JP2011038581A - Liquefied gas injecting device - Google Patents

Liquefied gas injecting device Download PDF

Info

Publication number
JP2011038581A
JP2011038581A JP2009185910A JP2009185910A JP2011038581A JP 2011038581 A JP2011038581 A JP 2011038581A JP 2009185910 A JP2009185910 A JP 2009185910A JP 2009185910 A JP2009185910 A JP 2009185910A JP 2011038581 A JP2011038581 A JP 2011038581A
Authority
JP
Japan
Prior art keywords
liquefied gas
injection
gas
cooling
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009185910A
Other languages
Japanese (ja)
Inventor
Koji Makino
宏治 牧野
Masahiro Yonekura
正浩 米倉
Hidetoshi Ota
英俊 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009185910A priority Critical patent/JP2011038581A/en
Publication of JP2011038581A publication Critical patent/JP2011038581A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquefied gas injecting device capable of effectively injecting low temperature liquified gas in a liquid state to an object to be cooled. <P>SOLUTION: The liquefied gas injecting device includes a cylindrical heat insulating storage tank 11, a cooling tank 12 disposed in the heat insulating storage tank 11, an injection nozzle 13 provided in a bottom of the heat insulating storage tank, a needle 14 for opening and closing the injection nozzle, a seal gas injection part 15 surrounding the injection nozzle, an injection liquid nitrogen supply pipe 16 for supplying injection liquid nitrogen with a pressure exceeding the atmosphere pressure into the heat insulating storage tank, a cooling liquid nitrogen supply pipe 17 for supplying cooling liquid nitrogen in the saturated state at the atmosphere pressure or lower into the cooling tank, a nitrogen gas discharge pipe 18 for discharging the nitrogen gas vaporized in the cooling tank to the outside, a seal gas supply pipe 19 for supplying the seal gas to the seal gas injection part, and a needle driving device 20 for opening and closing the needle 14. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、液化ガス噴射装置に関し、詳しくは、液体窒素等の低温液化ガスを噴射する装置に関する。   The present invention relates to a liquefied gas injection apparatus, and more particularly to an apparatus for injecting a low-temperature liquefied gas such as liquid nitrogen.

低温の液化ガス、例えば液体窒素を所定の面積の範囲に噴射するためには、所定の圧力を必要とするが、低温液化ガスは、高圧状態から大気中に噴射されるときにフラッシュ蒸発を伴い、その一部がガス化する。また、ノズル直前でのガス化による脈動のために安定した制御が困難である。この対策として、過冷却状態の液化ガスを供給することが知られている(例えば、特許文献1参照。)。   In order to inject a low-temperature liquefied gas, for example liquid nitrogen, into a predetermined area, a predetermined pressure is required, but the low-temperature liquefied gas is accompanied by flash evaporation when injected into the atmosphere from a high pressure state. Part of it gasifies. Also, stable control is difficult due to pulsation due to gasification immediately before the nozzle. As a countermeasure, it is known to supply a supercooled liquefied gas (for example, see Patent Document 1).

一方、開閉弁が液化ガスの外にある場合には、過冷却後の液化ガスが熱侵入のために温度上昇あるいはガス化するという問題があることから、開閉弁からの熱侵入による液化ガスの温度上昇あるいはガス化を抑えるためのバルブ構造が知られている(例えば、特許文献2参照。)。   On the other hand, when the on-off valve is outside the liquefied gas, there is a problem that the temperature of the liquefied gas after supercooling rises or gasifies due to heat intrusion. A valve structure for suppressing temperature rise or gasification is known (for example, see Patent Document 2).

特公平6−88574号公報Japanese Patent Publication No. 6-88574 特開平11−294696号公報Japanese Patent Laid-Open No. 11-294696

しかし、特許文献1に記載されたものでは、構造が複雑で大量の低温液化ガスを必要とする問題があり、液化ガスの噴射には用いることができなかった。また、特許文献2に記載されたものでは、低温液化ガスを気液混合状態のミスト状に噴射することを主目的としているため、ノズルを出た低温液化ガスの一部が気化しても問題にしておらず、低温液化ガスを液体のまま被冷却物に噴射する用途には適用が困難であった。   However, the one described in Patent Document 1 has a complicated structure and requires a large amount of low-temperature liquefied gas, and cannot be used for jetting liquefied gas. Moreover, in what was described in patent document 2, since it aimed at injecting low temperature liquefied gas in the mist form of a gas-liquid mixture state, even if a part of low temperature liquefied gas which came out of the nozzle vaporizes, it is a problem. However, it has been difficult to apply to a use in which a low-temperature liquefied gas is injected into an object to be cooled as a liquid.

そこで本発明は、低温液化ガスを液体の状態で被冷却物に効率よく噴射することができる液化ガス噴射装置を提供することを目的としている。   Accordingly, an object of the present invention is to provide a liquefied gas injection device capable of efficiently injecting a low-temperature liquefied gas into a cooled object in a liquid state.

