JP2847454B2 - Air-fuel ratio detection device for internal combustion engine - Google Patents

Air-fuel ratio detection device for internal combustion engine

Info

Publication number
JP2847454B2
JP2847454B2 JP4164589A JP16458992A JP2847454B2 JP 2847454 B2 JP2847454 B2 JP 2847454B2 JP 4164589 A JP4164589 A JP 4164589A JP 16458992 A JP16458992 A JP 16458992A JP 2847454 B2 JP2847454 B2 JP 2847454B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
output
sensor
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4164589A
Other languages
Japanese (ja)
Other versions
JPH063304A (en
Inventor
尚己 冨澤
亨 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP4164589A priority Critical patent/JP2847454B2/en
Publication of JPH063304A publication Critical patent/JPH063304A/en
Application granted granted Critical
Publication of JP2847454B2 publication Critical patent/JP2847454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は内燃機関における空燃比
検出装置に関し、詳しくは、排気成分濃度に基づいて機
関吸入混合気の空燃比を検出するセンサの出力特性ばら
つきを補正する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio detecting device for an internal combustion engine, and more particularly to a technique for correcting variations in output characteristics of a sensor for detecting an air-fuel ratio of an engine intake air-fuel mixture based on exhaust gas component concentration.

【0002】[0002]

【従来の技術】従来から、機関排気中の酸素濃度を酸素
センサで検出することによって機関吸入混合気の空燃比
を間接的に検出し、該酸素センサで検出される空燃比を
目標空燃比に近づけるように燃料供給量をフィードバッ
ク制御する空燃比フィードバック制御が知られている
(特開昭60−240840号公報等参照)。
2. Description of the Related Art Conventionally, the air-fuel ratio of an engine intake air-fuel mixture is indirectly detected by detecting the oxygen concentration in engine exhaust with an oxygen sensor, and the air-fuel ratio detected by the oxygen sensor is set to a target air-fuel ratio. There is known an air-fuel ratio feedback control for performing feedback control of a fuel supply amount so as to approach the fuel supply amount (see Japanese Patent Application Laid-Open No. 60-240840).

【0003】かかる空燃比フィードバック制御において
は、理論空燃比に対するリッチ・リーンを検出できる酸
素センサを用いて、目標空燃比を理論空燃比とする制御
が従来から一般的に行われてきたが、近年の燃費向上要
求の高まりに対応して、理論空燃比よりも極めて高い空
燃比(例えば20〜24)を目標空燃比とする希薄燃焼機関
が開発されており、酸素センサとしても、広範囲な空燃
比領域を検出できる全領域空燃比センサが用いられるよ
うになってきている。
In such air-fuel ratio feedback control, control for setting a target air-fuel ratio to a stoichiometric air-fuel ratio by using an oxygen sensor capable of detecting rich / lean with respect to a stoichiometric air-fuel ratio has been generally performed. In response to the increasing demand for improved fuel efficiency, lean-burn engines have been developed that use an air-fuel ratio that is much higher than the stoichiometric air-fuel ratio (for example, 20 to 24) as the target air-fuel ratio. An all-area air-fuel ratio sensor capable of detecting an area has been used.

【0004】前記全領域空燃比センサとしては、例えば
図4に示すような信号処理回路で実現されるものが知ら
れている。図4において、点線で囲んだ部分がセンサ素
子部の等価回路を示し、かかるセンサ素子は、安定化ジ
ルコニアで隔てられる排気側と拡散室側との酸素分圧の
差に応じて発生するセンサ電流Ipsにより、センサ出
力電圧Vsを発生するものであり、処理回路では、前記
出力電圧Vsの平衡点(図4では450 mV)からのずれ
がゼロになるように、つまり、等価的センサ電流Ipe
をゼロにするような電流Ip(ポンプ電流)を、前記出
力電圧Vsと平衡点との比較に基づいて誤差アンプから
センサ素子側に流し込む(又は、吸い出す)というフィ
ードバック処理回路を構成している。ここで、センサ出
力としては、前記電流Ipを抵抗Rsにより電圧に変換
して取り出すようになっている。
As the full-range air-fuel ratio sensor, for example, a sensor realized by a signal processing circuit as shown in FIG. 4 is known. In FIG. 4, a portion surrounded by a dotted line shows an equivalent circuit of the sensor element portion, and the sensor element generates a sensor current generated according to a difference in oxygen partial pressure between the exhaust side and the diffusion chamber side separated by stabilized zirconia. A sensor output voltage Vs is generated by Ips. In the processing circuit, the deviation of the output voltage Vs from the equilibrium point (450 mV in FIG. 4) becomes zero, that is, the equivalent sensor current Ipe
A current Ip (pump current) which makes zero zero is supplied from the error amplifier to the sensor element based on the comparison between the output voltage Vs and the equilibrium point. Here, as the sensor output, the current Ip is converted into a voltage by the resistor Rs and taken out.

【0005】即ち、従来から知られているジルコニア型
酸素センサの機能に酸素ポンプ機能を追加したものであ
り、基準の酸素分圧差のときに得られる出力電圧が維持
されるように、ジルコニア素子部に強制的に電流を流し
込む(又は、吸い出す)ものであり、前記出力電圧の維
持に必要とされる電流のレベルに基づき平衡点を基準と
して空燃比を検出するものである。
That is, an oxygen pump function is added to the function of a conventionally known zirconia type oxygen sensor, and a zirconia element section is provided so that an output voltage obtained at a reference oxygen partial pressure difference is maintained. A current is forced to flow into (or out of) the air-fuel ratio, and the air-fuel ratio is detected based on the equilibrium point based on the level of the current required to maintain the output voltage.

【0006】[0006]

【発明が解決しようとする課題】ところで、前述のよう
な空燃比センサでは、センサ出力値(電流Ip)と排気
中の酸素濃度との関係が、センサの単品ばらつきによっ
てセンサ毎に僅かながら異なる特性を示すことが避けら
れなかった。このため、例えば、目標空燃比を理論空燃
比に比べて極めて高い値(例えば20〜24)に設定し、か
かるリーン空燃比が実際に得られるように前記空燃比セ
ンサを用いてフィードバック制御を実行する場合、前記
空燃比センサの単品ばらつきによって実際に得られる空
燃比が前記目標リーン空燃比に対してばらつき、NOx
濃度が増大したり、燃焼が不安定になってサージを発生
させてしまうことがあった。
By the way, in the above-described air-fuel ratio sensor, the relationship between the sensor output value (current Ip) and the oxygen concentration in the exhaust is slightly different from sensor to sensor due to variations in individual sensors. Showing was inevitable. For this reason, for example, the target air-fuel ratio is set to an extremely high value (for example, 20 to 24) as compared with the stoichiometric air-fuel ratio, and the feedback control is executed using the air-fuel ratio sensor so that the lean air-fuel ratio is actually obtained. In this case, the air-fuel ratio actually obtained due to the single-unit variation of the air-fuel ratio sensor varies with respect to the target lean air-fuel ratio.
In some cases, the concentration increased, or combustion became unstable, causing a surge.

【0007】空燃比センサの単品ばらつきを補償する方
法としては、予め空燃比センサ毎に出力信号を検定し、
出力信号のばらつきに対応した抵抗値の抵抗をセンサに
取り付けておき、その値をユニット側で読み取ってセン
サ出力信号をセンサ毎の特性に応じて補正したり、又
は、センサ回路に前記検定結果に対応する抵抗値の調整
抵抗を付加する方法などが行われていた。
[0007] As a method of compensating for the variation of the single unit of the air-fuel ratio sensor, an output signal is tested in advance for each air-fuel ratio sensor.
A resistance having a resistance value corresponding to the variation of the output signal is attached to the sensor, and the value is read on the unit side to correct the sensor output signal according to the characteristic of each sensor, or the sensor circuit adds the test result to the test result. A method of adding an adjustment resistor having a corresponding resistance value has been performed.

【0008】しかしながら、上記のばらつき補償方法に
よると、予め空燃比センサ毎に出力信号を検定する必要
があるから、大幅な工数の増大を招き、また、実際に機
関に取り付けた状態での出力と、検定条件での出力とに
偏差が生じることがあり、精度の良いばらつき補償が行
えないなどの問題があった。ところで、排気中の酸素濃
度に対するセンサ出力のばらつき、即ち、静的特性のば
らつきは、排気中の酸素濃度が変化するときのセンサ出
力値の応答特性に相関し、例えば図6に示すように、所
定の空燃比変化に対応して期待される応答特性に対する
実際の応答特性のずれが大きいとき程、静的なずれが大
きくなる傾向を示すことが実験から確認された。
However, according to the above-described variation compensation method, it is necessary to test the output signal for each air-fuel ratio sensor in advance, so that the number of man-hours is greatly increased, and the output in the state actually attached to the engine is reduced. In some cases, a deviation may occur from the output under the test conditions, and accurate dispersion compensation cannot be performed. By the way, the variation in the sensor output with respect to the oxygen concentration in the exhaust gas, that is, the variation in the static characteristics correlates with the response characteristic of the sensor output value when the oxygen concentration in the exhaust gas changes, for example, as shown in FIG. It has been confirmed from experiments that the static deviation tends to increase as the deviation of the actual response characteristic from the expected response characteristic corresponding to the predetermined air-fuel ratio change increases.

【0009】本発明は上記実情に鑑みなされたものであ
り、前述のように空燃比センサの応答特性が静的ばらつ
きに相関することを利用して、検定作業を行わずに実機
状態で空燃比センサの出力ばらつきを補正し得る空燃比
検出装置を提供し、以て、高精度な空燃比フィードバッ
ク制御を可能とすることを目的とする。
The present invention has been made in view of the above circumstances, and utilizes the fact that the response characteristic of the air-fuel ratio sensor correlates with the static variation as described above, and performs the air-fuel ratio operation in the actual machine state without performing a test operation. An object of the present invention is to provide an air-fuel ratio detection device capable of correcting output variations of a sensor, thereby enabling high-precision air-fuel ratio feedback control.

【0010】[0010]

【課題を解決するための手段】そのため本発明にかかる
内燃機関における空燃比検出装置は、図1又は図2に示
すように構成される。図1において、空燃比センサは、
機関吸入混合気の空燃比によって変化する排気中の特定
成分の濃度に感応して出力値が変化するセンサであり、
出力変換手段は、空燃比センサの出力値を空燃比のデー
タに変換する。
Therefore, an air-fuel ratio detecting device for an internal combustion engine according to the present invention is configured as shown in FIG. 1 or FIG. In FIG. 1, the air-fuel ratio sensor is
A sensor whose output value changes in response to the concentration of a specific component in exhaust gas that changes according to the air-fuel ratio of the engine intake air-fuel mixture,
The output converter converts the output value of the air-fuel ratio sensor into data of the air-fuel ratio.

【0011】また、空燃比制御手段は、機関吸入混合気
の空燃比を所定値だけ強制的に変化させ、応答性検出手
段は、前記空燃比制御手段による空燃比の変化に伴って
発生する前記空燃比センサの出力値変化における応答性
を示すパラメータを検出する。そして、変換特性補正手
段は、応答性検出手段で検出された応答性を示すパラメ
ータに基づいて前記出力変換手段の変換特性を補正す
る。
Further, the air-fuel ratio control means forcibly changes the air-fuel ratio of the engine intake air-fuel mixture by a predetermined value, and the responsiveness detecting means includes the air-fuel ratio generated by the air-fuel ratio control means. A parameter indicating responsiveness to a change in the output value of the air-fuel ratio sensor is detected. Then, the conversion characteristic correction unit corrects the conversion characteristic of the output conversion unit based on the parameter indicating the responsiveness detected by the responsiveness detection unit.

【0012】一方、図2において、領域別空燃比制御手
段は、機関運転領域毎に割り付けられた空燃比に従って
機関吸入混合気の空燃比を制御する。また、空燃比セン
サは、機関吸入混合気の空燃比によって変化する排気中
の特定成分の濃度に感応して出力値が変化するセンサで
あり、出力変換手段は、この空燃比センサの出力値を空
燃比のデータに変換する。
On the other hand, in FIG. 2, the region-specific air-fuel ratio control means controls the air-fuel ratio of the engine intake air-fuel mixture according to the air-fuel ratio assigned to each engine operation region. The air-fuel ratio sensor is a sensor whose output value changes in response to the concentration of a specific component in the exhaust gas which changes according to the air-fuel ratio of the engine intake air-fuel mixture, and the output conversion means converts the output value of this air-fuel ratio sensor to Convert to air-fuel ratio data.

【0013】また、期待値記憶手段は、前記運転領域毎
に割り付けられた空燃比の運転領域間の段差に応じて前
記空燃比センサの出力値変化の期待値を記憶している。
ここで、出力サンプリング手段は、前記領域別空燃比制
御手段で制御される実際の空燃比が、運転領域間の割り
付け空燃比の段差に応じて変化するときに、前記空燃比
センサの出力値の変化をサンプリングする。
The expected value storage means stores an expected value of a change in the output value of the air-fuel ratio sensor in accordance with a step between the operating regions of the air-fuel ratio assigned to each of the operating regions.
Here, the output sampling means, when the actual air-fuel ratio controlled by the area-specific air-fuel ratio control means changes according to the step of the assigned air-fuel ratio between the operation areas, the output value of the air-fuel ratio sensor Sample the change.

【0014】そして、期待値による補正手段は、上記出
力サンプリング手段でサンプリングされた出力値の変化
と、前記期待値記憶手段に記憶された対応する期待値と
を比較し、該比較結果に基づいて前記出力変換手段の変
換特性を補正する。
[0014] The correction means based on the expected value compares a change in the output value sampled by the output sampling means with a corresponding expected value stored in the expected value storage means, and based on the comparison result. The conversion characteristic of the output conversion means is corrected.

【0015】[0015]

【作用】かかる構成によると、機関吸入混合気の空燃比
を所定値だけ強制的に変化させることで、空燃比センサ
の出力応答を強制的に発生させ、実際の応答特性を示す
パラメータを検出する。前記応答特性は、排気成分濃度
に対するセンサ出力値のばらつきに相関するから、前記
応答特性を示すパラメータに基づいて、センサ出力を空
燃比のデータに変換する特性を補正する。
With this configuration, the output response of the air-fuel ratio sensor is forcibly generated by forcibly changing the air-fuel ratio of the engine intake air-fuel mixture by a predetermined value, and a parameter indicating the actual response characteristic is detected. . Since the response characteristic correlates with the variation of the sensor output value with respect to the exhaust gas component concentration, the characteristic for converting the sensor output into air-fuel ratio data is corrected based on the parameter indicating the response characteristic.

【0016】また、運転領域毎に割り付けられた空燃比
に応じた運転領域別の空燃比制御で、空燃比に段差が発
生するときに、かかる空燃比段差の発生に対応する空燃
比センサの応答をサンプリングする。そして、前記段差
に応じて予め記憶してある空燃比センサの出力変化の期
待値(期待される応答特性)と、前記サンプリングした
実際のセンサ応答とを比較し、期待値に対する実際の応
答の差に基づいて、出力値を空燃比データへ変換する特
性を補正する。
Further, when a step occurs in the air-fuel ratio in the air-fuel ratio control for each operation region according to the air-fuel ratio assigned to each operation region, the response of the air-fuel ratio sensor corresponding to the occurrence of the air-fuel ratio step Is sampled. Then, an expected value (expected response characteristic) of the output change of the air-fuel ratio sensor stored in advance according to the step is compared with the sampled actual sensor response, and a difference between the actual response and the expected value is compared. , The characteristic of converting the output value into the air-fuel ratio data is corrected.

【0017】[0017]

【実施例】以下に本発明の実施例を説明する。一実施例
を示す図3において、内燃機関1にはエアクリーナ2か
ら吸気ダクト3,スロットル弁4及び吸気マニホールド
5を介して空気が吸入される。吸気マニホールド5の各
ブランチ部には、各気筒別に燃料噴射弁6が設けられて
いる。この燃料噴射弁6は、ソレノイドに通電されて開
弁し、通電停止されて閉弁する電磁式燃料噴射弁であっ
て、後述するコントロールユニット12からの噴射パルス
信号により通電されて開弁し、図示しない燃料ポンプか
ら圧送されてプレッシャレギュレータにより所定の圧力
に調整された燃料を、機関1に噴射供給する。
Embodiments of the present invention will be described below. In FIG. 3 showing one embodiment, air is sucked into an internal combustion engine 1 from an air cleaner 2 via an intake duct 3, a throttle valve 4 and an intake manifold 5. In each branch of the intake manifold 5, a fuel injection valve 6 is provided for each cylinder. The fuel injection valve 6 is an electromagnetic fuel injection valve that is energized by a solenoid and opens, and is deenergized and closed by being energized by an injection pulse signal from a control unit 12, which will be described later. Fuel that is pressure-fed from a fuel pump (not shown) and adjusted to a predetermined pressure by a pressure regulator is injected and supplied to the engine 1.

【0018】機関1の各燃焼室には点火栓7が設けられ
ていて、これにより火花点火して混合気を着火燃焼させ
る。そして、機関1からは、排気マニホールド8,排気
ダクト9,触媒10及びマフラー11を介して排気が排出さ
れる。機関への燃料供給を電子制御するコントロールユ
ニット12は、CPU,ROM,RAM,A/D変換器及
び入出力インタフェイス等を含んで構成されるマイクロ
コンピュータを備え、各種のセンサからの入力信号を受
け、後述の如く燃料噴射弁6による燃料噴射量を演算
し、該燃料噴射量に基づいて燃料噴射弁6の作動を制御
する。
Each combustion chamber of the engine 1 is provided with an ignition plug 7 for igniting a mixture by igniting a spark. Then, exhaust gas is discharged from the engine 1 through the exhaust manifold 8, the exhaust duct 9, the catalyst 10, and the muffler 11. A control unit 12 for electronically controlling fuel supply to the engine includes a microcomputer including a CPU, a ROM, a RAM, an A / D converter, an input / output interface, and the like, and receives input signals from various sensors. Then, the fuel injection amount by the fuel injection valve 6 is calculated as described later, and the operation of the fuel injection valve 6 is controlled based on the fuel injection amount.

【0019】前記各種のセンサとしては、吸気ダクト3
中にエアフローメータ13が設けられていて、機関1の吸
入空気流量Qに応じた信号を出力する。また、クランク
角センサ14が設けられていて、所定クランク角毎の回転
信号を出力する。ここで、前記回転信号の周期、或い
は、所定時間内における発生数を計測することにより、
機関回転速度Neを算出できる。
The various sensors include an intake duct 3
An air flow meter 13 is provided therein, and outputs a signal corresponding to the intake air flow rate Q of the engine 1. Further, a crank angle sensor 14 is provided, and outputs a rotation signal for each predetermined crank angle. Here, by measuring the cycle of the rotation signal or the number of occurrences within a predetermined time,
The engine speed Ne can be calculated.

【0020】また、機関1のウォータジャケットの冷却
水温度Twを検出する水温センサ15が設けられている。
また、排気マニホールド8の集合部に空燃比センサ16が
設けられている。この空燃比センサ16は、機関吸入混合
気の空燃比によって変化する排気中の酸素(特定成分)
濃度に感応してその出力電圧(出力値)が変化するセン
サであり、本実施例では、既述した図4に示すような処
理回路によって構成され、広範囲な空燃比領域を検出で
きるものを用いる。
Further, a water temperature sensor 15 for detecting a cooling water temperature Tw of the water jacket of the engine 1 is provided.
In addition, an air-fuel ratio sensor 16 is provided at a collecting portion of the exhaust manifold 8. The air-fuel ratio sensor 16 detects the oxygen (specific component) in the exhaust gas which varies depending on the air-fuel ratio of the engine intake air-fuel mixture.
This sensor changes its output voltage (output value) in response to the concentration. In the present embodiment, a sensor configured by the processing circuit as shown in FIG. 4 and capable of detecting a wide air-fuel ratio region is used. .

【0021】図4については、既に説明してあるので詳
細な説明は省略するが、本実施例の空燃比センサ16は、
ジルコニア型酸素センサの機能に酸素ポンプ機能を追加
したものであり、酸素分圧差によって発生する起電力の
平衡点からのずれをゼロにするような電流Ipをジルコ
ニア素子部に流し込む(又は、吸い出す)ことにより、
前記電流Ipのレベルに基づいて空燃比を検出するもの
である。尚、センサ出力としては、前記ポンプ電流Ip
が電圧Voutに変換して出力されるものとする。
Although FIG. 4 has already been described, a detailed description thereof will be omitted, but the air-fuel ratio sensor 16 of this embodiment is
An oxygen pump function is added to the function of the zirconia-type oxygen sensor, and a current Ip that causes the deviation of an electromotive force generated by an oxygen partial pressure difference from an equilibrium point to flow into (or sucks out of) a zirconia element unit. By doing
The air-fuel ratio is detected based on the level of the current Ip. The sensor output is the pump current Ip
Is converted to a voltage Vout and output.

【0022】ここにおいて、コントロールユニット12に
内蔵されたマイクロコンピュータのCPUは、以下に示
すように、運転領域別に予め割り付けられた空燃比に従
って燃料噴射量(噴射パルス幅)Tiを演算し、該演算
された燃料噴射量Tiに基づき所定タイミングにおいて
燃料噴射弁6を開駆動制御することにより、機関への燃
料供給を電子制御する。
Here, the CPU of the microcomputer built in the control unit 12 calculates the fuel injection amount (injection pulse width) Ti in accordance with the air-fuel ratio assigned in advance for each operation region, as described below. The fuel supply to the engine is electronically controlled by controlling the opening of the fuel injection valve 6 at a predetermined timing based on the fuel injection amount Ti thus obtained.

【0023】本実施例においては、機関吸入混合気の空
燃比を理論空燃比付近に制御する理論空燃比領域と、理
論空燃比に対して極めて高いリーン空燃比(例えば20〜
24)に制御するリーンバーン領域とに、運転領域が大き
く2つに区分されており、更に、前記2つの運転領域を
それぞれ区分する細分領域毎に割り付けられた空燃比に
対応する運転領域別の空燃比補正係数KMRが設定され
る。
In the present embodiment, the stoichiometric air-fuel ratio region in which the air-fuel ratio of the engine intake air-fuel mixture is controlled near the stoichiometric air-fuel ratio, and a lean air-fuel ratio that is extremely high with respect to the stoichiometric air-fuel ratio (for example, 20 to
24), the operating region is roughly divided into two regions, that is, the lean burn region to be controlled, and the operating region corresponding to the air-fuel ratio assigned to each sub-region that divides the two operating regions. The air-fuel ratio correction coefficient KMR is set.

【0024】そして、吸入空気流量Qと機関回転速度N
eとに基づいて演算した基本燃料噴射量Tpを、前記運
転領域別の割り付け空燃比に対応する前記空燃比補正係
数KMRで補正すると共に、空燃比センサ16によって検
出される実際の空燃比と目標空燃比とを比較して、前記
基本燃料噴射量Tpを補正するための空燃比フィードバ
ック補正係数LMDを設定して、最終的な燃料噴射量T
iを演算することによって、運転領域毎に割り付けられ
た空燃比に対応する燃料噴射量Tiが得られるようにな
っている。
Then, the intake air flow rate Q and the engine speed N
e, the basic fuel injection amount Tp calculated based on the air fuel ratio is corrected by the air fuel ratio correction coefficient KMR corresponding to the air fuel ratio allocated to each operating region, and the actual air fuel ratio detected by the air fuel ratio sensor 16 and the target fuel injection amount Tp are corrected. The air-fuel ratio is compared with the air-fuel ratio to set an air-fuel ratio feedback correction coefficient LMD for correcting the basic fuel injection amount Tp.
By calculating i, a fuel injection amount Ti corresponding to the air-fuel ratio assigned to each operation region can be obtained.

【0025】コントロールユニット12は、上記のような
電子制御燃料噴射装置の制御ユニットとしての機能と共
に、本発明にかかる前記空燃比センサ16の出力特性ばら
つきを補償する機能を、図5のフローチャートに示すよ
うに備えている。図5のフローチャートにおいて、ま
ず、ステップ1(図中ではS1としてある。以下同様)
では、現在の運転条件(機関負荷,機関回転速度)がリ
ーンバーン領域に含まれるか否かを判別する。
The control unit 12 has a function as a control unit of the electronically controlled fuel injection device as described above and a function of compensating for variations in output characteristics of the air-fuel ratio sensor 16 according to the present invention, as shown in the flowchart of FIG. So prepared. In the flowchart of FIG. 5, first, step 1 (S1 in the figure; the same applies hereinafter).
Then, it is determined whether or not the current operating conditions (engine load, engine speed) are included in the lean burn region.

【0026】そして、リーンバーン領域内の運転条件で
あるときには、ステップ2へ進み、予め基本燃料噴射量
Tp(機関負荷相当値)と機関回転速度Neとにより区
分される運転領域毎に、リーンバーン領域内での空燃比
割り付けに対応する空燃比補正係数KMRを記憶したマ
ップを参照し、現在の運転条件に対応する空燃比補正係
数KMRL を求める。
If the operating condition is within the lean burn range, the routine proceeds to step 2, where the lean burn is performed for each of the operating ranges previously classified by the basic fuel injection amount Tp (engine load equivalent value) and the engine speed Ne. referring to a map that stores the air-fuel ratio correction coefficient KMR corresponding to the air-fuel ratio assignment in the region, determining the air-fuel ratio correction coefficient KMR L corresponding to the current operating conditions.

【0027】そして、前記空燃比補正係数KMRL によ
って基本燃料噴射量Tiを補正して、運転条件に対応し
て割り付けられたリーン空燃比に対応する燃料噴射量T
iを演算して出力する。一方、ステップ1でリーンバー
ン領域でないと判別されたときには、ステップ3へ進
み、同様にして、理論空燃比制御領域内に含まれる運転
条件に割り付けられた空燃比に対応する空燃比補正係数
KMRS を求め、これに基づいて燃料噴射量Tiを演算
し出力する。
[0027] Then, the through air-fuel ratio correction coefficient KMR L by correcting the basic fuel injection amount Ti, the fuel injection amount corresponding to the lean air-fuel ratio assigned to correspond to the operating conditions T
i is calculated and output. On the other hand, when it is determined in step 1 that the engine is not in the lean burn region, the process proceeds to step 3, and similarly, the air-fuel ratio correction coefficient KMR S corresponding to the air-fuel ratio assigned to the operating condition included in the stoichiometric air-fuel ratio control region. Is calculated, and the fuel injection amount Ti is calculated and output based on this.

【0028】即ち、機関運転領域毎に割り付けられた空
燃比(本実施例では大きく理論空燃比とリーン空燃比と
に分けられる)に従って機関吸入混合気の空燃比を制御
するものであり、上記のステップ1〜3の部分が領域別
空燃比制御手段に相当し、また、運転領域別の割り付け
に従って理論空燃比とリーン空燃比とに切り換えること
は、強制的に所定値だけ空燃比を変化させることになる
から、前記ステップ1〜3の部分が空燃比制御手段にも
相当する。
That is, the air-fuel ratio of the engine intake air-fuel mixture is controlled in accordance with the air-fuel ratio assigned to each engine operating region (in this embodiment, the air-fuel ratio is roughly divided into a stoichiometric air-fuel ratio and a lean air-fuel ratio). Steps 1 to 3 correspond to the air-fuel ratio control means for each area, and switching between the stoichiometric air-fuel ratio and the lean air-fuel ratio in accordance with the assignment for each operation area means forcibly changing the air-fuel ratio by a predetermined value. Therefore, the steps 1 to 3 correspond to the air-fuel ratio control means.

【0029】ステップ4では、リーンバーン領域と理論
空燃比制御領域との間での切り換えタイミングであるか
否か、即ち、運転条件の変化に伴って機関吸入混合気の
空燃比が大きな段差を有して強制的に変化するタイミン
グであるか否かを判別する。切り換えタイミングでない
ときには、後述する空燃比センサ16のばらつき学習が行
えないので、そのまま本プログラムを終了させる。
In step 4, it is determined whether or not it is the switching timing between the lean burn region and the stoichiometric air-fuel ratio control region, that is, the air-fuel ratio of the engine intake air-fuel mixture has a large step due to a change in the operating conditions. Then, it is determined whether or not it is time to forcibly change. If it is not the switching timing, the variation learning of the air-fuel ratio sensor 16, which will be described later, cannot be performed.

【0030】一方、リーンバーンと理論空燃比との間の
切り換えタイミングであるときには、ステップ5へ進
み、この大きな段差を有する空燃比変化に対応して変化
する空燃比センサ16の出力電圧Vout をサンプリングす
る。前記サンプリングされた出力電圧Vout は、次のス
テップ6でメモリに格納される。上記ステップ5,6の
部分が出力サンプリング手段及び応答性検出手段に相当
する。
On the other hand, when it is the switching timing between the lean burn and the stoichiometric air-fuel ratio, the process proceeds to step 5, where the output voltage Vout of the air-fuel ratio sensor 16 which changes in response to the air-fuel ratio change having this large step is sampled. I do. The sampled output voltage Vout is stored in the memory in the next step 6. Steps 5 and 6 correspond to output sampling means and responsiveness detecting means.

【0031】ステップ7では、今回のリーンバーン領域
と理論空燃比制御領域との間での切り換えに従って空燃
比を大きく変化させたときに期待される空燃比センサ16
の出力変化の特性を設定する。即ち、前記切り換えタイ
ミングで与えられる空燃比段差は、例えばリーン空燃比
から理論空燃比への切り換え時には、切り換え前のリー
ンバーン用の空燃比補正係数KMRL と、切り換え後の
理論空燃比用の空燃比補正係数KMRS とから判別され
るから、予め補正係数KMRL ,KMRS の組み合わせ
に応じて空燃比センサ16の出力変化の期待値を記憶して
おき、かかる出力変化の期待特性を、前記補正係数KM
L ,KMRS の組み合わせに基づいて読み出せるよう
にしてある。従って、上記ステップ7の部分が、コント
ロールユニット12の期待値記憶手段としての機能を示す
ものであり、実際には、コントロールユニット12に内蔵
されたメモリが前記期待値記憶手段に該当することにな
る。
In step 7, the air-fuel ratio sensor 16 expected when the air-fuel ratio is largely changed in accordance with the current switching between the lean burn region and the stoichiometric air-fuel ratio control region.
Set the output change characteristics. That is, the air-fuel ratio step given by the switching timing, for example, a lean from the air-fuel ratio when switching to a stoichiometric air-fuel ratio, the air-fuel ratio correction coefficient KMR L for lean-burn before switching, empty for the stoichiometric air-fuel ratio after switching Since it is determined from the fuel ratio correction coefficient KMR S , the expected value of the output change of the air-fuel ratio sensor 16 is stored in advance in accordance with the combination of the correction coefficients KMR L and KMR S , and the expected characteristic of the output change is calculated as described above. Correction coefficient KM
The data can be read out based on a combination of R L and KMR S. Therefore, the step 7 described above indicates the function of the control unit 12 as the expected value storage means, and the memory built in the control unit 12 actually corresponds to the expected value storage means. .

【0032】次のステップ8では、リーン空燃比と理論
空燃比との間の切り換えタイミングでサンプリングされ
た出力Vout と、前記期待される変化特性(応答特性の
期待値)とを比較し、期待される変化特性に対する実際
の出力Vout の応答ずれ時間を代表するデータΔtを求
める。即ち、実際に求めた出力Vout の変化特性と、同
じ空燃比段差を与えたときの基準となる出力変化特性と
を比較して、基準応答特性に対するずれを検出するもの
であり、前記代表データΔtとしては、各出力Vout 点
におけるずれ時間の平均又は最大や、中間出力Vout 時
点におけるずれ時間、更に、応答変化が開始されてから
終了するまでの時間などを求めれば良い。
In the next step 8, the output Vout sampled at the switching timing between the lean air-fuel ratio and the stoichiometric air-fuel ratio is compared with the expected change characteristic (expected value of the response characteristic). Data .DELTA.t representative of a response delay time of the actual output Vout with respect to the change characteristics is obtained. That is, the change characteristic of the actually obtained output Vout is compared with the reference output change characteristic when the same air-fuel ratio step is given, and a deviation from the reference response characteristic is detected. For example, the average or maximum of the shift time at each output Vout point, the shift time at the intermediate output Vout point, and the time from the start of the response change to the end thereof may be obtained.

【0033】尚、前記応答ずれ時間Δtが応答性を示す
パラメータに相当するが、前記時間Δtの代わりに、出
力Vout の変化速度を求めても良い。次のステップ9で
は、前記応答ずれ時間Δt(又は出力Vout の変化速
度) と、前記応答ずれ時間Δtに相関する出力値Vout
(空燃比段差を生じさせたときの起点出力,終点出力,
起点出力と終点出力との平均値等)とをパラメータとし
て、前記相関出力Vout に対応する真の空燃比〔A/
F〕をマップから求める。
Although the response delay time Δt corresponds to a parameter indicating the response, the change speed of the output Vout may be obtained instead of the time Δt. In the next step 9, the response delay time Δt (or the changing speed of the output Vout) and the output value Vout correlated to the response delay time Δt are determined.
(Start output, end output when air-fuel ratio step is generated,
The average air-fuel ratio corresponding to the correlation output Vout [A / A
F] is obtained from the map.

【0034】即ち、前記応答ずれ時間Δtが略零である
ときには、出力電圧Vout は、排気中酸素濃度(空燃
比)に対応して基準通り出力されているものと判断する
が、前記応答ずれ時間Δtが生じたときには、前記応答
ずれ時間Δtが大きいときほど、静的特性のずれが大き
く発生しているものと推定されるので、前記応答ずれ時
間Δtに基づいて本来対応すべき空燃比〔A/F〕を求
めるものである。
That is, when the response delay time Δt is substantially zero, it is determined that the output voltage Vout is output as a reference corresponding to the oxygen concentration in the exhaust gas (air-fuel ratio). When Δt occurs, it is estimated that the larger the response deviation time Δt is, the larger the deviation of the static characteristic is. Therefore, based on the response deviation time Δt, the air-fuel ratio [A / F].

【0035】次のステップ10では、前記ステップ9で求
められた出力Vout に対応する真の空燃比データ〔A/
F〕に基づいて、出力Vout を空燃比データに変換する
ための変換テーブルの該当する出力Vout に対応する空
燃比を書き換える。このステップ10の部分が変換特性補
正手段及び期待値による補正手段に相当し、補正される
変換テーブルが出力変換手段に相当する。
In the next step 10, the true air-fuel ratio data [A /
F], the air-fuel ratio corresponding to the corresponding output Vout in the conversion table for converting the output Vout into air-fuel ratio data is rewritten. Step 10 corresponds to the conversion characteristic correction unit and the correction unit based on the expected value, and the conversion table to be corrected corresponds to the output conversion unit.

【0036】上記のようにして、空燃比センサ16の静的
特性を所定の空燃比変化を生じさせたときの応答特性か
ら補正する構成であれば、空燃比センサ16の静的特性の
ばらつきを、予め検定を行う必要なく実機状態で補正す
ることができるようになり、また、予め検定を行って求
めたばらつき特性の実機上での誤差を吸収できるように
なる。従って、空燃比センサ16の静的特性ばらつきを高
精度かつ簡便に補正することができ、以て、空燃比フィ
ードバック制御の精度を向上させることができる。
As described above, if the static characteristic of the air-fuel ratio sensor 16 is corrected from the response characteristic when a predetermined air-fuel ratio change is caused, the variation of the static characteristic of the air-fuel ratio sensor 16 can be reduced. This makes it possible to make corrections in the actual machine state without having to perform the test in advance, and to absorb errors in the actual machine in the variation characteristics obtained by performing the test in advance. Therefore, it is possible to easily and accurately correct the static characteristic variation of the air-fuel ratio sensor 16, and to improve the accuracy of the air-fuel ratio feedback control.

【0037】ところで、上記実施例では、リーンバーン
領域と理論空燃比領域との間の切り換え時に発生する大
きな空燃比段差を利用し、かかる空燃比段差に伴って発
生するセンサ出力Vout の変化をサンプリングさせるよ
うにしたが、空燃比センサ16の応答特性を検出するため
にのみ空燃比を強制的に変化させ、このときの出力Vou
t の応答特性を求めるようにしても良い。但し、上記の
ようにセンサばらつきの学習用として空燃比を強制的に
変化させる場合には、運転性に大きく影響しないよう
に、アイドル運転時等に限定して行わせることが好まし
い。
In the above embodiment, the change in the sensor output Vout caused by the air-fuel ratio step is sampled by utilizing the large air-fuel ratio step generated when switching between the lean burn region and the stoichiometric air-fuel ratio region. However, the air-fuel ratio is forcibly changed only to detect the response characteristic of the air-fuel ratio sensor 16, and the output Vou at this time is changed.
The response characteristic of t may be obtained. However, when the air-fuel ratio is forcibly changed for learning the sensor variation as described above, it is preferable that the air-fuel ratio be limited to an idling operation or the like so as not to greatly affect the drivability.

【0038】尚、本実施例では、空燃比センサ16として
ジルコニア型酸素センサに酸素ポンプ機能を加えて構成
されるものを示したが、これに限定されるものではな
く、種々の構成の酸素センサに適用できるものである。
In this embodiment, the air-fuel ratio sensor 16 is constructed by adding an oxygen pump function to a zirconia type oxygen sensor. However, the present invention is not limited to this. It can be applied to

【0039】[0039]

【発明の効果】以上説明したように本発明にかかる内燃
機関における空燃比検出装置によると、実機に空燃比セ
ンサを装着した状態で空燃比センサの単品ばらつきを検
出してこれを補償する補正を行うので、予め空燃比セン
サの出力を個々に検定する必要がなく、又は、予め検定
を行って求めたばらつき特性の実機上での不適合を吸収
でき、工数を増大させることなくかつ高精度に空燃比セ
ンサの単品ばらつきを補償できるようになるという効果
がある。
As described above, according to the air-fuel ratio detecting apparatus for an internal combustion engine according to the present invention, a correction for compensating for a variation in the air-fuel ratio sensor by detecting a single component of the air-fuel ratio sensor in a state where the air-fuel ratio sensor is mounted on the actual machine. Therefore, it is not necessary to individually verify the output of the air-fuel ratio sensor in advance, or it is possible to absorb the inconsistency of the variation characteristics obtained by performing the verification in advance on the actual machine, and to accurately perform the air measurement without increasing the number of steps. There is an effect that it is possible to compensate for variations in the single fuel ratio sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構成を示すブロック図。FIG. 1 is a block diagram showing a basic configuration of the present invention.

【図2】本発明の基本構成を示すブロック図。FIG. 2 is a block diagram showing a basic configuration of the present invention.

【図3】実施例のシステム概略図。FIG. 3 is a system schematic diagram of an embodiment.

【図4】実施例における空燃比センサの処理回路を示す
回路図。
FIG. 4 is a circuit diagram showing a processing circuit of the air-fuel ratio sensor in the embodiment.

【図5】実施例における空燃比センサのばらつき学習の
様子を示すフローチャート。
FIG. 5 is a flowchart showing a state of learning variation of the air-fuel ratio sensor in the embodiment.

【図6】空燃比センサの実際の応答特性と期待応答値と
の比較を示すタイムチャート。
FIG. 6 is a time chart showing a comparison between an actual response characteristic of the air-fuel ratio sensor and an expected response value.

【符号の説明】[Explanation of symbols]

1 内燃機関 6 燃料噴射弁 12 コントロールユニット 13 エアフローメータ 14 クランク角センサ 16 空燃比センサ 1 internal combustion engine 6 fuel injection valve 12 control unit 13 air flow meter 14 crank angle sensor 16 air-fuel ratio sensor

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 27/419 G01N 27/26 G01N 27/409Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 27/419 G01N 27/26 G01N 27/409

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関吸入混合気の空燃比によって変化する
排気中の特定成分の濃度に感応して出力値が変化する空
燃比センサと、 該空燃比センサの出力値を空燃比のデータに変換する出
力変換手段と、 機関吸入混合気の空燃比を所定値だけ強制的に変化させ
る空燃比制御手段と、 該空燃比制御手段による空燃比の変化に伴って発生する
前記空燃比センサの出力値変化における応答性を示すパ
ラメータを検出する応答性検出手段と、 該応答性検出手段で検出された応答性を示すパラメータ
に基づいて前記出力変換手段の変換特性を補正する変換
特性補正手段と、 を含んで構成された内燃機関における空燃比検出装置。
An air-fuel ratio sensor whose output value changes in response to the concentration of a specific component in exhaust gas that changes according to the air-fuel ratio of an engine intake air-fuel mixture, and the output value of the air-fuel ratio sensor is converted into air-fuel ratio data. Output conversion means, an air-fuel ratio control means for forcibly changing the air-fuel ratio of the engine intake air-fuel mixture by a predetermined value, and an output value of the air-fuel ratio sensor generated with the change of the air-fuel ratio by the air-fuel ratio control means. Responsiveness detecting means for detecting a parameter indicating responsiveness in change, and conversion characteristic correcting means for correcting the conversion characteristic of the output converting means based on the parameter indicating responsiveness detected by the responsiveness detecting means. An air-fuel ratio detection device for an internal combustion engine configured to include:
【請求項2】機関運転領域毎に割り付けられた空燃比に
従って機関吸入混合気の空燃比を制御する領域別空燃比
制御手段を備えた内燃機関における空燃比検出装置であ
って、 機関吸入混合気の空燃比によって変化する排気中の特定
成分の濃度に感応して出力値が変化する空燃比センサ
と、 該空燃比センサの出力値を空燃比のデータに変換する出
力変換手段と、 前記運転領域毎に割り付けられた空燃比の運転領域間の
段差に応じて前記空燃比センサの出力値変化の期待値を
記憶した期待値記憶手段と、 前記領域別空燃比制御手段で制御される実際の空燃比
が、運転領域間の割り付け空燃比の段差に応じて変化す
るときに、前記空燃比センサの出力値の変化をサンプリ
ングする出力サンプリング手段と、 該出力サンプリング手段でサンプリングされた出力値の
変化と、前記期待値記憶手段に記憶された対応する期待
値とを比較し、該比較結果に基づいて前記出力変換手段
の変換特性を補正する期待値による補正手段と、 を含んで構成された内燃機関における空燃比検出装置。
2. An air-fuel ratio detecting device for an internal combustion engine, comprising: a region-specific air-fuel ratio control means for controlling an air-fuel ratio of an engine intake air-fuel mixture according to an air-fuel ratio assigned to each engine operation region. An air-fuel ratio sensor whose output value changes in response to the concentration of a specific component in exhaust gas that changes according to the air-fuel ratio of the air-fuel ratio; an output conversion unit that converts an output value of the air-fuel ratio sensor into air-fuel ratio data; Expectation value storage means for storing an expected value of an output value change of the air-fuel ratio sensor in accordance with a step between operation areas of the air-fuel ratio assigned to each of the air-fuel ratios; and actual air controlled by the area-specific air-fuel ratio control means. Output sampling means for sampling a change in the output value of the air-fuel ratio sensor when the fuel ratio changes in accordance with the step of the assigned air-fuel ratio between the operation regions; Correction means for comparing the change in the output value with the corresponding expected value stored in the expected value storage means, and correcting the conversion characteristic of the output conversion means based on the comparison result. An air-fuel ratio detection device for an internal combustion engine configured to include:
JP4164589A 1992-06-23 1992-06-23 Air-fuel ratio detection device for internal combustion engine Expired - Fee Related JP2847454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4164589A JP2847454B2 (en) 1992-06-23 1992-06-23 Air-fuel ratio detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4164589A JP2847454B2 (en) 1992-06-23 1992-06-23 Air-fuel ratio detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH063304A JPH063304A (en) 1994-01-11
JP2847454B2 true JP2847454B2 (en) 1999-01-20

Family

ID=15796055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4164589A Expired - Fee Related JP2847454B2 (en) 1992-06-23 1992-06-23 Air-fuel ratio detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2847454B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766074B2 (en) 2008-05-30 2011-09-07 株式会社デンソー Fuel injection control device for internal combustion engine
DE102011078056A1 (en) * 2011-06-24 2012-12-27 Robert Bosch Gmbh Method for adjusting a characteristic of a sensor element
DE102013220117B3 (en) * 2013-10-04 2014-07-17 Continental Automotive Gmbh Device for operating an internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759908B2 (en) * 1986-08-07 1995-06-28 マツダ株式会社 Air-fuel ratio controller for engine
JPH01130033A (en) * 1987-11-13 1989-05-23 Honda Motor Co Ltd Air-fuel ratio controlling method for internal combustion engine
JPH076431B2 (en) * 1988-11-11 1995-01-30 株式会社日立製作所 Air-fuel ratio controller for internal combustion engine

Also Published As

Publication number Publication date
JPH063304A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
US5806306A (en) Deterioration monitoring apparatus for an exhaust system of an internal combustion engine
US7287525B2 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
US4467770A (en) Method and apparatus for controlling the air-fuel ratio in an internal combustion engine
US6282485B1 (en) Air estimation system and method
US4889098A (en) Air-fuel ratio detecting apparatus for an internal combustion engine equipped with a heater controller
JP2000204986A (en) Diagnostic device and method for internal combustion engine
US7377262B2 (en) Air-fuel ratio controlling apparatus for an engine
JPH0827203B2 (en) Engine intake air amount detector
US5158058A (en) Air-fuel ratio feedback control method for a multi-fuel internal combustion engine
US5033437A (en) Method of controlling air-fuel ratio for use in internal combustion engine and apparatus of controlling the same
JP2847454B2 (en) Air-fuel ratio detection device for internal combustion engine
JPH0819880B2 (en) Exhaust gas recirculation control device
JPH01224424A (en) Control device for internal-combustion engine
JP2841001B2 (en) Air-fuel ratio feedback control device for internal combustion engine
US5107816A (en) Air-fuel ratio control apparatus
JP2755671B2 (en) Fuel injection control method and device
JP2596054Y2 (en) Air-fuel ratio feedback control device for internal combustion engine
KR0154019B1 (en) Air/fuel ratio control device and method of engin state
JPH04116237A (en) Air-fuel ratio controller of internal combustion engine
JPH0968094A (en) Air-fuel ratio control device of internal combustion engine
JPH0559994A (en) Control device for engine
JPH04259639A (en) Air-fuel ratio control device for internal combustion engine
JP2591072B2 (en) Control device for internal combustion engine
JP2853178B2 (en) Engine air-fuel ratio detector
JP2591761Y2 (en) Air-fuel ratio detection device for internal combustion engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees