JP4950791B2 - Ice water slurry generator - Google Patents

Ice water slurry generator Download PDF

Info

Publication number
JP4950791B2
JP4950791B2 JP2007191034A JP2007191034A JP4950791B2 JP 4950791 B2 JP4950791 B2 JP 4950791B2 JP 2007191034 A JP2007191034 A JP 2007191034A JP 2007191034 A JP2007191034 A JP 2007191034A JP 4950791 B2 JP4950791 B2 JP 4950791B2
Authority
JP
Japan
Prior art keywords
water
ice
supercooled
compressed gas
supercooled water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007191034A
Other languages
Japanese (ja)
Other versions
JP2009024977A (en
Inventor
忠益 舟里
研吾 清都
直征 今若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2007191034A priority Critical patent/JP4950791B2/en
Publication of JP2009024977A publication Critical patent/JP2009024977A/en
Application granted granted Critical
Publication of JP4950791B2 publication Critical patent/JP4950791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、過冷却水の過冷却状態を解除して多数の氷粒と水の混合物である氷水スラリーを生成する氷水スラリー生成器に関する。 The present invention relates to ice-water slurry generator for generating ice slurry is a mixture of a large number of ice particles and water to release the supercooled state of supercooled water.

従来、この種の氷水スラリー生成器としては、
(1)過冷却水の過冷却状態を解除する解除手段として、器内に設置した板部材に過冷却水を衝突させることで過冷却水に外力を付与して過冷却水中に氷核を形成する衝突解除手段を設けたもの、
(2)前記解除手段として、器内に設置したペルチェ素子に過冷却水を接触させることで過冷却水に外力を付与するとともに過冷却水を低温化して過冷却水中に氷核を形成するペルチェ素子解除手段を設けたもの、
(3)前記解除手段として、攪拌部材(例えば、スクリュー)で過冷却水中にキャビテーションを発生させることで過冷却水に外力を付与して過冷却水中に氷核を形成する攪拌解除手段を設けたもの、
(4)前記解除手段として、過冷却水に向けて超音波を発射することで過冷却水に外力(超音波による振動)を付与して過冷却水中に氷核を形成する超音波解除手段を設けたもの、
上記(1)〜(4)の技術が知れられている(例えば、下記特許文献1〜4参照)。
Conventionally, as this type of ice water slurry generator,
(1) As a release means for canceling the supercooling state of the supercooling water, an external force is applied to the supercooling water by causing the supercooling water to collide with a plate member installed in the vessel to form ice nuclei in the supercooling water. Provided with a collision release means to
(2) As the releasing means, a Peltier that forms an ice nucleus in the supercooled water by applying an external force to the supercooled water by bringing the supercooled water into contact with a Peltier element installed in the vessel and lowering the temperature of the supercooled water Provided with element release means,
(3) As the releasing means, an agitating releasing means for forming an ice nucleus in the supercooled water by generating external force to the supercooled water by generating cavitation in the supercooled water with a stirring member (for example, a screw) is provided. thing,
(4) As the releasing means, an ultrasonic releasing means for forming an ice nucleus in the supercooled water by applying an external force (vibration by ultrasonic waves) to the supercooled water by emitting an ultrasonic wave toward the supercooled water. Provided
The techniques (1) to (4) are known (for example, see Patent Documents 1 to 4 below).

特開平11−337133号公報JP-A-11-337133 特開平8−110133号公報JP-A-8-110133 特開2001−241705号公報JP 2001-241705 A 特開2007−64570号公報JP 2007-64570 A

ところが、上記(1)〜(3)の技術では、過冷却水中に氷核を形成する氷核形成要素としての各部材(板部材、ペルチェ素子、攪拌部材)が器内に設置されているため、氷核の形成過程において前記各部材に氷付着が生じ易く、そのことで、氷水スラリー生成効率が低下したり、さらには、氷水スラリー生成機能が喪失したりする問題がある。また、それら各部材のメンテナンス(修理、交換、調整)も行い難い問題がある。   However, in the above techniques (1) to (3), each member (plate member, Peltier element, stirring member) as an ice nucleus forming element that forms an ice nucleus in the supercooled water is installed in the vessel. In the process of forming ice nuclei, ice adheres to each member easily, which causes a problem that the ice water slurry generation efficiency is lowered and the ice water slurry generation function is lost. In addition, there is a problem that it is difficult to perform maintenance (repair, replacement, adjustment) of these members.

また、上記(1)、(2)、(4)の技術では、過冷却水に外力を付与するだけで過冷却水中に氷核を形成することから、過冷却水の過冷却度が僅かに不足する場合でも過冷却水中での氷核形成が不安定になり易く、そのため、過冷却水の過冷却度を理論値よりも充分に高く設定したり、或いは、過冷却水に付与する外力を理論値よりも充分に大きく設定したりする必要が生じ、氷水スラリー生成コストの増大を招く問題がある。   In the above techniques (1), (2), and (4), ice nuclei are formed in the supercooled water only by applying an external force to the supercooled water. Even in the case of shortage, ice nucleation in the supercooled water tends to become unstable, so that the supercooling degree of supercooling water is set sufficiently higher than the theoretical value or an external force applied to the supercooling water is set. There is a need to set it sufficiently larger than the theoretical value, which causes a problem of increasing the cost of generating ice water slurry.

さらに、過冷却水の過冷却度を理論値よりも充分に高く設定する場合では、過冷却水の不安定度が高まる分、過冷却水の輸送系において過冷却水中に不測に氷核が形成され易くなって、その氷核形成により輸送系に詰まりが生じてしまう虞もある。   Furthermore, when the supercooling degree of the supercooling water is set sufficiently higher than the theoretical value, the instability of the supercooling water increases, so that unexpected ice nuclei are formed in the supercooling water in the supercooling water transport system. The formation of ice nuclei may cause clogging in the transport system.

本発明は、上述の実情に鑑みて為されたものであって、その主たる課題は、過冷却水の過冷却解除方式の合理的な改良により上記問題を効果的に解消する点にある。   The present invention has been made in view of the above circumstances, and its main problem is to effectively solve the above problem by rationally improving the supercooling release method of supercooling water.

ちなみに、器内に導入された過冷却水の過冷却状態を解除手段により解除して氷水スラリーを生成する氷水スラリー生成器を構成するのに、
前記解除手段として、過冷却水中での気体の断熱膨張によって過冷却水中に氷核を形成して過冷却水の過冷却状態を解除する断熱膨張解除手段を設けてもよい。
By the way, to constitute an ice water slurry generator that generates an ice water slurry by releasing the supercooled state of the supercooled water introduced into the vessel by the release means ,
As the releasing means, adiabatic expansion releasing means for releasing an overcooled state of supercooled water by forming ice nuclei in the supercooled water by adiabatic expansion of gas in the supercooled water may be provided .

つまり、過冷却水中で気体を断熱膨張させれば、断熱膨張による気体の低温化に伴う過冷却水における気体との接触界面の低温化と、断熱膨張よる気体の体積増大に伴う過冷却水の前記接触界面への外力付与とによって、過冷却水中に氷核を形成して過冷却水の過冷却状態を解除することを知見した。   In other words, if the gas is adiabatically expanded in the supercooled water, the temperature of the supercooled water due to the adiabatic expansion is lowered, the temperature of the contact surface with the gas in the supercooled water is lowered, and the volume of the supercooled water is increased due to the adiabatic expansion. It has been found that by applying an external force to the contact interface, ice nuclei are formed in the supercooled water to cancel the supercooled state of the supercooled water.

そして、過冷却水中での気体の断熱膨張によって過冷却水中に氷核を形成して過冷却水の過冷却状態を解除する断熱膨張解除手段を設けてある上記構成であれば、氷核を形成する氷核形成要素を氷付着の虞がなく且つメンテナンスが不要な気体で構成することができるから、氷核形成要素への氷付着により氷水スラリー生成効率が低下するのを確実に防止することができて、氷水スラリー生成効率を安定的に維持することができるとともに、メンテナンス性も効果的に向上させることができる。 And if the above configuration is provided with adiabatic expansion release means for releasing the supercooling state of the supercooled water by forming ice nuclei in the supercooled water by adiabatic expansion of the gas in the supercooled water, the ice nuclei are formed. The ice nucleation element to be formed can be made of a gas that is free from the risk of ice adhesion and does not require maintenance. Therefore, it is possible to reliably prevent the ice water slurry generation efficiency from being reduced due to ice adhesion to the ice nucleation element. In addition, the ice water slurry production efficiency can be stably maintained, and the maintainability can be effectively improved.

しかも、断熱膨張による低温化作用により過冷却水の過冷却度を高めることができるから、過冷却水の過冷却度が不足する場合でも過冷却水の過冷却度を補うことができて、過冷却水中での氷核形成が不安定になるのを効果的に抑止することができる。   Moreover, since the supercooling degree of the supercooling water can be increased by the low temperature action due to the adiabatic expansion, even when the supercooling degree of the supercooling water is insufficient, the supercooling degree of the supercooling water can be compensated. It is possible to effectively prevent the ice nucleus formation in the cooling water from becoming unstable.

上記構成の実施において、
前記断熱膨張解除手段は、ノズル又はオリフィス板を通じて圧縮気体を過冷却水中に噴出して、その圧縮気体を過冷却水中で断熱膨張させる構成にしてもよい。
In the implementation of the above configuration,
The adiabatic expansion releasing means may be configured to inject compressed gas into supercooled water through a nozzle or an orifice plate and adiabatically expand the compressed gas in supercooled water .

この構成によれば、ノズル又はオリフィス板を通じて圧縮気体を過冷却水中に噴出するから、過冷却水中への噴出前において圧縮気体の圧力低下が生じるのを抑止することができて、圧縮気体を所期の圧力で過冷却水中に噴出することができ、これにより、過冷却水中において圧縮気体を効果的に断熱膨張させることができる。 According to this configuration , since the compressed gas is jetted into the supercooled water through the nozzle or the orifice plate, it is possible to suppress the pressure drop of the compressed gas before being jetted into the supercooled water, and The gas can be ejected into the supercooled water at a predetermined pressure, and the compressed gas can be effectively adiabatically expanded in the supercooled water.

また、例えば、圧縮気体を供給する気体供給路に弁部材を設けることで過冷却水中への気体噴出を発停操作する場合でも、気体供給路における過冷却水中への気体噴出部から離れた位置に操作弁を設けることが可能となり、気体噴出部又はその近傍に前記弁部材を設けるのに比べて過冷却水中への気体噴出の発停操作を行い易くすることができる。   Further, for example, even when the gas supply path for supplying compressed gas is provided with a valve member to start and stop the gas injection into the supercooled water, the position away from the gas injection section into the supercooled water in the gas supply path It is possible to provide an operation valve, and it is possible to make it easier to start and stop the gas ejection into the supercooled water than to provide the valve member at or near the gas ejection portion.

上記構成の実施において、
前記断熱膨張解除手段は、過冷却水中において前記圧縮気体に気泡分裂が生じる圧力状態で過冷却水中に圧縮気体を噴出する構成にしてもよい。
In the implementation of the above configuration,
The adiabatic expansion canceling unit may be configured to eject the compressed gas into the supercooled water in a pressure state in which bubble compression occurs in the compressed gas in the supercooled water .

この構成によれば、過冷却水に対して圧縮気体の気泡分裂による外力も付与することができるから、その分、過冷却水中において氷核を安定的に形成することができる。 According to this configuration, an external force due to bubble splitting of the compressed gas can be imparted to the supercooled water, and accordingly, ice nuclei can be stably formed in the supercooled water.

また、氷水スラリー生成方法については、
過冷却水中での気体の断熱膨張によって過冷却水中に氷核を形成することにより、過冷却水の過冷却状態を解除して氷水スラリーを生成するようにしてもよい。
For the ice water slurry generation method ,
By forming ice nuclei in the supercooled water by adiabatic expansion of the gas in the supercooled water, the supercooled water may be released from the supercooled state to generate an ice water slurry .

この方法によれば、過冷却水中での気体の断熱膨張によって過冷却水中に氷核を形成して過冷却水の過冷却状態を解除するから、氷核を形成する氷核形成要素を氷付着の虞
がなく且つメンテナンスが不要な気体で構成することができる。
According to this method, since ice nuclei are formed in the supercooled water by the adiabatic expansion of the gas in the supercooled water to cancel the supercooled state of the supercooled water, the ice nucleation elements forming the ice nuclei are attached to the ice. Therefore, the gas can be made of a gas that does not require maintenance and does not require maintenance.

したがって、氷核形成要素への氷付着により氷水スラリー生成効率が低下するのを確実に防止することができて、氷水スラリー生成効率を安定的に維持することができるとともに、メンテナンス性に優れた氷水スラリー生成器を構成することができる。   Therefore, it is possible to reliably prevent the ice water slurry generation efficiency from being lowered due to the ice adhering to the ice nucleation element, to stably maintain the ice water slurry generation efficiency, and to maintain ice water excellent in maintainability. A slurry generator can be constructed.

しかも、断熱膨張による低温化作用により過冷却水の過冷却度を高めることができるから、過冷却水の過冷却度が不足する場合でも過冷却水の過冷却度を補うことができて、過冷却水中での氷核形成が不安定になるのを効果的に抑止することができる。
1〕ここで、氷水スラリー生成器に係る本発明の第1特徴構成は、
器内に導入された過冷却水の過冷却状態を解除手段により解除して氷水スラリーを生成する氷水スラリー生成器であって、
前記解除手段として、過冷却水中での気体の断熱膨張によって過冷却水中に氷核を形成して過冷却水の過冷却状態を解除する断熱膨張解除手段を設け、
この断熱膨張解除手段は、前記器内の圧力よりも高い圧力の圧縮気体を生成する気体圧縮手段と、
この気体圧縮手段で生成された圧縮気体を過冷却水中で断熱膨張させる気体として前記器内に供給する圧縮気体供給路と、
前記器内の中心部に向く姿勢で前記圧縮気体供給路の先端部に設けたノズル又はオリフィス板と、
前記器内の過冷却水に対する前記ノズル又は前記オリフィス板を通じた前記圧縮気体の噴出を発停操作する操作弁とを備え、
前記器内における過冷却水の温度を検知する温度センサを設けるとともに、
この温度センサによる検出温度が所定温度になったときに前記操作弁を開弁して、前記圧縮気体を前記ノズル又は前記オリフィス板を通じ前記器内の過冷却水中に噴出させて圧力開放させる制御器を設け、
この制御器は、前記操作弁の開弁後、所定開放時間が経過すると前記操作弁を閉弁する構成にしてある点にある。
つまり、この構成において制御器は、温度センサの検出温度が所定温度になったときに操作弁を開き操作する。そして基本的には、一旦過冷却解除の連鎖が始まった後は断熱膨張解除手段による誘発がなくても過冷却解除の連鎖が維持されるため、制御器は、前述の開き操作した後、所定開放時間(例えば、約0.1秒(s)などの短い時間)後に操作弁を閉じ操作する。
2〕本発明の第2特徴構成は、
前記制御器は、所定開放時間として0.1秒間だけ前記操作弁を開弁する構成にしてある点にある。
つまり、操作弁の開放時間が0.1sで充分に氷核が形成されて過冷却水の過冷却状態が解除できる。このことから、この構成において制御器は、所定開放時間として0.1秒間だけ前記操作弁を開弁する。
3〕本発明の第3特徴構成は、
前記制御器は、一度目の圧縮空気の噴出で過冷却水中に氷核が形成されなかったとき、前記操作弁を所定開放時間だけ開放する圧縮空気噴出操作を再度実行する構成にしてある点にある。
つまり、開放時間が0.1sで氷核が形成できなければそれ以上操作弁を開放して圧縮空気を連続投入しても氷核を形成できない。このことから、この構成において制御器は、一度目の圧縮空気の噴出で過冷却水中に氷核が形成されなかったとき、前記操作弁を所定開放時間だけ開放する圧縮空気噴出操作を再度実行する。
〔4〕本発明の第4特徴構成は、
前記制御器は、前記温度センサによる前記器内の過冷却水の検出温度に基づいて前記圧縮気体の圧力を自動的に変更する構成にしてある点にある。
つまり、圧縮空気の圧力が高いほど確実に氷核が形成される。このことから、この構成において制御器は、前記温度センサによる前記器内の過冷却水の検出温度に基づいて前記圧縮気体の圧力を自動的に変更する。
Moreover, since the supercooling degree of the supercooling water can be increased by the low temperature action due to the adiabatic expansion, even when the supercooling degree of the supercooling water is insufficient, the supercooling degree of the supercooling water can be compensated. It is possible to effectively prevent the ice nucleus formation in the cooling water from becoming unstable.
[ 1] Here, the first characteristic configuration of the present invention relating to the ice water slurry generator is:
An ice water slurry generator for generating an ice water slurry by releasing the supercooled state of the supercooled water introduced into the vessel by the release means,
As the release means, provided with adiabatic expansion release means for releasing the supercooled water supercooled state by forming ice nuclei in the supercooled water by adiabatic expansion of the gas in the supercooled water,
The adiabatic expansion release means includes a gas compression means for generating a compressed gas having a pressure higher than the pressure in the vessel,
A compressed gas supply path for supplying the compressed gas generated by the gas compression means into the vessel as a gas for adiabatic expansion in supercooled water;
A nozzle or orifice plate provided at the tip of the compressed gas supply path in a posture toward the center of the vessel;
An operation valve for starting and stopping the ejection of the compressed gas through the nozzle or the orifice plate with respect to the supercooled water in the vessel,
While providing a temperature sensor for detecting the temperature of the supercooled water in the vessel,
A controller that opens the operation valve when the temperature detected by the temperature sensor reaches a predetermined temperature, and jets the compressed gas into the supercooled water in the vessel through the nozzle or the orifice plate to release the pressure. Provided,
This controller is configured to close the operation valve when a predetermined opening time elapses after the operation valve is opened.
That is, in this configuration, the controller opens and operates the operation valve when the temperature detected by the temperature sensor reaches a predetermined temperature. Basically, once the supercooling release chain is started, the supercooling release chain is maintained even without induction by the adiabatic expansion releasing means. After the opening time (for example, a short time such as about 0.1 second (s)), the operation valve is closed and operated.
[ 2] The second characteristic configuration of the present invention is:
The controller is configured to open the operation valve only for 0.1 seconds as a predetermined opening time.
That is, when the operation valve is opened for 0.1 s, ice nuclei are sufficiently formed, and the supercooled state of the supercooled water can be released. Therefore, in this configuration, the controller opens the operation valve for 0.1 seconds as the predetermined opening time.
[ 3] The third characteristic configuration of the present invention is
The controller is configured to re-execute a compressed air ejection operation for opening the operation valve for a predetermined opening time when ice nuclei are not formed in the supercooled water by the first ejection of compressed air. is there.
In other words, if ice nuclei cannot be formed at an opening time of 0.1 s, ice nuclei cannot be formed even if the operation valve is further opened and compressed air is continuously supplied. From this, in this configuration, when the ice core is not formed in the supercooled water by the first jet of compressed air, the controller again executes the compressed air jet operation for opening the operation valve for a predetermined opening time. .
[4] The fourth characteristic configuration of the present invention is:
The controller is configured to automatically change the pressure of the compressed gas based on a temperature detected by the temperature sensor in the supercooling water in the container.
That is, ice nuclei are more reliably formed as the pressure of the compressed air is higher. Therefore, in this configuration, the controller automatically changes the pressure of the compressed gas based on the detected temperature of the supercooled water in the container by the temperature sensor.

図1は製氷装置を示し、1は氷粒Iと水Wとの混合物である氷水スラリーSを貯留する貯氷槽、2はポンプPにより貯氷槽1の下部から取水路3を通じて取り出した水Wを過冷却水生成用の原水として相変化させずに凝固点未満まで冷却することにより過冷却水Ws(例えば、−1.5℃の水)を生成する過冷却水生成器である。   FIG. 1 shows an ice making apparatus, 1 is an ice storage tank for storing an ice water slurry S which is a mixture of ice particles I and water W, 2 is a pump P for removing water W taken from the lower part of the ice storage tank 1 through a water intake channel 3. This is a supercooling water generator that generates supercooling water Ws (for example, water at −1.5 ° C.) by cooling to below the freezing point without changing the phase as raw water for generating supercooling water.

また、4は、過冷却水生成器2から導入管5を通じて導入される過冷却水Wsの過冷却状態を解除手段Fにより器内で解除して氷水スラリーSを生成する氷水スラリー生成器である。   An ice water slurry generator 4 generates an ice water slurry S by releasing the supercooling state of the supercooling water Ws introduced from the supercooling water generator 2 through the introduction pipe 5 by the releasing means F. .

つまり、この製氷装置では、過冷却水生成器2から導入管5を通じ氷水スラリー生成器4に過冷却水Wsを連続的に導入して、その過冷却水Wsの過冷却状態を氷水スラリー生成器4の器内において解除し、この過冷却解除により生成される氷粒Iと水Wとの混合物である氷水スラリーSを氷水スラリー生成器4から送氷路6へ連続的に送出して、その送出される氷水スラリーSを貯氷槽1に貯留する。   That is, in this ice making device, the supercooling water Ws is continuously introduced from the supercooling water generator 2 to the ice water slurry generator 4 through the introduction pipe 5, and the supercooling state of the supercooling water Ws is changed to the ice water slurry generator. The ice water slurry S, which is a mixture of the ice particles I and the water W generated by this supercooling release, is continuously sent from the ice water slurry generator 4 to the ice feed path 6, The ice water slurry S to be delivered is stored in the ice storage tank 1.

そして、貯氷槽1における氷水スラリーSは、例えば、空調設備における冷房用の冷熱源などとして使用され、その冷熱源としての使用で氷水スラリーS中の氷粒Iは融解し、その融解水が再び過冷却水生成用の原水として取水路3から取り出される。   Then, the ice water slurry S in the ice storage tank 1 is used, for example, as a cooling heat source for cooling in an air conditioner, and the ice particles I in the ice water slurry S are melted by the use as the cooling heat source. It is taken out from the intake channel 3 as raw water for generating supercooled water.

前記氷水スラリー生成器4は、過冷却水Wsを導入する導入路5と氷水スラリーSを送出する送氷路6とが接続された略円筒状の器体4Aに、前記解除手段Fとして過冷却水Ws中での気体の断熱膨張によって過冷却水Ws中に氷核を形成して過冷却水Wsの過冷却状態を解除する断熱膨張解除手段7を設けて構成してある。   The ice water slurry generator 4 is supercooled as the release means F by a substantially cylindrical container 4A connected to an introduction path 5 for introducing the supercooling water Ws and an ice supply path 6 for delivering the ice water slurry S. Adiabatic expansion canceling means 7 is provided to release ice from the supercooled water Ws by forming ice nuclei in the supercooled water Ws by adiabatic expansion of the gas in the water Ws.

前記断熱膨張解除手段7は、器内(器体4Aの内部)の圧力よりも高い圧力の圧縮気体Aを生成する気体圧縮手段8(例えば、コンプレッサーや空気ボンベ)と、気体圧縮手段8で生成された圧縮気体Aを器内に供給する圧縮気体供給路9を主要構成として備える。   The adiabatic expansion canceling means 7 is generated by a gas compressing means 8 (for example, a compressor or an air cylinder) that generates a compressed gas A having a pressure higher than the pressure inside the container (inside the container body 4A) and the gas compressing means 8. The compressed gas supply path 9 for supplying the compressed gas A into the chamber is provided as a main component.

前記圧縮気体Aの圧力は、過冷却水Ws中において圧縮気体Aに気泡分裂が生じ得る圧力に設定してあり、本例では、器体4Aの内部の圧力よりも約0.3MPa(絶対圧)高い圧力に設定してある。 The pressure of the compressed gas A is set to a pressure at which bubble splitting may occur in the compressed gas A in the supercooled water Ws. In this example, the pressure of the compressed gas A is about 0.3 MPa (absolute pressure) than the pressure inside the container 4A. ) is set to high pressure.

前記圧縮気体供給路9の先端部には、ノズル又はオリフィス板10を器内中心部に向く姿勢で設けてあり、過冷却水Ws中への噴出前において圧縮気体Aに圧力低下が生じるのを抑止して急激に圧力開放する構成にしてある。また、圧縮気体供給路9には、器内への圧縮気体Aの噴出を発停操作する操作弁11(例えば、電磁弁)を設けてある。   A nozzle or orifice plate 10 is provided at the tip of the compressed gas supply passage 9 so as to face the central portion of the container, and the pressure drop occurs in the compressed gas A before being jetted into the supercooled water Ws. Suppressing and releasing pressure rapidly is adopted. The compressed gas supply path 9 is provided with an operation valve 11 (for example, an electromagnetic valve) for starting and stopping the ejection of the compressed gas A into the container.

つまり、この断熱膨張解除手段7は、操作弁11の開き操作により気体圧縮手段8で生成した圧縮気体Aを、圧縮気体供給路9を通じてノズル又はオリフィス板10から器内の過冷却水Ws中に噴出させて、過冷却水Ws中で圧縮気体Aを断熱膨張させる。   That is, the adiabatic expansion canceling means 7 converts the compressed gas A generated by the gas compressing means 8 by opening the operation valve 11 from the nozzle or orifice plate 10 into the supercooled water Ws in the container through the compressed gas supply path 9. The compressed gas A is adiabatically expanded in the supercooled water Ws.

そして、過冷却水Ws中での断熱膨張により低温化(例えば、−10℃以下まで低温化)した圧縮気体Aと過冷却水Wsとの接触界面において、過冷却水Wsを低温化して過冷却水Wsの過冷却度を局部的に高くし、接触界面近傍における過冷却水Wsの不安定度を増大させるとともに、圧縮気体Aの断熱膨張過程及び気泡分裂過程(さらには、浮力による移動過程)で接触界面近傍の過冷却水Wsに対し効果的に外力を作用させ、これにより、過冷却水Ws中に安定的に氷核を形成して過冷却水Wsの過冷却状態を解除する。   Then, the supercooled water Ws is cooled at the contact interface between the compressed gas A and the supercooled water Ws that have been lowered in temperature (for example, lowered to −10 ° C. or lower) by adiabatic expansion in the supercooled water Ws. The degree of supercooling of the water Ws is locally increased to increase the degree of instability of the supercooled water Ws in the vicinity of the contact interface, and the adiabatic expansion process and bubble splitting process of the compressed gas A (and the movement process by buoyancy) Thus, an external force is effectively applied to the supercooling water Ws near the contact interface, thereby stably forming ice nuclei in the supercooling water Ws and releasing the supercooling state of the supercooling water Ws.

12は器内における過冷却水Wsの温度を検知する温度センサ、13は主として温度センサ12の検出温度に基づいて操作弁11を開閉操作する制御器である。   Reference numeral 12 denotes a temperature sensor that detects the temperature of the supercooling water Ws in the container, and 13 denotes a controller that opens and closes the operation valve 11 mainly based on the temperature detected by the temperature sensor 12.

前記制御器13は、本例では、ポンプPの運転開始後、温度センサ12の検出温度が所定温度になったときに操作弁11を開き操作する制御を実行する設定にしてある。また、基本的には、一旦過冷却解除の連鎖が始まった後は断熱膨張解除手段7による誘発がなくても過冷却解除の連鎖が維持されるため、制御器13は、前述の開き操作した後、短い時間(例えば、約0.1秒(s))後に操作弁11を閉じ操作する制御を実行する設定にしてある。   In this example, the controller 13 is set to execute control for opening the operation valve 11 when the temperature detected by the temperature sensor 12 reaches a predetermined temperature after the operation of the pump P is started. Basically, once the supercooling release chain has been started, the supercooling release chain is maintained without triggering by the adiabatic expansion releasing means 7, so the controller 13 has performed the opening operation described above. Thereafter, the control for closing the operation valve 11 is executed after a short time (for example, about 0.1 second (s)).

なお、14は気体圧縮手段8や操作弁11などのメンテナンス用として圧縮気体供給路9に装備した逆止弁、15は氷水スラリー生成器で生成された氷水スラリーS中の気体を放出するために送出路6に装備したエア抜き弁である。 In addition, 14 is a check valve equipped in the compressed gas supply path 9 for maintenance of the gas compression means 8 and the operation valve 11, and 15 is for releasing the gas in the ice water slurry S generated by the ice water slurry generator 4. Is an air vent valve installed in the delivery path 6.

次に、前記断熱膨張解除手段7による過冷却水Wsの過冷却状態の解除効果の検証実験及びその実験結果について説明する。後述する各実験は、図1に示す氷水スラリー生成器4と同様のモデル器を用いて実施した。このモデル器では、前記逆止弁14として内径2.0mmの圧縮空気用逆止弁を使用し、前記圧縮空気供給路9として内径2.0mmの圧空用チューブを使用した。また、圧空用チューブの先端部(つまり、圧縮空気Aの噴出部)と逆止弁14の間の距離は約30mmとした。   Next, a verification experiment of the effect of canceling the supercooling state of the supercooling water Ws by the adiabatic expansion canceling means 7 and the experimental result will be described. Each experiment mentioned later was implemented using the model device similar to the ice water slurry generator 4 shown in FIG. In this model device, a check valve for compressed air having an inner diameter of 2.0 mm was used as the check valve 14, and a compressed air tube having an inner diameter of 2.0 mm was used as the compressed air supply path 9. In addition, the distance between the distal end portion of the compressed air tube (that is, the jet portion of the compressed air A) and the check valve 14 was about 30 mm.

(実験例1)
本実験では、圧縮空気Aの圧力が0.9MPa(絶対圧)、氷水スラリー生成器4の器内圧力が0.2MPa(絶対圧)の条件下で、圧空用チューブの先端部にノズル又はオリフィス板10を設けた状態における逆止弁14から操作弁11までの距離Lが110mmの場合と1350mmの場合(例2)の各々、及び、圧空用チューブの先端部にノズル又はオリフィス板10を設けない状態における逆止弁14から操作弁11までの距離Lが110mmの場合と1350mmの場合の各々について、操作弁11の開放時間毎の氷核の発生の有無を確認した。
(Experimental example 1)
In this experiment, a nozzle or an orifice is placed at the tip of the compressed air tube under the condition that the pressure of the compressed air A is 0.9 MPa (absolute pressure) and the internal pressure of the ice water slurry generator 4 is 0.2 MPa (absolute pressure). In the state where the plate 10 is provided, the nozzle or orifice plate 10 is provided at the tip of the compressed air tube when the distance L from the check valve 14 to the operation valve 11 is 110 mm and 1350 mm (example 2). In each of the cases where the distance L from the check valve 14 to the operation valve 11 was 110 mm and 1350 mm in the absence, the presence or absence of ice nuclei was confirmed every time the operation valve 11 was opened.

図2に示す実験結果から、過冷却水Ws中で圧縮気体Aを断熱膨張させれば、過冷却水Ws中に氷核を形成して過冷却水Wsの過冷却状態を解除し得ることが確認できた。これは、断熱膨張による圧縮気体Aの低温化に伴う過冷却水Wsにおける圧縮気体Aとの接触界面の低温化と、断熱膨張よる圧縮気体Aの体積増大に伴う過冷却水Wsの前記接触界面への外力付与とによるものと考えられる。   From the experimental results shown in FIG. 2, if the compressed gas A is adiabatically expanded in the supercooling water Ws, it is possible to form ice nuclei in the supercooling water Ws and release the supercooling state of the supercooling water Ws. It could be confirmed. This is because the contact interface with the compressed gas A in the supercooled water Ws due to the low temperature of the compressed gas A due to adiabatic expansion and the contact interface of the supercooled water Ws with the increase in the volume of the compressed gas A due to adiabatic expansion. This is thought to be due to the application of external force to.

さらに、ノズル又はオリフィス板10を設けない状態における距離Lが1350mmの場合を除き、操作弁11の開放時間が0.1sで充分に氷核が形成されて過冷却水Wsの過冷却状態が解除できることが確認でき、このことから、ノズル板又はオリフィス板10を設けた場合には、圧縮気体Aを効率的に断熱膨張させることができること、及び、電磁弁開放時間が0.1sで氷核が形成できなければそれ以上操作弁11を開放して圧縮空気Aを連続投入しても氷核を形成できないことが確認できた。   Further, except when the distance L in the state where the nozzle or orifice plate 10 is not provided is 1350 mm, the ice valve is sufficiently formed when the opening time of the operation valve 11 is 0.1 s, and the supercooled state of the supercooled water Ws is released. From this, it can be confirmed that when the nozzle plate or the orifice plate 10 is provided, the compressed gas A can be efficiently adiabatically expanded, and the open time of the electromagnetic valve is 0.1 s, and the ice core is formed. If it could not be formed, it was confirmed that ice nuclei could not be formed even if the operation valve 11 was opened and compressed air A was continuously supplied.

(実験例2)
本実験では、圧空用チューブの先端部にノズル又はオリフィス板10を設けた状態において、氷水スラリー生成器4の器内圧力が0.2MPa(絶対圧)、操作弁11開放時間が0.1sの条件下で、前記逆止弁14から前記操作弁11までの距離Lが110mmの場合と1350mmの場合の各々について、圧縮空気Aの圧力毎の氷核の発生の有無を確認した。
(Experimental example 2)
In this experiment, the internal pressure of the ice water slurry generator 4 is 0.2 MPa (absolute pressure) and the opening time of the operation valve 11 is 0.1 s with the nozzle or orifice plate 10 provided at the tip of the compressed air tube. Under the conditions, whether or not ice nuclei were generated for each pressure of the compressed air A was confirmed for each of the cases where the distance L from the check valve 14 to the operation valve 11 was 110 mm and 1350 mm.

図3に示す実験結果から、過冷却水Ws中で圧縮気体Aを断熱膨張させれば、過冷却水Ws中に氷核を形成して過冷却水Wsの過冷却状態を解除し得ることが確認できた。   From the experimental results shown in FIG. 3, if the compressed gas A is adiabatically expanded in the supercooling water Ws, it is possible to form ice nuclei in the supercooling water Ws and release the supercooling state of the supercooling water Ws. It could be confirmed.

さらに、距離Lが110mmの場合では、圧縮気体Aの圧力が0.4MPa(絶対圧)以上で氷核が形成されること、及び、距離Lが1350mmの場合では、圧縮気体Aの圧力が0.5MPa(絶対圧)以上で氷核が形成されることが確認でき、このことから、圧縮空気Aの圧力が高いほど確実に氷核が形成されること、及び、氷核を形成するには、器内の圧力よりも約0.3MPa(絶対圧)高い圧力の圧縮空気Aを過冷却水Ws中に噴出すれば充分であることが確認できた。ちなみに、器内の圧力よりも約0.3MPa(絶対圧)高い圧力の圧縮空気Aを過冷却水Ws中に噴出する場合、断熱膨張の式より、30℃の圧縮空気Aを器内に導入しても、断熱膨張直後の空気温度は−50℃以下となる。   Furthermore, when the distance L is 110 mm, ice nuclei are formed when the pressure of the compressed gas A is 0.4 MPa (absolute pressure) or more, and when the distance L is 1350 mm, the pressure of the compressed gas A is 0. It can be confirmed that ice nuclei are formed at a pressure of .5 MPa (absolute pressure) or more. From this, it is confirmed that ice nuclei are more reliably formed as the pressure of compressed air A is higher, and ice nuclei are formed. It was confirmed that it would be sufficient if the compressed air A having a pressure approximately 0.3 MPa (absolute pressure) higher than the pressure in the vessel was ejected into the supercooled water Ws. Incidentally, when the compressed air A having a pressure higher by about 0.3 MPa (absolute pressure) than the pressure in the vessel is jetted into the supercooled water Ws, the compressed air A of 30 ° C. is introduced into the vessel from the adiabatic expansion formula. Even so, the air temperature immediately after adiabatic expansion is -50 ° C or lower.

〔別実施形態〕
次に別の実施形態を列記する。
前述の実施形態で説明した氷水スラリー生成器4の改良として、例えば、制御器13を、一度目の圧縮空気Aの噴出で氷核が形成されなかった場合には、再度、圧縮空気Aの噴出操作を行う制御を実行する構成にしてもよい。
[Another embodiment]
Next, another embodiment will be listed.
As an improvement of the ice water slurry generator 4 described in the above embodiment, for example, when the ice core is not formed by the first ejection of the compressed air A, the controller 13 ejects the compressed air A again. You may make it the structure which performs control which performs operation.

また、例えば、制御器13を、温度センサ12による器内の過冷却水Wsの検出温度に基づいて圧縮空気Aの圧力を自動的に変更する制御を実行する構成にしてもよい。   Further, for example, the controller 13 may be configured to execute control for automatically changing the pressure of the compressed air A based on the temperature detected by the temperature sensor 12 of the supercooled water Ws in the container.

前述の実施形態では、氷水スラリー生成器4として、導入路5と送出路6とは別体の器体4Aを備えるものを例に示したが、例えば、導入路5又は送出路6を器体とする構成であってもよい。   In the above-described embodiment, the ice water slurry generator 4 includes the container 4A that is provided separately from the introduction path 5 and the delivery path 6. However, for example, the introduction path 5 or the delivery path 6 is the instrument body. It may be configured as follows.

過冷却水Ws中での気体の断熱膨張によって過冷却水Ws中に氷核を形成して過冷却水Wsの過冷却状態を解除する断熱膨張解除手段7の具体的構成は、前述の実施形態で示した如き構成に限らず種々の構成変更が可能であり、例えば、器体4Aの内壁部から圧縮気体Aを発生させるのに代え、器体4Aの中心部などの適所で圧縮気体Aを発生させる構成や圧縮気体Aを器体4Aの複数部位から発生させる構成などであってもよい。   The specific configuration of the adiabatic expansion canceling means 7 for releasing the supercooled state of the supercooled water Ws by forming ice nuclei in the supercooled water Ws by adiabatic expansion of the gas in the supercooled water Ws is described in the above embodiment. However, instead of generating the compressed gas A from the inner wall portion of the vessel body 4A, the compressed gas A can be changed at an appropriate location such as the central portion of the vessel body 4A. The structure to generate or the structure to generate the compressed gas A from a plurality of parts of the vessel 4A may be used.

本発明の実施において過冷却解除対象の原水は、純水や浄化水に限られるものではなく、場合によってはブラインなどの水溶液であってもよい。   In the practice of the present invention, the raw water to be subcooled is not limited to pure water or purified water, and may be an aqueous solution such as brine depending on circumstances.

圧縮気体Aは、空気、窒素、二酸化炭素など種々のものを採用することができ、また、温度や湿度なども種々の値を採用することができる。   Various things, such as air, nitrogen, a carbon dioxide, can be employ | adopted for compressed gas A, and various values can be employ | adopted for temperature, humidity, etc.

圧縮空気Aは、乾き空気でもよいが湿り空気で構成するのが好ましい。このようにすれば、圧縮空気Aの断熱膨張時の低温化に伴う液化水分が即座に氷結するため、過冷却水Ws中での氷核形成を一層安定的に行うことができる。   The compressed air A may be dry air, but is preferably composed of moist air. In this way, since the liquefied moisture accompanying the low temperature during the adiabatic expansion of the compressed air A freezes immediately, the formation of ice nuclei in the supercooled water Ws can be performed more stably.

本発明による氷水スラリー生成器は、空調設備における冷熱源装置に限らず、氷を要する種々の用途に使用することができる。 The ice water slurry generator according to the present invention is not limited to the cold heat source device in the air conditioning equipment, but can be used for various applications requiring ice.

製氷装置の構成図Configuration diagram of ice making equipment 実験例1の結果を示す図The figure which shows the result of Experimental example 1 実験例2の結果を示す図The figure which shows the result of Experimental example 2

Ws 過冷却水
S 氷水スラリー
A 圧縮気体
F 解除手段
4 氷水スラリー生成器
7 断熱膨張解除手段
10 ノズル又はオリフィス板
気体圧縮手段
圧縮気体供給路
11 操作弁
12 温度センサ
13 制御器
Ws Supercooled water S Ice water slurry A Compressed gas F Release means 4 Ice water slurry generator 7 Adiabatic expansion release means 10 Nozzle or orifice plate
8 gas compression means
9 compressed gas supply path
11 operation valve
12 temperature sensor
13 controller

Claims (4)

器内に導入された過冷却水の過冷却状態を解除手段により解除して氷水スラリーを生成する氷水スラリー生成器であって、
前記解除手段として、過冷却水中での気体の断熱膨張によって過冷却水中に氷核を形成して過冷却水の過冷却状態を解除する断熱膨張解除手段を設け、
この断熱膨張解除手段は、前記器内の圧力よりも高い圧力の圧縮気体を生成する気体圧縮手段と、
この気体圧縮手段で生成された圧縮気体を過冷却水中で断熱膨張させる気体として前記器内に供給する圧縮気体供給路と、
前記器内の中心部に向く姿勢で前記圧縮気体供給路の先端部に設けたノズル又はオリフィス板と、
前記器内の過冷却水に対する前記ノズル又は前記オリフィス板を通じた前記圧縮気体の噴出を発停操作する操作弁とを備え、
前記器内における過冷却水の温度を検知する温度センサを設けるとともに、
この温度センサによる検出温度が所定温度になったときに前記操作弁を開弁して、前記圧縮気体を前記ノズル又は前記オリフィス板を通じ前記器内の過冷却水中に噴出させて圧力開放させる制御器を設け、
この制御器は、前記操作弁の開弁後、所定開放時間が経過すると前記操作弁を閉弁する構成にしてある氷水スラリー生成器。
An ice water slurry generator for generating an ice water slurry by releasing the supercooled state of the supercooled water introduced into the vessel by the release means,
Examples releasing means, set the adiabatic expansion canceling means for canceling the supercooled state of supercooled water to form ice nuclei in supercooled water by adiabatic expansion of gas in the supercooled water,
The adiabatic expansion release means includes a gas compression means for generating a compressed gas having a pressure higher than the pressure in the vessel,
A compressed gas supply path for supplying the compressed gas generated by the gas compression means into the vessel as a gas for adiabatic expansion in supercooled water;
A nozzle or orifice plate provided at the tip of the compressed gas supply path in a posture toward the center of the vessel;
An operation valve for starting and stopping the ejection of the compressed gas through the nozzle or the orifice plate with respect to the supercooled water in the vessel,
While providing a temperature sensor for detecting the temperature of the supercooled water in the vessel,
A controller that opens the operation valve when the temperature detected by the temperature sensor reaches a predetermined temperature, and jets the compressed gas into the supercooled water in the vessel through the nozzle or the orifice plate to release the pressure. Provided,
The controller is an ice water slurry generator configured to close the operation valve when a predetermined opening time elapses after the operation valve is opened .
前記制御器は、所定開放時間として0.1秒間だけ前記操作弁を開弁する構成にしてある請求項1記載の氷水スラリー生成器。 The ice water slurry generator according to claim 1, wherein the controller is configured to open the operation valve for 0.1 seconds as a predetermined opening time . 前記制御器は、一度目の圧縮空気の噴出で過冷却水中に氷核が形成されなかったとき、前記操作弁を所定開放時間だけ開放する圧縮空気噴出操作を再度実行する構成にしてある請求項1又は2記載の氷水スラリー生成器。 The controller is configured to re-execute a compressed air ejection operation for opening the operation valve for a predetermined opening time when ice nuclei are not formed in the supercooled water by the first ejection of compressed air. The ice water slurry generator according to 1 or 2 . 前記制御器は、前記温度センサによる前記器内の過冷却水の検出温度に基づいて前記圧縮気体の圧力を自動的に変更する構成にしてある請求項1〜3のいずれか1項に記載の氷水スラリー生成器。4. The controller according to claim 1, wherein the controller is configured to automatically change the pressure of the compressed gas based on a detected temperature of the supercooled water in the container by the temperature sensor. 5. Ice water slurry generator.
JP2007191034A 2007-07-23 2007-07-23 Ice water slurry generator Active JP4950791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191034A JP4950791B2 (en) 2007-07-23 2007-07-23 Ice water slurry generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191034A JP4950791B2 (en) 2007-07-23 2007-07-23 Ice water slurry generator

Publications (2)

Publication Number Publication Date
JP2009024977A JP2009024977A (en) 2009-02-05
JP4950791B2 true JP4950791B2 (en) 2012-06-13

Family

ID=40396939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191034A Active JP4950791B2 (en) 2007-07-23 2007-07-23 Ice water slurry generator

Country Status (1)

Country Link
JP (1) JP4950791B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052814B (en) * 2010-12-31 2012-06-06 东莞理工学院 Fluidized ice slurry generating system for alternate refrigeration
CN102679653B (en) * 2012-05-16 2014-09-03 广州鑫誉蓄能科技有限公司 Supercooling relief device in high-voltage discharge mode
CN102679654B (en) * 2012-05-16 2014-07-09 广州鑫誉蓄能科技有限公司 Supercooling disable device utilizing high-pressure water jet mode
CN105444305A (en) * 2015-04-22 2016-03-30 深圳市伟力盛世节能科技有限公司 Supercooling relieving device through high-pressure gas-jet method
CN113865169B (en) * 2021-09-08 2022-07-22 浙江工业大学 Method and equipment for preparing microcrystalline fluidized ice based on ultrasonic method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498064A (en) * 1990-08-11 1992-03-30 Daikin Ind Ltd Ice making method and ice heat accumulative device
JPH06147559A (en) * 1992-11-02 1994-05-27 Daikin Ind Ltd Ice heat accumulating device
JPH10170110A (en) * 1996-12-03 1998-06-26 Mitsubishi Electric Corp Dynamic type ice making device
JP2985070B2 (en) * 1997-09-05 1999-11-29 新菱冷熱工業株式会社 Ice making equipment

Also Published As

Publication number Publication date
JP2009024977A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4950791B2 (en) Ice water slurry generator
JP5033921B2 (en) Fountain equipment
EP2272568A1 (en) Fire suppressor cylinders with enhanced bubble production
JP4109549B2 (en) Fire fighting equipment and driving source of fire fighting equipment
JP2010064027A (en) Nozzle for dry ice washing
EP2658678A1 (en) Device and method for particle blasting with frozen gas particles
JP2018132293A (en) Manufacturing device and manufacturing method of slurry ice
JP5935683B2 (en) How to refrigerate fresh products
JP2016075377A (en) Intermittent air generating device
CN202606329U (en) High-flow and low-pressure air spray gun
KR101357790B1 (en) A Educational Fire Extinguisher Having Pump
JP2008133983A (en) Ultra low temperature gas generator
JP7356001B2 (en) Outdoor unit of air conditioner
CN104089291B (en) A kind of gas-liquid mixed soot blower
US6182458B1 (en) Apparatus and method for producing CO2 snow and/or ice in shipping container
JP5065078B2 (en) Dry ice snow cleaning apparatus and method
JP5852397B2 (en) Smoke tester
CN207545677U (en) A kind of automatic fire extinguisher and automobile
JP2011207664A (en) Device for spraying dry ice particles
JP2020151697A (en) Injection nozzle and gas-liquid mixed fluid generation method
JP3223560U (en) Dry ice cleaning equipment
KR20150028027A (en) Dry Ice Pelletizer
JP7462601B2 (en) Dry Ice Blaster
KR20120034960A (en) Apparatus for destroying the solid matter in the restricted working space
RU87762U1 (en) FOAM GENERATOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250