上記目的を達成するため、本発明の液化ガス噴射装置は、噴射圧力の液化ガスを貯留する断熱貯槽と、該断熱貯槽内に設けられて前記噴射圧力の液化ガスを過冷却状態に冷却する冷却流体を貯留する冷却槽と、前記断熱貯槽の底部に設けられて過冷却状態に冷却された前記液化ガスを噴射する噴射ノズルと、該噴射ノズルを開閉する開閉手段と、前記断熱貯槽内に前記液化ガスを供給する液化ガス供給管と、前記冷却槽内に前記冷却流体を供給する冷却流体供給管と、前記冷却槽内で気化した冷却流体ガスを放出する気化ガス放出管とを備え、前記冷却槽は、該冷却槽内の冷却流体と前記断熱槽内の液化ガスとを熱交換可能に形成され、前記開閉手段は前記液化ガス中に配置されていることを特徴としている。   In order to achieve the above object, a liquefied gas injection device according to the present invention includes an adiabatic storage tank that stores liquefied gas at an injection pressure, and cooling that is provided in the adiabatic storage tank and cools the liquefied gas at the injection pressure to an overcooled state. A cooling tank for storing fluid; an injection nozzle for injecting the liquefied gas which is provided at the bottom of the heat insulation storage tank and cooled to a supercooled state; opening and closing means for opening and closing the injection nozzle; and A liquefied gas supply pipe for supplying a liquefied gas, a cooling fluid supply pipe for supplying the cooling fluid into the cooling tank, and a vaporized gas discharge pipe for discharging the cooling fluid gas vaporized in the cooling tank, The cooling tank is formed so that heat can be exchanged between the cooling fluid in the cooling tank and the liquefied gas in the heat insulating tank, and the opening / closing means is arranged in the liquefied gas.

さらに、本発明の液化ガス噴射装置は、前記噴射圧力の液化ガスが大気圧を超える圧力を有する液体窒素であり、前記冷却流体が大気圧以下で飽和状態の液体窒素であり、前記シールガスが窒素ガスであることを特徴としている。また、前記噴射ノズルの周囲からシールガスを噴射するシールガス噴射部を備えていること、前記冷却槽が前記液化ガスと接触する伝熱フィンを備えていること、前記開閉手段がニードルからなり、該ニードルは冷却槽内の前記液化ガスの流れに乱流を発生させる撹拌子を備えていることを特徴としている。   Further, in the liquefied gas injection device of the present invention, the liquefied gas at the injection pressure is liquid nitrogen having a pressure exceeding atmospheric pressure, the cooling fluid is liquid nitrogen saturated at atmospheric pressure or lower, and the seal gas is It is characterized by nitrogen gas. In addition, a seal gas injection unit that injects seal gas from the periphery of the injection nozzle, the cooling tank includes a heat transfer fin that comes into contact with the liquefied gas, and the opening and closing means includes a needle, The needle includes a stirrer that generates a turbulent flow in the flow of the liquefied gas in the cooling tank.

本発明の液化ガス噴射装置によれば、噴射する液化ガスを過冷却状態にしておくことができるので、噴射した際のフラッシュ気化を抑えることができ、液化ガスを液体のまま被冷却物に噴射することができる。また、ノズル周囲を囲むようにシールガスを噴射することにより、ノズル部分への大気の巻き込みを防止することができ、大気中の水分がノズル部分に凝縮、凝結することを防止できる。さらに、伝熱フィンを設けたり、撹拌子を設けたりすることにより、伝熱効率を向上させることができ、噴射する液化ガスを効果的に過冷却状態とすることができる。   According to the liquefied gas injection device of the present invention, since the liquefied gas to be injected can be kept in a supercooled state, flash vaporization at the time of injection can be suppressed, and the liquefied gas is injected into the object to be cooled as a liquid. can do. Further, by injecting the sealing gas so as to surround the nozzle, it is possible to prevent the atmosphere from being entrained in the nozzle portion, and to prevent moisture in the atmosphere from condensing and condensing in the nozzle portion. Furthermore, heat transfer efficiency can be improved by providing heat transfer fins or a stirring bar, and the liquefied gas to be injected can be effectively brought into a supercooled state.

本発明の液化ガス噴射装置の一形態例を示す断面正面図である。It is a section front view showing an example of one form of a liquefied gas injection device of the present invention. シールガス噴射部の一例を示す要部の断面正面図である。It is a cross-sectional front view of the principal part which shows an example of a seal gas injection part. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 伝熱フィンの一例を示す断面平面図である。It is a cross-sectional top view which shows an example of a heat-transfer fin. 撹拌子を設けたニードルの一例を示す斜視図である。It is a perspective view which shows an example of the needle which provided the stirring element.

