JP4365830B2 - Air-fuel ratio sensor diagnostic device for internal combustion engine - Google Patents

Air-fuel ratio sensor diagnostic device for internal combustion engine Download PDF

Info

Publication number
JP4365830B2
JP4365830B2 JP2006010274A JP2006010274A JP4365830B2 JP 4365830 B2 JP4365830 B2 JP 4365830B2 JP 2006010274 A JP2006010274 A JP 2006010274A JP 2006010274 A JP2006010274 A JP 2006010274A JP 4365830 B2 JP4365830 B2 JP 4365830B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
response time
deterioration
ratio sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006010274A
Other languages
Japanese (ja)
Other versions
JP2007192093A (en
Inventor
晋 山内
洋一 飯星
堀  俊雄
芳国 倉島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006010274A priority Critical patent/JP4365830B2/en
Publication of JP2007192093A publication Critical patent/JP2007192093A/en
Application granted granted Critical
Publication of JP4365830B2 publication Critical patent/JP4365830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の空燃比センサ診断装置に係り、特に、内燃機関の排気通路に設けられている空燃比センサが劣化しているか否かを診断する内燃機関の空燃比センサ診断装置に関する。   The present invention relates to an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine, and more particularly to an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine that diagnoses whether or not an air-fuel ratio sensor provided in an exhaust passage of the internal combustion engine has deteriorated.

内燃機関から排出される排気中の有害成分である未燃炭化水素HC、一酸化炭素CO、窒素酸化物NOxを浄化するため、排気通路の途中に、三元触媒を取り付けることが従来から行われている。三元触媒は、流入する排気が理論空燃比の近傍である時、最も効率よく有害成分を浄化する。   In order to purify unburned hydrocarbons HC, carbon monoxide CO, and nitrogen oxides NOx, which are harmful components in exhaust gas discharged from an internal combustion engine, a three-way catalyst has conventionally been installed in the middle of the exhaust passage. ing. The three-way catalyst purifies harmful components most efficiently when the inflowing exhaust gas is in the vicinity of the stoichiometric air-fuel ratio.

そのため、三元触媒の前方には排気中の空燃比(酸素濃度)を検出する空燃比センサが配置され、当該空燃比センサの出力を用いて、三元触媒に流入する排気の空燃比が制御されている。   For this reason, an air-fuel ratio sensor for detecting the air-fuel ratio (oxygen concentration) in the exhaust gas is arranged in front of the three-way catalyst, and the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is controlled using the output of the air-fuel ratio sensor. Has been.

よって、空燃比センサが劣化およびなんらかの理由によって障害をきたした場合、空燃比の制御精度が悪化し、触媒の浄化効率が低下する。このため、空燃比センサの特性変化を検出する方法や装置が従来から提案されている。   Therefore, when the air-fuel ratio sensor is deteriorated or damaged due to some reason, the control accuracy of the air-fuel ratio is deteriorated, and the purification efficiency of the catalyst is lowered. For this reason, methods and devices for detecting changes in the characteristics of the air-fuel ratio sensor have been proposed.

空燃比センサの特性変化を検出する技術の例として、目標空燃比切換時の広域空燃比センサの検出値の変化の様子を検出し、この検出結果から広域空燃比センサの応答劣化を検出するもの(例えば、特許文献1)、空燃比センサの検出値の周波数応答特性からゲイン特性と応答特性を検出し、ゲイン劣化と応答劣化を検出するもの(例えば、特許文献2)等がある。   As an example of the technology for detecting the characteristic change of the air-fuel ratio sensor, the state of detection value change of the wide-area air-fuel ratio sensor at the time of target air-fuel ratio switching is detected, and the response deterioration of the wide-area air-fuel ratio sensor is detected from this detection result (For example, patent document 1), there exist what detects a gain characteristic and a response characteristic from the frequency response characteristic of the detection value of an air fuel ratio sensor, and detects a gain degradation and a response degradation (for example, patent document 2).

特開平10−169493号公報JP-A-10-169493 特開2005−194891号公報JP 2005-194891 A

しかしなから、広域空燃比センサの劣化パターンには、応答時間が遅れる応答劣化だけでなく、応答そのものが増減するゲイン劣化が存在するため、応答劣化だけを検出する診断方式では、ゲイン劣化を検出することができず、診断精度に問題がある。   However, the wide-band air-fuel ratio sensor deterioration pattern includes not only response deterioration with a delayed response time but also gain deterioration in which the response itself increases or decreases. Therefore, the diagnosis method that detects only response deterioration detects gain deterioration. Cannot be performed, and there is a problem in diagnostic accuracy.

空燃比センサの検出値の周波数応答特性からゲイン特性と応答特性を検出し、ゲイン劣化と応答劣化を検出するものでは、応答特性を検出するために、空燃比を強制的に振動させなくてはならず、その間に運転性の悪化または排気悪化などの影響が起こり得る。 In the case where the gain characteristic and response characteristic are detected from the frequency response characteristic of the detection value of the air-fuel ratio sensor, and gain deterioration and response deterioration are detected, the air-fuel ratio must be forcibly oscillated to detect the response characteristic. In the meantime, influences such as deterioration of operability or exhaust deterioration may occur.

本発明は前記解決しようとする課題に鑑みてなされたものであって、その目的とするところは、排気や運転性が悪化することなく、空燃比センサのゲイン劣化と応答劣化を検出することができる内燃機関の空燃比センサ診断装置および診断方法を提供することにある。   The present invention has been made in view of the problem to be solved, and the object of the present invention is to detect the gain deterioration and the response deterioration of the air-fuel ratio sensor without deteriorating exhaust and operability. An object of the present invention is to provide an air-fuel ratio sensor diagnostic apparatus and diagnostic method for an internal combustion engine.

前記目的を達成するために、本発明による内燃機関の空燃比センサ診断装置は、内燃機関の排気通路に設けられたリニア空燃比センサの劣化判定を行う空燃比センサ診断装置であって、目標空燃比が変更されてから前記リニア空燃比センサの検出値が所定値に到達するまでの所要時間である応答時間を検出する応答時間検出手段と、前記応答時間検出手段によって検出される応答時間に基づいて前記リニア空燃比センサの劣化指標を演算する劣化指標演算手段と、前記劣化指標演算手段により演算された劣化指標に基づき前記リニア空燃比センサの劣化を判定する劣化判定手段とを有し、前記応答時間検出手段は、前記リニア空燃比センサの検出値が予め定めた第1所定値に到達するまでの第1応答時間を検出する第1応答時間検出手段と、前記リニア空燃比センサの検出値が前記第1所定値より大きい第2所定値に到達するまでの第2応答時間を検出する第2応答時間検出手段とを含み、前記劣化指標演算手段は、少なくとも前記第1応答時間に基づいて第1劣化指標を演算する第1劣化指標演算手段と、少なくとも前記第2応答時間に基づいて第2劣化指標を演算する第2劣化指標演算手段とを含み、前記劣化判定手段は、前記第1劣化指標と前記第2劣化指標に基づき前記リニア空燃比センサの劣化を判定する。   In order to achieve the above object, an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention is an air-fuel ratio sensor diagnostic apparatus for determining deterioration of a linear air-fuel ratio sensor provided in an exhaust passage of an internal combustion engine. Response time detecting means for detecting a response time that is a required time from when the fuel ratio is changed until the detected value of the linear air-fuel ratio sensor reaches a predetermined value, and based on the response time detected by the response time detecting means Deterioration index calculating means for calculating a deterioration index of the linear air-fuel ratio sensor, and deterioration determining means for determining deterioration of the linear air-fuel ratio sensor based on the deterioration index calculated by the deterioration index calculating means, Response time detection means, first response time detection means for detecting a first response time until the detection value of the linear air-fuel ratio sensor reaches a predetermined first predetermined value; Second response time detecting means for detecting a second response time until the detected value of the linear air-fuel ratio sensor reaches a second predetermined value greater than the first predetermined value, and the deterioration index calculating means includes at least First deterioration index calculating means for calculating a first deterioration index based on the first response time; and second deterioration index calculating means for calculating a second deterioration index based on at least the second response time; The deterioration determining means determines the deterioration of the linear air-fuel ratio sensor based on the first deterioration index and the second deterioration index.

本発明による内燃機関の空燃比センサ診断装置は、好ましくは、変更直前の前記目標空燃比と変更直後の前記目標空燃比の差の絶対値である目標空燃比変更量は所定値以上とし、前記変更直後の目標空燃比を前記第2応答時間検出手段によって前記第2応答時間が検出されるまで保持する。   The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention is preferably configured such that a target air-fuel ratio change amount that is an absolute value of a difference between the target air-fuel ratio immediately before the change and the target air-fuel ratio immediately after the change is a predetermined value or more, The target air-fuel ratio immediately after the change is held until the second response time is detected by the second response time detection means.

本発明による内燃機関の空燃比センサ診断装置は、好ましくは、前記第1劣化指標演算手段および前記第2劣化指標演算手段は、前記第1応答時間と前記第2応答時間の差、和、積、商の少なくとも一つ、あるいは前記第1応答時間と前記第2応答時間のいずれかの値に基づいて前記第1劣化指標および前記第2劣化指標を演算する。   In the air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention, preferably, the first deterioration index calculating means and the second deterioration index calculating means are the difference, sum, product of the first response time and the second response time. The first deterioration index and the second deterioration index are calculated based on at least one of the quotients or the value of either the first response time or the second response time.

本発明による内燃機関の空燃比センサ診断装置は、好ましくは、前記第1劣化指標演算手段が、前記第1応答時間に基づいて前記リニア空燃比センサの応答時間の異常を検出する応答劣化指標を演算し、前記第2劣化指標演算手段は前記第1応答時間と前記第2応答時間に基づいて前記リニア空燃比センサの空燃比に対する感度異常を検出するゲイン劣化指標演算する。   In the air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention, it is preferable that the first deterioration index calculating means detects a response deterioration index for detecting an abnormality in the response time of the linear air-fuel ratio sensor based on the first response time. The second deterioration index calculating means calculates a gain deterioration index for detecting an abnormality in sensitivity to the air-fuel ratio of the linear air-fuel ratio sensor based on the first response time and the second response time.

本発明による内燃機関の空燃比センサ診断装置は、好ましくは、前記第1劣化指標演算手段は、前記第1応答時間を所定値で除算した値、あるいは第1応答時間を応答劣化指標とし、前記第2劣化指標演算手段は、第2応答時間を第1応答時間で除算した値をゲイン劣化指標とする。 In the air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention, preferably, the first deterioration index calculating means uses a value obtained by dividing the first response time by a predetermined value, or a first response time as a response deterioration index. The second deterioration index calculating means uses a value obtained by dividing the second response time by the first response time as a gain deterioration index.

本発明による内燃機関の空燃比センサ診断装置は、好ましくは、前記目標空燃比の変更後に、前記第1応答時間あるいは前記第2応答時間が検出されるまでに、前記目標空燃比が変更された場合には前記第1応答時間および前記第2応答時間の検出を中止する。   In the air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention, preferably, the target air-fuel ratio is changed after the change of the target air-fuel ratio until the first response time or the second response time is detected. In this case, the detection of the first response time and the second response time is stopped.

