JP4775199B2 - Air-fuel ratio detection device for internal combustion engine - Google Patents

Air-fuel ratio detection device for internal combustion engine Download PDF

Info

Publication number
JP4775199B2
JP4775199B2 JP2006247953A JP2006247953A JP4775199B2 JP 4775199 B2 JP4775199 B2 JP 4775199B2 JP 2006247953 A JP2006247953 A JP 2006247953A JP 2006247953 A JP2006247953 A JP 2006247953A JP 4775199 B2 JP4775199 B2 JP 4775199B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
responsiveness
exhaust gas
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006247953A
Other languages
Japanese (ja)
Other versions
JP2008069688A (en
Inventor
山下  幸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006247953A priority Critical patent/JP4775199B2/en
Publication of JP2008069688A publication Critical patent/JP2008069688A/en
Application granted granted Critical
Publication of JP4775199B2 publication Critical patent/JP4775199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、排気管に設置された空燃比センサの応答性を検出する内燃機関の空燃比検出装置に関する。   The present invention relates to an air-fuel ratio detection apparatus for an internal combustion engine that detects the responsiveness of an air-fuel ratio sensor installed in an exhaust pipe.

近年、内燃機関を搭載した車両では、排ガス浄化用の触媒の上流側に排ガスの空燃比(A/F)を検出する空燃比センサを設置し、その空燃比センサを用いて排ガスのA/Fを算出する技術が考えられている。この空燃比センサの出力に基づいて空燃比をフィードバック制御することで触媒の排ガス浄化効率を高めるようにしている。このような排ガス浄化システムにおいては、空燃比センサの応答劣化により空燃比制御精度が低下した状態(つまり排ガス浄化効率が低下した状態)で運転が続けられるのを防ぐために、空燃比センサの応答劣化を検出するようにしたものがある。   In recent years, in a vehicle equipped with an internal combustion engine, an air-fuel ratio sensor for detecting an air-fuel ratio (A / F) of exhaust gas is installed upstream of a catalyst for exhaust gas purification, and the A / F of exhaust gas is detected using the air-fuel ratio sensor. A technique for calculating the value is considered. The exhaust gas purification efficiency of the catalyst is increased by feedback control of the air-fuel ratio based on the output of the air-fuel ratio sensor. In such an exhaust gas purification system, the response deterioration of the air-fuel ratio sensor is prevented in order to prevent the operation from being continued in a state where the air-fuel ratio control accuracy is lowered due to the deterioration of the response of the air-fuel ratio sensor (that is, the exhaust gas purification efficiency is lowered). There is something to detect.

例えば、特許文献1に開示された技術には、空燃比センサの応答劣化を示す劣化パラメータに応じて、空燃比を検出するサンプルタイミング及び空燃比の検出に使用される応答遅れを補正する内容が記載されている。また、特許文献2の発明では、特定条件で空燃比センサの応答劣化を算出する内容が記載されている。
特開平10−73049号公報 特開2001−140685号公報
For example, the technique disclosed in Patent Document 1 includes a sample timing for detecting the air-fuel ratio and a response delay used for detecting the air-fuel ratio in accordance with a deterioration parameter indicating the response deterioration of the air-fuel ratio sensor. Are listed. In the invention of Patent Document 2, the content of calculating the response deterioration of the air-fuel ratio sensor under a specific condition is described.
JP-A-10-73049 Japanese Patent Laid-Open No. 2001-140685

一方、排ガス流量が変化すると、その排ガス流量の変化にともない空燃比センサの応答性が変化する(図4参照)。ここで、空燃比センサの応答性は、気筒より排出された排ガスの空燃比が触媒の上流側に設置された空燃比センサに検出されるまでの経過時間である。図4において、実線は空燃比センサに応答劣化等が生じていない場合の排ガス流量に対する空燃比センサの応答性を示しており、点線、一点鎖線は空燃比センサに応答劣化等が生じている場合の排ガス流量に対する空燃比センサの応答性を示している。   On the other hand, when the exhaust gas flow rate changes, the responsiveness of the air-fuel ratio sensor changes with the change of the exhaust gas flow rate (see FIG. 4). Here, the responsiveness of the air-fuel ratio sensor is the elapsed time until the air-fuel ratio sensor of the exhaust gas discharged from the cylinder is detected by the air-fuel ratio sensor installed on the upstream side of the catalyst. In FIG. 4, the solid line indicates the response of the air-fuel ratio sensor to the exhaust gas flow rate when the air-fuel ratio sensor is not responsively deteriorated, and the dotted line and the alternate long and short dash line are when the air-fuel ratio sensor is responsively deteriorated. The responsiveness of the air-fuel ratio sensor to the exhaust gas flow rate is shown.

図4に示すように、排ガス流量の変化に対して空燃比センサの応答性を検出するため、特許文献1、2の技術では、排ガス流量の変化に対して、逐次、空燃比センサの応答性を検出する必要があった。また、空燃比センサに応答劣化が生じた場合においても、逐次、排ガス流量の変化に対して空燃比センサの応答性を算出する必要があった。   As shown in FIG. 4, in order to detect the responsiveness of the air-fuel ratio sensor with respect to the change in the exhaust gas flow rate, in the techniques of Patent Documents 1 and 2, the responsiveness of the air-fuel ratio sensor sequentially with respect to the change in the exhaust gas flow rate. It was necessary to detect. Further, even when response deterioration occurs in the air-fuel ratio sensor, it is necessary to sequentially calculate the response of the air-fuel ratio sensor with respect to changes in the exhaust gas flow rate.

そこで、本発明では、排ガス流量の変化に応じて、逐次、空燃比センサの応答性を検出することなく排ガス流量に対する空燃比センサの応答性を推定することができる内燃機関の空燃比検出装置を提供することを目的とする。   Therefore, in the present invention, there is provided an air-fuel ratio detection device for an internal combustion engine that can estimate the response of the air-fuel ratio sensor to the exhaust gas flow rate without sequentially detecting the response of the air-fuel ratio sensor in accordance with the change of the exhaust gas flow rate. The purpose is to provide.

そこで、請求項1に係る発明では、内燃機関の排気管に配置された触媒の上流に設けられ、排ガスの空燃比を検出する空燃比検出手段と、内燃機関の空燃比の変化に対する空燃比検出手段の空燃比の検出信号に基づいて、気筒の燃料噴射量を増量させてからその増量分より算出の空燃比になるまでの経過時間を、空燃比検出手段の応答性として検出する応答性検出手段と、内燃機関から排出される排ガス流量を検出する排ガス流量検出手段と、を備え、応答性検出手段よって検出された空燃比検出手段の応答性と、空燃比検出手段の応答性が検出された際の排ガス流量検出手段により検出された排ガス流量とに基づいて、空燃比検出手段の応答性を演算する近似式を算出し、かつ、排ガス流量に対して空燃比検出手段の応答性が変化しない範囲で応答性検出手段により検出された空燃比検出手段の応答性と、基準となる使用開始当初の空燃比検出手段の応答性との偏差(以下、「オフセット」という)を算出し、かつ、オフセットと、排ガス流量に対して空燃比検出手段の応答性が変化する範囲の排ガス流量及び応答性検出手段により検出された空燃比検出手段の応答性とに基づいて、近似式を算出する。
Therefore, in the invention according to claim 1, air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas provided upstream of the catalyst disposed in the exhaust pipe of the internal combustion engine, and air-fuel ratio detection for the change of the air-fuel ratio of the internal combustion engine Based on the air / fuel ratio detection signal of the means, the responsiveness detection for detecting the elapsed time from increasing the fuel injection amount of the cylinder to the calculated air / fuel ratio from the increased amount as the responsiveness of the air / fuel ratio detection means And an exhaust gas flow rate detecting means for detecting the exhaust gas flow rate discharged from the internal combustion engine, and the responsiveness of the air / fuel ratio detecting means detected by the responsiveness detecting means and the responsiveness of the air / fuel ratio detecting means are detected. Based on the exhaust gas flow rate detected by the exhaust gas flow rate detection means, an approximate expression for calculating the responsiveness of the air fuel ratio detection means is calculated, and the responsiveness of the air fuel ratio detection means changes with respect to the exhaust gas flow rate. Not to do And calculating a deviation (hereinafter referred to as “offset”) between the responsiveness of the air-fuel ratio detecting means detected by the responsiveness detecting means and the responsiveness of the reference air-fuel ratio detecting means at the beginning of use. An approximate expression is calculated on the basis of the exhaust gas flow rate in the range where the responsiveness of the air-fuel ratio detecting means changes with respect to the exhaust gas flow rate and the responsiveness of the air-fuel ratio detecting means detected by the responsiveness detecting means.

このように、内燃機関の空燃比が変化してから空燃比検出手段がその空燃比の変化を検出するまでの応答性と排ガス流量とに基づいて、排ガス流量に対する空燃比検出手段の応答性を演算する近似式を算出し、その近似式に基づいて排ガス流量に対する空燃比検出手段の応答性を算出することによって、排ガス流量の変化により、逐次、空燃比検出手段の応答性を検出することなく、空燃比検出手段の応答性を算出することが可能となる。
また、このように、排ガス流量に対して空燃比検出手段の応答性が変化しない範囲で応答性検出手段により検出された空燃比検出手段の応答性と、基準となる空燃比検出手段の応答性である使用開始当初の応答性との偏差であるオフセットを算出し、そのオフセットに基づいて、排ガス流量に対する空燃比検出手段の応答性を演算する近似式を算出することで、劣化等の原因により排ガス流量に対する空燃比検出の応答性が変化した場合においても、空燃比検出手段の応答性を算出することが可能となる。
更に、オフセットと、排ガス流量に対して空燃比検出手段の応答性が変化する範囲の排ガス流量と、応答性検出手段により検出された空燃比検出手段の応答性とに基づいて、近似式を算出しているから、排ガス流量の変化に対する空燃比検出手段の応答性を演算する近似式を算出することが可能となる。
As described above, the responsiveness of the air-fuel ratio detection unit to the exhaust gas flow rate is determined based on the response from the change of the air-fuel ratio of the internal combustion engine until the air-fuel ratio detection unit detects the change of the air-fuel ratio and the exhaust gas flow rate. By calculating the approximate expression to be calculated and calculating the responsiveness of the air-fuel ratio detection means with respect to the exhaust gas flow rate based on the approximate expression, it is possible to detect the responsiveness of the air-fuel ratio detection means sequentially due to changes in the exhaust gas flow rate. It becomes possible to calculate the responsiveness of the air-fuel ratio detecting means.
In addition, as described above, the responsiveness of the air-fuel ratio detecting means detected by the responsiveness detecting means within the range in which the responsiveness of the air-fuel ratio detecting means does not change with respect to the exhaust gas flow rate, and the responsiveness of the reference air-fuel ratio detecting means. By calculating an offset that is a deviation from the responsiveness at the beginning of use, and calculating an approximate expression for calculating the responsiveness of the air-fuel ratio detection means to the exhaust gas flow rate based on the offset, due to causes such as deterioration Even when the responsiveness of the air-fuel ratio detection to the exhaust gas flow rate changes, the responsiveness of the air-fuel ratio detection means can be calculated.
Further, an approximate expression is calculated based on the offset, the exhaust gas flow rate in the range where the responsiveness of the air-fuel ratio detecting means changes with respect to the exhaust gas flow rate, and the responsiveness of the air-fuel ratio detecting means detected by the responsiveness detecting means. Therefore, it is possible to calculate an approximate expression for calculating the responsiveness of the air-fuel ratio detection means with respect to the change in the exhaust gas flow rate.

また、請求項に係る発明のように、少なくとも2点以上の異なる排ガス流量に対する空燃比検出手段の応答性を比べ、その偏差が所定値以下である場合に、排ガス流量に対する空燃比検出手段の応答性が変化しない範囲と判断すると良い。
Further, as in the invention according to claim 2, when the responsiveness of the air-fuel ratio detection means to at least two different exhaust gas flow rates is compared and the deviation is less than a predetermined value, It is better to judge that the responsiveness does not change.

また、請求項に係る発明のように、空燃比検出手段の応答性が、排ガス流量に対する空燃比検出手段の応答性が変化しない範囲の空燃比検出手段の応答性よりも所定量大きい場合に、排ガス流量に対して空燃比検出手段の応答性が変化する範囲であると判断すると良い。
Further, as in the invention according to claim 3, when the responsiveness of the air-fuel ratio detecting means is larger by a predetermined amount than the responsiveness of the air-fuel ratio detecting means in a range where the responsiveness of the air-fuel ratio detecting means to the exhaust gas flow rate does not change. It is preferable to determine that the responsiveness of the air-fuel ratio detection means changes with respect to the exhaust gas flow rate.

また、請求項に係る発明のように、近似式に基づいて算出された空燃比検出手段の応答性に基づいて、空燃比の検出タイミングを補正すると良い。このように、排ガス流量に対する空燃比検出手段の応答性を演算する近似式に基づいて算出された空燃比検出手段の応答性に基づいて、空燃比の検出タイミングを補正することによって、例えば、空燃比検出手段の劣化等の原因により応答遅れが生じる場合においても、精度良く空燃比を検出することが可能となる。 Further, as in the invention according to claim 4 , the air-fuel ratio detection timing may be corrected based on the responsiveness of the air-fuel ratio detection means calculated based on the approximate expression. Thus, by correcting the air-fuel ratio detection timing based on the responsiveness of the air-fuel ratio detection means calculated based on the approximate expression for calculating the responsiveness of the air-fuel ratio detection means with respect to the exhaust gas flow rate, for example, Even when a response delay occurs due to a cause such as deterioration of the fuel ratio detection means, the air fuel ratio can be detected with high accuracy.

以下に図面を用いて本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の内燃機関の空燃比制御装置を採用するエンジン制御システムの概略図である。図1において、電子制御装置(以下、「ECU」という)30は、内燃機関(以下、「エンジン」という)11の各部の制御を行うものである。本実施形態のエンジン11の吸気系は、吸気管12、エアクリーナ13、スロットルバルブ15、およびサージタンク17を備える。エアクリーナ13を通して吸入された吸入空気は、スロットルバルブ15およびサージタンク17を介してエンジン11に吸入される。エンジン11に吸入される吸気量は、図示しないアクセルペダルに設けられるアクセルセンサ27からの検出信号に基づいてスロットルバルブ15の開度を調整することで制御される。スロットルバルブ15の開度の調整はECU30により行われる。具体的には、ECU30は、アクセル開度センサ27からの信号に基づいて、スロットルバルブ15を駆動するために、スロットルモータ16へ制御デューティを出力する。そして、エンジン回転速度を検出するためのクランク角度センサ25からの検出信号、エアフローメータ14からの検出信号、およびサージタンク17に取付けられた吸気圧センサ18からの検出信号に基づいて、吸入空気に適切な燃料噴射量をエンジン11に供給するために、インジェクタ20に駆動信号を供給する。これにより、最適な混合気がエンジン11のシリンダ内20に供給され、所望のタイミングにて、点火プラグ18に火花点火を実行させることで、混合気を燃焼させる。   FIG. 1 is a schematic diagram of an engine control system that employs an air-fuel ratio control apparatus for an internal combustion engine according to the present invention. In FIG. 1, an electronic control unit (hereinafter referred to as “ECU”) 30 controls each part of an internal combustion engine (hereinafter referred to as “engine”) 11. The intake system of the engine 11 of this embodiment includes an intake pipe 12, an air cleaner 13, a throttle valve 15, and a surge tank 17. The intake air sucked through the air cleaner 13 is sucked into the engine 11 through the throttle valve 15 and the surge tank 17. The amount of intake air taken into the engine 11 is controlled by adjusting the opening of the throttle valve 15 based on a detection signal from an accelerator sensor 27 provided on an accelerator pedal (not shown). Adjustment of the opening degree of the throttle valve 15 is performed by the ECU 30. Specifically, the ECU 30 outputs a control duty to the throttle motor 16 in order to drive the throttle valve 15 based on a signal from the accelerator opening sensor 27. Based on the detection signal from the crank angle sensor 25 for detecting the engine speed, the detection signal from the air flow meter 14, and the detection signal from the intake pressure sensor 18 attached to the surge tank 17, the intake air is converted into the intake air. In order to supply an appropriate fuel injection amount to the engine 11, a drive signal is supplied to the injector 20. As a result, the optimal air-fuel mixture is supplied into the cylinder 20 of the engine 11, and the air-fuel mixture is combusted by causing the spark plug 18 to execute spark ignition at a desired timing.

また、エンジン11の排気系は、排気管22、空燃比センサ23、及び三元触媒24を備える。エンジン11より排出された排ガスは、排気管22に設置された三元触媒24により浄化される。より具体的には、エンジン11によって排出された排ガスが三元触媒24を通過すると、排ガス中の有害物質であるHC、CO、NOxの酸化・還元反応が起こり、水素、窒素、水蒸気、二酸化炭素が生成される。これにより、排ガス中の有害物質の浄化が行われる。また、空燃比センサ23によって検出された空燃比が目標空燃比となるように、吸入空気量を調整するスロットルバルブ15と燃料噴射量を調整するインジェクタ19との制御が実行される。 The exhaust system of the engine 11 includes an exhaust pipe 22, an air-fuel ratio sensor 23, and a three-way catalyst 24. The exhaust gas discharged from the engine 11 is purified by a three-way catalyst 24 installed in the exhaust pipe 22. More specifically, when the exhaust gas discharged by the engine 11 passes through the three-way catalyst 24, HC is a harmful substance in the exhaust gas, CO, oxidation-reduction reaction of the NO x to occur, hydrogen, nitrogen, steam, dioxide Carbon is produced. Thereby, purification of harmful substances in the exhaust gas is performed. Further, the control of the throttle valve 15 that adjusts the intake air amount and the injector 19 that adjusts the fuel injection amount is executed so that the air-fuel ratio detected by the air-fuel ratio sensor 23 becomes the target air-fuel ratio.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、前述したクランク角度センサ25が取付けられている。クランク角度センサ25は、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するものであり、この信号に基づいてクランク角やエンジン回転速度の検出を行う。また、車速は車速センサ25によって検出される。   A cooling water temperature sensor 26 for detecting the cooling water temperature and the crank angle sensor 25 described above are attached to the cylinder block of the engine 11. The crank angle sensor 25 outputs a pulse signal every time the crankshaft of the engine 11 rotates by a predetermined crank angle, and detects the crank angle and the engine rotation speed based on this signal. The vehicle speed is detected by a vehicle speed sensor 25.

本実施形態では、ECU40により後述する図2乃至図3に示す空燃比検出の各ルーチンが実行されることで、排ガス流量に対する空燃比センサの応答性を算出することが可能となる。ここで、空燃比センサの応答性とは、気筒より排出された排ガスの空燃比が排気管に設置された空燃比センサに検出されるまで経過時間である。この空燃比センサの応答性は、排ガス流量の変化により変化する(図4参照)。より具体的に説明すると、排ガス流量に対する空燃比センサの応答性は、図4の基準と空燃比センサの応答性(実線)に示すように、排ガス流量が変化により空燃比センサの応答性が大きく変化する範囲(領域1)と、排ガス流量が変化しても空燃比センサの応答性があまり変化しない範囲(領域2)とに分けることができる。   In this embodiment, the air-fuel ratio sensor responsiveness to the exhaust gas flow rate can be calculated by executing the air-fuel ratio detection routines shown in FIGS. Here, the responsiveness of the air-fuel ratio sensor is the elapsed time until the air-fuel ratio sensor of the exhaust gas discharged from the cylinder is detected by the air-fuel ratio sensor installed in the exhaust pipe. The responsiveness of this air-fuel ratio sensor changes with changes in the exhaust gas flow rate (see FIG. 4). More specifically, as shown in the reference of FIG. 4 and the response of the air-fuel ratio sensor (solid line), the response of the air-fuel ratio sensor with respect to the exhaust gas flow rate increases the response of the air-fuel ratio sensor as the exhaust gas flow rate changes. It can be divided into a changing range (region 1) and a range (region 2) where the responsiveness of the air-fuel ratio sensor does not change much even if the exhaust gas flow rate changes.

本実施形態では、この空燃比センサの応答性が大きく変化する範囲と、排ガス流量が変化しても空燃比センサの応答性があまり変化しない範囲との空燃比センサの応答性をそれぞれ用いて、排ガス流量をパラメータとして空燃比センサの応答性を演算する近似式を算出する。図2に示すフローチャートは、排ガス流量が変化しても空燃比センサの応答性があまり変化しない範囲の空燃比センサの応答性に基づいて、排ガス流量をパラメータとして空燃比センサの応答性を演算する近似式の定数の一つであるオフセット(差)を算出するものである。また、図3に示すフローチャートは、図2で算出したオフセットを用いて、排ガス流量をパラメータとして空燃比センサの応答性を演算する近似式を算出するものである。これらルーチンは、所定クランク角毎(100ms毎)に実行される。   In the present embodiment, the responsiveness of the air-fuel ratio sensor between the range in which the responsiveness of the air-fuel ratio sensor changes greatly and the range in which the responsiveness of the air-fuel ratio sensor does not change much even when the exhaust gas flow rate changes, An approximate expression for calculating the responsiveness of the air-fuel ratio sensor is calculated using the exhaust gas flow rate as a parameter. The flowchart shown in FIG. 2 calculates the responsiveness of the air-fuel ratio sensor using the exhaust gas flow rate as a parameter based on the responsiveness of the air-fuel ratio sensor in a range where the responsiveness of the air-fuel ratio sensor does not change much even if the exhaust gas flow rate changes. An offset (difference) that is one of the constants of the approximate expression is calculated. The flowchart shown in FIG. 3 calculates an approximate expression for calculating the responsiveness of the air-fuel ratio sensor with the exhaust gas flow rate as a parameter, using the offset calculated in FIG. These routines are executed every predetermined crank angle (every 100 ms).

まず、図2のルーチンが実行されると、ステップ10(以下「S10」という)で、空燃比センサの応答性検出条件が成立しているか否かを判断する。ここでは、空燃比センサの応答性検出条件とは、空燃比に対する外乱が少ない場合である。例えば、特許文献2に記載されているように、ベーパ濃度学習値が所定値以下、かつ、直前の壁面付着量補正値が所定値以下、かつ、冷却水温が所定値以上のとき等、各気筒の空燃比ばらつき以外の要因による空燃比変動が少ない条件で空燃比センサの応答性を検出しても良い。または、吸入空気量が所定値以下であるか、エンジン回転速度が所定範囲内であるか、エンジン負荷が所定範囲内であるか、エンジン冷却水温が所定値以上であるか否か等を判断してエンジン運転状態が定常のときに空燃比センサの応答性を検出しても良い。S10で、空燃比センサの応答性検出条件が成立していると判断されるとS11に進む。また、S10で空燃比センサの応答性検出条件が成立していないと判断されると、このルーチンを終了する。   First, when the routine of FIG. 2 is executed, it is determined in step 10 (hereinafter referred to as “S10”) whether or not the air-fuel ratio sensor responsiveness detection condition is satisfied. Here, the response detection condition of the air-fuel ratio sensor is a case where there is little disturbance with respect to the air-fuel ratio. For example, as described in Patent Document 2, when the vapor concentration learning value is equal to or smaller than a predetermined value, the immediately preceding wall surface adhesion amount correction value is equal to or smaller than the predetermined value, and the cooling water temperature is equal to or larger than the predetermined value, etc. The responsiveness of the air-fuel ratio sensor may be detected under conditions where there is little air-fuel ratio fluctuation due to factors other than the air-fuel ratio variation. Alternatively, it is determined whether the amount of intake air is less than a predetermined value, whether the engine speed is within a predetermined range, whether the engine load is within a predetermined range, and whether the engine coolant temperature is higher than a predetermined value. Thus, the responsiveness of the air-fuel ratio sensor may be detected when the engine operating state is steady. If it is determined in S10 that the air-fuel ratio sensor responsiveness detection condition is satisfied, the process proceeds to S11. If it is determined in S10 that the air-fuel ratio sensor response detection condition is not satisfied, this routine is terminated.

次に、S11では、空燃比センサの応答劣化等により応答遅れが生じていない場合の基準となる空燃比センサの応答性(例えば、使用開始当初に検出された空燃比センサの応答性)からのオフセット(差)が算出されているか否かを判断する。S11で、基準となる空燃比センサの応答性からのオフセットが算出されていないと判断されると、S12に進み、以下、排ガス流量に対する空燃比センサの応答性を検出する処置を行う。S11で、基準値からのオフセットが検出されていると判断されると、このルーチンを終了する。   Next, in S11, the response from the response of the air-fuel ratio sensor (for example, the response of the air-fuel ratio sensor detected at the beginning of use) is used as a reference when there is no response delay due to response deterioration of the air-fuel ratio sensor or the like. It is determined whether an offset (difference) has been calculated. If it is determined in S11 that the offset from the responsiveness of the reference air-fuel ratio sensor has not been calculated, the process proceeds to S12, and thereafter, the responsiveness of the air-fuel ratio sensor to the exhaust gas flow rate is detected. If it is determined in S11 that an offset from the reference value has been detected, this routine is terminated.

次に、S12乃至S13では、排ガス流量exgaを読み込み、その排ガス流量exgaに対する空燃比センサの応答性reg(exga)を検出する。排ガス流量の算出方法としては、例えば、エアフローメータからの検出信号や、サージタンクに取付けられた吸気圧センサからの検出信号に基づいて算出した吸入空気量より算出すると良い。また、算出した吸入空気量と排ガス温度に基づいて排ガス流量を算出しても良い。排ガス温度の推定は以下の式で求める事ができる。   Next, in S12 to S13, the exhaust gas flow rate exga is read, and the responsiveness reg (exga) of the air-fuel ratio sensor with respect to the exhaust gas flow rate exga is detected. As a method for calculating the exhaust gas flow rate, for example, it may be calculated from an intake air amount calculated based on a detection signal from an air flow meter or a detection signal from an intake pressure sensor attached to a surge tank. Further, the exhaust gas flow rate may be calculated based on the calculated intake air amount and exhaust gas temperature. The exhaust gas temperature can be estimated by the following equation.

排ガス温度=始動時水温+F(点火時期、積算排ガス流量) (式1)
この式の始動時水温は、エンジン冷却水温である。また、F(点火時期、積算排ガス流量)は、点火時期や、始動時からの積算排ガス量をパラメータとして計算された値である。また、排ガス温度を検出する方法は、排気管に排ガス温度センサを設置し直接検出しても良い。
Exhaust gas temperature = Water temperature at startup + F (ignition timing, integrated exhaust gas flow rate) (Formula 1)
The start-up water temperature of this type is the engine coolant temperature. Further, F (ignition timing, integrated exhaust gas flow rate) is a value calculated using the ignition timing and the integrated exhaust gas amount from the starting time as parameters. As a method for detecting the exhaust gas temperature, an exhaust gas temperature sensor may be installed in the exhaust pipe and detected directly.

空燃比センサの応答性reg(exga)は、例えば、排気管に設置された空燃比センサの空燃比が、吸入空気量が一定の際に、全気筒の燃料噴射量を増量させてから、その増量分から算出した空燃比になるまでの経過時間とすると良い。本実施形態では、排ガス流量を読み込んだ際の空燃比センサの応答性を検出したが、先に空燃比センサの応答性を読み込んで、その時の排ガス流量を算出しても良い。   The responsiveness reg (exga) of the air-fuel ratio sensor is obtained by, for example, increasing the fuel injection amount of all the cylinders when the air-fuel ratio of the air-fuel ratio sensor installed in the exhaust pipe is constant. The elapsed time until the air-fuel ratio calculated from the increased amount is obtained. In this embodiment, the response of the air-fuel ratio sensor when the exhaust gas flow rate is read is detected. However, the response of the air-fuel ratio sensor may be read first to calculate the exhaust gas flow rate at that time.

S12乃至S13で、排ガス流量exgaに対する空燃比センサの応答性reg(exga)を検出するとS14に進み、以前応答性を検出したときの排ガス流量と異なる排ガス流量における空燃比センサの応答性が検出済みであるか否かを判断する。S14で、異なる排ガス流量における空燃比センサの応答性が検出済みであると判断されるとS15に進む。また、S14で、異なる排ガス流量における空燃比センサの応答性が検出済みでないと判断されると、S12乃至S13で検出した排ガス流量に対する空燃比センサの応答性を記憶して、このルーチンを終了する。   If the responsiveness reg (exga) of the air-fuel ratio sensor with respect to the exhaust gas flow rate exga is detected in S12 to S13, the process proceeds to S14, and the responsiveness of the air-fuel ratio sensor at the exhaust gas flow rate different from the exhaust gas flow rate when the responsiveness was previously detected has been detected. It is determined whether or not. If it is determined in S14 that the responsiveness of the air-fuel ratio sensor at different exhaust gas flow rates has been detected, the process proceeds to S15. If it is determined in S14 that the responsiveness of the air-fuel ratio sensor at different exhaust gas flow rates has not been detected, the responsiveness of the air-fuel ratio sensor to the exhaust gas flow rates detected in S12 to S13 is stored, and this routine is terminated. .

S15では、異なる排ガス流量で検出された空燃比センサの応答性を比較し、その偏差が所定値よりも小さいか否かを判断する。以下、比較の為に、一方の条件で検出された排ガス流量に対する空燃比センサの応答性をres(exga1)とし、もう一方の条件で検出された排ガス流量に対する空燃比センサの応答性をres(exga2)とする。S15では、2つの応答性の偏差が所定値未満であるか否かを(式2)を用いて判断する。   In S15, the responsiveness of the air-fuel ratio sensor detected at different exhaust gas flow rates is compared, and it is determined whether or not the deviation is smaller than a predetermined value. Hereinafter, for comparison, the responsivity of the air-fuel ratio sensor with respect to the exhaust gas flow rate detected under one condition is referred to as res (exga1), and the responsivity of the air-fuel ratio sensor with respect to the exhaust gas flow rate detected under the other condition is referred to as res ( exga2). In S15, it is determined using (Equation 2) whether or not the deviation between the two responsiveness values is less than a predetermined value.

|res(exga1)―res(exga2)|<α (式2)
S15で、2つの応答性の偏差が所定値αよりも小さいと判断されると、S16に進み、これら条件で検出された空燃比センサの応答性から基準となる空燃比センサの応答性を減算した値をオフセットとして算出する。S15で、(式2)が成立していないと判断されると、このルーチンを終了する。
| Res (exga1) −res (exga2) | <α (Expression 2)
If it is determined in S15 that the deviation between the two responsiveness is smaller than the predetermined value α, the process proceeds to S16, and the responsiveness of the reference air-fuel ratio sensor is subtracted from the responsiveness of the air-fuel ratio sensor detected under these conditions. The calculated value is calculated as an offset. If it is determined in S15 that (Equation 2) is not satisfied, this routine is terminated.

S16では、以下の式を用いて、オフセットResofstを算出する。   In S16, the offset Resofst is calculated using the following equation.

オフセットResofst=res(exga1)−基準値 (式3)
上記の式では、排ガス流量exga1に対する応答性res(exga1)を用いたが、排ガス流量exga2に対する応答性res(exga2)を用いても良い。S16で、オフセットを算出すると、このルーチンを終了する。
Offset Resofst = res (exga1) −reference value (formula 3)
In the above formula, responsiveness res (exga1) to the exhaust gas flow rate exga1 is used, but responsiveness res (exga2) to the exhaust gas flow rate exga2 may be used. When the offset is calculated in S16, this routine is terminated.

次に、図3を用いて、排ガス流量をパラメータとして空燃比センサの応答性を演算する近似式を算出するフローチャートを説明する。   Next, a flowchart for calculating an approximate expression for calculating the responsiveness of the air-fuel ratio sensor using the exhaust gas flow rate as a parameter will be described with reference to FIG.

図3のルーチンが実行されると、S20で空燃比センサの応答性検出条件が成立しているか否かを判断する。この空燃比センサの応答性検出条件とは、図2のフローチャートと同様に、空燃比に対する外乱が少ない場合、若しくはエンジン運転状態が定常の場合である。S20で、空燃比センサの応答性検出条件が成立していると判断されるとS21に進む。また、S20で空燃比センサの応答性検出条件が成立していないと判断されると、このルーチンを終了する。   When the routine of FIG. 3 is executed, it is determined in S20 whether or not the air-fuel ratio sensor responsiveness detection condition is satisfied. The air-fuel ratio sensor responsiveness detection condition is when the disturbance to the air-fuel ratio is small, or when the engine operating state is steady, as in the flowchart of FIG. If it is determined in S20 that the air-fuel ratio sensor responsiveness detection condition is satisfied, the process proceeds to S21. If it is determined in S20 that the air-fuel ratio sensor response detection condition is not satisfied, this routine is terminated.

次に、S21では、基準となる空燃比センサの応答性からのオフセットが検出されているか否かを判断する。S21で、基準となる空燃比センサの応答性からのオフセットの検出が完了していると判断されると、S22に進み、以下、排ガス流量に対する空燃比センサの応答性を検出する処置を行う。S21で、基準となる空燃比センサの応答性からのオフセットが検出されていないと判断されると、このルーチンを終了する。   Next, in S21, it is determined whether or not an offset from the responsiveness of the reference air-fuel ratio sensor is detected. If it is determined in S21 that the detection of the offset from the responsiveness of the reference air-fuel ratio sensor has been completed, the process proceeds to S22, and thereafter, a measure for detecting the responsiveness of the air-fuel ratio sensor to the exhaust gas flow rate is performed. If it is determined in S21 that no offset from the responsiveness of the reference air-fuel ratio sensor has been detected, this routine is terminated.

次に、S22乃至S23では、排ガス流量exgaを読み込み、その排ガス流量exgaに対する空燃比センサの応答性reg(exga)を検出する。排ガス流量exgaや、応答性reg(exga)を検出する方法は、省略する(図2のS12乃至S13参照)。   Next, in S22 to S23, the exhaust gas flow rate exga is read, and the responsiveness reg (exga) of the air-fuel ratio sensor with respect to the exhaust gas flow rate exga is detected. A method for detecting the exhaust gas flow rate exga and the responsiveness reg (exga) is omitted (see S12 to S13 in FIG. 2).

S22乃至S23で、排ガス流量exgaに対する空燃比センサの応答性reg(exga)を検出するとS24に進み、既に検出された空燃比センサの応答性と異なる排ガス流量で空燃比センサの応答性が検出されているか否かを判断する。S24で、異なる排ガス流量における空燃比センサの応答性が検出済みであると判断されると、S25に進む。S24で、異なる排ガス流量における空燃比センサの応答性が検出済みでないと判断されると、S22乃至S23で検出された排ガス流量exga、応答性reg(exga)をそれぞれ記憶して、このルーチンを終了する。   When the response reg (exga) of the air-fuel ratio sensor to the exhaust gas flow rate exga is detected in S22 to S23, the process proceeds to S24, and the response of the air-fuel ratio sensor is detected at an exhaust gas flow rate different from the response of the air-fuel ratio sensor already detected. Judge whether or not. If it is determined in S24 that the responsiveness of the air-fuel ratio sensor at different exhaust gas flow rates has been detected, the process proceeds to S25. If it is determined in S24 that the responsiveness of the air-fuel ratio sensor at different exhaust gas flow rates has not been detected, the exhaust gas flow rate exga and responsiveness reg (exga) detected in S22 to S23 are stored, and this routine is terminated. To do.

S25乃至S26では、以下の式に示すように、それぞれの条件で検出された排ガス流量に対する応答性が、図2のルーチンで算出したオフセットresofsetと基準値とを加算した値よりも所定値大きいか否かを判断する。比較の為に、一方の条件で検出された排ガス流量に対する応答性をres(exga3)とし、もう一方の条件で検出された排ガス流量に対する応答性をres(exga4)とする。   In S25 to S26, as shown in the following formulas, is the responsiveness to the exhaust gas flow rate detected under each condition larger by a predetermined value than the value obtained by adding the offset resetset calculated in the routine of FIG. 2 and the reference value? Judge whether or not. For comparison, responsiveness to the exhaust gas flow rate detected under one condition is referred to as res (exga3), and responsiveness to the exhaust gas flow rate detected under the other condition is referred to as res (exga4).

|res(exga(i))―(resofset+基準値)|>β (式4)
i=3,4とする。S25乃至S26で、条件が満たされたと判断されると、
S27に進み、排ガス流量の変化に対する空燃比センサの応答性res(exga)の近似式を算出する。S25乃至S26で、条件が満たされないと判断されると、このルーチンを終了する。
| Res (exga (i))-(resofset + reference value) |> β (Formula 4)
i = 3,4. If it is determined in S25 to S26 that the condition is satisfied,
Proceeding to S27, an approximate expression of responsivity res (exga) of the air-fuel ratio sensor with respect to the change in the exhaust gas flow rate is calculated. If it is determined in S25 to S26 that the condition is not satisfied, this routine is terminated.

S27では、以下の(式5)に、排ガス流量exga3、exga4に対する空燃比センサの応答性res(exga3)、res(exga4)を代入して、定数Aを算出し、排ガス流量に対する空燃比センサの応答性res(exga)の近似式を算出する。   In S27, the responsiveness res (exga3) and res (exga4) of the air-fuel ratio sensor with respect to the exhaust gas flow rates exga3 and exga4 are substituted into the following (Equation 5), a constant A is calculated, and the air-fuel ratio sensor with respect to the exhaust gas flow rate is calculated. An approximate expression of responsiveness res (exga) is calculated.

応答性res(exga)=A/exga+(resofst+基準値) (式5)
なお、基準値は、排ガス流量をパラメータとして算出されるように近似式を予め算出しておく。排ガス流量の変化に対する空燃比センサの応答性res(exga)の近似式を算出すると、このルーチンを終了する。本実施形態では、2点の異なる条件で検出された排ガス流量に対する応答性が(式4)の条件を満たしているかを判断して、近似式の定数Aを算出したが、(式4)を満たす条件を少なくとも1箇所以上としても良い。
Responsiveness res (exga) = A / exga + (resofst + reference value) (Formula 5)
The reference value is calculated in advance so that the exhaust gas flow rate is used as a parameter. When an approximate expression of the responsivity res (exga) of the air-fuel ratio sensor with respect to the change in the exhaust gas flow rate is calculated, this routine ends. In this embodiment, it is determined whether the response to the exhaust gas flow rate detected under two different conditions satisfies the condition of (Expression 4), and the constant A of the approximate expression is calculated. It is good also considering the conditions to satisfy | fill at least 1 place or more.

以上、本実施形態では、排ガス流量をパラメータとして空燃比センサの応答性を演算する近似式により、排ガス流量が変化した場合においても、逐次、空燃比センサの応答性を算出することなく、空燃比センサの応答性を算出することが可能となる。また、図4の点線、一点鎖線に示すように、空燃比センサの応答劣化により応答遅れが生じている場合においても、空燃比センサの応答性を算出することが可能となる。つまり、従来技術のように、排ガス流量に対する空燃比センサの応答性のマップをもっている場合、空燃比センサの応答劣化により応答遅れが生じると、逐次、排ガス流量に対して空燃比センサの応答性を検出し、マップを補正する必要があった。しかし、本実施形態のように、排ガス流量をパラメータとして空燃比センサの応答性を演算する近似式を用いることで、逐次、排ガス流量に対して空燃比センサの応答性を検出することなく、空燃比センサの応答性を算出することが可能となる。より具体的には、排ガス流量をパラメータとして空燃比センサの応答性を演算する近似式(式5)に排ガス流量exgaを代入することによって、その排ガス流量に対する空燃比センサの応答性res(exga)を算出することが可能となる。   As described above, in the present embodiment, even when the exhaust gas flow rate is changed by the approximate expression for calculating the responsiveness of the air-fuel ratio sensor using the exhaust gas flow rate as a parameter, the air-fuel ratio is sequentially calculated without calculating the responsiveness of the air-fuel ratio sensor. It becomes possible to calculate the response of the sensor. Further, as shown by the dotted line and the alternate long and short dash line in FIG. 4, the response of the air-fuel ratio sensor can be calculated even when a response delay occurs due to the response deterioration of the air-fuel ratio sensor. In other words, when there is a map of the response of the air-fuel ratio sensor to the exhaust gas flow rate as in the prior art, if the response delay occurs due to the response deterioration of the air-fuel ratio sensor, the response of the air-fuel ratio sensor to the exhaust gas flow rate is sequentially increased. It was necessary to detect and correct the map. However, as in the present embodiment, by using an approximate expression for calculating the responsiveness of the air-fuel ratio sensor using the exhaust gas flow rate as a parameter, the air-fuel ratio sensor is sequentially detected without detecting the responsiveness to the exhaust gas flow rate. It becomes possible to calculate the response of the fuel ratio sensor. More specifically, by substituting the exhaust gas flow rate exga into an approximate expression (Equation 5) for calculating the responsiveness of the air fuel ratio sensor with the exhaust gas flow rate as a parameter, the responsivity res (exga) of the air fuel ratio sensor with respect to the exhaust gas flow rate. Can be calculated.

また、空燃比センサの応答性を演算する近似式を用いて算出した空燃比センサの応答性を用いて、例えば、空燃比フィードバック制御を行う際の空燃比の検出タイミングを補正すると良い。これにより、排ガス流量の変化により空燃比センサの応答性を変化した際や、空燃比センサの劣化等により応答性が悪化した際においても、精度良く空燃比を検出することが可能となるため、空燃比フィードバック制御を行う際に、排ガスの浄化を効率良く行うことができる。   Further, for example, the air-fuel ratio detection timing at the time of performing the air-fuel ratio feedback control may be corrected using the air-fuel ratio sensor response calculated using the approximate expression for calculating the air-fuel ratio sensor response. This makes it possible to accurately detect the air-fuel ratio even when the responsiveness of the air-fuel ratio sensor changes due to a change in the exhaust gas flow rate or when the responsiveness deteriorates due to deterioration of the air-fuel ratio sensor, etc. When air-fuel ratio feedback control is performed, exhaust gas can be purified efficiently.

本発明に係る空燃比検出装置の構成図である。It is a block diagram of the air fuel ratio detection apparatus which concerns on this invention. 基準値からのオフセットを検出するフローチャートである。It is a flowchart which detects the offset from a reference value. 排ガス流量に対する空燃比センサの応答性の近似式を算出するフローチャートである。It is a flowchart which calculates the approximate expression of the responsiveness of the air fuel ratio sensor with respect to exhaust gas flow volume. 排ガス流量に対する応答性特性を示すグラフである。It is a graph which shows the responsiveness characteristic with respect to exhaust gas flow volume.

符号の説明Explanation of symbols

11 エンジン
19 インジェクタ
23 空燃比センサ
24 三元触媒
25 クランク角センサ
11 Engine 19 Injector 23 Air-fuel ratio sensor 24 Three-way catalyst 25 Crank angle sensor

Claims (4)

内燃機関の排気管に配置された触媒の上流に設けられ、排ガスの空燃比を検出する空燃比検出手段と、
前記内燃機関の空燃比の変化に対する前記空燃比検出手段の空燃比の検出信号に基づいて、気筒の燃料噴射量を増量させてからその増量分より算出の空燃比になるまでの経過時間を、空燃比検出手段の応答性として検出する応答性検出手段と、
前記内燃機関から排出される排ガス流量を検出する排ガス流量検出手段と、を備え、
前記応答性検出手段よって検出された前記空燃比検出手段の応答性と、前記空燃比検出手段の応答性が検出された際の前記排ガス流量検出手段により検出された前記排ガス流量とに基づいて、前記空燃比検出手段の応答性を演算する近似式を算出し、
かつ、前記排ガス流量に対して前記空燃比検出手段の応答性が変化しない範囲で前記応答性検出手段により検出された前記空燃比検出手段の応答性と、基準となる使用開始当初の前記空燃比検出手段の応答性との偏差(以下、「オフセット」という)を算出し、かつ、前記オフセットと、前記排ガス流量に対して前記空燃比検出手段の応答性が変化する範囲の前記排ガス流量及び前記応答性検出手段により検出された前記空燃比検出手段の応答性とに基づいて、前記近似式を算出することを特徴とする内燃機関の空燃比検出装置。
An air-fuel ratio detecting means provided upstream of the catalyst disposed in the exhaust pipe of the internal combustion engine for detecting the air-fuel ratio of the exhaust gas;
Based on the air-fuel ratio detection signal of the air-fuel ratio detection means with respect to the change in the air-fuel ratio of the internal combustion engine, an elapsed time from increasing the fuel injection amount of the cylinder to the calculated air-fuel ratio from the increased amount, Responsiveness detecting means for detecting responsiveness of the air-fuel ratio detecting means;
An exhaust gas flow rate detecting means for detecting the exhaust gas flow rate discharged from the internal combustion engine,
Based on the responsiveness of the air-fuel ratio detection means detected by the responsiveness detection means and the exhaust gas flow rate detected by the exhaust gas flow rate detection means when the responsiveness of the air-fuel ratio detection means is detected, Calculate an approximate expression for calculating the responsiveness of the air-fuel ratio detection means ,
The responsiveness of the air-fuel ratio detecting means detected by the responsiveness detecting means within a range in which the responsiveness of the air-fuel ratio detecting means does not change with respect to the exhaust gas flow rate, and the air-fuel ratio at the beginning of use as a reference A deviation from the responsiveness of the detection means (hereinafter referred to as “offset”) is calculated, and the exhaust gas flow rate in the range where the responsiveness of the air-fuel ratio detection means changes with respect to the offset and the exhaust gas flow rate, and the An air-fuel ratio detection apparatus for an internal combustion engine , wherein the approximate expression is calculated based on the responsiveness of the air-fuel ratio detection means detected by the responsiveness detection means .
少なくとも2点以上の異なる排ガス流量に対する前記空燃比検出手段の応答性を比べ、その偏差が所定値以下である場合に、前記排ガス流量に対する前記空燃比検出手段の応答性が変化しない範囲と判断することを特徴とする請求項1記載の内燃機関の空燃比検出装置。 Comparing the responsiveness of the air-fuel ratio detection means to at least two different exhaust gas flow rates, and determining that the responsiveness of the air-fuel ratio detection means to the exhaust gas flow rate does not change when the deviation is less than a predetermined value. 2. An air-fuel ratio detection apparatus for an internal combustion engine according to claim 1, wherein: 前記空燃比検出手段の応答性が、前記排ガス流量に対する前記空燃比検出手段の応答性が変化しない範囲の前記空燃比検出手段の応答性よりも所定量大きい場合に、前記排ガス流量に対して前記空燃比検出手段の応答性が変化する範囲であると判断することを特徴とする請求項1又は2に記載の内燃機関の空燃比検出装置。 When the responsiveness of the air-fuel ratio detecting means is larger by a predetermined amount than the responsiveness of the air-fuel ratio detecting means in a range where the responsiveness of the air-fuel ratio detecting means to the exhaust gas flow rate does not change, The air-fuel ratio detection apparatus for an internal combustion engine according to claim 1 or 2, wherein it is determined that the responsiveness of the air-fuel ratio detection means is in a range that changes . 前記近似式に基づいて算出された前記空燃比検出手段の応答性に基づいて、空燃比の検出タイミングを補正することを特徴とする請求項1乃至3いずれか一つに記載の内燃機関の空燃比検出装置
Based on the response of the air-fuel ratio detecting means which is calculated on the basis of the approximate expression, an empty internal combustion engine according to any one claims 1 to 3, characterized in that to correct the detection timing of the air-fuel ratio Fuel ratio detection device .
JP2006247953A 2006-09-13 2006-09-13 Air-fuel ratio detection device for internal combustion engine Expired - Fee Related JP4775199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247953A JP4775199B2 (en) 2006-09-13 2006-09-13 Air-fuel ratio detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247953A JP4775199B2 (en) 2006-09-13 2006-09-13 Air-fuel ratio detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008069688A JP2008069688A (en) 2008-03-27
JP4775199B2 true JP4775199B2 (en) 2011-09-21

Family

ID=39291490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247953A Expired - Fee Related JP4775199B2 (en) 2006-09-13 2006-09-13 Air-fuel ratio detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4775199B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841001B2 (en) * 1992-10-12 1998-12-24 株式会社ユニシアジェックス Air-fuel ratio feedback control device for internal combustion engine
JP3581737B2 (en) * 1995-02-24 2004-10-27 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JPH1073049A (en) * 1996-08-29 1998-03-17 Honda Motor Co Ltd Individual cylinder air-fuel ratio estimating device for internal combustion engine
JP2004285949A (en) * 2003-03-24 2004-10-14 Toyota Motor Corp Failure detector for exhaust gas sensor
JP2005121003A (en) * 2003-09-24 2005-05-12 Denso Corp Malfunction detecting device for air-fuel ratio sensor
JP4487745B2 (en) * 2004-03-25 2010-06-23 株式会社デンソー Sensor response characteristic detector
JP2006112274A (en) * 2004-10-13 2006-04-27 Toyota Motor Corp Air fuel ratio control device of internal combustion engine

Also Published As

Publication number Publication date
JP2008069688A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4717125B2 (en) Control device for internal combustion engine
US8267076B2 (en) Engine control apparatus
US7698886B2 (en) Catalyst deterioration degree acquiring apparatus in internal combustion engine
US6314944B1 (en) Fuel property determination from accumulated intake air amount and accumulated fuel supply amount
JP2009167853A (en) Controller for internal combustion engine
JP2005194891A (en) Engine controller
JP4530080B2 (en) Control device for internal combustion engine
JP2007113437A (en) Air-fuel ratio control device of internal combustion engine
JP4475207B2 (en) Control device for internal combustion engine
JP4338663B2 (en) Control device for internal combustion engine
US7568476B2 (en) Air-fuel ratio control system for internal combustion engine
JP2008180225A (en) Engine control device
JP4775199B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2008038732A (en) Fuel control device for internal combustion engine
JP2009144574A (en) Air-fuel ratio control device for internal combustion engine
JP4863119B2 (en) Internal combustion engine operation control method and apparatus
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JP4825297B2 (en) Control device for internal combustion engine
JP4951612B2 (en) Diagnostic device and control device for internal combustion engine
JP4883321B2 (en) Control device for internal combustion engine
JP2006037924A (en) Control unit of vehicle
JP2006233781A (en) Catalyst diagnostic device for internal combustion engine
JP2009013905A (en) Control device for internal combustion engine
JP4888397B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009062899A (en) Control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees