JP2008133983A - Ultra low temperature gas generator - Google Patents

Ultra low temperature gas generator Download PDF

Info

Publication number
JP2008133983A
JP2008133983A JP2006319406A JP2006319406A JP2008133983A JP 2008133983 A JP2008133983 A JP 2008133983A JP 2006319406 A JP2006319406 A JP 2006319406A JP 2006319406 A JP2006319406 A JP 2006319406A JP 2008133983 A JP2008133983 A JP 2008133983A
Authority
JP
Japan
Prior art keywords
gas
mist
liquefied
vaporized
horn body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006319406A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Wada
嘉之 和田
Yoshifumi Wada
好史 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COOL TECHNOS KK
Cool Technos Co Ltd
Original Assignee
COOL TECHNOS KK
Cool Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COOL TECHNOS KK, Cool Technos Co Ltd filed Critical COOL TECHNOS KK
Priority to JP2006319406A priority Critical patent/JP2008133983A/en
Publication of JP2008133983A publication Critical patent/JP2008133983A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultra low temperature gas generator for generating mist gas by mixing liquefied gas and vaporized gas separated from liquid nitrogen, in a mist mixer. <P>SOLUTION: A gas-liquid separator 13 separating liquefied nitrogen in a liquefied nitrogen tank 11 into liquefied gas and vaporized gas, has a liquefied gas supply line La for feeding liquid to a spray pipe 25 in the mist mixer 20 through a liquid flow regulating means 15, and a vaporized gas supply line Lb feeding gas to a gas nozzle shaft 35 in the mist mixer 20 through a vaporizer 41, a heating means 42, a gas-liquid separator 46 and a gas flow regulating means 47. The liquefied gas fed to the mist mixer 20 is sprayed as mist gas into a horn body 21 from a spray hole 26 of the spray pipe 25, and the vaporized gas is jetted as vaporized gas into the horn body 21 from a nozzle hole 39 of the gas nozzle shaft by controlling temperature by a heating means 42 of the vaporized gas supply line Lb, and mixed with mist gas in the horn body to generate ultra low temperature gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被冷却物、例えば、冷凍食品または冷凍菓子などの冷菓に、ミスト状にした液体窒素を噴霧して冷却する超低温ガス発生装置に関する。   The present invention relates to a cryogenic gas generator for spraying and cooling a liquid nitrogen in the form of mist on an object to be cooled, for example, frozen confectionery such as frozen food or frozen confectionery.

従来、被冷却物、例えば、冷凍食品または冷凍菓子などの冷菓(アイスクリームやかき氷など)を工業的に製造する場合、でき上がった冷菓を硬化室または保存室に搬入して硬化させている。   Conventionally, when a frozen object such as frozen food or frozen confectionery (such as ice cream or shaved ice) is industrially produced, the completed frozen confectionery is carried into a curing room or a storage room and cured.

前記冷菓が、例えば、ソフトクリームとした場合、製品が完成した直後はまだ十分に硬化していないためそのまま搬送すると途中で形が崩れやすい。また、かき氷の場合、搬送中にその表面が融け、そのまま硬化室または保存室に搬入すると融けた部分がそのまま再氷結するため商品価値が半減する。そのため、でき上がった冷菓をベルトコンベアなどで搬送する際、該ベルトコンベアをトンネル状に形成した室内に収容し、該室内にフロンガスやアンモニアガスなどの冷媒をコンプレッサとファンとで送気して冷却する、いわゆる間接冷却が行なわれているが、その装置が大掛かりである割には冷却効果が十分ではなかった。   When the frozen dessert is, for example, soft ice cream, it is not yet fully cured immediately after the product is completed, so that it is likely to lose its shape when transported as it is. In the case of shaved ice, the surface melts during transportation, and when it is carried into the curing chamber or storage chamber as it is, the melted portion is re-iced as it is, thereby reducing the commercial value. Therefore, when the finished frozen dessert is conveyed by a belt conveyor or the like, the belt conveyor is accommodated in a tunnel-shaped room, and a refrigerant such as chlorofluorocarbon or ammonia gas is sent into the room by a compressor and a fan for cooling. Although so-called indirect cooling is performed, the cooling effect is not sufficient for the large-scale apparatus.

一方、液体窒素を冷媒とする場合、冷菓を搬送するためのベルトコンベアを収容した室内の所定個所に一定間隔で複数の噴霧ノズルを取付け、該噴霧ノズルから液体窒素ガスをミスト状にして放出し、トンネル内を通過する冷菓に直接噴霧したり、トンネル室内を直接冷却することにより冷菓が温まって溶けるのを防止することが知られている(例えば、特許文献1参照)。
特開平06−300410号
On the other hand, when liquid nitrogen is used as a refrigerant, a plurality of spray nozzles are attached at predetermined intervals in a room containing a belt conveyor for transporting frozen dessert, and liquid nitrogen gas is discharged from the spray nozzles in a mist form. It is known to prevent the frozen dessert from being heated and melted by directly spraying the frozen dessert passing through the tunnel or by directly cooling the inside of the tunnel (for example, see Patent Document 1).
JP-A-06-300410

液体窒素は、−196℃と超低温であるため少しの温度変化でも反応し、安定したミストガスを発生させることが困難であり、ミストガスの発生には非常に高度な技術が必要とされている。   Since liquid nitrogen is an extremely low temperature of −196 ° C., it reacts even with a slight temperature change, and it is difficult to generate a stable mist gas, and a very advanced technique is required for the generation of mist gas.

さらには、図7に示すごとく、冷菓70を搬送するベルトコンベア61を収容したトンネル室60内に液体窒素のミストガスを放出する低温ガス発生装置65は、液体窒素タンク66から送られた液体窒素を気液分離器67で液化ガスと気化ガスとに分離し、該気液分離器で分離した液化ガスのみを使用している。この液化ガスは流量調節手段68を介して前記トンネル室60内に複数取付けたそれぞれの噴霧ノズル69へ送液し、該噴霧ノズルからミストガスとしてトンネル室60内に放出して冷却し、気液分離器67で分離された気化ガスはそのまま使うことなく大気中に放出されている。   Furthermore, as shown in FIG. 7, the low temperature gas generator 65 that discharges the mist gas of liquid nitrogen into the tunnel chamber 60 that houses the belt conveyor 61 that conveys the frozen dessert 70 receives the liquid nitrogen sent from the liquid nitrogen tank 66. The gas-liquid separator 67 separates the liquefied gas and the vaporized gas, and only the liquefied gas separated by the gas-liquid separator is used. The liquefied gas is sent to each of the plurality of spray nozzles 69 installed in the tunnel chamber 60 through the flow rate adjusting means 68, discharged from the spray nozzle into the tunnel chamber 60 as mist gas, cooled, and separated into gas and liquid. The vaporized gas separated by the vessel 67 is released into the atmosphere without being used as it is.

大気中に放出されている気化ガスは、−70℃から−100℃程度の低温であるにもかかわらず冷熱源として使用されることなく放出しているため、冷熱エネルギーを無駄にしているという問題点を有している。   The vaporized gas released into the atmosphere is discharged without being used as a cold heat source even though it is at a low temperature of about −70 ° C. to −100 ° C., so that the cold energy is wasted. Has a point.

前記液化ガスを噴霧させる従来の噴霧ノズル69は、口径が0.5mm以上と大きく、該噴霧ノズルから大気中に放出される液化ガスは断熱膨張によりミストガスとして発生するが、噴霧ノズル69から噴出する液の量が多いため、ミストガスとはならずに液状のまま流出して大気中の水分と混ざって氷結してしまう場合もある。特に、液化ガスの連続噴射を行うと、噴霧ノズル69付近が冷えて凍結しやすくミストガスを発生させることが困難となり冷却効果が半減する。   The conventional spray nozzle 69 for spraying the liquefied gas has a large diameter of 0.5 mm or more, and the liquefied gas released from the spray nozzle into the atmosphere is generated as mist gas by adiabatic expansion, but is ejected from the spray nozzle 69. Since the amount of the liquid is large, it may not be mist gas but may flow out in a liquid state and mix with moisture in the atmosphere to freeze. In particular, when the liquefied gas is continuously injected, the vicinity of the spray nozzle 69 is cooled and freezes easily, making it difficult to generate mist gas, and the cooling effect is halved.

さらには、噴霧ノズル69の口径が大きいと大気温度が伝わりやすく、例えば、大気温度が上昇して液化ガスが熱せられると供給パイプ内で気化しやすく、液化ガスが噴霧ノズル69内で気化すると圧力変動や、噴霧ノズル69への気泡の噛み込みが起こり脈動現象が生じやすい。   Further, when the diameter of the spray nozzle 69 is large, the atmospheric temperature is easily transmitted. For example, when the atmospheric temperature rises and the liquefied gas is heated, it is easily vaporized in the supply pipe, and when the liquefied gas is vaporized in the spray nozzle 69, the pressure is increased. Fluctuations and the occurrence of pulsation are likely to occur due to the occurrence of bubbles in the spray nozzle 69.

したがって、液化ガスをミスト状に長時間安定して噴霧させることが困難で、また、噴霧ノズルの口径は、技術的に0.5mm以下に小さくすることが困難であるため、一つの噴霧ノズル69から噴出する液化ガスのわりにミストガスが発生せず無駄が多かった。そのため、冷果菓子などを搬送するベルトコンベア61を収容したトンネル室60内を冷却するためには、いくつもの噴霧ノズル69を取付ける必要があった(図7)。   Accordingly, it is difficult to stably spray the liquefied gas in the form of a mist for a long time, and the diameter of the spray nozzle is technically difficult to reduce to 0.5 mm or less. Mist gas was not generated in lieu of the liquefied gas ejected from the tank, which was wasteful. Therefore, in order to cool the inside of the tunnel chamber 60 which accommodates the belt conveyor 61 which conveys cold confectionery etc., it was necessary to attach several spray nozzles 69 (FIG. 7).

そこで本発明は、少なくとも一本の長尺な噴霧パイプに0.15〜0.25mmの小さな噴霧孔を多数設け、その噴霧孔から液化ガスをそれぞれ噴霧させて大量のミストガスを発生させる。さらには、いままでは大気中に放出されていた気化ガスを所定温度に加熱させてミストガスと混合させることにより、長時間使用しても液化現象が生じない冷却効率の高い冷却ガスを発生させることができる装置を提供することを目的とする。   Therefore, in the present invention, a large number of small spray holes of 0.15 to 0.25 mm are provided in at least one long spray pipe, and a liquefied gas is sprayed from each of the spray holes to generate a large amount of mist gas. Furthermore, by heating the vaporized gas that has been released to the atmosphere to a predetermined temperature and mixing it with mist gas, it is possible to generate a cooling gas with high cooling efficiency that does not cause liquefaction even when used for a long time. An object of the present invention is to provide an apparatus capable of performing the above.

本発明は、液化窒素タンク11内の液化窒素を液化ガスと気化ガスとに分離する気液分離器13は、液流量調節手段15を介してミスト混合器20内の噴霧パイプ25に送液する液化ガス供給路Laと、気化器41と加熱手段42と気液分離器46とガス流量調節手段47とを介して前記ミスト混合器20内のガスノズル軸35に送気する気化ガス供給路Lbとを備えてなり、前記ミスト混合器20に液送された液化ガスは、噴霧パイプ25の噴霧孔26からホーン体21内にミストガスとして噴霧され、前記気化ガスは、気化ガス供給路Lbの加熱手段42によって温度コントロールしてガスノズル軸35のノズル孔39からホーン体21内に気化ガスとして噴出され、該気化ガスと前記ホーン体21内のミストガスとを混合させて超低温ガスを発生させることを特徴とする。また、前記ミスト混合器20は、一端に開口部22、他端に取付部23を設けて円筒状に形成したホーン体21と、先端を閉塞して前記液化ガスを噴出する多数の噴霧孔26を長手方向に一定間隔に設けた少なくとも一本の噴霧パイプ25と、ノズル本体36の略先端を異径に形成した首部37を設け、該首部のテーパー部38に前記気化ガスを噴出させるノズル孔39を向かい合わせに設けたガスノズル軸35とからなり、前記ホーン体21の取付部23に噴霧パイプ25とガスノズル軸35の一端をそれぞれ取付け、噴霧パイプ25は前記液化ガス供給路Laと、ガスノズル軸35は前記気化ガス供給路Lbとをそれぞれ連結してなることを特徴とする。さらに、前記加熱手段42は、サーモスタット43とヒータ44とファン45とからなり、制御盤50により設定した温度で前記サーモスタット43がON/OFFしてヒータ44とファン45を作動させることにより気化ガスの温度調整をして前記ノズル孔39からホーン体21内に放出してミストガスと混合させることによりホーン体21内の温度低下による液状化現象を防止し、適性温度のミストガスをホーン体21の開口部22から大気中に放出可能に形成することを特徴とする。   In the present invention, a gas-liquid separator 13 that separates liquefied nitrogen in the liquefied nitrogen tank 11 into liquefied gas and vaporized gas is sent to the spray pipe 25 in the mist mixer 20 via the liquid flow rate adjusting means 15. A liquefied gas supply path La, a vaporized gas supply path Lb for supplying gas to the gas nozzle shaft 35 in the mist mixer 20 via a vaporizer 41, a heating means 42, a gas-liquid separator 46, and a gas flow rate adjusting means 47; The liquefied gas fed to the mist mixer 20 is sprayed as mist gas into the horn body 21 from the spray hole 26 of the spray pipe 25, and the vaporized gas is heated in the vaporized gas supply path Lb. The temperature is controlled by 42 and is ejected as a vaporized gas from the nozzle hole 39 of the gas nozzle shaft 35 into the horn body 21, and the vaporized gas and the mist gas in the horn body 21 are mixed to form an ultra-low temperature. And wherein the generating the scan. The mist mixer 20 includes a horn body 21 formed in a cylindrical shape with an opening 22 at one end and a mounting portion 23 at the other end, and a number of spray holes 26 that close off the tip and eject the liquefied gas. At least one spray pipe 25 provided at regular intervals in the longitudinal direction, and a neck portion 37 formed with a substantially different diameter at the front end of the nozzle main body 36, and a nozzle hole for ejecting the vaporized gas to the tapered portion 38 of the neck portion 39 is provided with a gas nozzle shaft 35 provided facing each other. One end of each of the spray pipe 25 and the gas nozzle shaft 35 is mounted on the mounting portion 23 of the horn body 21, and the spray pipe 25 includes the liquefied gas supply path La and the gas nozzle shaft. 35 is characterized in that it is connected to the vaporized gas supply path Lb. Further, the heating means 42 includes a thermostat 43, a heater 44 and a fan 45. When the thermostat 43 is turned on / off at a temperature set by the control panel 50 and the heater 44 and the fan 45 are operated, the heating gas 42 is heated. The temperature is adjusted and discharged from the nozzle hole 39 into the horn body 21 to be mixed with the mist gas, thereby preventing the liquefaction phenomenon due to the temperature drop in the horn body 21, and the mist gas at an appropriate temperature is opened to the opening of the horn body 21. It is characterized by being formed so as to be able to be released from the atmosphere 22 into the atmosphere.

したがって、噴霧パイプ25に多数設けた小径の噴霧孔26から液化ガスをミスト状に効率良く噴霧させると共に、気化ガスを加熱手段42で適正温度に調整し、ガスノズル軸35のノズル孔39からホーン体21内に放出して前記ミストガス(微粒子)と混合させることにより、ホーン体21内の温度低下による液状化を防止し、効率良く長時間連続して安定したミストガスを発生させることができる。   Accordingly, the liquefied gas is efficiently sprayed in the form of mist efficiently from the small-diameter spray holes 26 provided in the spray pipe 25, and the vaporized gas is adjusted to an appropriate temperature by the heating means 42, and the horn body from the nozzle hole 39 of the gas nozzle shaft 35. By discharging into the mist 21 and mixing with the mist gas (fine particles), liquefaction due to a temperature drop in the horn body 21 can be prevented, and stable mist gas can be generated efficiently and continuously for a long time.

本発明に係る実施の形態を図面により説明すると、図1は本発明にかかる超低温ガス発生装置の説明図、図2は本発明にかかるミスト混合器の断面図、図3は図2のA―A断面図、図4は噴霧パイプの噴霧孔を示す要部拡大断面図、図5はガスノズル軸の要部拡大断面図である。超低温ガス発生装置10は、超低温ガス供給源である液体窒素タンク11と、液体窒素を分離する気液分離器13と、液化ガスを霧状に噴霧させるミスト混合器20とからなり、前記気液分離器13とミスト混合器20との間に、液化ガスをミスト混合器20に送液する液化ガス供給路Laと、気化ガスをミスト混合器20に送気する気化ガス供給路Lbとをそれぞれ設けてある。前記液化ガス供給路Laには、液体ガスの圧力・流量を調節する流量調整手段15を介在させ、気化ガス供給路Lbには、気化ガスをミスト混合器20に送気する気化器41と加熱手段42と気液分離器46と気化ガス流量調整手段47とをそれぞれ介在させてある。   FIG. 1 is an explanatory view of an ultra-low temperature gas generator according to the present invention, FIG. 2 is a sectional view of a mist mixer according to the present invention, and FIG. A sectional view, FIG. 4 is a principal enlarged sectional view showing a spray hole of a spray pipe, and FIG. 5 is a principal enlarged sectional view of a gas nozzle shaft. The ultra-low temperature gas generator 10 includes a liquid nitrogen tank 11 that is an ultra-low temperature gas supply source, a gas-liquid separator 13 that separates liquid nitrogen, and a mist mixer 20 that sprays liquefied gas in a mist form. Between the separator 13 and the mist mixer 20, a liquefied gas supply path La for sending liquefied gas to the mist mixer 20 and a vaporized gas supply path Lb for sending vaporized gas to the mist mixer 20 are respectively provided. It is provided. A flow rate adjusting means 15 for adjusting the pressure and flow rate of the liquid gas is interposed in the liquefied gas supply path La, and the vaporizer 41 for supplying the vaporized gas to the mist mixer 20 is heated in the vaporized gas supply path Lb. Means 42, gas-liquid separator 46 and vaporized gas flow rate adjusting means 47 are interposed.

前記ミスト混合器20は、液化ガスを噴霧孔26から大気中に放出するミストガスを一定の冷却雰囲気内に収容するための大径で筒状に形成したホーン体21と、該ホーン体内に液化ガスを放出するそれぞれ長尺に形成した複数の噴霧パイプ25と、同じくホーン体21内に気化ガスを放出するガスノズル軸35とからなり、前記ホーン体21は、一端にミストガスを大気中に放出する開口部22を設け、他端に前記噴霧パイプ25とガスノズル軸35とを取付けるための取付部23を設け、全長を約400〜430mm、直径を約99〜100mmに形成し、地上と平行に位置させてある。   The mist mixer 20 includes a horn body 21 formed in a cylindrical shape with a large diameter for accommodating the mist gas for releasing the liquefied gas into the atmosphere from the spray holes 26 in a fixed cooling atmosphere, and the liquefied gas in the horn body. Are formed of a plurality of elongated spray pipes 25 and a gas nozzle shaft 35 that discharges vaporized gas into the horn body 21. The horn body 21 has an opening that releases mist gas into the atmosphere at one end. A portion 22 is provided, and an attachment portion 23 for attaching the spray pipe 25 and the gas nozzle shaft 35 is provided at the other end. The overall length is about 400 to 430 mm, the diameter is about 99 to 100 mm, and it is positioned parallel to the ground. It is.

前記噴霧パイプ25は、耐熱性を有する金属パイプ、好ましくはステンレスパイプで、全長を約300mm、直径を約10mmの長尺に形成し、先端を閉塞し、後端を前記ホーン体22内の支持部24に取付け、長手方向に一定間隔に噴霧孔26を多数設けてある。この噴霧孔26は、図4に示すごとく、液化ガスが断熱膨張で効率良く霧状に噴霧させるため全体をテーパー状に形成し、内径26aを0.10mm、外径26bを0.50mmにし、好ましくは内径が0.15mm、外径が0.25mmと極めて小径に形成してある。   The spray pipe 25 is a heat-resistant metal pipe, preferably a stainless steel pipe, is formed to have a total length of about 300 mm and a diameter of about 10 mm, the front end is closed, and the rear end is supported in the horn body 22. A large number of spray holes 26 are provided at regular intervals in the longitudinal direction. As shown in FIG. 4, the spray hole 26 is formed in a tapered shape so that the liquefied gas is efficiently sprayed in a mist shape by adiabatic expansion, the inner diameter 26 a is 0.10 mm, the outer diameter 26 b is 0.50 mm, Preferably, the inner diameter is 0.15 mm and the outer diameter is 0.25 mm.

したがって、この噴霧孔26から噴出する液化ガスが、液化状態のままで流出したり、噴霧孔26から噴出する前に気化するのを防止している。前記噴霧孔26の径は、前記した径に限らず内径を0.10mm〜0.25mm、 外径を0.25mm〜0.50mmの範囲に形成しても良い。さらに、噴霧パイプ25の長手方向に一列の等間隔に設けた噴霧孔26は、一列に限定することなく2列または3列に形成してもよい。   Therefore, the liquefied gas ejected from the spray hole 26 is prevented from flowing out in the liquefied state or being vaporized before being ejected from the spray hole 26. The diameter of the spray hole 26 is not limited to the above-described diameter, and the inner diameter may be 0.10 mm to 0.25 mm, and the outer diameter may be 0.25 mm to 0.50 mm. Furthermore, the spray holes 26 provided at equal intervals in the longitudinal direction of the spray pipe 25 may be formed in two or three rows without being limited to one row.

前記ガスノズル軸35は、図5に示す如く、短尺に形成したノズル本体36の中央軸心方向に先端を閉塞したガス路36aを設け、外周の略先端に細径の首部37を形成し、該首部の軸方向両側を面取りしたテーパー部38を設けてある。前記テーパー部38のテーパー面と直角方向に前記ガス路36aと連通するノズル孔39を周方向に互いに対向するように複数設けてある。前記テーパー部38の傾斜角度は、好ましくは45度に形成してある。したがって、向かい合った各ノズル孔39から噴射した気化ガスは首部37の周囲で互いに衝突して周方向に広がってホーン体21内を密封するように円盤状に拡がって薄膜を形成し、前記ミストガスと混合しながら出口方向に緩やかに前進するように流れる。   As shown in FIG. 5, the gas nozzle shaft 35 is provided with a gas passage 36a whose tip is closed in the center axis direction of a nozzle body 36 formed in a short length, and a narrow neck portion 37 is formed at the substantially tip of the outer periphery. The taper part 38 which chamfered the axial direction both sides of the neck part is provided. A plurality of nozzle holes 39 communicating with the gas passage 36a in a direction perpendicular to the tapered surface of the tapered portion 38 are provided so as to face each other in the circumferential direction. The inclination angle of the tapered portion 38 is preferably 45 degrees. Therefore, the vaporized gas injected from the nozzle holes 39 facing each other collides with each other around the neck portion 37 and spreads in the circumferential direction to form a thin film so as to seal the inside of the horn body 21, thereby forming the mist gas and the mist gas. It flows so as to move slowly toward the outlet while mixing.

液体窒素タンク11からミスト混合器20に液化ガスを送液する液化ガス供給路Laは、供給路全体を断熱材で断熱して液化ガスを気化させることなく送液し、噴霧パイプ25の噴霧孔26を通過した直後に霧状にして噴霧させる。さらに、この液化ガス供給路Laには、液化ガスの流量と圧力を調整する圧力調整手段15、例えば、ニードル弁16と圧力計17とをそれぞれ取付けてある。   The liquefied gas supply path La for sending the liquefied gas from the liquid nitrogen tank 11 to the mist mixer 20 feeds the entire supply path with a heat insulating material without vaporizing the liquefied gas, and the spray hole of the spray pipe 25 Immediately after passing through No. 26, it is atomized and sprayed. Further, pressure adjusting means 15 for adjusting the flow rate and pressure of the liquefied gas, for example, a needle valve 16 and a pressure gauge 17 are attached to the liquefied gas supply path La.

気液分離器13で分離された気化ガスをガスノズル軸35に送気するガス供給路Lbには、気化器41、加熱手段42、気液分離器46と、気化ガスの流量を調節するガス流量調節手段47を設け、このガス流量調節手段47は、例えば、ボール弁48と圧力計49で構成されている。   A gas supply path Lb for sending the vaporized gas separated by the gas-liquid separator 13 to the gas nozzle shaft 35 includes a vaporizer 41, a heating means 42, a gas-liquid separator 46, and a gas flow rate for adjusting the flow rate of the vaporized gas. An adjusting means 47 is provided, and the gas flow rate adjusting means 47 is composed of, for example, a ball valve 48 and a pressure gauge 49.

前記加熱手段42は、例えば、サーモスタット43とヒータ44とファン45とからなり、制御盤50によって指定された設定温度でサーモスタット43がON/OFFしてヒータ44とファン45を作動させて加熱する。気液分離器46は、前記加熱手段42で温度調節した気化ガスであっても、連続運転することによりガス供給路Lbが冷え、気化ガスの一部が液化する場合がある。その場合、液化したガスを分離し、気化ガスのみをホーン体21に送気させる。51は温度計で、ミストガスと気化ガスとで冷やされたホーン体21の温度を測定するために該ホーン体に取付けてある。   The heating means 42 includes, for example, a thermostat 43, a heater 44, and a fan 45, and the thermostat 43 is turned on / off at a set temperature designated by the control panel 50 to operate the heater 44 and the fan 45 to heat them. Even if the gas-liquid separator 46 is a vaporized gas whose temperature is adjusted by the heating means 42, the gas supply path Lb may be cooled by continuous operation, and a part of the vaporized gas may be liquefied. In that case, the liquefied gas is separated and only the vaporized gas is supplied to the horn body 21. A thermometer 51 is attached to the horn body in order to measure the temperature of the horn body 21 cooled with mist gas and vaporized gas.

前記気化ガスは、気液分離器13で分離された後、加熱手段42によって気化ガスを適性温度に調整してガスノズル軸35のノズル孔39からホーン体21内に放出してミストガスと混合させ、ミスト混合器20内に噴霧されたミストガスが温度低下により液状化現象を起こすのを防止している。   After the vaporized gas is separated by the gas-liquid separator 13, the vaporized gas is adjusted to an appropriate temperature by the heating means 42 and discharged from the nozzle hole 39 of the gas nozzle shaft 35 into the horn body 21, and mixed with the mist gas. The mist gas sprayed in the mist mixer 20 is prevented from causing a liquefaction phenomenon due to a temperature drop.

以下、本発明の実施形態の作用について説明すると、液体窒素タンク11内の液体窒素は、送液パイプを介して気液分離器13に送られ、該気液分離器で液化ガスと気化ガスとに分離される。液化ガスは、液化ガス供給路Laからそのまま圧力制御手段15であるニードル弁16と圧力計17とにより予め設定された所定圧力と、所定流量で直接ミスト混合器20の噴霧パイプ25に供給され、該噴霧パイプ25内に送液された液化ガスは各噴霧孔26からホーン21体内にミストガスとして放出される。   Hereinafter, the operation of the embodiment of the present invention will be described. The liquid nitrogen in the liquid nitrogen tank 11 is sent to the gas-liquid separator 13 via the liquid-feeding pipe, and the liquefied gas and the vaporized gas are sent by the gas-liquid separator. Separated. The liquefied gas is directly supplied from the liquefied gas supply path La to the spray pipe 25 of the mist mixer 20 at a predetermined pressure and a predetermined flow set in advance by the needle valve 16 and the pressure gauge 17 as the pressure control means 15. The liquefied gas fed into the spray pipe 25 is released as mist gas into the horn 21 from each spray hole 26.

液化ガスの圧力・流量・温度が適正にコントロールされないと、例えば、噴霧孔付近での液化ガス温度が低すぎると、噴霧孔の出口26b付近での沸騰気化が始まらず、断熱膨張によるミスト化が生じない液化ガスのまま大気中に流出したり、また、噴霧孔入口26a付近での温度が高すぎると、噴霧孔26の出口26bで沸騰気化が始まり流体に脈動が生じたり、液化ガスがほとんど気化してしまいミスト状にならないおそれがある。さらには、液化ガスの圧力が高いと噴霧量が多くなって沸点が高くなり、液化ガスの圧力が低いと噴霧量が少なくなって熱効率が高くなり沸騰気化が進むことになる場合がある。さらに、液化ガスを連続噴射した場合、図6に示すごとく、液化ガスの温度が下がり、−196℃に近い低温になり液状化現象を生じやすく連続運転することが困難になるおそれがある。   If the pressure, flow rate, and temperature of the liquefied gas are not properly controlled, for example, if the liquefied gas temperature near the spray hole is too low, boiling vaporization near the outlet 26b of the spray hole does not start, and mist formation due to adiabatic expansion occurs. If the liquefied gas that does not occur flows out into the atmosphere, or if the temperature in the vicinity of the spray hole inlet 26a is too high, boiling vaporization starts at the outlet 26b of the spray hole 26, pulsation occurs in the fluid, or almost no liquefied gas is generated. There is a risk of vaporization and no mist formation. Furthermore, if the pressure of the liquefied gas is high, the amount of spray increases and the boiling point increases, and if the pressure of the liquefied gas is low, the amount of spray decreases and the thermal efficiency increases and vaporization of the vapor proceeds. Further, when the liquefied gas is continuously injected, as shown in FIG. 6, the temperature of the liquefied gas is lowered, and the temperature becomes a low temperature close to −196 ° C., so that a liquefaction phenomenon is likely to occur and it may be difficult to continuously operate.

そこで、液流量調節手段15により液化ガスの圧力、流量を適正に制御したこと、噴霧パイプ25の噴霧孔26をそれぞれ小さくテーパー状に形成し、ひとつの噴霧孔26から噴出する液化ガスの量を少なくして吐出圧力から大気圧に一気に減圧して沸点降下を起こさせることにより、大気中に放出された液化ガスの一部が直後に気化(断熱)膨張し、残りの液体部分が霧状に放出されてホーン体21内に漂うミストガス(微粒子)を発生させることができる。この液化ガスをミスト状にしたことにより、冷気を長持ちさせることができる。   Therefore, the pressure and flow rate of the liquefied gas are appropriately controlled by the liquid flow rate adjusting means 15, the spray holes 26 of the spray pipe 25 are each formed in a small taper shape, and the amount of the liquefied gas ejected from one spray hole 26 is determined. By reducing the discharge pressure from the discharge pressure to atmospheric pressure at a stroke to lower the boiling point, a part of the liquefied gas released into the atmosphere is immediately vaporized (adiabatic) and the remaining liquid part is atomized. Mist gas (fine particles) released and drifting in the horn body 21 can be generated. By making this liquefied gas into a mist, it is possible to extend the cold air.

図3に示すごとく、ホーン体21を水平方向に設置し、噴霧パイプ25の噴霧孔26をそれぞれ上向き位置させたことにより、ミストガスがホーン体21の内壁に沿って移動する旋回流を生じさせるようにしてある。また、万一、連続運転することによりミストガスが液状化した場合、液状化した液化ガスは噴霧孔26付近に付着することなく自由落下して噴霧孔26付近が凍結するのを防止し、液状化して落下した液化ガスは、ホーン体21の内底面に溜まって自然に気化するようにしてある。   As shown in FIG. 3, the horn body 21 is installed in the horizontal direction, and the spray holes 26 of the spray pipe 25 are respectively positioned upward so that the mist gas moves along the inner wall of the horn body 21. It is. In the unlikely event that the mist gas is liquefied by continuous operation, the liquefied liquefied gas does not adhere to the vicinity of the spray hole 26 and falls free to prevent the vicinity of the spray hole 26 from freezing. The liquefied gas that has fallen is accumulated on the inner bottom surface of the horn body 21 and vaporizes naturally.

ホ−ン体21内に液化ガスのみを放出してミストガスを発生させて使用することも可能であるが、ミストガスの温度が−190℃から−196℃に近いため、連続的にミストガスの放出を行なうと、前記したごとく、ホーン体21内の温度が下がり、ミストガスがホーン体21の内壁に付着して液状化しやすくなり、安定したミストガスを供給することが困難になる場合がある。   It is possible to discharge only the liquefied gas into the horn body 21 to generate mist gas for use, but since the mist gas temperature is close to -190 ° C to -196 ° C, the mist gas is continuously released. If it does, as mentioned above, the temperature in the horn body 21 will fall, mist gas will adhere to the inner wall of the horn body 21, and it will become easy to liquefy, and it may become difficult to supply the stable mist gas.

そこで、今まで大気中に放出していた気化ガスを、前記ガス発生装置10に取り付けた、気化器41と加熱手段42と気液分離器46とガス圧力調整手段47とからなるガス供給路Lbにおいて温度コントロールし、該液化ガスをミスト混合器20内に漂わせたミストガスと混合させることにより効率良く噴出させることができる。   Therefore, the gas supply path Lb composed of the vaporizer 41, the heating means 42, the gas-liquid separator 46, and the gas pressure adjusting means 47 attached to the gas generator 10 until the vaporized gas that has been released to the atmosphere up to now. The temperature can be controlled and the liquefied gas can be efficiently ejected by mixing with the mist gas drifted in the mist mixer 20.

この気化ガスの温度コントロールは、制御盤50により加熱手段42であるサーモスタット43とヒータ44とファン45を制御することにより、気化ガスを適正温度に加熱してホーン体21内に放出してミストガスと混合させ、長時間の連続運転でもホーン体内のミストガスが液状化現象を起こすことなく安定した温度を保つことができ、かつ、適正な霧状のミストガスを効率良く噴出させることができる。   The temperature of the vaporized gas is controlled by controlling the thermostat 43, the heater 44, and the fan 45, which are the heating means 42, by the control panel 50, thereby heating the vaporized gas to an appropriate temperature and releasing it into the horn body 21. It is possible to mix and maintain a stable temperature without causing liquefaction of the mist gas in the horn even during a long continuous operation, and an appropriate mist-like mist gas can be efficiently ejected.

この超低温ガス発生装置10を取付ける場合、ホーン体21の開口部22にエルボパイプXを上向きに取付けて、万一、ホーン体21内に溜まった液化ガスが直接外部に漏れるのを防止し、さらに、前記エルボパイプの先端にフレキシブルパイプ(図示せず)を連結することにより、コンベア61を収容したトンネル室60の任意位置に簡単に取付けることができる。   When installing the ultra-low temperature gas generator 10, the elbow pipe X is attached upward to the opening 22 of the horn body 21 to prevent the liquefied gas accumulated in the horn body 21 from leaking directly to the outside. By connecting a flexible pipe (not shown) to the tip of the elbow pipe, it can be easily attached to an arbitrary position of the tunnel chamber 60 in which the conveyor 61 is accommodated.

被冷却物の冷凍を、この低温ガス発生装置10で発生させたミストガス雰囲気内で行うことにより、例えば、まだ十分に硬化していないソフトクリームでも形崩れを起こすことなく冷却でき、また、かき氷は、−196℃に近いミストガスで瞬時に冷却するので、移動中に表面が融けてその部分がそのまま再氷結するのを防止でき、効率良く冷凍、搬送することができるので冷凍菓子の商品価値が半減するのを防止できる。   By freezing the object to be cooled in the mist gas atmosphere generated by the low-temperature gas generator 10, for example, soft cream that has not been sufficiently cured can be cooled without being deformed. Because it is instantly cooled with mist gas close to -196 ° C, it can prevent the surface from melting and re-freezing as it is moving, and it can be frozen and transported efficiently, so the commercial value of frozen confectionery is halved. Can be prevented.

本発明にかかる超冷却ガス発生装置の説明図である。It is explanatory drawing of the supercooling gas generator concerning this invention. 本発明に係るミスト混合器の断面図である。It is sectional drawing of the mist mixer which concerns on this invention. 図2のA―A断面図である。FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2. 噴霧パイプの噴霧ノズルの要部拡大断面図である。It is a principal part expanded sectional view of the spray nozzle of a spray pipe. ガスノズル軸の要部拡大断面図である。It is a principal part expanded sectional view of a gas nozzle axis | shaft. ミスト混合器内に放出された超低温ガスの温度変化を示すグラフである。It is a graph which shows the temperature change of the ultra-low temperature gas discharge | released in the mist mixer. 冷凍菓子を搬送するコンベアの説明図である。It is explanatory drawing of the conveyor which conveys frozen confectionery.

符号の説明Explanation of symbols

10 超低温ガス発生装置
11 液化窒素タンク
13 気液分離器
15 流量調節手段
16 ニードル弁
17 圧力計
20 ミスト混合器
21 ホーン体
22 開口部
23 取付部
25 噴霧パイプ
26 噴霧孔
35 ガスノズル軸
36 ノズル本体
37 首部
38 テーパー部
39 ノズル孔
41 気化器
42 加熱手段
43 サーモスタット
44 ヒータ
45 ファン
46 気液分離器
47 ガス流量調節手段
50 制御盤
La 液化ガス供給路
Lb 気化ガス供給路
DESCRIPTION OF SYMBOLS 10 Ultra-low-temperature gas generator 11 Liquefied nitrogen tank 13 Gas-liquid separator 15 Flow control means 16 Needle valve 17 Pressure gauge 20 Mist mixer 21 Horn body 22 Opening part 23 Mounting part 25 Spray pipe 26 Spray hole 35 Gas nozzle shaft 36 Nozzle main body 37 Neck portion 38 Tapered portion 39 Nozzle hole 41 Vaporizer 42 Heating means 43 Thermostat 44 Heater 45 Fan 46 Gas-liquid separator 47 Gas flow rate adjusting means 50 Control panel La Liquefied gas supply path Lb Vaporized gas supply path

Claims (3)

液化窒素タンク(11)内の液化窒素を液化ガスと気化ガスとに分離する気液分離器(13)は、
液流量調節手段(15)を介してミスト混合器(20)内の噴霧パイプ(25)に送液する液化ガス供給路(La)と、気化器(41)と加熱手段(42)と気液分離器(46)とガス流量調節手段(47)を介して前記ミスト混合器(20)内のガスノズル軸(35)に送気する気化ガス供給路(Lb)とを備えてなり、
前記ミスト混合器(20)に液送された液化ガスは、噴霧パイプ(25)の噴霧孔(26)からホーン体(21)内にミストガスとして噴霧され、
前記気化ガスは、気化ガス供給路(Lb)の加熱手段(42)によって温度コントロールしてガスノズル軸(35)のノズル孔(39)からホーン体(21)内に気化ガスとして噴出され、該気化ガスと前記ホーン体(21)内のミストガスとを混合させて超低温ガスを発生させることを特徴とする超低温ガス発生装置。
A gas-liquid separator (13) that separates liquefied nitrogen in the liquefied nitrogen tank (11) into liquefied gas and vaporized gas,
A liquefied gas supply path (La) for sending liquid to the spray pipe (25) in the mist mixer (20) via the liquid flow rate adjusting means (15), the vaporizer (41), the heating means (42), and the gas-liquid A vaporized gas supply path (Lb) for supplying gas to the gas nozzle shaft (35) in the mist mixer (20) via the separator (46) and the gas flow rate adjusting means (47);
The liquefied gas fed to the mist mixer (20) is sprayed as mist gas into the horn body (21) from the spray hole (26) of the spray pipe (25),
The vaporized gas is jetted as vaporized gas from the nozzle hole (39) of the gas nozzle shaft (35) into the horn body (21) by controlling the temperature by the heating means (42) of the vaporized gas supply path (Lb). An ultra-low temperature gas generator characterized in that an ultra-low temperature gas is generated by mixing a gas and a mist gas in the horn body (21).
前記ミスト混合器(20)は、一端に開口部(22)、他端に取付部(23)を設けて円筒状に形成したホーン体(21)と、
先端を閉塞して前記液化ガスを噴出させる多数の噴霧孔(26)を長手方向に一定間隔に設けた少なくとも一本の噴霧パイプ(25)と、
ノズル本体(36)の略先端を異径に形成した首部(37)を設け、該首部のテーパー部(38)に前記気化ガスを噴出させる複数のノズル孔(39)を向かい合わせに設けたガスノズル軸(35)とからなり、
前記ホーン体(21)の取付部(23)に噴霧パイプ(25)とガスノズル軸(35)の一端をそれぞれ取付け、噴霧パイプ(25)は前記液化ガス供給路(La)と、ガスノズル軸(35)は前記気化ガス供給路(Lb)をそれぞれ連結してなることを特徴とする請求項1記載の超低温ガス発生装置。
The mist mixer (20) includes a horn body (21) formed in a cylindrical shape by providing an opening (22) at one end and a mounting portion (23) at the other end,
At least one spray pipe (25) provided with a plurality of spray holes (26) for closing the tip and ejecting the liquefied gas at regular intervals in the longitudinal direction;
A gas nozzle provided with a neck portion (37) formed with a substantially different diameter at the front end of the nozzle body (36), and a plurality of nozzle holes (39) for injecting the vaporized gas to the tapered portion (38) of the neck portion. The axis (35)
The spray pipe (25) and one end of the gas nozzle shaft (35) are respectively attached to the mounting portion (23) of the horn body (21), and the spray pipe (25) is connected to the liquefied gas supply path (La) and the gas nozzle shaft (35). The ultra-low temperature gas generator according to claim 1, wherein the vaporized gas supply passages (Lb) are connected to each other.
前記加熱手段(42)は、サーモスタット(43)とヒータ(44)とファン(45)とからなり、制御盤(50)により設定した温度で前記サーモスタット(43)がON/OFFしてヒータ(44)とファン(45)を作動させることにより気化ガスの温度調整をして前記ノズル孔(39)からホーン体(21)内に放出してミストガスと混合させることによりホーン体(21)内の温度低下による液状化現象を防止し、適性温度のミストガスをホーン体(21)の開口部(22)から大気中に放出可能に形成することを特徴とする請求項1記載の超低温ガス発生装置。   The heating means (42) includes a thermostat (43), a heater (44), and a fan (45). When the thermostat (43) is turned on / off at a temperature set by the control panel (50), the heater (44 ) And the fan (45) are operated, the temperature of the vaporized gas is adjusted, discharged from the nozzle hole (39) into the horn body (21), and mixed with the mist gas, so that the temperature in the horn body (21) is reached. 2. The ultra-low temperature gas generator according to claim 1, wherein a liquefaction phenomenon due to a decrease is prevented, and a mist gas having an appropriate temperature is formed so as to be released into the atmosphere from the opening (22) of the horn body (21).
JP2006319406A 2006-11-28 2006-11-28 Ultra low temperature gas generator Pending JP2008133983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319406A JP2008133983A (en) 2006-11-28 2006-11-28 Ultra low temperature gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319406A JP2008133983A (en) 2006-11-28 2006-11-28 Ultra low temperature gas generator

Publications (1)

Publication Number Publication Date
JP2008133983A true JP2008133983A (en) 2008-06-12

Family

ID=39558952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319406A Pending JP2008133983A (en) 2006-11-28 2006-11-28 Ultra low temperature gas generator

Country Status (1)

Country Link
JP (1) JP2008133983A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511518A (en) * 2015-12-14 2016-04-20 丹东通达科技有限公司 Intelligent temperature control method used for liquid nitrogen cryogenic device
CN105650959A (en) * 2015-12-31 2016-06-08 上海振华重工集团(南通)传动机械有限公司 Liquid nitrogen cooling device and assembly method thereof
JP2016138685A (en) * 2015-01-27 2016-08-04 有限会社クールテクノス Cryogenic liquid gas injection state adjustment method and cryogenic liquid gas injection device
CN112129136A (en) * 2020-09-04 2020-12-25 西北工业大学 Low-temperature cold air generating device capable of stabilizing temperature and pressure and control method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059900A (en) * 1983-09-12 1985-04-06 Hitachi Maxell Ltd Piezoelectric vibrator using buckling spring
JPS62129051A (en) * 1985-11-22 1987-06-11 メツサ−・グリ−スハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Apparatus for carrying out cold treatment method and method for working said apparatus
JPS62200100A (en) * 1986-02-26 1987-09-03 Mitsui Eng & Shipbuild Co Ltd Gas vent device of vaporizer for lng carrier
JPS63247553A (en) * 1987-03-31 1988-10-14 Shimadzu Corp Hot air heater
JPH05283371A (en) * 1992-04-03 1993-10-29 Fujitsu Ltd Method of supplying gasified gas
JPH06137695A (en) * 1992-10-22 1994-05-20 Nippondenso Co Ltd Refrigerating cycle
JPH06174348A (en) * 1992-06-10 1994-06-24 Boc Group Inc:The Method and device for circulating heat transfer fluid and cooling heat load
JPH07225073A (en) * 1994-02-09 1995-08-22 Taiyo Toyo Sanso Kk Low-temperature gas generator
JPH094954A (en) * 1995-06-19 1997-01-10 Nippon Sanso Kk Method and apparatus for controlling temperature of material to be cooled
JPH10281609A (en) * 1997-03-31 1998-10-23 Koorudo Giken Kk Distributing equipment of liquefied gas
JPH11127830A (en) * 1997-08-01 1999-05-18 L'air Liquide Sequential spraying of lower temperature liquid, apparatus therefor, and cooling and equipment using the spray
JP2000161828A (en) * 1998-11-27 2000-06-16 Iwatani Internatl Corp Cooling facility for magnetic sheet
JP2001259555A (en) * 2000-03-17 2001-09-25 Nippon Sanso Corp Dry ice snow-cleaning method and apparatus using the same
JP2003163069A (en) * 2001-11-27 2003-06-06 Canon Inc Safe heating circuit
JP2005140461A (en) * 2003-11-10 2005-06-02 Chubu Plant Service Co Ltd Cooling air generator and cooling air generation method using liquid air
JP2006317047A (en) * 2005-05-11 2006-11-24 Kobe Steel Ltd Vaporizing method and vaporizer for cryogenic liquefied gas

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059900A (en) * 1983-09-12 1985-04-06 Hitachi Maxell Ltd Piezoelectric vibrator using buckling spring
JPS62129051A (en) * 1985-11-22 1987-06-11 メツサ−・グリ−スハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Apparatus for carrying out cold treatment method and method for working said apparatus
JPS62200100A (en) * 1986-02-26 1987-09-03 Mitsui Eng & Shipbuild Co Ltd Gas vent device of vaporizer for lng carrier
JPS63247553A (en) * 1987-03-31 1988-10-14 Shimadzu Corp Hot air heater
JPH05283371A (en) * 1992-04-03 1993-10-29 Fujitsu Ltd Method of supplying gasified gas
JPH06174348A (en) * 1992-06-10 1994-06-24 Boc Group Inc:The Method and device for circulating heat transfer fluid and cooling heat load
JPH06137695A (en) * 1992-10-22 1994-05-20 Nippondenso Co Ltd Refrigerating cycle
JPH07225073A (en) * 1994-02-09 1995-08-22 Taiyo Toyo Sanso Kk Low-temperature gas generator
JPH094954A (en) * 1995-06-19 1997-01-10 Nippon Sanso Kk Method and apparatus for controlling temperature of material to be cooled
JPH10281609A (en) * 1997-03-31 1998-10-23 Koorudo Giken Kk Distributing equipment of liquefied gas
JPH11127830A (en) * 1997-08-01 1999-05-18 L'air Liquide Sequential spraying of lower temperature liquid, apparatus therefor, and cooling and equipment using the spray
JP2000161828A (en) * 1998-11-27 2000-06-16 Iwatani Internatl Corp Cooling facility for magnetic sheet
JP2001259555A (en) * 2000-03-17 2001-09-25 Nippon Sanso Corp Dry ice snow-cleaning method and apparatus using the same
JP2003163069A (en) * 2001-11-27 2003-06-06 Canon Inc Safe heating circuit
JP2005140461A (en) * 2003-11-10 2005-06-02 Chubu Plant Service Co Ltd Cooling air generator and cooling air generation method using liquid air
JP2006317047A (en) * 2005-05-11 2006-11-24 Kobe Steel Ltd Vaporizing method and vaporizer for cryogenic liquefied gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138685A (en) * 2015-01-27 2016-08-04 有限会社クールテクノス Cryogenic liquid gas injection state adjustment method and cryogenic liquid gas injection device
CN105511518A (en) * 2015-12-14 2016-04-20 丹东通达科技有限公司 Intelligent temperature control method used for liquid nitrogen cryogenic device
CN105511518B (en) * 2015-12-14 2017-05-31 丹东通达科技有限公司 A kind of intelligent temperature control method for liquid nitrogen cryogenics device
CN105650959A (en) * 2015-12-31 2016-06-08 上海振华重工集团(南通)传动机械有限公司 Liquid nitrogen cooling device and assembly method thereof
CN112129136A (en) * 2020-09-04 2020-12-25 西北工业大学 Low-temperature cold air generating device capable of stabilizing temperature and pressure and control method
CN112129136B (en) * 2020-09-04 2021-11-16 西北工业大学 Low-temperature cold air generating device capable of stabilizing temperature and pressure and control method

Similar Documents

Publication Publication Date Title
CA1094335A (en) Refrigeration system with carbon dioxide injector
CA2463819C (en) Device and process for generating carbon dioxide snow
US7992393B2 (en) Cooling or freezing apparatus using high heat transfer nozzle
JP5046621B2 (en) Refrigeration system and method of operating refrigeration system
JP2008133983A (en) Ultra low temperature gas generator
US3871185A (en) Method and apparatus for flash freezing various products
US20200232708A1 (en) Heat exchanger
JP2008145028A (en) Intermittent injection device of liquefied nitrogen gas
US3871190A (en) Method and apparatus for flash freezing various products
US2618129A (en) Ice-making apparatus
JP2010105837A (en) Apparatus and method for producing dry ice
JP2003145429A (en) Dry ice injecting nozzle and blast device
JP4950791B2 (en) Ice water slurry generator
US5349828A (en) Conveyor belt cleaning apparatus for food freezing
JP5615248B2 (en) Dry ice snow injection device and dry ice snow injection method
KR101191033B1 (en) A snow control system
JP3687342B2 (en) Method and apparatus for atomizing liquid nitrogen, apparatus therefor, nozzle assembly of the apparatus, and method for producing positive pressure package by filling liquid nitrogen fine particles
JP6508707B2 (en) Method of adjusting injection state of low temperature liquefied gas and low temperature liquefied gas injection apparatus
JP4148482B2 (en) Fine ice jet spray facial device
JP2019072813A (en) Dry ice snow injector
JP3566329B2 (en) White smoke ring generator and white smoke ring forming method
JP2009195762A (en) Dry ice snow cleaning apparatus and method
JP2011038581A (en) Liquefied gas injecting device
JPH05296628A (en) Artificial snow maker
EP2853846B1 (en) Device for coating containers

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091106

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A977 Report on retrieval

Effective date: 20110616

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110705

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111129

Free format text: JAPANESE INTERMEDIATE CODE: A02