本発明の液化ガス噴射装置を、噴射する液化ガスを圧力が0.5MPaの液体窒素、噴射する液化ガスを冷却する冷却流体を大気圧以下で飽和状態となっている液体窒素、シールガスを窒素ガスとした形態例について説明する。   According to the liquefied gas injection device of the present invention, the liquefied gas to be injected is liquid nitrogen having a pressure of 0.5 MPa, the cooling fluid for cooling the liquefied gas to be injected is liquid nitrogen saturated at atmospheric pressure or lower, and the seal gas is nitrogen. An example of using gas will be described.

本形態例に示す液化ガス噴射装置は、円筒形の断熱貯槽11と、該断熱貯槽11内に設けられたリング状の冷却槽12と、前記断熱貯槽11の底部である底板11aに設けられた噴射ノズル13と、該噴射ノズル13を開閉する開閉手段であるニードル14と、前記噴射ノズル13を囲むように断熱貯槽11の底板11aの下面に設けられたシールガス噴射部15と、前記断熱貯槽11内に圧力が0.5MPaの液体窒素(以下、噴射用液体窒素という)を供給する噴射用液体窒素供給管16と、前記冷却槽12内に大気圧以下で飽和状態となっている液体窒素(以下、冷却用液体窒素という)を供給する冷却用液体窒素供給管17と、冷却槽12内で冷却用液体窒素から気化した窒素ガスを外部に放出する窒素ガス放出管18と、前記シールガス噴射部15にシールガス(窒素ガス)を供給するシールガス供給管19と、前記ニードル14を開閉作動させるニードル駆動装置20とを備えている。   The liquefied gas injection device shown in this embodiment is provided in a cylindrical heat insulating storage tank 11, a ring-shaped cooling tank 12 provided in the heat insulating storage tank 11, and a bottom plate 11 a that is a bottom portion of the heat insulating storage tank 11. An injection nozzle 13, a needle 14 serving as an opening / closing means for opening and closing the injection nozzle 13, a seal gas injection unit 15 provided on the lower surface of the bottom plate 11a of the heat insulation storage tank 11 so as to surround the injection nozzle 13, and the heat insulation storage tank 11 is a liquid nitrogen supply pipe 16 for supplying liquid nitrogen having a pressure of 0.5 MPa (hereinafter referred to as liquid nitrogen for injection), and liquid nitrogen that is saturated in the cooling tank 12 below atmospheric pressure. (Hereinafter referred to as “cooling liquid nitrogen”), a cooling liquid nitrogen supply pipe 17, a nitrogen gas discharge pipe 18 that discharges nitrogen gas evaporated from the cooling liquid nitrogen in the cooling tank 12 to the outside, and the sheet A seal gas supply pipe 19 for supplying seal gas (nitrogen gas) to the gas injection unit 15, and a needle driving device 20 for opening and closing the needle 14.

断熱貯槽11は、周囲に断熱層を設けた密閉容器であって、天板11bの中央には、前記ニードル14が上下方向に移動可能な状態で気密に貫通している。この断熱貯槽11内は、前記噴射用液体窒素供給管16から所定の噴射圧力(本形態例では0.5MPa)を有する噴射用液体窒素が供給される。   The heat insulation storage tank 11 is a sealed container having a heat insulation layer around it, and the needle 14 penetrates airtightly in the center of the top plate 11b so as to be movable in the vertical direction. The heat insulating storage tank 11 is supplied with jetting liquid nitrogen having a predetermined jetting pressure (0.5 MPa in this embodiment) from the jetting liquid nitrogen supply pipe 16.

冷却槽12は、断熱貯槽11内の噴射用液体窒素を過冷却状態に冷却可能な温度を有する前記冷却用液体窒素を貯留するとともに、該冷却槽12の槽壁を介して冷却用液体窒素と噴射用液体窒素とが熱交換可能に形成されており、両液体窒素を間接熱交換させることにより、噴射用液体窒素を過冷却状態に冷却する。冷却槽12の中心部には、シールガス噴射部15に向けて噴射用液体窒素が流下する噴射流路となる上下方向の貫通孔12aが設けられている。また、貫通孔12aの中央には、噴射用液体窒素中を貫通した状態で前記ニードル14が配置されている。この冷却槽12内には、前記冷却用液体窒素供給管17から大気圧以下で飽和状態となっている前記冷却用液体窒素が供給される。断熱貯槽11内における冷却槽12の位置は、冷却槽12の下端部が噴射ノズル13の周囲に位置するように設定されている。   The cooling tank 12 stores the cooling liquid nitrogen having a temperature at which the jetting liquid nitrogen in the heat insulating storage tank 11 can be cooled to a supercooled state, and the cooling liquid nitrogen via the tank wall of the cooling tank 12. The liquid nitrogen for injection is formed so as to be able to exchange heat, and the liquid nitrogen for injection is cooled to a supercooled state by indirectly exchanging the liquid nitrogen. At the center of the cooling tank 12, a vertical through-hole 12 a is provided that serves as an injection flow path through which liquid nitrogen for injection flows down toward the seal gas injection unit 15. Further, the needle 14 is disposed in the center of the through hole 12a so as to penetrate through the liquid nitrogen for injection. The cooling liquid nitrogen that is saturated at atmospheric pressure or lower is supplied into the cooling tank 12 from the cooling liquid nitrogen supply pipe 17. The position of the cooling tank 12 in the heat insulation storage tank 11 is set so that the lower end portion of the cooling tank 12 is positioned around the injection nozzle 13.

冷却槽12内で冷却用液体窒素が蒸発した低温の窒素ガスは、前記窒素ガス放出管18を通って外部に放出される。このとき、窒素ガス放出管18が大気に開放された状態になっていれば、冷却槽12内は略大気圧になり、窒素ガス放出管18内の窒素ガスがファンなどによって強制排気される場合は、冷却槽12内は大気圧以下になる。さらに、冷却槽12には、該冷却槽12内の液量(液面)を検出する液面センサー12Sが設けられており、この液面センサー12Sの検出結果に基づいて冷却用液体窒素供給管17に設けられた冷却用液化ガス供給弁17Vが開閉し、冷却槽12内の冷却用液体窒素の液量を一定に保つようにしている。なお、冷却用液体窒素の消費量が一定の場合は、冷却用液化ガス供給弁17Vを手動弁とすることもできる。   The low-temperature nitrogen gas obtained by evaporating the cooling liquid nitrogen in the cooling bath 12 is discharged to the outside through the nitrogen gas discharge pipe 18. At this time, if the nitrogen gas discharge pipe 18 is open to the atmosphere, the inside of the cooling tank 12 becomes substantially atmospheric pressure, and the nitrogen gas in the nitrogen gas discharge pipe 18 is forcibly exhausted by a fan or the like. The inside of the cooling tank 12 becomes atmospheric pressure or less. Further, the cooling tank 12 is provided with a liquid level sensor 12S for detecting the liquid amount (liquid level) in the cooling tank 12, and based on the detection result of the liquid level sensor 12S, a cooling liquid nitrogen supply pipe is provided. The cooling liquefied gas supply valve 17V provided at 17 is opened and closed to keep the amount of cooling liquid nitrogen in the cooling bath 12 constant. When the consumption of cooling liquid nitrogen is constant, the cooling liquefied gas supply valve 17V can be a manual valve.

噴射ノズル13は、図2に示すように、前記ニードル14の先端に設けられた円錐弁部14aに対応した環状弁座13aを有するもので、ニードル14が上昇して円錐弁部14aが環状弁座13aから離れることにより、噴射ノズル13がリング状に開口した状態となる。ニードル14による噴射ノズル13の開閉は、ニードル駆動装置20によって行われ、間欠的に開閉させたりすることもでき、所定の開度を保持したりすることが可能である。   As shown in FIG. 2, the injection nozzle 13 has an annular valve seat 13a corresponding to the conical valve portion 14a provided at the tip of the needle 14, and the needle 14 is raised so that the conical valve portion 14a is an annular valve. By separating from the seat 13a, the injection nozzle 13 is opened in a ring shape. The injection nozzle 13 is opened / closed by the needle 14 by the needle driving device 20 and can be opened / closed intermittently, and a predetermined opening degree can be maintained.

シールガス噴射部15は、噴射ノズル13の周囲に環状に設けられた凹溝15aからなるもので、シールガス供給管19から供給されたシールガス(窒素ガス)は、前記噴射ノズル13から噴射される噴射用液体窒素の周囲を包むようにして凹溝15aから噴射する。   The seal gas injection unit 15 is composed of a concave groove 15 a provided in an annular shape around the injection nozzle 13, and the seal gas (nitrogen gas) supplied from the seal gas supply pipe 19 is injected from the injection nozzle 13. The liquid is ejected from the groove 15a so as to wrap around the jetting liquid nitrogen.

噴射用液体窒素供給管16には、噴射用液体窒素供給弁16Vが設けられており、噴射ノズル13から噴射用液体窒素を噴射させるときには、噴射用液体窒素供給弁16Vは開状態に保持される。噴射用液体窒素供給弁16Vの下流側からは、噴射用液体窒素の一部をシールガスとして供給するための前記シールガス供給管19が分岐している。シールガス供給管19には、流量調整弁19Vと気化器19Hとが設けられており、シールガス供給管19に流入した噴射用液体窒素の一部は、流量調整弁19Vにて流量調整された後、気化器19Hで気化してからシールガス噴射部15に供給され、中空円筒状の状態に下方に向けて噴射する。   The injection liquid nitrogen supply pipe 16 is provided with an injection liquid nitrogen supply valve 16V. When the injection liquid nitrogen is injected from the injection nozzle 13, the injection liquid nitrogen supply valve 16V is held open. . From the downstream side of the injection liquid nitrogen supply valve 16V, the seal gas supply pipe 19 for supplying a part of the injection liquid nitrogen as a seal gas is branched. The seal gas supply pipe 19 is provided with a flow rate adjusting valve 19V and a vaporizer 19H, and a part of the jetting liquid nitrogen that has flowed into the seal gas supply pipe 19 is adjusted in flow rate by the flow rate adjusting valve 19V. Then, after vaporizing with the vaporizer 19H, it is supplied to the seal gas injection part 15, and it injects below to a hollow cylindrical state.

このように形成した液化ガス噴射装置において、噴射ノズル13から噴射する噴射用液体窒素は、大気圧より高い0.5MPaで噴射用液体窒素供給管16から断熱貯槽11内に供給される。また、冷却槽12内には、大気圧以下で飽和状態の冷却用液体窒素が冷却用液体窒素供給管17から供給される。このとき、冷却槽12内が大気圧であれば、冷却槽12内の冷却用液体窒素の飽和温度は77Kであるから、断熱貯槽11内の0.5MPaの噴射用液体窒素(飽和温度97K)は、貫通孔12aを通って噴射ノズル13に至る間に、冷却槽12の内周壁(貫通孔12aの周壁)を介して冷却用液体窒素と間接熱交換することによって過冷却された後、噴射ノズル13から被冷却物に向かって噴射する。   In the liquefied gas injection device thus formed, the injection liquid nitrogen injected from the injection nozzle 13 is supplied from the injection liquid nitrogen supply pipe 16 into the heat insulating storage tank 11 at 0.5 MPa higher than the atmospheric pressure. Further, cooling liquid nitrogen that is saturated at atmospheric pressure or less is supplied from the cooling liquid nitrogen supply pipe 17 into the cooling tank 12. At this time, if the inside of the cooling tank 12 is at atmospheric pressure, the saturation temperature of the cooling liquid nitrogen in the cooling tank 12 is 77 K, so that 0.5 MPa of jetting liquid nitrogen in the heat insulating storage tank 11 (saturation temperature 97 K) Is cooled by indirect heat exchange with the cooling liquid nitrogen through the inner peripheral wall of the cooling tank 12 (the peripheral wall of the through hole 12a) while reaching the injection nozzle 13 through the through hole 12a, and then injected. Injected from the nozzle 13 toward the object to be cooled.

このようにして過冷却した噴射用液体窒素を、冷却用液体窒素で冷却された過冷却状態を維持したまま噴射ノズル13から噴射することにより、同じ圧力で飽和状態の液体窒素を噴射する場合に比べて、噴射ノズル13から噴射した噴射用液体窒素のフラッシュ気化量を大幅に少なくすることができる。これにより、冷却用に使用する液体窒素の使用量を低減することができ、また、同じ噴射ノズルから噴射させたときの噴射範囲が従来より拡がるので、液体窒素による被冷却物の冷却を効率よく行うことができる。さらに、ニードル14も噴射用液体窒素によって十分に冷却されているため、噴射ノズル13から噴射する噴射用液体窒素を加温することがない。   When jetting liquid nitrogen in a saturated state at the same pressure by jetting the liquid nitrogen for jetting thus cooled from the jet nozzle 13 while maintaining the supercooled state cooled by the liquid nitrogen for cooling. In comparison, the amount of flash vaporization of the jetting liquid nitrogen jetted from the jet nozzle 13 can be greatly reduced. As a result, the amount of liquid nitrogen used for cooling can be reduced, and the spray range when sprayed from the same spray nozzle is wider than before, so cooling of the object to be cooled by liquid nitrogen is efficient. It can be carried out. Further, since the needle 14 is also sufficiently cooled by the jetting liquid nitrogen, the jetting liquid nitrogen jetted from the jet nozzle 13 is not heated.

さらに、噴射ノズル13の周囲に設けたシールガス噴射部15からシールガスを筒状に噴射することにより、噴射ノズル13の部分に大気が侵入して大気中の水分などが凝縮、凝結し、噴射ノズル13を閉塞するようなことを防止できるので、噴射ノズル13からの液体窒素の噴射を長時間にわたって安定して行うことができる。   Furthermore, by injecting the seal gas into a cylindrical shape from the seal gas injection unit 15 provided around the injection nozzle 13, the atmosphere enters the injection nozzle 13 and the moisture in the atmosphere is condensed and condensed. Since it is possible to prevent the nozzle 13 from being blocked, liquid nitrogen can be stably ejected from the ejection nozzle 13 over a long period of time.

また、窒素ガス放出管18を通って外部に放出される蒸発ガス(窒素ガス)は、大気圧以下の飽和温度であるから、窒素ガス放出管18の断熱貯槽11内の部分で噴射用液体窒素を冷却することができる。この場合、窒素ガス放出管18の断熱貯槽11内の部分をコイル状に形成したり、フィンを設けたりすることにより、噴射用液体窒素をより効果的に冷却することができる。   Further, since the evaporating gas (nitrogen gas) released to the outside through the nitrogen gas discharge pipe 18 has a saturation temperature equal to or lower than the atmospheric pressure, the liquid nitrogen for injection in the portion in the heat insulating storage tank 11 of the nitrogen gas discharge pipe 18 is used. Can be cooled. In this case, the liquid nitrogen for injection can be more effectively cooled by forming a part of the nitrogen gas discharge pipe 18 in the heat insulating storage tank 11 in a coil shape or providing a fin.

なお、本形態例では、噴射用の液化ガス、冷却流体及びシールガスとして全て窒素を使用しているので、一つの液体窒素供給源からの液体窒素を適宜分配して使用することができ、装置構成の単純化やガスコストの低減を図ることができるが、噴射用の液化ガス、冷却流体及びシールガスを異なるものとすることも可能である。また、断熱貯槽11及び冷却槽12の構造は、液化ガス噴射装置の使用目的に応じて任意の構造を採用することができ、例えば、一つの断熱貯槽11に複数の冷却槽12や複数の噴射ノズル13を設けることも可能である。   In this embodiment, nitrogen is used as all of the liquefied gas for injection, the cooling fluid, and the sealing gas, so that liquid nitrogen from one liquid nitrogen supply source can be appropriately distributed and used. Although the configuration can be simplified and the gas cost can be reduced, the liquefied gas for injection, the cooling fluid, and the seal gas can be different. Moreover, the structure of the heat insulation storage tank 11 and the cooling tank 12 can employ | adopt arbitrary structures according to the intended purpose of a liquefied gas injection apparatus, for example, the several cooling tank 12 and several injection | pouring to one heat insulation storage tank 11 It is also possible to provide a nozzle 13.

さらに、図4に示すように、貫通孔12aの周壁に伝熱フィン21を設けることにより、噴射用液体窒素と冷却用液体窒素とが熱交換する伝熱面積を拡大して熱交換効率を向上させることができ、噴射用液体窒素をより効果的に冷却することができる。なお、伝熱フィン21の形状や設置数は任意であり、平板の他、波板や凹凸構造も採用することができる。   Furthermore, as shown in FIG. 4, by providing the heat transfer fins 21 on the peripheral wall of the through hole 12a, the heat transfer area where heat is exchanged between the liquid nitrogen for injection and the liquid nitrogen for cooling is expanded to improve the heat exchange efficiency. The liquid nitrogen for injection can be cooled more effectively. In addition, the shape and the number of installation of the heat-transfer fin 21 are arbitrary, and a corrugated plate and a concavo-convex structure can be employed in addition to a flat plate.

また、図5に示すように、ニードル14の周囲に撹拌子22を設けることにより、貫通孔12a内を流下する噴射用液体窒素に乱流を発生させることができ、貫通孔12aの周壁や伝熱フィン21と噴射用液体窒素とを効果的に接触させることができるので、両液体窒素の熱交換効率を更に向上させることができる。特に、液体窒素の噴射を間欠的に行うものでは、噴射ノズル13を開閉するニードル14の上下動によって噴射用液体窒素を撹拌することができるので、噴射用液体窒素の全体をより確実に過冷却状態とすることができる。なお、撹拌子22の形状や設置数は任意であり、螺旋状や羽根状にすることができる。   Further, as shown in FIG. 5, by providing a stirrer 22 around the needle 14, turbulent flow can be generated in the liquid nitrogen for injection flowing down in the through hole 12a, and the peripheral wall and transmission of the through hole 12a can be generated. Since the heat fin 21 and the jetting liquid nitrogen can be effectively brought into contact with each other, the heat exchange efficiency between the two liquid nitrogens can be further improved. In particular, in the case of intermittently injecting liquid nitrogen, since the injection liquid nitrogen can be agitated by the vertical movement of the needle 14 that opens and closes the injection nozzle 13, the entire injection liquid nitrogen is more reliably subcooled. State. In addition, the shape and the number of installation of the stirring bar 22 are arbitrary, and can be formed in a spiral shape or a blade shape.

11…断熱貯槽、11a…底板、11b…天板、12…冷却槽、12a…貫通孔、12S…液面センサー、13…噴射ノズル、13a…環状弁座、14…ニードル、14a…円錐弁部、15…シールガス噴射部、15a…凹溝、16…噴射用液体窒素供給管、16V…噴射用液体窒素供給弁、17…冷却用液体窒素供給管、17V…冷却用液化ガス供給弁、18…窒素ガス放出管、19…シールガス供給管、19H…気化器、19V…流量調整弁、20…ニードル駆動装置、21…伝熱フィン、22…撹拌子   DESCRIPTION OF SYMBOLS 11 ... Thermal insulation storage tank, 11a ... Bottom plate, 11b ... Top plate, 12 ... Cooling tank, 12a ... Through-hole, 12S ... Liquid level sensor, 13 ... Injection nozzle, 13a ... Annular valve seat, 14 ... Needle, 14a ... Conical valve part 15 ... Seal gas injection section, 15a ... Groove, 16 ... Liquid nitrogen supply pipe for injection, 16V ... Liquid nitrogen supply valve for injection, 17 ... Liquid nitrogen supply pipe for cooling, 17V ... Liquid gas supply valve for cooling, 18 DESCRIPTION OF SYMBOLS ... Nitrogen gas discharge pipe, 19 ... Seal gas supply pipe, 19H ... Vaporizer, 19V ... Flow control valve, 20 ... Needle drive device, 21 ... Heat transfer fin, 22 ... Stirring

Claims (5)

噴射圧力の液化ガスを貯留する断熱貯槽と、該断熱貯槽内に設けられて前記噴射圧力の液化ガスを過冷却状態に冷却する冷却流体を貯留する冷却槽と、前記断熱貯槽の底部に設けられて過冷却状態に冷却された前記液化ガスを噴射する噴射ノズルと、該噴射ノズルを開閉する開閉手段と、前記断熱貯槽内に前記液化ガスを供給する液化ガス供給管と、前記冷却槽内に前記冷却流体を供給する冷却流体供給管と、前記冷却槽内で気化した冷却流体ガスを放出する気化ガス放出管とを備え、前記冷却槽は、該冷却槽内の冷却流体と前記断熱槽内の液化ガスとを熱交換可能に形成され、前記開閉手段は前記液化ガス中に配置されていることを特徴とする液化ガス噴射装置。   An adiabatic storage tank for storing liquefied gas at an injection pressure; a cooling tank for storing a cooling fluid provided in the adiabatic storage tank for cooling the liquefied gas at an injection pressure to a supercooled state; and provided at the bottom of the adiabatic storage tank. An injection nozzle for injecting the liquefied gas cooled to a supercooled state, opening / closing means for opening and closing the injection nozzle, a liquefied gas supply pipe for supplying the liquefied gas into the heat insulation storage tank, and an inside of the cooling tank. A cooling fluid supply pipe for supplying the cooling fluid; and a vaporized gas discharge pipe for discharging the cooling fluid gas vaporized in the cooling tank, wherein the cooling tank includes the cooling fluid in the cooling tank and the heat insulating tank. A liquefied gas injection apparatus, wherein the liquefied gas is formed so as to be capable of exchanging heat, and the opening / closing means is disposed in the liquefied gas. 前記噴射圧力の液化ガスが大気圧を超える圧力を有する液体窒素であり、前記冷却流体が大気圧以下で飽和状態の液体窒素であり、前記シールガスが窒素ガスであることを特徴とする請求項1記載の液化ガス噴射装置。   The liquefied gas at the injection pressure is liquid nitrogen having a pressure exceeding atmospheric pressure, the cooling fluid is liquid nitrogen that is saturated at atmospheric pressure or lower, and the seal gas is nitrogen gas. The liquefied gas injection device according to 1. 前記噴射ノズルの周囲からシールガスを噴射するシールガス噴射部を備えていることを特徴とする請求項1又は2記載の液化ガス噴射装置。   The liquefied gas injection device according to claim 1, further comprising a seal gas injection unit that injects a seal gas from the periphery of the injection nozzle. 前記冷却槽は、前記液化ガスと接触する伝熱フィンを備えていることを特徴とする請求項1乃至3のいずれか1項記載の液化ガス噴射装置。   4. The liquefied gas injection device according to claim 1, wherein the cooling tank includes a heat transfer fin that comes into contact with the liquefied gas. 5. 前記開閉手段は、ニードルからなり、該ニードルは冷却槽内の前記液化ガスの流れに乱流を発生させる撹拌子を備えていることを特徴とする請求項1乃至4のいずれか1項記載の液化ガス噴射装置。   The said opening / closing means consists of a needle, and this needle is equipped with the stirring bar which generates a turbulent flow in the flow of the said liquefied gas in a cooling tank, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. Liquefied gas injection device.
JP2009185910A 2009-08-10 2009-08-10 Liquefied gas injecting device Pending JP2011038581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185910A JP2011038581A (en) 2009-08-10 2009-08-10 Liquefied gas injecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185910A JP2011038581A (en) 2009-08-10 2009-08-10 Liquefied gas injecting device

Publications (1)

Publication Number Publication Date
JP2011038581A true JP2011038581A (en) 2011-02-24

Family

ID=43766554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185910A Pending JP2011038581A (en) 2009-08-10 2009-08-10 Liquefied gas injecting device

Country Status (1)

Country Link
JP (1) JP2011038581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178207A (en) * 2015-03-20 2016-10-06 三菱重工業株式会社 Laser oscillation cooling device
CN114857490A (en) * 2022-07-06 2022-08-05 北京航天试验技术研究所 Liquid hydrogen container filling method for oxyhydrogen rocket engine ground test

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109996A (en) * 1980-02-05 1981-08-31 Toyo Seikan Kaisha Ltd Method and apparatus for quantitative dripping of inert liquefied gas
JPS5786699A (en) * 1980-11-17 1982-05-29 Toyo Seikan Kaisha Ltd Quantitative addition method for inert liquefied gas and its apparatus
JPS5888299A (en) * 1981-11-20 1983-05-26 Toyo Seikan Kaisha Ltd Liquefied gas dripping device
JPS5999198A (en) * 1982-11-29 1984-06-07 Nippon Sanso Kk Low-temperature liquefied-gas dripping apparatus
JPH0688574B2 (en) * 1987-10-13 1994-11-09 大陽酸素株式会社 Low temperature liquefied gas flow down device
JPH11127830A (en) * 1997-08-01 1999-05-18 L'air Liquide Sequential spraying of lower temperature liquid, apparatus therefor, and cooling and equipment using the spray
WO2008030270A2 (en) * 2006-03-06 2008-03-13 The Boc Group, Inc. Multi-bath apparatus and method for cooling superconductors
JP2008145028A (en) * 2006-12-08 2008-06-26 Cool Technos:Kk Intermittent injection device of liquefied nitrogen gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109996A (en) * 1980-02-05 1981-08-31 Toyo Seikan Kaisha Ltd Method and apparatus for quantitative dripping of inert liquefied gas
JPS5786699A (en) * 1980-11-17 1982-05-29 Toyo Seikan Kaisha Ltd Quantitative addition method for inert liquefied gas and its apparatus
JPS5888299A (en) * 1981-11-20 1983-05-26 Toyo Seikan Kaisha Ltd Liquefied gas dripping device
JPS5999198A (en) * 1982-11-29 1984-06-07 Nippon Sanso Kk Low-temperature liquefied-gas dripping apparatus
JPH0688574B2 (en) * 1987-10-13 1994-11-09 大陽酸素株式会社 Low temperature liquefied gas flow down device
JPH11127830A (en) * 1997-08-01 1999-05-18 L'air Liquide Sequential spraying of lower temperature liquid, apparatus therefor, and cooling and equipment using the spray
WO2008030270A2 (en) * 2006-03-06 2008-03-13 The Boc Group, Inc. Multi-bath apparatus and method for cooling superconductors
JP2008145028A (en) * 2006-12-08 2008-06-26 Cool Technos:Kk Intermittent injection device of liquefied nitrogen gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178207A (en) * 2015-03-20 2016-10-06 三菱重工業株式会社 Laser oscillation cooling device
CN114857490A (en) * 2022-07-06 2022-08-05 北京航天试验技术研究所 Liquid hydrogen container filling method for oxyhydrogen rocket engine ground test

Similar Documents

Publication Publication Date Title
ES2318891T3 (en) PROCEDURE AND MANUFACTURING DEVICE OF A POSITIVE PRESSURE PACKING BODY.
TWI343975B (en) A storage vessel for cryogenic liquid
JP2011038581A (en) Liquefied gas injecting device
KR20060033023A (en) Cooling method and apparatus
KR900700833A (en) Device for manufacturing and spraying ice spheres for surface treatment
US10168106B2 (en) Heat exchanger
KR100805084B1 (en) Apparatus for cooling quickly water put in bag in box
JP2008212900A (en) Device carrying out concentration, cooling, and degassing, and cogeneration system using the same
JP2007160244A (en) Dry ice spraying apparatus
JP2013029228A (en) Direct-contact type condenser
US5368787A (en) White smoke generating apparatus
JP5615248B2 (en) Dry ice snow injection device and dry ice snow injection method
JP4897465B2 (en) Evaporative cooling device
JP2017032087A (en) Method and device for vaporizing liquefied carbon dioxide gas
KR101057337B1 (en) Heat exchanging device
JP2019072813A (en) Dry ice snow injector
JP4138473B2 (en) Method and apparatus for evaporating and concentrating foaming liquid
JP2009215478A (en) Gasifier for gas hydrate
JP2006349253A (en) Evaporative cooling device
JP2761645B2 (en) Method and apparatus for generating white smoke
JP2006329513A (en) Evaporative cooling device
US20160123539A1 (en) Anti-frost cap for liquid nitrogen containers or other cold condensed gases
JP2006329514A (en) Evaporative cooling device
JP3567762B2 (en) Liquefied gas spray filling method and apparatus
JP2005257225A (en) Closed type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131003

A131 Notification of reasons for refusal

Effective date: 20131022

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304