本発明による内燃機関の空燃比センサ診断装置は、好ましくは、内燃機関の吸入空気流量を検出する空気流量検出手段によって検出される内燃機関の吸入空気流量と、回転数検出手段によって検出される内燃機関の回転数の変化を検出する運転状態検出手段を有し、応答時間検出中に、前記運動状態検出手段によって検出した吸入空気量変化の絶対値が所定値以上、あるいは回転数変化の絶対値が所定値以上になれば、前記第1応答時間および前記第2応答時間の検出を中止する。   The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention is preferably an intake air flow rate of the internal combustion engine detected by the air flow rate detection means for detecting the intake air flow rate of the internal combustion engine and the internal combustion engine detected by the rotation speed detection means. It has an operation state detection means for detecting a change in the engine speed, and the absolute value of the intake air amount change detected by the motion state detection means during the response time detection is a predetermined value or more, or an absolute value of the speed change If becomes equal to or greater than a predetermined value, detection of the first response time and the second response time is stopped.

本発明による内燃機関の空燃比センサ診断装置は、好ましくは、前記リニア空燃比センサの検出値と前記目標空燃比との偏差を演算し、その偏差が所定範囲内にあるかを判定する偏差判定手段を有し、前記偏差判定手段により偏差が所定範囲内にあると判定されている時のみ、目標空燃比を変更して空燃比センサ診断を開始する。   The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention preferably calculates a deviation between a detected value of the linear air-fuel ratio sensor and the target air-fuel ratio, and determines whether the deviation is within a predetermined range. The air-fuel ratio sensor diagnosis is started by changing the target air-fuel ratio only when the deviation determination means determines that the deviation is within the predetermined range.

本発明による内燃機関の空燃比センサ診断装置は、好ましくは、前記リニア空燃比センサは三元触媒の上流側に設けられ、前記三元触媒の下流後に酸素センサが設けられ、前記リニア空燃比センサの検出値と前記酸素センサの検出値に基づいて前記三元触媒の劣化を検出する触媒劣化判定手段と、前記劣化指標演算手段の演算結果に基づいて前記触媒劣化指標演算手段の演算結果を補正する触媒劣化判定補正手段とを有している。   In the air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention, preferably, the linear air-fuel ratio sensor is provided upstream of a three-way catalyst, an oxygen sensor is provided downstream of the three-way catalyst, and the linear air-fuel ratio sensor The catalyst deterioration determination means for detecting deterioration of the three-way catalyst based on the detection value of the catalyst and the detection value of the oxygen sensor, and the calculation result of the catalyst deterioration index calculation means is corrected based on the calculation result of the deterioration index calculation means And a catalyst deterioration determination correcting means.

本発明による空燃比センサ診断装置は、好ましくは、前記ゲイン劣化指標または前記応答劣化指標の少なくとも何れかに基づいて前記三元触媒診断の結果を補正する。   The air-fuel ratio sensor diagnosis apparatus according to the present invention preferably corrects the result of the three-way catalyst diagnosis based on at least one of the gain deterioration index and the response deterioration index.

本発明による内燃機関の空燃比センサ診断装置は、好ましくは、前記劣化判定手段により前記リニア空燃比センサが劣化していると判定された場合には、前記三元触媒の診断を禁止する。   The air-fuel ratio sensor diagnosis apparatus for an internal combustion engine according to the present invention preferably prohibits the diagnosis of the three-way catalyst when the deterioration determination means determines that the linear air-fuel ratio sensor has deteriorated.

また、前記目的を達成するために、本発明による内燃機関の空燃比センサ診断方法は、排気通路に設けられたリニア空燃比センサの劣化判定を行う空燃比センサ診断方法であって、前記リニア空燃比センサの検出値が予め定めた第1所定値に到達するまでの第1応答時間と、前記リニア空燃比センサの検出値が前記第1所定値より大きい第2所定値に到達するまでの第2応答時間を検出し、少なくとも前記第1応答時間に基づいて第1劣化指標を演算し、少なくとも前記第2応答時間に基づいて第2劣化指標を演算し、前記第1劣化指標と前記第2劣化指標に基づき前記リニア空燃比センサの劣化を判定する。   In order to achieve the above object, an air-fuel ratio sensor diagnostic method for an internal combustion engine according to the present invention is an air-fuel ratio sensor diagnostic method for determining deterioration of a linear air-fuel ratio sensor provided in an exhaust passage, wherein A first response time until the detection value of the fuel ratio sensor reaches a predetermined first predetermined value, and a first response time until the detection value of the linear air-fuel ratio sensor reaches a second predetermined value greater than the first predetermined value. 2 response times are detected, a first deterioration index is calculated based on at least the first response time, a second deterioration index is calculated based on at least the second response time, and the first deterioration index and the second deterioration time are calculated. Degradation of the linear air-fuel ratio sensor is determined based on a degradation index.

本発明の内燃機関の空燃比センサの診断装置によれば、目標空燃比がステップ状に変化した時のリニア空燃比センサの応答時間を2点以上計測し、その応答時間に基づいて複数の劣化指標を演算することで、リニア空燃比センサの診断精度、性能を向上させることができ、しかも劣化要因(ゲイン劣化、応答劣化)を特定することができる。   According to the air-fuel ratio sensor diagnostic apparatus for an internal combustion engine of the present invention, the response time of the linear air-fuel ratio sensor when the target air-fuel ratio changes stepwise is measured at two or more points, and a plurality of degradations are performed based on the response time. By calculating the index, it is possible to improve the diagnostic accuracy and performance of the linear air-fuel ratio sensor, and to specify the deterioration factor (gain deterioration, response deterioration).

以下、本発明の内燃機関の空燃比センサ診断装置の実施形態を、図面を参照して説明する。   Embodiments of an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention will be described below with reference to the drawings.

図1は、本発明による内燃機関の空燃比センサ診断装置を適用される筒内噴射式内燃機関(エンジン)の全体構成を示している。   FIG. 1 shows the overall configuration of a direct injection internal combustion engine (engine) to which an air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to the present invention is applied.

エンジン107は、シリンダブロック107bとピストン107aによって複数個の燃焼室107cを画定している。   The engine 107 defines a plurality of combustion chambers 107c by cylinder blocks 107b and pistons 107a.

エンジン107の燃焼室107cに導入される吸入空気は、エアクリーナ102の入口部102aから取り入れられ、内燃機関の運転状態計測手段の一つである空気流量計(エアフロセンサ)103を通り、吸気流量を制御する電制スロットル弁105aが収容されたスロットルボディ105を通ってコレクタ106に入る。電制スロットル弁105aは、電動モータ124によって駆動され、開度設定される。   The intake air introduced into the combustion chamber 107c of the engine 107 is taken in from the inlet portion 102a of the air cleaner 102, passes through an air flow meter (air flow sensor) 103, which is one of the operating state measuring means of the internal combustion engine, and the intake air flow is reduced. The collector 106 is entered through the throttle body 105 in which the electric throttle valve 105a to be controlled is accommodated. The electric throttle valve 105a is driven by the electric motor 124 and the opening degree is set.

エアフロセンサ103は、吸気流量を表す信号を内燃機関制御装置であるコントロールユニット115に出力する。スロットルボディ105には、内燃機関の運転状態計測手段の一つとして、電制スロットル弁105aの開度を検出するスロットルセンサ104が取り付けられている。スロットルセンサ104は、電制スロットル弁105aの開度を表す信号をコントロールユニット115に出力する。   The airflow sensor 103 outputs a signal representing the intake air flow rate to the control unit 115 which is an internal combustion engine control device. The throttle body 105 is provided with a throttle sensor 104 that detects the opening degree of the electric throttle valve 105a as one of the operating state measuring means of the internal combustion engine. The throttle sensor 104 outputs a signal indicating the opening degree of the electric throttle valve 105a to the control unit 115.

コレクタ106に吸入された空気は、シリンダブロック107bに接続された吸気管101によって各燃焼室107cに分配供給される。   The air sucked into the collector 106 is distributed and supplied to each combustion chamber 107c by the intake pipe 101 connected to the cylinder block 107b.

ガソリン等の燃料は、燃料タンク108から燃料ポンプ109により一次加圧されて燃料圧力レギュレータ110により一定の圧力に調圧され、高圧燃料ポンプ111によって高い圧力に二次加圧されてコモンレール126へ圧送される。高圧燃料は、各燃焼室107c毎に設けられているインジェクタ112によって燃焼室107cに直接噴射される。   Fuel such as gasoline is primarily pressurized from the fuel tank 108 by the fuel pump 109, regulated to a constant pressure by the fuel pressure regulator 110, and secondarily pressurized to a high pressure by the high-pressure fuel pump 111 and pumped to the common rail 126. Is done. The high pressure fuel is directly injected into the combustion chamber 107c by an injector 112 provided for each combustion chamber 107c.

コモンレール126には高圧燃料の圧力を検出する燃料圧力センサ121が取り付けられている。燃料圧力センサ121は高圧燃料の圧力を表す信号をコントロールユニット115に出力する。   A fuel pressure sensor 121 that detects the pressure of the high-pressure fuel is attached to the common rail 126. The fuel pressure sensor 121 outputs a signal representing the pressure of the high pressure fuel to the control unit 115.

シリンダブロック107bには各燃焼室107c毎に点火プラグ114が取り付けられている。燃焼室107cに噴射された燃料は、点火コイル113によって高電圧化された点火信号により点火プラグ114によって着火される。   A spark plug 114 is attached to the cylinder block 107b for each combustion chamber 107c. The fuel injected into the combustion chamber 107 c is ignited by the spark plug 114 by the ignition signal that has been increased in voltage by the ignition coil 113.

排気弁107dのカムシャフト100にはカム角センサ116が取り付けられている。カム角センサ116は、カムシャフト100の位相を検出するための信号をコントロールユニット115に出力する。ここで、カム角センサ116は、吸気弁107e側のカムシャフト122に取り付けられてもよい。また、エンジン107のクランクシャフト107fの回転と位相を検出するために、クランク角センサ117がクランクシャフト107fに設けられている。クランク角センサ117は、クランクシャフト107fの回転と位相を表す信号をコントロールユニット115に出力する。   A cam angle sensor 116 is attached to the camshaft 100 of the exhaust valve 107d. The cam angle sensor 116 outputs a signal for detecting the phase of the camshaft 100 to the control unit 115. Here, the cam angle sensor 116 may be attached to the camshaft 122 on the intake valve 107e side. A crank angle sensor 117 is provided on the crankshaft 107f in order to detect the rotation and phase of the crankshaft 107f of the engine 107. The crank angle sensor 117 outputs a signal representing the rotation and phase of the crankshaft 107 f to the control unit 115.

排気管119には三元触媒120が設けられている。三元触媒120の上流側にはリニア空燃比センサ118が設けられている。リニア空燃比センサ118は、排気ガス中の酸素を定量的に検出し、その検出信号をコントロールユニット115に出力する。三元触媒120の下流側には、排気ガス中の酸素の有無を検出する酸素センサ125が取り付けられている。酸素センサ125は排気ガス中の酸素の有無を表す信号をコントロールユニット115に出力する。   A three-way catalyst 120 is provided in the exhaust pipe 119. A linear air-fuel ratio sensor 118 is provided on the upstream side of the three-way catalyst 120. The linear air-fuel ratio sensor 118 quantitatively detects oxygen in the exhaust gas and outputs a detection signal to the control unit 115. An oxygen sensor 125 that detects the presence or absence of oxygen in the exhaust gas is attached to the downstream side of the three-way catalyst 120. The oxygen sensor 125 outputs a signal indicating the presence or absence of oxygen in the exhaust gas to the control unit 115.

コントロールユニット115は、マイクロコンピュータによる電子制御式のものであり、燃圧制御、空燃比制御、点火制御、およびリニア空燃比センサ118の劣化診断を行う。   The control unit 115 is of an electronic control type by a microcomputer, and performs fuel pressure control, air-fuel ratio control, ignition control, and deterioration diagnosis of the linear air-fuel ratio sensor 118.

なお、ここでは、筒内噴射式内燃機関について説明したが、本発明は、これに限らず、インジェクタ112を吸気ポートに取り付けたポート噴射内燃機関についても適用できる(図2参照)。   Here, the cylinder injection type internal combustion engine has been described. However, the present invention is not limited to this, and the present invention can also be applied to a port injection internal combustion engine in which an injector 112 is attached to an intake port (see FIG. 2).

空燃比制御装置と本発明による空燃比センサ診断装置の実施形態1を、図2を参照して説明する。   Embodiment 1 of an air-fuel ratio control apparatus and an air-fuel ratio sensor diagnostic apparatus according to the present invention will be described with reference to FIG.

空燃比制御装置は、空燃比制御手段206と、目標空燃比を設定する目標空燃比設定手段207とを有する。空燃比制御手段206は、リニア空燃比センサ118によって検出された排気ガス中の酸素の検出値と目標空燃比設定手段207の出力に基づき燃料噴射量を演算し、燃料噴射指令をインジェクタ112に出力する。   The air-fuel ratio control device includes air-fuel ratio control means 206 and target air-fuel ratio setting means 207 that sets the target air-fuel ratio. The air-fuel ratio control unit 206 calculates the fuel injection amount based on the detected value of oxygen in the exhaust gas detected by the linear air-fuel ratio sensor 118 and the output of the target air-fuel ratio setting unit 207, and outputs a fuel injection command to the injector 112. To do.

空燃比センサ診断装置は、応答時間検出手段208と、劣化指標演算手段211と、劣化判定手段214とを有する。   The air-fuel ratio sensor diagnostic apparatus includes response time detection means 208, deterioration index calculation means 211, and deterioration determination means 214.

応答時間検出手段208は、目標空燃比設定手段207によって設定される目標空燃比が変更された時点からリニア空燃比センサ118の検出値が所定値(目標空燃比)に到達するまでの所要時間である応答時間を計測する。劣化指標演算手段211は、応答時間検出手段208によって計測された応答時間に基づいて劣化指標を演算する。劣化判定手段214は、劣化指標演算手段211によって演算された劣化指標に基づいてリニア空燃比センサ118の劣化の有無を判定する。   The response time detection means 208 is a required time from when the target air-fuel ratio set by the target air-fuel ratio setting means 207 is changed until the detection value of the linear air-fuel ratio sensor 118 reaches a predetermined value (target air-fuel ratio). Measure a certain response time. The deterioration index calculation unit 211 calculates a deterioration index based on the response time measured by the response time detection unit 208. The deterioration determining unit 214 determines whether the linear air-fuel ratio sensor 118 has deteriorated based on the deterioration index calculated by the deterioration index calculating unit 211.

実施形態1の特徴は、応答時間計測手段208が第1応答時間検出手段209と第2応答時間検出手段210とを備えており、リニア空燃比センサ118の一つの応答波形から異なる条件による第1応答時間T1と第2応答時間T2を検出し、劣化指標演算手段211が、第1応答時間T1、第2応答時間T2の各々に基づいて劣化指標を個々に演算する第1劣化指標演算手段212と第2劣化指標演算手段213とを有していることである。   The feature of the first embodiment is that the response time measurement means 208 includes a first response time detection means 209 and a second response time detection means 210, and the first response time varies depending on the first condition depending on different conditions from one response waveform of the linear air-fuel ratio sensor 118. Response time T1 and second response time T2 are detected, and deterioration index calculating means 211 first deterioration index calculating means 212 for individually calculating the deterioration index based on each of first response time T1 and second response time T2. And the second deterioration index calculating means 213.

劣化指標演算手段211は、第1劣化指標演算手段212によって演算された第1劣化指標I1と、第2劣化指標演算手段213によって演算された第2劣化指標I2の二つの劣化指標より、リニア空燃比センサ118の劣化の有無を判定する。   The deterioration index calculating means 211 is linearly empty from two deterioration indexes, ie, a first deterioration index I1 calculated by the first deterioration index calculating means 212 and a second deterioration index I2 calculated by the second deterioration index calculating means 213. The presence / absence of deterioration of the fuel ratio sensor 118 is determined.

すなわち、本実施形態では、リニア空燃比センサ118の一つの応答波形から複数の応答時間を検出し、その応答時間の各々に応じて異なる劣化指標を演算することが行われる。これにより、リニア空燃比センサ118に起こり得る複数の劣化状態(応答劣化、ゲイン劣化)を区別して検出することが可能となる。   That is, in the present embodiment, a plurality of response times are detected from one response waveform of the linear air-fuel ratio sensor 118, and a different deterioration index is calculated according to each of the response times. Thereby, it is possible to distinguish and detect a plurality of deterioration states (response deterioration, gain deterioration) that may occur in the linear air-fuel ratio sensor 118.

図3は、実施形態1による空燃比センサ診断装置による空燃比センサ診断の処理フローを示している。   FIG. 3 shows a processing flow of air-fuel ratio sensor diagnosis by the air-fuel ratio sensor diagnostic apparatus according to the first embodiment.

空燃比センサ診断の開始後、まず、目標空燃比を変更し(ステップS301)、第1応答時間T1、第2応答時間T2の値をクリアする(ステップS302)。   After starting the air-fuel ratio sensor diagnosis, first, the target air-fuel ratio is changed (step S301), and the values of the first response time T1 and the second response time T2 are cleared (step S302).

その後、リニア空燃比センサ118の検出値より実空燃比を検出すると共に、目標空燃比変更時点よりの時間計測(応答時間検出)を行う(ステップS303)。そして、空燃比センサ診断の中断条件が成立していないかを監視する(ステップS304)。空燃比センサ診断の中断条件としては、その後の目標空燃比の変更や、燃料カットなどが挙げられる。   Thereafter, the actual air-fuel ratio is detected from the detection value of the linear air-fuel ratio sensor 118, and time measurement (response time detection) from the target air-fuel ratio change time is performed (step S303). Then, it is monitored whether the air-fuel ratio sensor diagnosis interruption condition is satisfied (step S304). Examples of conditions for interrupting the air-fuel ratio sensor diagnosis include a subsequent change in the target air-fuel ratio and a fuel cut.

空燃比センサ診断の中断条件が成立した場合には、誤診断の防止のために、空燃比センサ診断処理を直ちに終了する。   When the air-fuel ratio sensor diagnosis interruption condition is satisfied, the air-fuel ratio sensor diagnosis process is immediately terminated to prevent erroneous diagnosis.

中断条件が成立していない場合には、リニア空燃比センサ118によって検出された実空燃比が第1所定値G1以上で、かつT1=0であるか否かを判定する(ステップS305)。実空燃比が第1所定値G1以上で、かつT1=0であれば、第1応答時間検出手段209が、その時の時間計測値より第1応答時間T1を検出する(ステップS307)。そして、第1劣化指標演算手段212が第1応答時間T1に基づいて第1劣化指標I1を演算する(ステップS309)。なお、実空燃比が第1所定値G1以上で、かつT1=0の条件が成立しない場合には、ステップS303に戻る。   If the interruption condition is not satisfied, it is determined whether or not the actual air-fuel ratio detected by the linear air-fuel ratio sensor 118 is equal to or more than the first predetermined value G1 and T1 = 0 (step S305). If the actual air-fuel ratio is greater than or equal to the first predetermined value G1 and T1 = 0, the first response time detection means 209 detects the first response time T1 from the time measurement value at that time (step S307). Then, the first deterioration index calculating means 212 calculates the first deterioration index I1 based on the first response time T1 (step S309). If the actual air-fuel ratio is greater than or equal to the first predetermined value G1 and the condition of T1 = 0 is not satisfied, the process returns to step S303.

また、中断条件が成立していない場合には、リニア空燃比センサ118によって検出された実空燃比が第2所定値G2以上で、かつT2=0であるか否かを判定する(ステップS306)。実空燃比が第2所定値G2以上で、かつT2=0であれば、第2応答時間検出手段210が、その時の時間計測値より第2応答時間T2を検出する(ステップS308)。そして、第2劣化指標演算手段213が第1応答時間T1と第2応答時間T2とに基づいて第2劣化指標I2を演算する(ステップS309)。なお、実空燃比が第2所定値G2以上で、かつT1=0の条件が成立しない場合には、ステップS303に戻る。   If the interruption condition is not satisfied, it is determined whether the actual air-fuel ratio detected by the linear air-fuel ratio sensor 118 is equal to or greater than the second predetermined value G2 and T2 = 0 (step S306). . If the actual air-fuel ratio is equal to or greater than the second predetermined value G2 and T2 = 0, the second response time detection means 210 detects the second response time T2 from the time measurement value at that time (step S308). Then, the second deterioration index calculating means 213 calculates the second deterioration index I2 based on the first response time T1 and the second response time T2 (step S309). If the actual air-fuel ratio is equal to or greater than the second predetermined value G2 and the condition of T1 = 0 is not satisfied, the process returns to step S303.

ここで重要なことは、第1所定値G1と第2所定値G2とが異なった値であり、G1<G2の関係にあることである。たとえば、第1所定値G1は、目標空燃比の変更直前の値と変更直後の値である目標空燃比変化量に対して10%応答となる点(変化量×0.1)とし、第2所定値G2は、目標空燃比の変更直前の値と変更直後の値である目標空燃比変化量に対して64%応答となる点(変化量×0.64)とした。   What is important here is that the first predetermined value G1 and the second predetermined value G2 are different values and have a relationship of G1 <G2. For example, the first predetermined value G1 is a point (change amount × 0.1) that provides a 10% response to a value immediately before the change of the target air-fuel ratio and a target air-fuel ratio change amount that is the value immediately after the change. The predetermined value G2 is a point (change amount × 0.64) that gives a 64% response to the value immediately before the change of the target air-fuel ratio and the target air-fuel ratio change amount that is the value immediately after the change.

なお、第1劣化指標I1も、第1応答時間T1と第2応答時間T2に基づいて、第2劣化指標I2の演算式とは異なる演算式によって演算してもよい。   Note that the first deterioration index I1 may also be calculated based on the first response time T1 and the second response time T2 using an arithmetic expression different from the arithmetic expression of the second deterioration index I2.

そして、劣化判定手段214が、第1劣化指標I1と第2劣化指標I2に基づいて、リニア空燃比センサ118の劣化を、応答劣化とゲイン劣化とで区別して判定する。   Then, the deterioration determination unit 214 determines the deterioration of the linear air-fuel ratio sensor 118 by distinguishing between response deterioration and gain deterioration based on the first deterioration index I1 and the second deterioration index I2.

図4は図3に示したフローチャートを実施した際のタイムチャートの一例である。目標空燃比をステップ状に変化するよう変化量R1を与え、リニア空燃比センサ118の検出値(以下、実空燃比)が第1所定値G1になる時の第1応答時間T1と、実空燃比が所定値T2になる時の第2応答時間T2をそれぞれ検出し、これらに基づき第1劣化指標I1と第2劣化指標I2を演算する。   FIG. 4 is an example of a time chart when the flowchart shown in FIG. 3 is executed. A change amount R1 is given so as to change the target air-fuel ratio stepwise, and a first response time T1 when a detection value of the linear air-fuel ratio sensor 118 (hereinafter referred to as an actual air-fuel ratio) becomes a first predetermined value G1, and an actual sky The second response time T2 when the fuel ratio reaches the predetermined value T2 is detected, and based on these, the first deterioration index I1 and the second deterioration index I2 are calculated.

変化量R1による目標空燃比の変更は、第1応答時間T1ならびに第2応答時間T2が検出されるまで保持する。なお、本実施形態では、目標空燃比の変化量R1を+1.4とした。しかし、変化量R1は、これ以外の値を用いてもよく、符号はマイナスでもよい。   The change of the target air-fuel ratio by the change amount R1 is held until the first response time T1 and the second response time T2 are detected. In the present embodiment, the target air-fuel ratio change amount R1 is set to +1.4. However, the change amount R1 may use a value other than this, and the sign may be negative.

また、応答時間は、目標空燃比変更後のサンプリング周期を積算して求め、図のように、第1応答時間T1、第2応答時間T2が確定してから値を検出してもよいが、リアルタイムに検出(図中点線)してもよい。さらに、第1劣化指標I1、第2劣化指標I2は、第1応答時間T1、第2応答時間T2の検出以降の任意のタイミングで算出してもよい。   Further, the response time may be obtained by integrating the sampling period after the change of the target air-fuel ratio, and the value may be detected after the first response time T1 and the second response time T2 are fixed as shown in the figure. You may detect in real time (dotted line in a figure). Further, the first deterioration index I1 and the second deterioration index I2 may be calculated at any timing after the detection of the first response time T1 and the second response time T2.

図5、図6は、目標空燃比変更後のリニア空燃比センサ118の出力信号(実空燃比)の応答波形を示している。   5 and 6 show response waveforms of the output signal (actual air-fuel ratio) of the linear air-fuel ratio sensor 118 after the target air-fuel ratio is changed.

リニア空燃比センサ118の応答波形は、リニア空燃比センサ118の劣化の種類によって異なる。図5はリニア空燃比センサ118が正常な場合の波形(実線)とゲイン劣化時の波形(破線)とを示し、図6はリニア空燃比センサ118が正常な場合の波形(実線)と応答劣化時の波形(破線)とを示している。   The response waveform of the linear air-fuel ratio sensor 118 varies depending on the type of deterioration of the linear air-fuel ratio sensor 118. 5 shows a waveform when the linear air-fuel ratio sensor 118 is normal (solid line) and a waveform when the gain is deteriorated (broken line). FIG. 6 shows a waveform when the linear air-fuel ratio sensor 118 is normal (solid line) and response deterioration. A time waveform (broken line) is shown.

ゲイン劣化については、図5に示されているように、第1所定値G1以上の領域で、正常時とゲイン劣化時とで応答波形が異なるが、第1所定値G1以下の領域では、応答波形は、常時とゲイン劣化時とでほぼ一致する。つまり、正常時の第1応答時間T1nとゲイン劣化時の第1応答時間T1gとは、ほぼ同じであるが、第2応答時間T2に関しては、正常時の第2応答時間T2nとゲイン劣化時の第2応答時間T2gとが大きく異なったものになる。   As for gain degradation, as shown in FIG. 5, the response waveform is different between normal and gain degradation in the region of the first predetermined value G1 or more, but in the region of the first predetermined value G1 or less, the response waveform is different. The waveforms are almost the same at all times and when the gain is degraded. That is, the first response time T1n at the normal time and the first response time T1g at the time of gain deterioration are substantially the same, but the second response time T2n at the normal time and the first response time T1n at the time of gain deterioration are the same. The second response time T2g is greatly different.

応答劣化については、図6に示されているように、全域に亘って正常時と応答劣化時とで応答波形が一致することはない。つまり、正常時の第1応答時間T1nと応答劣化時の第1応答時間T1r、正常時の第2応答時間T2nと応答劣化時の第2応答時間T2gの何れもが異なったものになる。   Regarding the response deterioration, as shown in FIG. 6, the response waveforms do not coincide between the normal state and the response deterioration over the entire area. That is, the first response time T1n at the normal time and the first response time T1r at the time of response deterioration, the second response time T2n at the normal time, and the second response time T2g at the time of response deterioration are different.

上述のことは、実空燃比が第1所定値G1となる時の第1応答時間T1は応答劣化に対して感度をもち、実空燃比が第2所定値G2となる時の第2応答時間T2は応答劣化とゲイン劣化のどちらの劣化にも感度があることを意味する。
本発明者らは、リニア空燃比センサの劣化と応答波形に上記の関係があることを実験により確認した。
As described above, the first response time T1 when the actual air-fuel ratio becomes the first predetermined value G1 has sensitivity to the response deterioration, and the second response time when the actual air-fuel ratio becomes the second predetermined value G2. T2 means that both deterioration of response and gain are sensitive.
The present inventors have confirmed through experiments that the linear air-fuel ratio sensor has the above-described relationship between the deterioration and the response waveform.

図7は、劣化指標(第1劣化指標I1、第2劣化指標I2)を用いてリニア空燃比センサ118の劣化判定を行う方法の一例を示している。本実施形態では、劣化が進むほど、劣化指標が大きくなるから、劣化指標が所定のしきい値以上になれば劣化と判定し、それ以下ならば正常と判定する。   FIG. 7 shows an example of a method for determining the deterioration of the linear air-fuel ratio sensor 118 using the deterioration indexes (first deterioration index I1, second deterioration index I2). In this embodiment, as the deterioration progresses, the deterioration index increases. Therefore, it is determined that the deterioration index is greater than or equal to a predetermined threshold, and if it is less than that, it is determined normal.

第1応答時間T1、第2応答時間T2は、それぞれ劣化に対して感度を持つから、図8に示されているように、第1応答時間T1自体を第1劣化指標I1、第2応答時間T2自体を第2劣化指標I2しとしてもよい。これ以外に、第1劣化指標I1、第2劣化指標I2は、第1応答時間T1と第2応答時間T2を用いた四則演算を行った結果の演算値でよい。たとえば、第2劣化指標I2は、I2=T2−T1、I2=T1+T2、I2=T1×T2、I2=T2÷T1の何れかの演算値であってもよい。   Since the first response time T1 and the second response time T2 are sensitive to deterioration, respectively, as shown in FIG. 8, the first response time T1 itself is used as the first deterioration index I1 and the second response time. T2 itself may be used as the second deterioration index I2. In addition, the first deterioration index I1 and the second deterioration index I2 may be calculated values obtained by performing four arithmetic operations using the first response time T1 and the second response time T2. For example, the second deterioration index I2 may be a calculated value of any of I2 = T2−T1, I2 = T1 + T2, I2 = T1 × T2, and I2 = T2 ÷ T1.

第1劣化指標I1はリニア空燃比センサ118の応答時間が遅れる応答劣化を検出する応答劣化指標Irとして用いることができる。この応答劣化指標Irは、応答時間T1、あるいは第1応答時間T1を所定値(基準値)T0で除算した値(T1/T0)であってよい。所定値T0は、リニア空燃比センサ118が正常時の応答時間T1を予め測定した値を用いた。なお、所定値T0は、吸入空気量や噴射した燃料量に基づいた演算により算定してもよい。   The first deterioration index I1 can be used as a response deterioration index Ir for detecting response deterioration in which the response time of the linear air-fuel ratio sensor 118 is delayed. The response deterioration index Ir may be a response time T1 or a value (T1 / T0) obtained by dividing the first response time T1 by a predetermined value (reference value) T0. As the predetermined value T0, a value obtained by measuring in advance the response time T1 when the linear air-fuel ratio sensor 118 is normal is used. The predetermined value T0 may be calculated by calculation based on the intake air amount or the injected fuel amount.

第2劣化指標I2はリニア空燃比センサ118の感度が小さくなるゲイン劣化を検出するゲイン劣化指標Igとして用いることができる。ゲイン劣化指標Igは、第2応答時間T2を第1応答時間T1で除算した値(T2/T1)を用いた。   The second deterioration index I2 can be used as a gain deterioration index Ig for detecting gain deterioration that decreases the sensitivity of the linear air-fuel ratio sensor 118. As the gain deterioration index Ig, a value (T2 / T1) obtained by dividing the second response time T2 by the first response time T1 was used.

図4〜図6を用いて説明したように、第2応答時間T2は、応答劣化とゲイン劣化に感度を持つ。一方、第1応答時間T1は、応答劣化にのみ感度を持ち、ゲイン劣化ではほぼ一定である。さらに、第2応答時間T2と第1応答時間T1は、応答劣化において、応答時間T1が増加すれば、第2応答時間T2も増加する正の相関があるため、(T2/T1)は、応答劣化よりも、ゲイン劣化に対して感度が高い。よって、(T2/T1)をゲイン劣化指標Igとして用ることが好ましい。 As described with reference to FIGS. 4 to 6, the second response time T2 is sensitive to response deterioration and gain deterioration. On the other hand, the first response time T1 is sensitive only to response deterioration and is almost constant in gain deterioration. Furthermore, since the second response time T2 and the first response time T1 have a positive correlation that the second response time T2 increases as the response time T1 increases in response deterioration, (T2 / T1) More sensitive to gain degradation than degradation. Therefore, (T2 / T1) use have Rukoto preferably as gain deterioration index Ig.

なお、応答劣化指標Irは、例えば、第1応答時間T1と所定値T0の加算、減算、乗算によっても得ることができ、ゲイン劣化指標Igも、同様に、第1応答時間T1と第2応答時間T2の加算、減算、乗算によっても得られる。また、これらを複数組み合わせても可能である。   Note that the response deterioration index Ir can be obtained by, for example, addition, subtraction, and multiplication of the first response time T1 and the predetermined value T0, and the gain deterioration index Ig is also the same as the first response time T1 and the second response time. It can also be obtained by addition, subtraction, and multiplication of time T2. Moreover, it is also possible to combine a plurality of these.

このように求めた劣化指標(応答劣化指標Ir、ゲイン劣化指標Ig)を用いて、劣化判定手段214が行うリニア空燃比センサ118の劣化判定の一例を、図9、図10を参照して説明する。   An example of the deterioration determination of the linear air-fuel ratio sensor 118 performed by the deterioration determination unit 214 using the deterioration index (response deterioration index Ir, gain deterioration index Ig) obtained in this way will be described with reference to FIGS. To do.

図9は、応答劣化指標Irによる応答劣化判定を示している。本実施形態では、応答劣化が進むほど、応答劣化指標Irが大きくなり、所定のしきい値以上になれば、劣化と判定し、それ以下ならば、正常と判定する。   FIG. 9 shows response deterioration determination based on the response deterioration index Ir. In this embodiment, the response deterioration index Ir increases as the response deterioration progresses. If the response deterioration index Ir exceeds a predetermined threshold value, it is determined as deterioration, and if it is lower than that, it is determined as normal.

図10は、ゲイン劣化指標Igによるゲイン劣化判定を示している。ゲイン劣化指標Igは、ゲインが小さくなるほど劣化指標が大きくなる。そのためゲインが大きくなるゲイン劣化を想定すると、所定のしきい値に上限と下限を設け、ゲイン劣化指標がそれを越える場合は劣化と判定し、上限と下限の間にある時に正常であると判定する。   FIG. 10 shows gain deterioration determination based on the gain deterioration index Ig. The gain degradation index Ig increases as the gain decreases. For this reason, assuming gain deterioration that increases the gain, an upper limit and a lower limit are set for a predetermined threshold value. If the gain deterioration index exceeds the upper limit and lower limit, it is determined to be deteriorated, and it is determined to be normal when it is between the upper limit and the lower limit. To do.

以上により、排気や運転性を悪化することなく、リニア空燃比センサ118のゲイン劣化と応答劣化を特定して検出することができる。   As described above, the gain deterioration and the response deterioration of the linear air-fuel ratio sensor 118 can be specified and detected without deteriorating the exhaust and the drivability.

次に、空燃比制御装置と本発明による空燃比センサ診断装置の実施形態2を、図11を参照して説明する。なお、図11において、図2に対応する部分は、図2に付した符号と同一の符号を付けて、その説明を省略する。   Next, a second embodiment of the air-fuel ratio control device and the air-fuel ratio sensor diagnostic device according to the present invention will be described with reference to FIG. 11, parts corresponding to those in FIG. 2 are denoted by the same reference numerals as those in FIG.

実施形態2では、実施形態1のものに、新たに、偏差判定手段1313と、運転状態検出手段1314と追加した構成となっている。これらの手段を追加することで応答時間T1およびT2の検出精度が向上し、リニア空燃比センサ118の診断を、より精密に行うことができる。 In Embodiment 2, to that of the first embodiment, has a new, and deviation determining means 1313, was added to the operating condition detecting means 1314 configured. By adding these means, the detection accuracy of the response times T1 and T2 is improved, and the linear air-fuel ratio sensor 118 can be diagnosed more precisely.

追加した手段の役割として、偏差判定手段1313は、実空燃比と目標空燃比の偏差を演算し、その偏差が所定の偏差収束判定範囲にあるかを判定する。偏差判定手段1313による偏差判定結果は目標空燃比設定手段207に入力され、空燃比の偏差が所定の偏差収束判定範囲以内である時のみ、空燃比センサ診断のための目標空燃比の変更を許可し、そうでない時には、誤診断防止のために、空燃比センサ診断のための目標空燃比の変更を禁止し、空燃比センサ診断が行われないようにする。   As a function of the added means, the deviation determination means 1313 calculates a deviation between the actual air-fuel ratio and the target air-fuel ratio, and determines whether the deviation is within a predetermined deviation convergence determination range. The deviation determination result by the deviation determination means 1313 is input to the target air-fuel ratio setting means 207, and the change of the target air-fuel ratio for air-fuel ratio sensor diagnosis is permitted only when the air-fuel ratio deviation is within a predetermined deviation convergence determination range. If this is not the case, in order to prevent erroneous diagnosis, change of the target air-fuel ratio for air-fuel ratio sensor diagnosis is prohibited so that air-fuel ratio sensor diagnosis is not performed.

運転状態検出手段1314は、空気流量計103、クランク角センサ117の出力から、吸入空気流量、エンジン回転数の変動を検出する。運転状態検出手段1314によって検出されたエンジン107の運転状態に関する情報(空気流量、エンジン回転数の変動に関する情報)は応答時間検出手段208に入力される。応答時間検出手段208は、吸入空気流量の変動の絶対値が所定値以上、あるいはエンジン回転数の変動の絶対値が所定値以上の少なくとも何れか一方である時には誤診断防止のために、応答時間検出を禁止(中止)し、空燃比センサ診断が行われないようにする。   The operating state detection means 1314 detects fluctuations in the intake air flow rate and the engine speed from the outputs of the air flow meter 103 and the crank angle sensor 117. Information relating to the operating state of the engine 107 detected by the operating state detecting means 1314 (information relating to fluctuations in air flow rate and engine speed) is input to the response time detecting means 208. The response time detection means 208 is used to prevent a misdiagnosis when the absolute value of the fluctuation of the intake air flow rate is at least one of a predetermined value or the absolute value of the fluctuation of the engine speed is at least one of a predetermined value. Detection is prohibited (stopped) so that air-fuel ratio sensor diagnosis is not performed.

劣化指標演算手段211は、第1劣化指標演算手段212に代えて応答劣化指標演算手段1315を、第2劣化指標演算手段213に代えてゲイン劣化指標演算手段1316を有する。   The deterioration index calculating unit 211 includes a response deterioration index calculating unit 1315 instead of the first deterioration index calculating unit 212, and a gain deterioration index calculating unit 1316 instead of the second deterioration index calculating unit 213.

応答劣化指標演算手段1315は、第1応答時間検出手段209によって検出された第1応答時間T1に基づいて応答劣化指標Irを演算する。   The response deterioration index calculating means 1315 calculates the response deterioration index Ir based on the first response time T1 detected by the first response time detecting means 209.

ゲイン劣化指標演算手段1316は、第1応答時間検出手段209によって検出された第1応答時間T1と第2応答時間検出手段210によって検出された第2応答時間T2に基づいてゲイン劣化指標Igを演算する。   The gain deterioration index calculating means 1316 calculates the gain deterioration index Ig based on the first response time T1 detected by the first response time detecting means 209 and the second response time T2 detected by the second response time detecting means 210. To do.

図12は、実施形態2による空燃比センサ診断装置による空燃比センサ診断の処理フローを示している。   FIG. 12 shows a processing flow of air-fuel ratio sensor diagnosis by the air-fuel ratio sensor diagnostic apparatus according to the second embodiment.

空燃比センサ診断の開始後、まず、リニア空燃比センサ118の出力信号より実空燃比を検出する(ステップS1401)。そして、偏差判定手段1313によって実空燃比と目標空燃比の偏差が所定の偏差収束判定範囲にあるか否かを判定する。ここでは、偏差収束判定範囲は、目標空燃比に対して±0.001とした。この範囲は、0.001以上の値としてもよく、0.001以下の値としてもよい。また、吸入空気流量や第1応答時間T1と、第2応答時間T2に求められる検出精度に基づいて定めてもよい。   After starting the air-fuel ratio sensor diagnosis, first, the actual air-fuel ratio is detected from the output signal of the linear air-fuel ratio sensor 118 (step S1401). Then, the deviation determination means 1313 determines whether or not the deviation between the actual air-fuel ratio and the target air-fuel ratio is within a predetermined deviation convergence determination range. Here, the deviation convergence determination range is ± 0.001 with respect to the target air-fuel ratio. This range may be a value of 0.001 or more, and may be a value of 0.001 or less. Alternatively, it may be determined based on the detection accuracy required for the intake air flow rate, the first response time T1, and the second response time T2.

実空燃比と目標空燃比の偏差が所定の偏差収束判定範囲外であれば、ステップS1401に戻る。   If the deviation between the actual air-fuel ratio and the target air-fuel ratio is outside the predetermined deviation convergence determination range, the process returns to step S1401.

実空燃比と目標空燃比の偏差が所定の偏差収束判定範囲内であれば、目標空燃比を変更し(ステップS1403)、第1応答時間T1と第2応答時間T2の値をクリアする(ステップS1404)。   If the deviation between the actual air-fuel ratio and the target air-fuel ratio is within a predetermined deviation convergence determination range, the target air-fuel ratio is changed (step S1403), and the values of the first response time T1 and the second response time T2 are cleared (step S1403). S1404).

次に、実空燃比、応答時間、吸入空気流量、エンジン回転数を検出する(ステップS1405)。その後、空燃比センサ診断の中断条件が成立していないかを監視する(ステップS1406)。   Next, the actual air-fuel ratio, response time, intake air flow rate, and engine speed are detected (step S1405). Thereafter, it is monitored whether the air-fuel ratio sensor diagnosis interruption condition is satisfied (step S1406).

本実施形態での中断条件としては、目標空燃比の変更や燃料カット、所定値|Q|以上の吸入空気流量の変動、所定値|N|以上のエンジン回転数の変動が挙げられる。本実施形態では、Qは100[g/min]、Nは500[rpm]とした。これらの、QおよびNには、これ以上の値を使用してもよく、またこれ以下の値を使用してもよい。また、吸入空気流量や第1応答時間T1と、第2応答時間T2に求められる検出精度に基づいて定めてもよい。   Examples of the interruption conditions in the present embodiment include a change in the target air-fuel ratio, fuel cut, fluctuations in the intake air flow rate greater than or equal to a predetermined value | Q |, and fluctuations in engine speed greater than or equal to a predetermined value | N |. In the present embodiment, Q is 100 [g / min], and N is 500 [rpm]. For these Q and N, values greater than this may be used, and values less than this may be used. Alternatively, it may be determined based on the detection accuracy required for the intake air flow rate, the first response time T1, and the second response time T2.

空燃比センサ診断の中断条件が成立した場合には、誤診断の防止のために、空燃比センサ診断処理を直ちに終了する。   When the air-fuel ratio sensor diagnosis interruption condition is satisfied, the air-fuel ratio sensor diagnosis process is immediately terminated to prevent erroneous diagnosis.

中断条件が成立していない場合には、リニア空燃比センサ118によって検出された実空燃比が第1所定値G1以上で、かつT1=0であるか否かを判定する(ステップS1407)。実空燃比が第1所定値G1以上で、かつT1=0であれば、第1応答時間検出手段209が、その時の時間計測値より第1応答時間T1を検出する(ステップS1409)。そして、応答劣化指標演算手段1315が第1応答時間T1に基づいて応答劣化指標Irを演算する(ステップS1411)。なお、実空燃比が第1所定値G1以上で、かつT1=0の条件が成立しない場合には、ステップS1405に戻る。   If the interruption condition is not satisfied, it is determined whether or not the actual air-fuel ratio detected by the linear air-fuel ratio sensor 118 is not less than the first predetermined value G1 and T1 = 0 (step S1407). If the actual air-fuel ratio is equal to or greater than the first predetermined value G1 and T1 = 0, the first response time detection means 209 detects the first response time T1 from the time measurement value at that time (step S1409). Then, the response deterioration index calculating means 1315 calculates the response deterioration index Ir based on the first response time T1 (step S1411). If the actual air-fuel ratio is greater than or equal to the first predetermined value G1 and the condition of T1 = 0 is not satisfied, the process returns to step S1405.

また、中断条件が成立していない場合には、リニア空燃比センサ118によって検出された実空燃比が第2所定値G2以上で、かつT2=0であるか否かを判定する(ステップS1408)。実空燃比が第2所定値G2以上で、かつT2=0であれば、第2応答時間検出手段210が、その時の時間計測値より第2応答時間T2を検出する(ステップS1410)。そして、ゲイン劣化指標演算手段1316が第1応答時間T1と第2応答時間T2とに基づいてゲイン劣化指標Igを演算する(ステップS1412)。なお、実空燃比が第2所定値G2以上で、かつT1=0の条件が成立しない場合には、ステップS1405に戻る。   If the interruption condition is not satisfied, it is determined whether or not the actual air-fuel ratio detected by the linear air-fuel ratio sensor 118 is equal to or greater than the second predetermined value G2 and T2 = 0 (step S1408). . If the actual air-fuel ratio is equal to or greater than the second predetermined value G2 and T2 = 0, the second response time detection means 210 detects the second response time T2 from the time measurement value at that time (step S1410). Then, the gain deterioration index calculating means 1316 calculates the gain deterioration index Ig based on the first response time T1 and the second response time T2 (step S1412). If the actual air-fuel ratio is greater than or equal to the second predetermined value G2 and the condition of T1 = 0 is not satisfied, the process returns to step S1405.

そして、劣化判定手段214が、応答劣化指標Irとゲイン劣化指標Igに基づいて、リニア空燃比センサ118の劣化を、応答劣化とゲイン劣化とで区別して判定する。   Then, the deterioration determining means 214 determines the deterioration of the linear air-fuel ratio sensor 118 by distinguishing between the response deterioration and the gain deterioration based on the response deterioration index Ir and the gain deterioration index Ig.

図13は図12に示したフローチャートを実施した際のタイムチャートの一例である。
実空燃比と目標空燃比との偏差が偏差収束判定範囲に入ってから、目標空燃比をステップ状に変更する。その後、実空燃比が第1所定値G1になる時の第1応答時間T1および実空燃比が第2所定値G2になる時の第2応答時間T2をそれぞれ検出し、これらに基づき応答劣化指標Irとゲイン劣化指標Igを演算する。
FIG. 13 is an example of a time chart when the flowchart shown in FIG. 12 is executed.
After the deviation between the actual air-fuel ratio and the target air-fuel ratio enters the deviation convergence determination range, the target air-fuel ratio is changed stepwise. Thereafter, a first response time T1 when the actual air-fuel ratio becomes the first predetermined value G1 and a second response time T2 when the actual air-fuel ratio becomes the second predetermined value G2 are detected, respectively, and based on these, a response deterioration index Ir and gain deterioration index Ig are calculated.

図14は図12に示したフローチャートを実施した際のタイムチャートの別の例である。図13に示されているとタイムチャート同様に、実空燃比と目標空燃比との偏差が偏差収束判定範囲に入ってから、目標空燃比をステップ状に変更する。その後、実空燃比が第1所定値G1になる時の第1応答時間T1の検出中あるいは実空燃比が第2所定値G2になる時の第2応答時間T2の検出中に、例えば、吸入空気流量の変動が変動許容しきい値を超えたときには、第1応答時間T1および第2応答時間T2の検出を中止する。   FIG. 14 is another example of a time chart when the flowchart shown in FIG. 12 is executed. As shown in FIG. 13, as in the time chart, the target air-fuel ratio is changed stepwise after the deviation between the actual air-fuel ratio and the target air-fuel ratio enters the deviation convergence determination range. Thereafter, during detection of the first response time T1 when the actual air-fuel ratio becomes the first predetermined value G1, or during detection of the second response time T2 when the actual air-fuel ratio becomes the second predetermined value G2, for example, suction When the fluctuation of the air flow rate exceeds the fluctuation allowable threshold, the detection of the first response time T1 and the second response time T2 is stopped.

ここで、本実施形態では、吸入空気流量の変動は、目標空燃比を切り換えた時の吸入空気流量を基準にして演算した。なお、吸入空気流量の変動は、応答時間測定中の空気流量の積算値や平均値を用いてもよい。また、これらに基づいて第1応答時間T1および第2応答時間T2の補正値を演算し、補正を行ってもよい。   Here, in this embodiment, the fluctuation of the intake air flow rate is calculated based on the intake air flow rate when the target air-fuel ratio is switched. For the fluctuation of the intake air flow rate, an integrated value or an average value of the air flow rate during response time measurement may be used. Further, based on these, correction values of the first response time T1 and the second response time T2 may be calculated and corrected.

以上により、排気や運転性を悪化することなく、誤診断の虞れを排除して、リニア空燃比センサ118のゲイン劣化と応答劣化を特定して検出することができる。   As described above, it is possible to identify and detect the gain deterioration and the response deterioration of the linear air-fuel ratio sensor 118 without exacerbating the possibility of erroneous diagnosis without deteriorating exhaust gas and operability.

次に、空燃比制御装置と本発明による空燃比センサ診断装置の実施形態3を、図15を参照して説明する。なお、図15においても、図2に対応する部分は、図2に付した符号と同一の符号を付けて、その説明を省略する。   Next, Embodiment 3 of the air-fuel ratio control device and the air-fuel ratio sensor diagnostic device according to the present invention will be described with reference to FIG. In FIG. 15 as well, portions corresponding to those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof is omitted.

本実施形態では、触媒劣化判定手段1713と、触媒劣化判定補正手段1714とが追加されている。   In this embodiment, a catalyst deterioration determination unit 1713 and a catalyst deterioration determination correction unit 1714 are added.

これらの手段を追加することで、リニア空燃比センサ118に、触媒診断が誤診断となるような劣化が発生した場合において、誤診断をすることなく触媒診断が実施できる。また、同じ実空燃比の応答を用いて触媒診断とリニア空燃比センサ診断の両方行うことが可能になる。   By adding these means, when the linear air-fuel ratio sensor 118 has deteriorated such that the catalyst diagnosis is an erroneous diagnosis, the catalyst diagnosis can be performed without making an erroneous diagnosis. Further, both catalyst diagnosis and linear air-fuel ratio sensor diagnosis can be performed using the same actual air-fuel ratio response.

追加した手段の役割として、触媒劣化判定手段1713は、リニア空燃比センサ118の検出値と酸素センサ125の検出値から、三元触媒120の劣化判定指標を演算し、三元触媒120の劣化を診断する。   As a function of the added means, the catalyst deterioration determination means 1713 calculates the deterioration determination index of the three-way catalyst 120 from the detection value of the linear air-fuel ratio sensor 118 and the detection value of the oxygen sensor 125, and determines the deterioration of the three-way catalyst 120. Diagnose.

なお、劣化判定手段214によってリニア空燃比センサ118が劣化していると判定された場合には、触媒劣化判定手段1713による三元触媒120の診断を禁止する。   When the deterioration determination unit 214 determines that the linear air-fuel ratio sensor 118 is deteriorated, the diagnosis of the three-way catalyst 120 by the catalyst deterioration determination unit 1713 is prohibited.

触媒劣化判定補正手段1714は、劣化指標演算手段211の演算結果に基づき、触媒劣化判定手段1713の判定結果を補正する。   The catalyst deterioration determination correction unit 1714 corrects the determination result of the catalyst deterioration determination unit 1713 based on the calculation result of the deterioration index calculation unit 211.

図16は、実施形態3による空燃比センサ診断装置による空燃比センサ診断の処理フローを示している。   FIG. 16 shows a processing flow of air-fuel ratio sensor diagnosis by the air-fuel ratio sensor diagnostic apparatus according to the third embodiment.

空燃比センサ診断の開始後、まず、リニア空燃比センサ118の出力信号より実空燃比を検出する(ステップS1801)。   After starting the air-fuel ratio sensor diagnosis, first, the actual air-fuel ratio is detected from the output signal of the linear air-fuel ratio sensor 118 (step S1801).

次に、触媒診断許可条件が成立しているか否かを判定する(ステップS1802)。触媒診断許可条件としては、実空燃比が所定の偏差収束判定範囲内にあること等が挙げられる。触媒診断許可条件が成立していれば、目標空燃比を変更する(ステップS1803)。   Next, it is determined whether or not a catalyst diagnosis permission condition is satisfied (step S1802). The catalyst diagnosis permission condition includes that the actual air-fuel ratio is within a predetermined deviation convergence determination range. If the catalyst diagnosis permission condition is satisfied, the target air-fuel ratio is changed (step S1803).

その後、実空燃比と応答時間とを検出し(ステップS1804)、リニア空燃比センサ118の診断を行う(ステップS1805)。そして、その診断結果に基づいて触媒診断補正値を演算する(ステップS1806)。   Thereafter, the actual air-fuel ratio and response time are detected (step S1804), and the linear air-fuel ratio sensor 118 is diagnosed (step S1805). Then, a catalyst diagnosis correction value is calculated based on the diagnosis result (step S1806).

また、目標空燃比変更後、実空燃比と酸素センサ125の出力を検出し(ステップS1807)、それに基づいて触媒劣化判定指標を演算する(ステップS1808)。
さらに、演算した触媒劣化判定補正値に基づいて触媒劣化判定指標を補正する(ステップS1809)。
Further, after the target air-fuel ratio is changed, the actual air-fuel ratio and the output of the oxygen sensor 125 are detected (step S1807), and a catalyst deterioration determination index is calculated based on that (step S1808).
Further, the catalyst deterioration determination index is corrected based on the calculated catalyst deterioration determination correction value (step S1809).

図17は図16に示されているフローチャートを実施した際のタイムチャートの一例である。実空燃比と目標空燃比との偏差が偏差収束判定範囲に入ってから、目標空燃比をステップ状に変更する。その後、目標空燃比のステップ変化に対する実空燃比と酸素センサ出力の応答時間の差から触媒劣化判定指標を演算する。その間の実空燃比の第1応答時間T1および第2応答時間T2を用いて、リニア空燃比センサ118のゲイン劣化指標Igの演算を行い、ゲイン劣化指標Igに基づいて触媒劣化判定補正値Cを演算する。   FIG. 17 is an example of a time chart when the flowchart shown in FIG. 16 is executed. After the deviation between the actual air-fuel ratio and the target air-fuel ratio enters the deviation convergence determination range, the target air-fuel ratio is changed stepwise. Thereafter, a catalyst deterioration determination index is calculated from the difference between the actual air-fuel ratio and the response time of the oxygen sensor output with respect to the step change of the target air-fuel ratio. The gain deterioration index Ig of the linear air-fuel ratio sensor 118 is calculated using the first response time T1 and the second response time T2 of the actual air-fuel ratio during that time, and the catalyst deterioration determination correction value C is calculated based on the gain deterioration index Ig. Calculate.

触媒劣化判定指標Cが演算されると、触媒劣化判定補正値Cに基づいて触媒劣化判定指標を補正する。なお、触媒劣化判定補正値Cは応答劣化指標Irに基づいて演算してもよく、ゲイン劣化指標Igと応答劣化指標Irの二つを用いて演算してもよい。   When the catalyst deterioration determination index C is calculated, the catalyst deterioration determination index is corrected based on the catalyst deterioration determination correction value C. The catalyst deterioration determination correction value C may be calculated based on the response deterioration index Ir, or may be calculated using two of the gain deterioration index Ig and the response deterioration index Ir.

図18は、ゲイン劣化指標Igと触媒劣化判定補正値Cとの関係を示している。本実施形態では、ゲイン劣化指標Igが大きいほどゲインが小さくなっている。ゲインが小さい時とは、実空燃比の真値が実空燃比よりも大きく、そのため触媒劣化判定指標Cは小さく演算される、よって、触媒劣化判定補正値Cはゲイン劣化指標Igの増加に伴って大きくなる。   FIG. 18 shows the relationship between the gain deterioration index Ig and the catalyst deterioration determination correction value C. In the present embodiment, the gain decreases as the gain deterioration index Ig increases. When the gain is small, the true value of the actual air-fuel ratio is larger than the actual air-fuel ratio, so that the catalyst deterioration determination index C is calculated to be small. Therefore, the catalyst deterioration determination correction value C increases with the gain deterioration index Ig. Become bigger.

図19は、応答劣化指標Irと触媒劣化判定補正値Cとの関係を示している。本実施形態では、応答劣化指標Irが大きくなるほど、応答遅れが大きくなり、触媒診断実施時のリニア空燃比センサ118と酸素センサ125の出力の応答時間の差が小さくなるため、触媒劣化判定指標Cは小さく演算される。よって触媒劣化判定補正値Cは応答劣化指標Irの増加にとともに大きくなる。   FIG. 19 shows the relationship between the response deterioration index Ir and the catalyst deterioration determination correction value C. In the present embodiment, as the response deterioration index Ir increases, the response delay increases, and the difference in response time between the outputs of the linear air-fuel ratio sensor 118 and the oxygen sensor 125 at the time of catalyst diagnosis is reduced. Is computed smaller. Therefore, the catalyst deterioration determination correction value C increases as the response deterioration index Ir increases.

本発明による空燃比センサ診断装置を適用される筒内噴射式内燃機関の全体構成を示す全体構成図。1 is an overall configuration diagram showing an overall configuration of a direct injection internal combustion engine to which an air-fuel ratio sensor diagnostic device according to the present invention is applied. 空燃比制御装置と本発明による空燃比センサ診断装置の実施形態1を示すブロック図。1 is a block diagram showing Embodiment 1 of an air-fuel ratio control device and an air-fuel ratio sensor diagnostic device according to the present invention. 実施形態1による空燃比センサ診断装置による空燃比センサ診断の処理フローを示すフローチャート。5 is a flowchart showing a processing flow of air-fuel ratio sensor diagnosis by the air-fuel ratio sensor diagnostic apparatus according to the first embodiment. 図3に示したフローチャートを実施した際のタイムチャート。The time chart at the time of implementing the flowchart shown in FIG. リニア空燃比センサのゲイン劣化時の応答波形の一例を示すグラフ。The graph which shows an example of the response waveform at the time of gain degradation of a linear air fuel ratio sensor. リニア空燃比センサの応答劣化時の応答波形の一例を示すグラフ。The graph which shows an example of the response waveform at the time of the response deterioration of a linear air fuel ratio sensor. リニア空燃比センサの劣化と劣化指標の関係を示すグラフ。The graph which shows the relationship between degradation of a linear air fuel ratio sensor, and a degradation parameter | index. 第1劣化指標と第2劣化指標の演算式の一例を示すグラフ。The graph which shows an example of the computing equation of a 1st degradation parameter | index and a 2nd degradation parameter | index. 応答遅れ時間と応答劣化指標の関係の一例を示すグラフ。The graph which shows an example of the relationship between response delay time and a response degradation parameter | index. ゲイン劣化とゲイン劣化指標の関係の一例を示すグラフ。The graph which shows an example of the relationship between gain degradation and a gain degradation parameter | index. 空燃比制御装置と本発明による空燃比センサ診断装置の実施形態2を示すブロック図。The block diagram which shows Embodiment 2 of the air fuel ratio control apparatus and the air fuel ratio sensor diagnostic apparatus by this invention. 実施形態2による空燃比センサ診断装置による空燃比センサ診断の処理フローを示すフローチャート。9 is a flowchart showing a processing flow of air-fuel ratio sensor diagnosis by an air-fuel ratio sensor diagnostic apparatus according to Embodiment 2. 図12に示したフローチャートを実施した際のタイムチャート。The time chart at the time of implementing the flowchart shown in FIG. 図12に示したフローチャートを実施した際のタイムチャート。The time chart at the time of implementing the flowchart shown in FIG. 空燃比制御装置と本発明による空燃比センサ診断装置の実施形態3を示すブロック図。FIG. 5 is a block diagram showing Embodiment 3 of an air-fuel ratio control device and an air-fuel ratio sensor diagnostic device according to the present invention. 実施形態3による空燃比センサ診断装置による空燃比センサ診断の処理フローを示すフローチャート。9 is a flowchart showing a processing flow of air-fuel ratio sensor diagnosis by an air-fuel ratio sensor diagnostic apparatus according to Embodiment 3. 図16に示したフローチャートを実施した際のタイムチャート。The time chart at the time of implementing the flowchart shown in FIG. ゲイン劣化指標と触媒劣化判定補正値との関係を示すグラフ。The graph which shows the relationship between a gain degradation parameter | index and a catalyst degradation determination correction value. 応答劣化指標と触媒劣化判定補正値の関係を示すグラフ。The graph which shows the relationship between a response deterioration parameter | index and a catalyst deterioration determination correction value.

符号の説明Explanation of symbols

101 吸気管
102 エアクリーナ
103 空気流量計
104 スロットルセンサ
105 スロットルボディ
106 コレクタ
107 筒内噴射内燃機関
109 燃料ポンプ
111 高圧燃料ポンプ
112 インジェクタ
113 点火コイル
114 点火プラグ
115 コントロールユニット
116 カム角センサ
117 クランク角センサ
118 空燃比センサ
125 酸素センサ
126 コモンレール
206 空燃比制御手段
207 目標空燃比設定手段
208 応答時間検出手段
209 第1応答時間検出手段
210 第2応答時間検出手段
211 劣化指標演算手段
212 第1劣化指標演算手段
213 第2劣化指標演算手段
214 劣化判定手段
1313 偏差判定手段
1314 運転状態検出手段
1315 応答劣化指標演算手段
1316 ゲイン劣化指標演算手段
1713 触媒劣化判定手段
1714 触媒劣化判定補正手段
101 Intake pipe 102 Air cleaner 103 Air flow meter 104 Throttle sensor 105 Throttle body 106 Collector 107 In-cylinder injection internal combustion engine 109 Fuel pump 111 High-pressure fuel pump 112 Injector 113 Ignition coil 114 Spark plug 115 Control unit 116 Cam angle sensor 117 Crank angle sensor 118 Air-fuel ratio sensor 125 Oxygen sensor 126 Common rail 206 Air-fuel ratio control means 207 Target air-fuel ratio setting means 208 Response time detection means 209 First response time detection means 210 Second response time detection means 211 Degradation index calculation means 212 First deterioration index calculation means 213 Second deterioration index calculating means 214 Degradation determining means 1313 Deviation determining means 1314 Operating state detecting means 1315 Response deterioration index calculating means 1316 Gain deterioration index calculating means 17 13 Catalyst degradation determination means 1714 Catalyst degradation determination correction means

Claims (12)

排気通路に設けられたリニア空燃比センサの劣化判定を行う内燃機関の空燃比センサ診断装置であって
目標空燃比が変更されてから前記リニア空燃比センサの検出値が所定値に到達するまでの所要時間である応答時間を検出する応答時間検出手段と、前記応答時間検出手段によって検出される応答時間に基づいて前記リニア空燃比センサの劣化指標を演算する劣化指標演算手段と、前記劣化指標演算手段により演算された劣化指標に基づき前記リニア空燃比センサの劣化を判定する劣化判定手段とを有し、
前記応答時間検出手段は、前記リニア空燃比センサの検出値が予め定めた第1所定値に到達するまでの第1応答時間を検出する第1応答時間検出手段と、前記リニア空燃比センサの検出値が前記第1所定値より大きい第2所定値に到達するまでの第2応答時間を検出する第2応答時間検出手段とを含み、
前記劣化指標演算手段は、少なくとも前記第1応答時間に基づいて第1劣化指標を演算する第1劣化指標演算手段と、少なくとも前記第2応答時間に基づいて第2劣化指標を演算する第2劣化指標演算手段とを含み、
前記劣化判定手段は、前記第1劣化指標と前記第2劣化指標に基づき前記リニア空燃比センサの劣化を判定することを特徴とする内燃機関の空燃比センサ診断装置。
An air-fuel ratio sensor diagnostic apparatus for an internal combustion engine that determines deterioration of a linear air-fuel ratio sensor provided in an exhaust passage, from when a target air-fuel ratio is changed until a detection value of the linear air-fuel ratio sensor reaches a predetermined value Response time detecting means for detecting a response time that is a required time; deterioration index calculating means for calculating a deterioration index of the linear air-fuel ratio sensor based on the response time detected by the response time detecting means; and the deterioration index calculating Deterioration determining means for determining deterioration of the linear air-fuel ratio sensor based on a deterioration index calculated by the means,
The response time detection means includes first response time detection means for detecting a first response time until a detection value of the linear air-fuel ratio sensor reaches a predetermined first predetermined value, and detection of the linear air-fuel ratio sensor. Second response time detecting means for detecting a second response time until a value reaches a second predetermined value greater than the first predetermined value;
The deterioration index calculating means calculates a first deterioration index calculating means for calculating a first deterioration index based on at least the first response time, and a second deterioration calculating a second deterioration index based on at least the second response time. An index calculation means,
The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine, wherein the deterioration determination means determines deterioration of the linear air-fuel ratio sensor based on the first deterioration index and the second deterioration index.
変更直前の前記目標空燃比と変更直後の前記目標空燃比の差の絶対値である目標空燃比変更量は所定値以上とし、前記変更直後の目標空燃比を前記第2応答時間検出手段によって前記第2応答時間が検出されるまで保持することを特徴とする請求項1に記載の内燃機関の空燃比センサ診断装置。   The target air-fuel ratio change amount, which is the absolute value of the difference between the target air-fuel ratio immediately before the change and the target air-fuel ratio immediately after the change, is set to a predetermined value or more, and the target air-fuel ratio immediately after the change is determined by the second response time detection means. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1, wherein the second response time is maintained until it is detected. 前記第1劣化指標演算手段および前記第2劣化指標演算手段は、前記第1応答時間と前記第2応答時間の差、和、積、商の少なくとも一つ、あるいは前記第1応答時間と前記第2応答時間のいずれかの値に基づいて前記第1劣化指標および前記第2劣化指標を演算することを特徴とする請求項1又は2に内燃機関の空燃比センサ診断装置。   The first deterioration index calculating means and the second deterioration index calculating means are at least one of a difference, a sum, a product, and a quotient of the first response time and the second response time, or the first response time and the first response time. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1 or 2, wherein the first deterioration index and the second deterioration index are calculated based on one of two response times. 前記第1劣化指標演算手段は、前記第1応答時間に基づいて前記リニア空燃比センサの応答時間の異常を検出する応答劣化指標を演算し、前記第2劣化指標演算手段は前記第1応答時間と前記第2応答時間に基づいて前記リニア空燃比センサの空燃比に対する感度異常を検出するゲイン劣化指標演算することを特徴とする請求項1又は2に記載の内燃機関の空燃比センサ診断装置。   The first deterioration index calculating means calculates a response deterioration index for detecting an abnormality in the response time of the linear air-fuel ratio sensor based on the first response time, and the second deterioration index calculating means is the first response time. 3. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1, wherein a gain deterioration index calculation for detecting an abnormality in sensitivity to the air-fuel ratio of the linear air-fuel ratio sensor is performed based on the second response time. 前記第1劣化指標演算手段は、前記第1応答時間を所定値で除算した値、あるいは第1応答時間を応答劣化指標とし、前記第2劣化指標演算手段は、第2応答時間を第1応答時間で除算した値をゲイン劣化指標とすることを特徴とする請求項1又は2に記載の内燃機関の空燃比センサ診断装置。 The first deterioration index calculating means uses a value obtained by dividing the first response time by a predetermined value or a first response time as a response deterioration index, and the second deterioration index calculating means uses the second response time as the first response time. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1 or 2, wherein a value obtained by dividing by time is used as a gain deterioration index. 前記目標空燃比の変更後に、前記第1応答時間あるいは前記第2応答時間が検出されるまでに、前記目標空燃比が変更された場合には前記第1応答時間および前記第2応答時間の検出を中止することを特徴とする請求項1から5の何れか一項に記載の内燃機関の空燃比センサ診断装置。   If the target air-fuel ratio is changed before the first response time or the second response time is detected after the change of the target air-fuel ratio, the detection of the first response time and the second response time is performed. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to any one of claims 1 to 5, wherein 内燃機関の吸入空気流量を検出する空気流量検出手段によって検出される内燃機関の吸入空気流量と、回転数検出手段によって検出される内燃機関の回転数の変化を検出する運転状態検出手段を有し、応答時間検出中に、前記運動状態検出手段によって検出した吸入空気量変化の絶対値が所定値以上、あるいは回転数変化の絶対値が所定値以上になれば、前記第1応答時間および前記第2応答時間の検出を中止することを特徴とする請求項1から6の何れか一項に記載の内燃機関の空燃比センサ診断装置。   An operating state detecting means for detecting an intake air flow rate of the internal combustion engine detected by an air flow rate detecting means for detecting an intake air flow rate of the internal combustion engine and a change in the rotational speed of the internal combustion engine detected by the rotational speed detecting means; If the absolute value of the intake air amount change detected by the motion state detecting means is greater than or equal to a predetermined value or the absolute value of the rotation speed change is greater than or equal to a predetermined value during response time detection, the first response time and the first 7. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to claim 1, wherein the detection of two response times is stopped. 前記リニア空燃比センサの検出値と前記目標空燃比との偏差を演算し、その偏差が所定範囲内にあるかを判定する偏差判定手段を有し、前記偏差判定手段により偏差が所定範囲内にあると判定されている時のみ、目標空燃比を変更して空燃比センサ診断を開始することを特徴とする請求項1から7の何れか一項に記載の内燃機関の空燃比センサ診断装置。   Deviation determination means for calculating a deviation between the detected value of the linear air-fuel ratio sensor and the target air-fuel ratio and determining whether the deviation is within a predetermined range, and the deviation within the predetermined range by the deviation determination means. The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to any one of claims 1 to 7, wherein the air-fuel ratio sensor diagnosis is started by changing the target air-fuel ratio only when it is determined that there is. 前記リニア空燃比センサは三元触媒の上流側に設けられ、前記三元触媒の下流後に酸素センサが設けられ、前記リニア空燃比センサの検出値と前記酸素センサの検出値に基づいて前記三元触媒の劣化を検出する触媒劣化判定手段と、
前記劣化指標演算手段の演算結果に基づいて前記触媒劣化指標演算手段の演算結果を補正する触媒劣化判定補正手段と、
を有していることを特徴とする請求項1から8の何れか一項に記載の内燃機関の空燃比センサ診断装置。
The linear air-fuel ratio sensor is provided on the upstream side of the three-way catalyst, and an oxygen sensor is provided downstream of the three-way catalyst. The three-way catalyst is based on the detection value of the linear air-fuel ratio sensor and the detection value of the oxygen sensor. Catalyst deterioration determination means for detecting catalyst deterioration;
Catalyst deterioration determination correction means for correcting the calculation result of the catalyst deterioration index calculation means based on the calculation result of the deterioration index calculation means;
The air-fuel ratio sensor diagnostic apparatus for an internal combustion engine according to any one of claims 1 to 8, characterized by comprising:
前記ゲイン劣化指標または前記応答劣化指標の少なくとも何れかに基づいて前記三元触媒診断の結果を補正することを特徴とする請求項9に記載の内燃機関の空燃比センサ診断装置。   The air-fuel ratio sensor diagnosis apparatus for an internal combustion engine according to claim 9, wherein the result of the three-way catalyst diagnosis is corrected based on at least one of the gain deterioration index and the response deterioration index. 前記劣化判定手段により前記リニア空燃比センサが劣化していると判定された場合には、前記三元触媒の診断を禁止することを特徴とする請求項9または10に記載の内燃機関の空燃比センサ診断装置。   The air-fuel ratio of an internal combustion engine according to claim 9 or 10, wherein when the deterioration determination means determines that the linear air-fuel ratio sensor is deteriorated, diagnosis of the three-way catalyst is prohibited. Sensor diagnostic device. 内燃機関の排気通路に設けられたリニア空燃比センサの劣化判定を行う内燃機関の空燃比センサ診断方法であって、
前記リニア空燃比センサの検出値が予め定めた第1所定値に到達するまでの第1応答時間と、前記リニア空燃比センサの検出値が前記第1所定値より大きい第2所定値に到達するまでの第2応答時間を検出し、少なくとも前記第1応答時間に基づいて第1劣化指標を演算し、少なくとも前記第2応答時間に基づいて第2劣化指標を演算し、前記第1劣化指標と前記第2劣化指標に基づき前記リニア空燃比センサの劣化を判定することを特徴とする内燃機関の空燃比センサ診断方法。
An air-fuel ratio sensor diagnostic method for an internal combustion engine for performing deterioration determination of a linear air-fuel ratio sensor provided in an exhaust passage of the internal combustion engine,
A first response time until the detection value of the linear air-fuel ratio sensor reaches a predetermined first predetermined value, and a detection value of the linear air-fuel ratio sensor reaches a second predetermined value that is greater than the first predetermined value. Second response time is detected, a first deterioration index is calculated based on at least the first response time, a second deterioration index is calculated based on at least the second response time, and the first deterioration index and An air-fuel ratio sensor diagnostic method for an internal combustion engine, wherein deterioration of the linear air-fuel ratio sensor is determined based on the second deterioration index.
JP2006010274A 2006-01-18 2006-01-18 Air-fuel ratio sensor diagnostic device for internal combustion engine Expired - Fee Related JP4365830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010274A JP4365830B2 (en) 2006-01-18 2006-01-18 Air-fuel ratio sensor diagnostic device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010274A JP4365830B2 (en) 2006-01-18 2006-01-18 Air-fuel ratio sensor diagnostic device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007192093A JP2007192093A (en) 2007-08-02
JP4365830B2 true JP4365830B2 (en) 2009-11-18

Family

ID=38447996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010274A Expired - Fee Related JP4365830B2 (en) 2006-01-18 2006-01-18 Air-fuel ratio sensor diagnostic device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4365830B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5755021B2 (en) * 2011-05-16 2015-07-29 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP5983879B2 (en) * 2013-06-26 2016-09-06 トヨタ自動車株式会社 Diagnostic device for internal combustion engine
US9850840B2 (en) 2013-06-26 2017-12-26 Toyota Jidosha Kabushiki Kaisha Diagnosis system of internal combustion engine
JP7234977B2 (en) * 2020-02-27 2023-03-08 株式会社デンソー Control device
JP7234976B2 (en) * 2020-02-27 2023-03-08 株式会社デンソー Control device

Also Published As

Publication number Publication date
JP2007192093A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP4679335B2 (en) Control device for internal combustion engine
US5533332A (en) Method and apparatus for self diagnosis of an internal combustion engine
JP4345688B2 (en) Diagnostic device and control device for internal combustion engine
JP4831015B2 (en) Abnormality diagnosis device for internal combustion engine
JP4533941B2 (en) Control device for internal combustion engine
JP2007032357A (en) Catalyst diagnosis device for internal combustion engine and automobile equipped with internal combustion engine including catalyst diagnosis device
JP2007262945A (en) Abnormality diagnosis device for exhaust gas sensor
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP4365830B2 (en) Air-fuel ratio sensor diagnostic device for internal combustion engine
JP2012092803A (en) Inter-cylinder air-fuel ratio imbalance abnormality detection apparatus for multi-cylinder internal combustion engine
WO2016035498A1 (en) Engine control apparatus
JP4338663B2 (en) Control device for internal combustion engine
JP2006057523A (en) Failure diagnosis device for engine control system
JP2011226363A (en) Abnormality diagnosis apparatus of internal combustion engine
JP2005248825A (en) Abnormality diagnostic device for internal combustion engine
JP2014181650A (en) Abnormality detecting device of multicylinder-type internal combustion engine
JP2012137050A (en) Abnormality detector for inter-cylinder air-fuel ratio dispersion in multi-cylinder internal combustion engine
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JP4951612B2 (en) Diagnostic device and control device for internal combustion engine
US20130311070A1 (en) Controller for internal combustion engine
JPH09125938A (en) Engine control device
JP3318702B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
US20170370317A1 (en) Abnormality diagnosis device for pm sensor
JP4345853B2 (en) Abnormality diagnosis device for intake system sensor
JP5194147B2 (en) Diagnostic device and control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4365830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees