace the parts. This was to prevent deterioration of emissions due to component deterioration.

【0003】0003

【発明が解決しようとする課題】上記従来技術は、上流
側と下流側の空燃比センサ出力を比較しているため、触
媒の前後での排ガス成分の違い、時間差等のファクター
を考慮する必要が生じ、必ずしも正確な判定を行ってい
るとはいえない。また、比較ロジックも複雑となってい
る。
[Problems to be Solved by the Invention] The above conventional technology compares the air-fuel ratio sensor outputs on the upstream side and the downstream side, so it is necessary to take into account factors such as the difference in exhaust gas components before and after the catalyst and the time difference. Therefore, it cannot be said that an accurate judgment is necessarily made. Also, the comparison logic is complicated.

【0004】本発明は空燃比フィードバック係数より、
理論空燃比を演算し、その前後に空燃比を振って、空燃
比センサ劣化診断を行うので、正確にかつ、安価なコス
トで劣化診断を行うことができる装置を提供することを
目的とする。
[0004] The present invention uses the air-fuel ratio feedback coefficient to
To provide a device capable of accurately and inexpensively diagnosing deterioration of an air-fuel ratio sensor by calculating a stoichiometric air-fuel ratio and varying the air-fuel ratio before and after the stoichiometric air-fuel ratio.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する為に
、空燃比センサ出力を保持するバッファ、及び空燃比セ
ンサ出力を比較する比較装置、空燃比フィードバック係
数を保持するメモリ、理論空燃比を計算する演算装置、
空燃比フィードバック係数より燃料噴射量を計算する演
算装置、エンジンパラメータの入出力制御を行う制御装
置とセンサ、空燃比センサ、これらをシステムとして構
築したものである。
[Means for Solving the Problems] In order to achieve the above object, we have provided a buffer that holds the air-fuel ratio sensor output, a comparison device that compares the air-fuel ratio sensor output, a memory that holds the air-fuel ratio feedback coefficient, and a stoichiometric air-fuel ratio. an arithmetic device that calculates;
This system includes a calculation device that calculates the fuel injection amount from the air-fuel ratio feedback coefficient, a control device and sensor that controls the input and output of engine parameters, and an air-fuel ratio sensor.

【0006】[0006]

【作用】上記の手段は、空燃比フィードバック係数を変
更して、燃料噴射量を空燃比が理論空燃比の前後に変更
する動作を行うので、空燃比フィードバック係数の単位
が、異常な燃料量計算できる程大きく設定しないので、
運転状態の異常動作は起きない。
[Operation] The above means changes the air-fuel ratio feedback coefficient to change the fuel injection amount to before or after the stoichiometric air-fuel ratio, so the unit of the air-fuel ratio feedback coefficient is abnormal when calculating the amount of fuel. I don't set it as large as possible, so
No abnormal operation occurs.

【0007】[0007]

【実施例】以下、本発明の一実施例を図を用いて説明す
る。図1は、本発明の全体の構成図である。エンジン本
体1には、エンジン冷却水温センサ5,吸気通路2のエ
アフロセンサ3,スロットルセンサ4、また、排気通路
6には、空燃比センサ7、が配設されている。また、1
2はコントロールユニットで、前述の各センサ出力信号
情報により、燃料噴射量点火時期、アイドルスピードコ
ントロールバルブパルス幅等が演算され、それぞれイン
ジェクタ8,昇圧及び分配装置9,アイドルスピードコ
ントロールバルブ11、に制御信号を出力する。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of the present invention. The engine body 1 is provided with an engine cooling water temperature sensor 5, an air flow sensor 3 in the intake passage 2, a throttle sensor 4, and an air-fuel ratio sensor 7 in the exhaust passage 6. Also, 1
2 is a control unit that calculates the fuel injection amount, ignition timing, idle speed control valve pulse width, etc. based on the above-mentioned sensor output signal information, and controls the injector 8, boost and distribution device 9, and idle speed control valve 11, respectively. Output a signal.

【0008】図2は、空燃比フィードバック係数αの平
均値αave の演算を説明した図である。以下、空燃
比フィードバック係数αを、αと略する。空燃比クロー
ズドループ制御中のαのピーク値をn個サンプリングし
、その平均値αave =Σ(αピーク)/n を求め
る。この演算値αave は、その運転領域における理
論空燃比の補正係数値に近似できる。
FIG. 2 is a diagram illustrating the calculation of the average value αave of the air-fuel ratio feedback coefficient α. Hereinafter, the air-fuel ratio feedback coefficient α will be abbreviated as α. N peak values of α during air-fuel ratio closed loop control are sampled, and the average value αave =Σ(α peak)/n is determined. This calculated value αave can be approximated to the correction coefficient value of the stoichiometric air-fuel ratio in that operating region.

【0009】図3は、図2で説明した、αの平均値αa
ve の補正演算について説明した図である。図2は、
空燃比クローズドループ制御中にαが全体的に移動する
運転領域を示している。この領域でαのピーク値をサン
プルした場合、図2に示した様に、α1,α2と比較し
、α4,α5が大きく離れている。この場合、αピーク
値の単純平均αave は、必ずしも理論空燃比の補正
係数値を近似しているとはいえない。そこで、αのピー
ク値のサンプリング数n個の平均値αave =Σ(α
ピーク)/n の計算と同時に、αのサンプリング値個
数の後半部分の平均値αave(n/2)=Σ(αピー
ク)/(n/2)、つまり、n/2個目のαのピーク値
からn個目までの平均値αave(n/2)を求める(
n=n/2,n/2+1……n)。次に、それらの偏差
σ=|αave(n/2)|の計算を行う。偏差σが、
基準値lより大きい場合(σ>l)は、今の領域での機
関運転状態が安定していないとして、この診断制御を終
了する。偏差σが、基準値lより小さい場合(σ≦l)
は、今の領域での運転状態が安定しているとし、更に、
平均値αave を計算したサンプリング値の個々の偏
差計算σn=|αave−αn| を行う。次に、それ
らの偏差σn において、基準値mより大きいものσn
>m に相当するサンプリングピーク値αx(x個)を
削除し、αのサンプリングピーク値の補正後平均値αa
ve0を計算する。
FIG. 3 shows the average value αa of α explained in FIG.
It is a figure explaining correction calculation of ve. Figure 2 shows
It shows the operating range in which α moves overall during air-fuel ratio closed loop control. When the peak value of α is sampled in this region, as shown in FIG. 2, α4 and α5 are far apart from α1 and α2. In this case, it cannot be said that the simple average αave of the α peak values necessarily approximates the correction coefficient value of the stoichiometric air-fuel ratio. Therefore, the average value αave = Σ(α
At the same time as calculating the second half of the number of sampled values of α, αave(n/2) = Σ(α peak)/(n/2), that is, the n/2nd peak of α. Find the average value αave(n/2) from the value to the nth value (
n=n/2, n/2+1...n). Next, their deviation σ=|αave(n/2)| is calculated. The deviation σ is
If it is larger than the reference value l (σ>l), it is determined that the engine operating state in the current region is not stable, and this diagnostic control is terminated. When the deviation σ is smaller than the reference value l (σ≦l)
Assume that the operating conditions in the current region are stable, and furthermore,
Individual deviation calculations σn=|αave−αn| of the sampled values for which the average value αave has been calculated are performed. Next, among those deviations σn, those σn larger than the reference value m
>m, the sampling peak values αx (x pieces) are deleted, and the corrected average value αa of the sampling peak values of α is
Calculate ve0.

【0010】αave0=(Σα−Σσx)/(n−x
)以上の補正を加えたαave0により、図4に示す様
単純平均値αave の診断時の理論空燃比相当係数値
からのずれが補正される。ここで、サンプリング個数n
、基準値l及びmは、エンジンの制御システムにより決
定される定数または、変数とする。
αave0=(Σα−Σσx)/(n−x
) With the above correction αave0, the deviation of the simple average value αave from the stoichiometric air-fuel ratio equivalent coefficient value at the time of diagnosis is corrected as shown in FIG. Here, the number of samples n
, reference values l and m are constants or variables determined by the engine control system.

【0011】図5,図6は、空燃比センサの劣化診断時
、空燃比センサ出力応答波形を得るための、空燃比フィ
ードバック係数の操作例を示した図である。図5は、α
ave0を演算後αを理論空燃比相当係数値αave0
の値を一定にクランプし、図に示すαave0をまたぐ
様、αの値をステップ状に変化させることにより空燃比
を理論空燃比の近傍で確実に変化させることで、空燃比
センサの出力起動力を急変させ、図7に示す様、その応
答波形を得る。その空燃比センサ出力応答波形の劣化判
定方法を図8に示す。図では、空燃比係数により燃料量
をleanからrichにステップ状に変化された時の
空燃比センサの正常出力応答波形(実線)と、劣化時出
力応答波形(点線)を示す。この劣化判定は、まず、空
燃比センサ出力にrich側出力電圧劣化判定レベルv
1 、及びlean側出力電圧劣化判定レベルv2 を
それぞれ下限値,上限値として出力値化較判定を行う。 次に、空燃比センサ出力応答波形の出力立ち上がり時の
傾き(微分値dv/dt)をみて、劣化判定を行う。ま
た、この他に、例えば空燃比フィードバック係数をle
anからrichに動かした時の、センサ出力応答がl
eanからrichになる時間を計測して劣化判定をす
る方法もある。また、図5に示す。aもしくはbを可変
したときの応答波形を利用した劣化判定方法も考えられ
る。図5に示すa,bは、a,bを可変した劣化判定の
場合を除いては、a及びbは、確実に理論空燃比を横断
できる値に設定する。これは、エンジンの制御システム
と運転領域より決まる定数または、変数とする。 また、a及びbは、αave0にクランプする場合、(
i)のlean側運転からクランプするのと、(ii)
のrich側運転からクランプするのとでは、クランプ
位置に偏差を生ずることがあるので、エンジン制御シス
テムや運転領域により、考慮する必要がある。
FIGS. 5 and 6 are diagrams showing an example of how the air-fuel ratio feedback coefficient is operated to obtain an air-fuel ratio sensor output response waveform when diagnosing deterioration of the air-fuel ratio sensor. Figure 5 shows α
After calculating ave0, α is the stoichiometric air-fuel ratio equivalent coefficient value αave0
By clamping the value of α to a constant value and changing the value of α stepwise so as to straddle αave0 shown in the figure, the air-fuel ratio can be reliably changed in the vicinity of the stoichiometric air-fuel ratio, thereby increasing the output starting force of the air-fuel ratio sensor. is suddenly changed, and the response waveform shown in FIG. 7 is obtained. A method for determining the deterioration of the air-fuel ratio sensor output response waveform is shown in FIG. The figure shows a normal output response waveform (solid line) and a degraded output response waveform (dotted line) of the air-fuel ratio sensor when the fuel amount is changed stepwise from lean to rich by the air-fuel ratio coefficient. This deterioration determination is performed by first applying the rich side output voltage deterioration determination level v to the air-fuel ratio sensor output.
1 and the lean side output voltage deterioration determination level v2 are set as lower and upper limit values, respectively, and a comparative determination is performed in terms of output values. Next, deterioration is determined by looking at the slope (differential value dv/dt) of the air-fuel ratio sensor output response waveform when the output rises. In addition, for example, the air-fuel ratio feedback coefficient may be
When moving from an to rich, the sensor output response is l
There is also a method of determining deterioration by measuring the time from ean to rich. It is also shown in FIG. A deterioration determination method using a response waveform when a or b is varied may also be considered. A and b shown in FIG. 5 are set to values that can reliably cross the stoichiometric air-fuel ratio, except in the case of deterioration determination in which a and b are varied. This is a constant or variable determined by the engine control system and operating range. Also, when a and b are clamped to αave0, (
(i) Clamping from lean side operation and (ii)
Clamping from the rich side operation may cause a deviation in the clamp position, so this needs to be taken into account depending on the engine control system and operating range.

【0012】図6は、図5とは違い、αave0または
αに、ランダムな周波数を持つステップ状波形を空燃比
フィードバック係数に入力し、その結果、空燃比センサ
出力応答波形を得、それらの相関をとり空燃比センサの
劣化判定を行う例を示した図である。
In FIG. 6, unlike FIG. 5, a step waveform with a random frequency is input to αave0 or α into the air-fuel ratio feedback coefficient, and as a result, an air-fuel ratio sensor output response waveform is obtained, and their correlation is FIG. 3 is a diagram illustrating an example in which deterioration of an air-fuel ratio sensor is determined by taking the following values.

【0013】図9は、本発明の一実施例についてのフロ
ーチャートを示した図である。まず、空燃比センサ活性
化か否かの判定を行う。活性化でない場合は終了する。 活性化している場合は、空燃比クローズドループ制御中
か否かの判定を行う。クローズドループ制御中でなけれ
ば、終了する。クローズドループ制御中ならば、定常運
転領域であるか否かの判定に移る。定常運転領域か否か
の判定は、基本燃料噴射パルス幅Tp ,エンジン回転
数,スロットル開度等のエンジン制御パラメータの変化
量または、大きさで行う。定常運転状態でなければ、終
了する。定常運転ならば、以下前述の図1から図8の説
明に従って、空燃比センサの劣化診断を行っていく。
FIG. 9 is a diagram showing a flow chart of one embodiment of the present invention. First, it is determined whether or not the air-fuel ratio sensor is activated. If not activated, terminate. If activated, it is determined whether air-fuel ratio closed loop control is being performed. If closed loop control is not in progress, it ends. If closed-loop control is in progress, the process moves on to determining whether or not it is in a steady-state operating region. The determination as to whether or not the engine is in the steady operation region is made based on the amount or magnitude of change in engine control parameters such as the basic fuel injection pulse width Tp, engine speed, and throttle opening. If the operation is not steady, it will end. In the case of steady operation, a deterioration diagnosis of the air-fuel ratio sensor is performed in accordance with the explanation of FIGS. 1 to 8 described above.

【0014】[0014]

【発明の効果】本発明によれば、空燃比センサの劣化診
断を正確に行なうことができるので以下に記載されるよ
うな効果を奏する。
According to the present invention, it is possible to accurately diagnose the deterioration of an air-fuel ratio sensor, thereby producing the following effects.

【0015】空燃比センサの劣化を診断することにより
、劣化センサの交換を、メーカ・ユーザ等に促し、排気
ガス清浄効果が高められ、環境問題を克服できる効果が
ある。
By diagnosing the deterioration of the air-fuel ratio sensor, manufacturers and users are encouraged to replace the deteriorated sensor, the exhaust gas cleaning effect is enhanced, and environmental problems can be overcome.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の装置の一実施例の全体概念図。FIG. 1 is an overall conceptual diagram of an embodiment of the apparatus of the present invention.

【図2】フィードバック係数αの平均値の演算を説明し
た図。
FIG. 2 is a diagram illustrating calculation of the average value of feedback coefficient α.

【図3】平均値αave の補正演算を説明した図。FIG. 3 is a diagram illustrating a correction calculation of the average value αave.

【図4】平均値αave の補正演算を説明した図。FIG. 4 is a diagram illustrating a correction calculation of the average value αave.

【図5】空燃比フィードバック係数の操作例を説明した
図。
FIG. 5 is a diagram illustrating an example of how the air-fuel ratio feedback coefficient is operated.

【図6】空燃比フィードバック係数の操作例を説明した
図。
FIG. 6 is a diagram illustrating an example of how the air-fuel ratio feedback coefficient is operated.

【図7】空燃比センサ出力応答を説明した図。FIG. 7 is a diagram illustrating an air-fuel ratio sensor output response.

【図8】空燃比センサ出力応答の劣化判定方法を示した
一実施例を説明した図。
FIG. 8 is a diagram illustrating an example of a method for determining deterioration of an air-fuel ratio sensor output response.

【図9】本発明の一実施例を説明したフローチャートを
示した図。
FIG. 9 is a diagram showing a flowchart explaining one embodiment of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気系路に配設された少なくと
も1つの空燃比検出手段、前記空燃比検出値を基に空燃
比を変更する手段、前記空燃比を変更することにより、
空燃比フィードバック制御を行う手段、エンジン運転状
態を示すパラメータを検出する手段、とを有する内燃機
関において、空燃比のフィードバック制御係数より、理
論空燃比を与えるフィードバック係数値を求める手段を
有すことを特徴とする空燃比センサ劣化診断装置。
1. At least one air-fuel ratio detection means disposed in an exhaust system path of an internal combustion engine; means for changing the air-fuel ratio based on the air-fuel ratio detection value; by changing the air-fuel ratio,
In an internal combustion engine having means for performing air-fuel ratio feedback control and means for detecting a parameter indicating an engine operating state, the present invention further includes means for determining a feedback coefficient value giving a stoichiometric air-fuel ratio from an air-fuel ratio feedback control coefficient. Features: Air-fuel ratio sensor deterioration diagnosis device.
【請求項2】定常運転状態を判断し、理論空燃比の近傍
で空燃比フィードバック係数を変化させ、その時の空燃
比センサ出力応答特性により、空燃比センサの劣化診断
を行うことを特徴とする請求項1記載の空燃比センサ劣
化診断装置。
[Claim 2] A claim characterized in that the steady-state operating state is determined, the air-fuel ratio feedback coefficient is changed in the vicinity of the stoichiometric air-fuel ratio, and the deterioration diagnosis of the air-fuel ratio sensor is performed based on the air-fuel ratio sensor output response characteristic at that time. Item 1. The air-fuel ratio sensor deterioration diagnostic device according to item 1.
【請求項3】空燃比フィードバック係数をランダム信号
に基づいて、理論空燃比の近傍で変化させ、その時の空
燃比センサ応答波形との相関をみることで、空燃比セン
サの劣化診断を行うことを特徴とする請求項1記載の空
燃比センサ劣化診断装置。
3. Diagnosing deterioration of the air-fuel ratio sensor by changing the air-fuel ratio feedback coefficient near the stoichiometric air-fuel ratio based on a random signal and checking the correlation with the air-fuel ratio sensor response waveform at that time. The air-fuel ratio sensor deterioration diagnostic device according to claim 1.
【請求項4】請求項2又は3において、空燃比センサ劣
化と診断した場合、報知手段をもつて、運転者又は、整
備者に異常を報知することを特徴とする空燃比センサ劣
化診断装置。
4. The air-fuel ratio sensor deterioration diagnosing device according to claim 2 or 3, characterized in that when the air-fuel ratio sensor is diagnosed as deteriorating, the air-fuel ratio sensor deterioration diagnosis device is provided with a notification means to notify a driver or a maintenance person of the abnormality.
【請求項5】請求項1記載の理論空燃比を与えるフィー
ドバック係数値は、フィードバック係数のピーク値を複
数個サンプリングを行い、その平均値を求めることによ
り決定することを特徴とする空燃比センサ劣化診断装置
5. A deterioration of an air-fuel ratio sensor characterized in that the feedback coefficient value giving the stoichiometric air-fuel ratio according to claim 1 is determined by sampling a plurality of peak values of the feedback coefficient and finding the average value thereof. Diagnostic equipment.
【請求項6】請求項5記載のフィードバック係数のピー
ク値の平均値計算の際、平均値計算において、平均値よ
り値が大きくかけはなれたピーク値は、計算に含めない
ことで、より正確な理論空燃比を与えるフィードバック
係数値を求めることを特徴とする空燃比センサの劣化診
断装置。
[Claim 6] When calculating the average value of the peak values of the feedback coefficients according to claim 5, peak values whose values are far apart from the average value are not included in the calculation to obtain more accurate results. A deterioration diagnostic device for an air-fuel ratio sensor, characterized by determining a feedback coefficient value that provides a stoichiometric air-fuel ratio.
JP557491A 1991-01-22 1991-01-22 Air-fuel ratio sensor deterioration diagnostic device Pending JPH04237851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP557491A JPH04237851A (en) 1991-01-22 1991-01-22 Air-fuel ratio sensor deterioration diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP557491A JPH04237851A (en) 1991-01-22 1991-01-22 Air-fuel ratio sensor deterioration diagnostic device

Publications (1)

Publication Number Publication Date
JPH04237851A true JPH04237851A (en) 1992-08-26

Family

ID=11614995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP557491A Pending JPH04237851A (en) 1991-01-22 1991-01-22 Air-fuel ratio sensor deterioration diagnostic device

Country Status (1)

Country Link
JP (1) JPH04237851A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201160B2 (en) 2003-09-11 2007-04-10 Denso Corporation Air-fuel ratio sensor monitor, air-fuel ratio detector, and air-fuel ratio control
JP2008267883A (en) * 2007-04-17 2008-11-06 Toyota Motor Corp Abnormality diagnosis device of air-fuel ratio sensor
JP2009074556A (en) * 2008-12-05 2009-04-09 Hitachi Ltd Diagnostic device and control device for internal combustion engine
JP2012251563A (en) * 2012-09-24 2012-12-20 Hitachi Automotive Systems Ltd Diagnostic device and control device of internal combustion engine
FR3114842A1 (en) * 2020-10-06 2022-04-08 Psa Automobiles Sa METHOD FOR DIAGNOSING DAMAGE TO A CATALYST AND AN OXYGEN SENSOR

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201160B2 (en) 2003-09-11 2007-04-10 Denso Corporation Air-fuel ratio sensor monitor, air-fuel ratio detector, and air-fuel ratio control
US7248960B2 (en) 2003-09-11 2007-07-24 Denso Corporation Air-fuel ratio sensor monitor, air-fuel ratio detector, and air-fuel ratio control
JP2008267883A (en) * 2007-04-17 2008-11-06 Toyota Motor Corp Abnormality diagnosis device of air-fuel ratio sensor
JP2009074556A (en) * 2008-12-05 2009-04-09 Hitachi Ltd Diagnostic device and control device for internal combustion engine
JP2012251563A (en) * 2012-09-24 2012-12-20 Hitachi Automotive Systems Ltd Diagnostic device and control device of internal combustion engine
FR3114842A1 (en) * 2020-10-06 2022-04-08 Psa Automobiles Sa METHOD FOR DIAGNOSING DAMAGE TO A CATALYST AND AN OXYGEN SENSOR

Similar Documents

Publication Publication Date Title
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
JPH0634491A (en) Lean limit detecting method utilizing ion current
US6470674B1 (en) Deterioration detecting apparatus and method for engine exhaust gas purifying device
US6076502A (en) Exhaust gas recirculation control system for internal combustion engines
US5819530A (en) Internal combustion engine controller with exhaust gas purification catalyst and its deterioration monitoring system
US5811661A (en) Method for monitoring the functional capability of an exhaust gas sensor-heater
US7063081B2 (en) Deterioration determining apparatus and deterioration determining method for oxygen sensor
JPH03249320A (en) Deterioration detecting device for catalyst
JPH04237851A (en) Air-fuel ratio sensor deterioration diagnostic device
JPH01109234A (en) Deciding device for abnormality of knocking detecting device
JPH0416757A (en) Apparatus for diagnosing deterioration of oxygen sensor
JPH04292546A (en) Device for diagnosing deterioration of air/fuel ratio sensor
US6192310B1 (en) Device and method for diagnosing the condition of a probe upstream from a catalytic converter
JP3182357B2 (en) Lean combustion control limit detection method for internal combustion engine
US5381656A (en) Engine air/fuel control system with catalytic converter monitoring
JP2000291485A (en) Misfire detecting device for engine
JP3264234B2 (en) Catalyst deterioration detection device for internal combustion engine
JP3237205B2 (en) Evaporative fuel processing equipment
KR0154019B1 (en) Air/fuel ratio control device and method of engin state
JP2847454B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2879301B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2567535B2 (en) Internal combustion engine operating state control device
JP2837690B2 (en) Oxygen sensor abnormality detection device
JP3563435B2 (en) Cylinder-specific combustion control method
JP2683418B2 (en) Air-fuel ratio control device