JPH06137695A - Refrigerating cycle - Google Patents

Refrigerating cycle

Info

Publication number
JPH06137695A
JPH06137695A JP4284689A JP28468992A JPH06137695A JP H06137695 A JPH06137695 A JP H06137695A JP 4284689 A JP4284689 A JP 4284689A JP 28468992 A JP28468992 A JP 28468992A JP H06137695 A JPH06137695 A JP H06137695A
Authority
JP
Japan
Prior art keywords
refrigerant
ejector
gas
liquid separator
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4284689A
Other languages
Japanese (ja)
Other versions
JP3265649B2 (en
Inventor
Hirotsugu Takeuchi
裕嗣 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP28468992A priority Critical patent/JP3265649B2/en
Publication of JPH06137695A publication Critical patent/JPH06137695A/en
Application granted granted Critical
Publication of JP3265649B2 publication Critical patent/JP3265649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3297Expansion means other than expansion valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Abstract

PURPOSE:To make it possible to simplify mutual connections of functional components of a refrigerating cycle such as an ejector, a first refrigerant evaporator, a vapor-liquid separator, a second refrigerant evaporator, etc., and to obtain a cooling capacity being stable at all times when the refrigerating cycle is mounted on a vehicle of any kind. CONSTITUTION:A refrigerant compressor, a refrigerant condenser, an ejector 4, a first refrigerant evaporator 13 and a vapor-liquid separator 6 are connected in a loop sequentially by a refrigerant piping and the bottom part of the vapor- liquid separator 6 and a suction part of the ejector 4 are connected by a bypass piping 9 provided with a second refrigerant evaporator 14. The ejector 4, a distributor 12 and the vapor-liquid separator 6 are fitted integrally to the first and second refrigerant evaporators 13 and 14 and thereby passage lengths of the distributor 12 and pipings 17, 19 and 20 connecting the functional components of a refrigerating cycle mutually are shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、家庭用空気調和装置や
車両用空気調和装置等に使用される冷凍サイクルに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle used in domestic air conditioners, vehicle air conditioners and the like.

【0002】[0002]

【従来の技術】従来より、例えば図10に示したよう
に、冷媒圧縮機101、冷媒凝縮器102、エジェクタ
103、第1冷媒蒸発器104および気液分離器105
を冷媒配管106により環状に接続すると共に、気液分
離器105で気相冷媒と分離された液相冷媒を減圧装置
107、第2冷媒蒸発器108を設けたバイパス配管1
09を介してエジェクタ103の吸引部に吸引させるよ
うにした冷凍サイクル100が提案されている。このよ
うな構成の冷凍サイクル100は、冷房運転時に冷媒蒸
発器として働く第1冷媒蒸発器104の冷媒蒸発圧力を
低くして冷媒圧縮機101の吸入圧力が低下しないよう
にすることによって、第1冷媒蒸発器104の冷却能力
を向上させるようにしている。
2. Description of the Related Art Conventionally, for example, as shown in FIG. 10, a refrigerant compressor 101, a refrigerant condenser 102, an ejector 103, a first refrigerant evaporator 104 and a gas-liquid separator 105.
Is connected in an annular shape by a refrigerant pipe 106, and the liquid-phase refrigerant separated from the gas-phase refrigerant by the gas-liquid separator 105 is provided with a decompression device 107 and a second refrigerant evaporator 108.
A refrigeration cycle 100 has been proposed in which the suction section of the ejector 103 is caused to suck the gas through the 09. The refrigerating cycle 100 having such a configuration reduces the refrigerant evaporation pressure of the first refrigerant evaporator 104 that functions as a refrigerant evaporator during the cooling operation to prevent the suction pressure of the refrigerant compressor 101 from decreasing. The cooling capacity of the refrigerant evaporator 104 is improved.

【0003】[0003]

【発明が解決しようとする課題】ところが、上述の冷凍
サイクル100を車両に搭載する場合には、搭載上の制
約を受けることから、車種に応じて、冷凍サイクル10
0を構成する各機能部品の搭載位置が変更される。この
ため、エジェクタ103と第1冷媒蒸発器104との配
管110の接続、第1冷媒蒸発器104と気液分離器1
05との配管111の接続、気液分離器105と第2冷
媒蒸発器108との配管112の接続、第2冷媒蒸発器
108とエジェクタ103の吸引部との配管113の接
続が複雑になってしまうという課題があった。また、エ
ジェクタ103、第1冷媒蒸発器104、気液分離器1
05、第2冷媒蒸発器108の車両の搭載時の相互位置
に違いにより配管110〜113のいずれかの抵抗が変
化することにより配管110〜113の圧力損失が変化
する。これによって、冷媒圧縮機101の吸入圧力も変
動するため、第1、第2冷媒蒸発器104、108の冷
却能力の変動が発生してしまうという課題もあった。
However, when the above refrigeration cycle 100 is mounted on a vehicle, it is subject to restrictions on mounting, so that the refrigeration cycle 10 can be changed depending on the vehicle type.
The mounting position of each functional component forming 0 is changed. Therefore, the ejector 103 and the first refrigerant evaporator 104 are connected to the pipe 110, and the first refrigerant evaporator 104 and the gas-liquid separator 1 are connected.
The connection of the pipe 111 with 05, the connection of the pipe 112 between the gas-liquid separator 105 and the second refrigerant evaporator 108, and the connection of the pipe 113 between the second refrigerant evaporator 108 and the suction part of the ejector 103 become complicated. There was a problem of being lost. Further, the ejector 103, the first refrigerant evaporator 104, the gas-liquid separator 1
05, the resistance of one of the pipes 110 to 113 changes due to the difference in the mutual positions of the second refrigerant evaporator 108 when the vehicle is mounted, and thus the pressure loss of the pipes 110 to 113 changes. As a result, the suction pressure of the refrigerant compressor 101 also fluctuates, which causes a problem that the cooling capacity of the first and second refrigerant evaporators 104 and 108 also fluctuates.

【0004】本発明は、エジェクタ、気液分離器、冷媒
蒸発器等の各機能部品同士の接続を簡略化でき、どのよ
うな車両に搭載した場合でも常に安定した空調能力を得
られる冷凍サイクルの提供を目的とする。
According to the present invention, the connection of functional parts such as an ejector, a gas-liquid separator, a refrigerant evaporator and the like can be simplified, and a stable air conditioning capacity can always be obtained no matter what type of vehicle the refrigeration cycle is equipped with. For the purpose of provision.

【0005】[0005]

【課題を解決するための手段】本発明は、冷媒圧縮機、
冷媒凝縮器、エジェクタおよび気液分離器を冷媒配管に
より環状に接続すると共に、前記気液分離器の液相冷媒
側とエジェクタの吸引部とを冷媒蒸発器を配したバイパ
ス配管で接続した冷凍サイクルにおいて、前記冷媒蒸発
器、前記気液分離器および前記エジェクタを一体化した
技術手段を採用した。
The present invention is directed to a refrigerant compressor,
A refrigeration cycle in which a refrigerant condenser, an ejector, and a gas-liquid separator are annularly connected by a refrigerant pipe, and a liquid-phase refrigerant side of the gas-liquid separator and a suction portion of the ejector are connected by a bypass pipe in which a refrigerant evaporator is arranged. In the above, the technical means in which the refrigerant evaporator, the gas-liquid separator and the ejector are integrated is adopted.

【0006】[0006]

【作用】本発明は、冷媒蒸発器に気液分離器およびエジ
ェクタを一体化したことにより、冷凍サイクルの各機能
部品同士の接続が簡易となると共に、エジェクタと気液
分離器との間の抵抗、バイパス配管の抵抗が搭載される
車種が異なるような場合でも一定となる。これによっ
て、エジェクタ、冷媒蒸発器および気液分離器をそれぞ
れ独立して車両に設置した場合より、エジェクタと気液
分離器との間の通路長、およびバイパス配管の通路長が
短縮されることから、圧力損失の変動が抑えられる。
According to the present invention, by integrating the gas-liquid separator and the ejector in the refrigerant evaporator, the functional parts of the refrigeration cycle can be easily connected to each other and the resistance between the ejector and the gas-liquid separator can be improved. The resistance of the bypass pipe is constant even when the type of vehicle is different. As a result, the passage length between the ejector and the gas-liquid separator and the passage length of the bypass pipe are shortened compared to the case where the ejector, the refrigerant evaporator, and the gas-liquid separator are independently installed in the vehicle. The fluctuation of pressure loss can be suppressed.

【0007】[0007]

【実施例】つぎに、本発明の冷凍サイクルを図1ないし
図9に示す複数の実施例に基づいて説明する。 〔第1実施例の構成〕図1ないし図5は本発明の第1実
施例を示したもので、図1は自動車用空気調和装置に使
用される冷凍サイクルを示した図である。冷凍サイクル
1は、冷媒圧縮機2、冷媒凝縮器3、エジェクタ4、室
内熱交換器5の第1冷媒蒸発器13および気液分離器6
を冷媒配管7によって順次環状に接続していると共に、
気液分離器6の液相冷媒側とエジェクタ4の吸引部8と
を室内熱交換器5の第2冷媒蒸発器14を配したバイパ
ス配管9によって接続している。冷媒圧縮機2は、自動
車のエンジンルーム内に搭載されたエンジンまたは電動
モータ等の駆動装置により回転駆動され、内部に吸入し
た気相冷媒を圧縮して、高温高圧の気相冷媒を冷媒凝縮
器3側へ吐出する。
EXAMPLES Next, the refrigerating cycle of the present invention will be explained based on a plurality of examples shown in FIGS. [Structure of First Embodiment] FIGS. 1 to 5 show a first embodiment of the present invention, and FIG. 1 is a view showing a refrigeration cycle used in an air conditioner for an automobile. The refrigeration cycle 1 includes a refrigerant compressor 2, a refrigerant condenser 3, an ejector 4, a first refrigerant evaporator 13 of an indoor heat exchanger 5, and a gas-liquid separator 6.
Are sequentially connected in an annular shape by the refrigerant pipe 7,
The liquid-phase refrigerant side of the gas-liquid separator 6 and the suction section 8 of the ejector 4 are connected by a bypass pipe 9 in which the second refrigerant evaporator 14 of the indoor heat exchanger 5 is arranged. The refrigerant compressor 2 is rotatably driven by a driving device such as an engine or an electric motor mounted in an engine room of an automobile, compresses the gas-phase refrigerant sucked therein, and converts the high-temperature and high-pressure gas-phase refrigerant into a refrigerant condenser. Discharge to the 3 side.

【0008】冷媒凝縮器3は、自動車のエンジンルーム
内の走行風を受け易い場所に設置され、冷媒圧縮機2の
吐出側に接続されている。この実施例の冷媒凝縮器3
は、冷媒圧縮機2より内部に流入した気相冷媒と電動フ
ァン(図示せず)等により送られている室外空気とを熱
交換させることによって、気相冷媒を凝縮液化させる。
エジェクタ4は、図2に示したように、室内熱交換器5
の側面に取り付けられている。エジェクタ4は、図3に
示したように、冷媒凝縮器3で凝縮液化された液相冷媒
をノズル10より噴出することによって、吸引部8より
気相冷媒を吸引して、ディフューザ11内で液相冷媒と
気相冷媒を混合すると共に昇圧した後に、後記するディ
ストリビュータ12を介して第1冷媒蒸発器13へ気液
二相状態の冷媒を送るものである。
The refrigerant condenser 3 is installed in the engine room of an automobile at a place where it is likely to receive traveling wind, and is connected to the discharge side of the refrigerant compressor 2. Refrigerant condenser 3 of this embodiment
Heat-exchanges the vapor-phase refrigerant flowing in from the refrigerant compressor 2 with the outdoor air sent by an electric fan (not shown) or the like to condense and liquefy the vapor-phase refrigerant.
As shown in FIG. 2, the ejector 4 includes an indoor heat exchanger 5
It is attached to the side of. As shown in FIG. 3, the ejector 4 ejects the liquid-phase refrigerant condensed and liquefied in the refrigerant condenser 3 from the nozzle 10, thereby sucking the gas-phase refrigerant from the suction portion 8 and liquid in the diffuser 11. After the phase refrigerant and the gas phase refrigerant are mixed and the pressure is increased, the refrigerant in the gas-liquid two-phase state is sent to the first refrigerant evaporator 13 via the distributor 12 described later.

【0009】室内熱交換器5は、自動車の車室内へ空調
空気を送るダクト(図示せず)内に配され、図2に示し
たように、エジェクタ4、気液分離器6、ディストリビ
ュータ12を一体化してなる。なお、この実施例の室内
熱交換器5は、図2に示したように、ディストリビュー
タ12と気液分離器6との間に設けられた第1冷媒蒸発
器13と、バイパス配管9途中に設けられた第2冷媒蒸
発器14とに内部で分割されている。ディストリビュー
タ12は、図3に示したように、エジェクタ4より流出
した気液二相状態の冷媒を第1冷媒蒸発器13の複数本
のチューブの各々に均等に分配する配管である。
The indoor heat exchanger 5 is arranged in a duct (not shown) for sending conditioned air into the passenger compartment of the automobile, and as shown in FIG. 2, the ejector 4, the gas-liquid separator 6 and the distributor 12 are connected to each other. It becomes one. The indoor heat exchanger 5 of this embodiment is provided in the middle of the bypass pipe 9 and the first refrigerant evaporator 13 provided between the distributor 12 and the gas-liquid separator 6, as shown in FIG. The second refrigerant evaporator 14 is divided inside. As shown in FIG. 3, the distributor 12 is a pipe that evenly distributes the gas-liquid two-phase refrigerant flowing out of the ejector 4 to each of the plurality of tubes of the first refrigerant evaporator 13.

【0010】第1冷媒蒸発器13は、図2に示したよう
に、第2冷媒蒸発器14と共通の複数の板状フィン15
を貫く複数本のチューブより構成されている。この実施
例の第1冷媒蒸発器13は、エジェクタ4よりディスト
リビュータ12を介して流入した気液二相状態の冷媒と
電動ファン(図示せず)により送られていくる室内空気
または室外空気とを熱交換させて冷媒を蒸発気化させ
る。第2冷媒蒸発器14は、図2に示したように、複数
の板状フィン15を貫く複数本のチューブおよび複数本
のチューブの出口側に接続された出口側ヘッダ16より
構成されている。この実施例の第2冷媒蒸発器14は、
気液分離器6の下部より流入した液相冷媒と電動ファン
により送られていくる室内空気または室外空気とを熱交
換させて冷媒を蒸発気化させる。
As shown in FIG. 2, the first refrigerant evaporator 13 has a plurality of plate-like fins 15 common to the second refrigerant evaporator 14.
It is composed of multiple tubes that penetrate through. The first refrigerant evaporator 13 of this embodiment heats the refrigerant in the gas-liquid two-phase state that has flowed in from the ejector 4 via the distributor 12 and the indoor air or the outdoor air sent by an electric fan (not shown). The refrigerant is exchanged and the refrigerant is vaporized. As shown in FIG. 2, the second refrigerant evaporator 14 is composed of a plurality of tubes penetrating the plurality of plate-shaped fins 15 and an outlet-side header 16 connected to the outlet side of the plurality of tubes. The second refrigerant evaporator 14 of this embodiment is
The liquid-phase refrigerant flowing from the lower part of the gas-liquid separator 6 and the indoor air or the outdoor air sent by the electric fan are heat-exchanged to evaporate the refrigerant.

【0011】気液分離器6は、図2に示したように、第
1冷媒蒸発器13の出口側ヘッダおよび第2冷媒蒸発器
14の入口側ヘッダを兼ねており、流入した冷媒を気相
冷媒と液相冷媒とに分離するものである。この気液分離
器6の入口部は配管17を介して第1冷媒蒸発器13の
複数本のチューブに接続され、上部側(気相冷媒側)の
出口部は配管18を介して冷媒圧縮機2の吸入側に接続
され、底部側(液相冷媒側)の出口部はバイパス配管9
を介して第2冷媒蒸発器14の複数本のチューブに接続
されている。バイパス配管9は、気液分離器6の底部側
の出口部と第2冷媒蒸発器14の複数本のチューブの入
口側とを接続する配管19と、第2冷媒蒸発器14の出
口側ヘッダ16とエジェクタ4の吸引部8とを接続する
配管20とから構成されている。
As shown in FIG. 2, the gas-liquid separator 6 also serves as an outlet-side header of the first refrigerant evaporator 13 and an inlet-side header of the second refrigerant evaporator 14, and the inflowing refrigerant is vapor-phased. It separates into a refrigerant and a liquid-phase refrigerant. The inlet part of the gas-liquid separator 6 is connected to a plurality of tubes of the first refrigerant evaporator 13 via a pipe 17, and the outlet part on the upper side (gas phase refrigerant side) is connected via a pipe 18 to a refrigerant compressor. 2 is connected to the suction side, and the outlet on the bottom side (liquid-phase refrigerant side) has a bypass pipe 9
Is connected to a plurality of tubes of the second refrigerant evaporator 14 via. The bypass pipe 9 connects the bottom outlet of the gas-liquid separator 6 with the inlets of the plurality of tubes of the second refrigerant evaporator 14, and the outlet header 16 of the second refrigerant evaporator 14. And a pipe 20 connecting the suction unit 8 of the ejector 4 to each other.

【0012】〔第1実施例の作用〕つぎに、この冷凍サ
イクル1の作用を図1ないし図5に基づいて簡単に説明
する。ここで、図4は図1における冷凍サイクル1の冷
媒回路の冷媒の状態点をモリエル線図上に描いたもの
で、図1の冷凍サイクル1の冷媒回路上のa〜fの冷媒
の状態が図4のモリエル線図上のa〜fに対応する。冷
媒圧縮機2で圧縮されて高温高圧となった気相冷媒(状
態点b)は、冷媒凝縮器3で凝縮液化されて高温高圧の
液相冷媒になる(状態点c)。その後に、エジェクタ4
内に流入する。エジェクタ4内に流入した液相冷媒は、
ノズル10を通過する際に減圧されて状態点d2 に至
り、さらにディフューザ11を通過する際に昇圧され状
態点dとなる。
[Operation of First Embodiment] Next, the operation of the refrigeration cycle 1 will be briefly described with reference to FIGS. 1 to 5. Here, FIG. 4 is a diagram in which the state of the refrigerant of the refrigerant circuit of the refrigeration cycle 1 in FIG. 1 is drawn on the Mollier diagram, and the states of the refrigerant of a to f on the refrigerant circuit of the refrigeration cycle 1 of FIG. It corresponds to a to f on the Mollier diagram of FIG. The gas-phase refrigerant (state point b) that is compressed by the refrigerant compressor 2 and becomes high temperature and high pressure is condensed and liquefied by the refrigerant condenser 3 to become a high temperature and high pressure liquid phase refrigerant (state point c). After that, the ejector 4
Flows in. The liquid-phase refrigerant flowing into the ejector 4 is
When passing through the nozzle 10, the pressure is reduced to reach the state point d2, and when passing through the diffuser 11, the pressure is raised to reach the state point d2.

【0013】このとき、ノズル10を液相冷媒が通過す
る際にノズル10から高速で噴出する冷媒回りの圧力低
下を利用して、エジェクタ4の吸引部8にバイパス配管
9から状態点d1 の気相冷媒が吸引される。このため、
冷媒凝縮器3から流入した液相冷媒と配管20から吸引
された気相冷媒とがディフューザ11内で混合する。こ
れによって、エジェクタ4から流出した気液二相状態の
冷媒は、状態点d1 、d2 および冷媒凝縮器3からの冷
媒循環量と第2冷媒蒸発器14からの冷媒循環量とによ
り決まる状態点dとなる。
At this time, when the liquid-phase refrigerant passes through the nozzle 10, the pressure drop around the refrigerant which is ejected from the nozzle 10 at high speed is utilized to draw the gas at the state point d1 from the bypass pipe 9 into the suction portion 8 of the ejector 4. The phase refrigerant is sucked. For this reason,
The liquid-phase refrigerant flowing from the refrigerant condenser 3 and the vapor-phase refrigerant sucked from the pipe 20 are mixed in the diffuser 11. As a result, the refrigerant in the gas-liquid two-phase state flowing out from the ejector 4 is determined by the state points d1 and d2, the refrigerant circulation amount from the refrigerant condenser 3 and the refrigerant circulation amount from the second refrigerant evaporator 14, and the state point d. Becomes

【0014】そして、ディストリビュータ12を介して
第1冷媒蒸発器13の複数本のチューブ内に流入した気
液二相状態の冷媒は、蒸発気化された(状態点e)後
に、気液分離器6内に流入して気相冷媒と液相冷媒とに
分離する。その後に、気液分離器6内の気相冷媒(状態
点a)は、冷媒圧縮機2の吸入力によって配管18を通
って冷媒圧縮機2に吸入される。また、気液分離器6の
底部に溜まっている状態点fの液相冷媒は、エジェクタ
4の吸引効果により配管19を通って第2冷媒蒸発器1
4内に吸引される。第2冷媒蒸発器14の複数本のチュ
ーブ内に流入した液相冷媒は、蒸発気化された(状態点
d1 )後に、配管20を通ってエジェクタ4の吸引部8
に吸引される。
The refrigerant in the gas-liquid two-phase state that has flowed into the plurality of tubes of the first refrigerant evaporator 13 via the distributor 12 is evaporated and vaporized (state point e), and then the gas-liquid separator 6 It flows in and separates into a vapor phase refrigerant and a liquid phase refrigerant. After that, the gas-phase refrigerant (state point a) in the gas-liquid separator 6 is sucked into the refrigerant compressor 2 through the pipe 18 by the suction force of the refrigerant compressor 2. Further, the liquid-phase refrigerant at the state point f accumulated at the bottom of the gas-liquid separator 6 passes through the pipe 19 by the suction effect of the ejector 4, and the second refrigerant evaporator 1
4 is sucked. The liquid-phase refrigerant that has flowed into the plurality of tubes of the second refrigerant evaporator 14 is evaporated and vaporized (state point d1), and then passes through the pipe 20 to draw in the suction portion 8 of the ejector 4.
Is sucked into.

【0015】〔第1実施例の効果〕以上のように、この
実施例の冷凍サイクル1は、冷媒凝縮器3で凝縮液化さ
れた液相冷媒をノズル10より噴出させて、第2冷媒蒸
発器14で蒸発気化した気相冷媒をエジェクタ4の吸引
部8に吸引させている。これによって、空気側で見た場
合、冷媒圧縮機2の吸入圧力同一で第2冷媒蒸発器14
の圧力温度を一段下げることができるため、通常の冷媒
蒸発器より低い温度で熱交換することができる。また、
冷媒側で見た場合、第2冷媒蒸発器14の圧力温度を通
常と同一とすると、冷媒圧縮機2の吸入圧力を上昇でき
るので、吸込密度のため冷媒循環量を増加でき、それに
よって冷房能力を増加することができる。このため、図
5に示したように、冷媒圧縮機2の回転数に対する自動
車の車室内の冷房能力を一体化前の冷房能力と比較して
向上することができる。
[Effects of the First Embodiment] As described above, in the refrigeration cycle 1 of this embodiment, the liquid-phase refrigerant condensed and liquefied in the refrigerant condenser 3 is ejected from the nozzle 10 to generate the second refrigerant evaporator. The vapor-phase refrigerant evaporated and vaporized in 14 is sucked into the suction portion 8 of the ejector 4. As a result, when viewed from the air side, the second refrigerant evaporator 14 has the same suction pressure of the refrigerant compressor 2.
Since the pressure temperature of can be lowered by one step, heat exchange can be performed at a temperature lower than that of a normal refrigerant evaporator. Also,
When viewed from the refrigerant side, if the pressure temperature of the second refrigerant evaporator 14 is the same as normal, the suction pressure of the refrigerant compressor 2 can be increased, so that the refrigerant circulation amount can be increased due to the suction density, thereby increasing the cooling capacity. Can be increased. Therefore, as shown in FIG. 5, it is possible to improve the cooling capacity in the passenger compartment of the automobile with respect to the rotation speed of the refrigerant compressor 2 as compared with the cooling capacity before the integration.

【0016】さらに、エジェクタ4、気液分離器6、デ
ィストリビュータ12を室内熱交換器5に一体化するこ
とによって、冷凍サイクル1を搭載する自動車の車種が
異なるような場合でも、ディストリビュータ12、配管
17、19、20の内部抵抗を常に一定にすることがで
きる。また、ディストリビュータ12、配管17、1
8、20の通路長が一体化前より短縮されることによっ
て、図4に示したように、ディストリビュータ12、配
管17、19、20内の圧力損失ΔPA 〜ΔPDを一体
化前(図示破線)d1´、d2´→d→e´→a´、f
´より低減することができる。
Further, by integrating the ejector 4, the gas-liquid separator 6 and the distributor 12 into the indoor heat exchanger 5, even if the type of automobile in which the refrigeration cycle 1 is mounted is different, the distributor 12 and the pipe 17 are provided. , 19 and 20 can always have a constant internal resistance. In addition, the distributor 12, the piping 17, 1
Since the passage lengths of 8 and 20 are shorter than before integration, as shown in FIG. 4, the pressure loss ΔPA to ΔPD in the distributor 12 and the pipes 17, 19 and 20 before integration (broken line in the drawing) d1. ', D2' → d → e '→ a', f
It can be reduced more than

【0017】これらによって、冷媒圧縮機2の吸入圧力
の変動を低下することができるため、第1、第2冷媒蒸
発器13、14の冷房能力の変動を低減できる。さら
に、ディストリビュータ12、配管17、18、20の
通路長が一体化前より短縮されることによって、各機能
部品間の配管の短縮化および廃止により冷凍サイクル1
の小型化を実現することができる。
With these, fluctuations in the suction pressure of the refrigerant compressor 2 can be reduced, so fluctuations in the cooling capacity of the first and second refrigerant evaporators 13 and 14 can be reduced. Further, the passage lengths of the distributor 12 and the pipes 17, 18, and 20 are shortened as compared with those before the integration, so that the pipes between the functional parts are shortened and eliminated, so that the refrigeration cycle 1
It is possible to realize the miniaturization of.

【0018】〔第2実施例〕図6ないし図8は本発明の
第2実施例を示したもので、図6はシングルタンク式の
積層型室内熱交換器を示した図である。この実施例で
は、コルゲートフィン31と一対の薄い板状の成形プレ
ート32とをろう付け等の手段により複数積層したシン
グルタンク式の積層型室内熱交換器30を用いている。
成形プレート32は、薄い板状のアルミニウム合金をプ
レス加工することによって形成されている。この成形プ
レートの外周縁には、対向する他方の成形プレート32
の外周縁にろう付け等の手段により接合される接合壁3
3が形成されている。また、成形プレート32の中央部
分には、対向する他方の成形プレート32の中央部分に
ろう付け等の手段により接合される区画壁34が形成さ
れている。
[Second Embodiment] FIGS. 6 to 8 show a second embodiment of the present invention, and FIG. 6 is a view showing a single tank type laminated indoor heat exchanger. In this embodiment, a single tank type laminated indoor heat exchanger 30 in which a plurality of corrugated fins 31 and a pair of thin plate-shaped forming plates 32 are laminated by means such as brazing is used.
The forming plate 32 is formed by pressing a thin plate-shaped aluminum alloy. On the outer peripheral edge of this forming plate, the other opposing forming plate 32
Wall 3 to be joined to the outer peripheral edge of the body by means such as brazing
3 is formed. A partition wall 34 is formed at the central portion of the molding plate 32 so as to be joined to the central portion of the other molding plate 32 which faces the molding plate 32 by means such as brazing.

【0019】そして、区画壁34の周りには、冷媒と空
気とを熱交換させて冷媒を蒸発気化させる略U字状の冷
媒蒸発通路35が浅い皿状に形成されている。その冷媒
蒸発通路35には、冷媒が幅方向全体に広く行き亘るよ
うにするための多数のリブ部36が対向する他方の成形
プレート32側に突出するように形成されている。な
お、一対の成形プレート32を複数積層することによっ
て、すなわち、冷媒蒸発通路35が複数個重ね合わされ
ることによって、図7および図8に示したように、積層
型室内熱交換器30の図示左側に複数の冷媒蒸発通路3
5を有する第1冷媒蒸発器37が形成され、積層型室内
熱交換器30の図示右側に複数の冷媒蒸発通路35を有
する第2冷媒蒸発器38が形成される。
Around the partition wall 34, a substantially U-shaped refrigerant evaporation passage 35 for evaporating and evaporating the refrigerant by exchanging heat with the refrigerant is formed in a shallow dish shape. In the refrigerant evaporation passage 35, a large number of rib portions 36 for allowing the refrigerant to spread widely in the entire width direction are formed so as to protrude toward the other molding plate 32 side facing each other. As shown in FIGS. 7 and 8, by stacking a plurality of the pair of molding plates 32, that is, by stacking a plurality of the refrigerant evaporation passages 35, the left side of the stacked indoor heat exchanger 30 shown in the drawing. A plurality of refrigerant evaporation passages 3
5 is formed, and the second refrigerant evaporator 38 having a plurality of refrigerant evaporation passages 35 is formed on the right side of the laminated indoor heat exchanger 30 in the drawing.

【0020】さらに、成形プレート32の上側部分に
は、タンク部39、40がそれぞれ形成されている。タ
ンク部39、40は、冷媒蒸発通路35を介して連通し
ており、隣設する一対の成形プレート32の上側部分に
ろう付け等の手段により接合されるように略碗状にそれ
ぞれ形成されている。また、タンク部39、40には、
隣設する一対の成形プレート32と連通させるための円
形状の連通孔39a、40aがそれぞれ形成されてい
る。なお、一対の成形プレート32を複数積層すること
によって、すなわち、タンク部39、40が複数個重ね
合わされることによって、図7に示したように、第1冷
媒蒸発器37の上側部分に入口タンク41と中間タンク
42が形成され、第2冷媒蒸発器38の上側部分に中間
タンク43と出口タンク44が形成される。
Further, tank portions 39 and 40 are formed on the upper portion of the molding plate 32, respectively. The tank portions 39, 40 are in communication with each other through the refrigerant evaporation passages 35, and are formed in a substantially bowl shape so as to be joined to the upper portions of the pair of adjacent molding plates 32 by means such as brazing. There is. In addition, in the tank parts 39 and 40,
Circular communication holes 39a, 40a for communicating with a pair of adjacent molding plates 32 are formed, respectively. In addition, by stacking a plurality of the pair of molding plates 32, that is, by stacking a plurality of tank portions 39 and 40, as shown in FIG. 7, an inlet tank is provided at an upper portion of the first refrigerant evaporator 37. 41 and an intermediate tank 42 are formed, and an intermediate tank 43 and an outlet tank 44 are formed in an upper portion of the second refrigerant evaporator 38.

【0021】入口タンク41は、エジェクタ4のディフ
ューザ11に接続した入口配管45より入口孔46を介
して流入した気液二相状態の冷媒を第1冷媒蒸発器37
の複数の冷媒蒸発通路35に分散させる通路である。中
間タンク42は、第1冷媒蒸発器37の複数の冷媒蒸発
通路35を通過する際に蒸発気化した気相冷媒を集合さ
せて中間タンク43に導く通路である。中間タンク43
は、中間タンク42より流入した冷媒を第2冷媒蒸発器
38の複数の冷媒蒸発通路35に分散させる通路であ
る。なお、第2冷媒蒸発器38の複数の冷媒蒸発通路3
5は、気液分離器6としても働くため、一対の成形プレ
ート32の上部には気相冷媒が、底部には液相冷媒(図
8に斜線で示す)が溜まる。このため、中間タンク43
の一部の成形プレート32のタンク部39の連通孔に
は、冷媒圧縮機2へ気相冷媒を戻すための配管18がろ
う付け等の手段により接続されている。
The inlet tank 41 has a first refrigerant evaporator 37 for the refrigerant in a gas-liquid two-phase state that has flowed in through an inlet hole 46 from an inlet pipe 45 connected to the diffuser 11 of the ejector 4.
Of the refrigerant evaporation passages 35. The intermediate tank 42 is a passage that collects the vaporized refrigerant that has been vaporized when passing through the plurality of refrigerant evaporation passages 35 of the first refrigerant evaporator 37 and guides it to the intermediate tank 43. Intermediate tank 43
Is a passage for dispersing the refrigerant flowing from the intermediate tank 42 into the plurality of refrigerant evaporation passages 35 of the second refrigerant evaporator 38. The plurality of refrigerant evaporation passages 3 of the second refrigerant evaporator 38
Since 5 also functions as the gas-liquid separator 6, the vapor-phase refrigerant is accumulated in the upper part of the pair of molding plates 32, and the liquid-phase refrigerant (shown by the diagonal lines in FIG. 8) is accumulated in the bottom part. Therefore, the intermediate tank 43
A pipe 18 for returning the vapor-phase refrigerant to the refrigerant compressor 2 is connected to the communication hole of the tank portion 39 of a part of the molding plate 32 by means such as brazing.

【0022】出口タンク44は、第2冷媒蒸発器38の
複数の冷媒蒸発通路35を通過する際に蒸発気化した気
相冷媒を集合させ、且つ出口孔47を介してエジェクタ
4の吸引部8に連通するバイパス配管9内へ気相冷媒を
流出する。なお、第1冷媒蒸発器37と第2冷媒蒸発器
38とは、中間タンク42、43を介して連通している
が、入口タンク41と出口タンク44とは仕切り部48
により区画されている。
The outlet tank 44 collects the vapor-phase refrigerant vaporized and vaporized when passing through the plurality of refrigerant evaporation passages 35 of the second refrigerant evaporator 38, and is introduced into the suction portion 8 of the ejector 4 through the outlet hole 47. The gas-phase refrigerant flows out into the bypass pipe 9 communicating with it. The first refrigerant evaporator 37 and the second refrigerant evaporator 38 communicate with each other via the intermediate tanks 42 and 43, but the inlet tank 41 and the outlet tank 44 are separated from each other by the partition portion 48.
It is divided by.

【0023】〔第3実施例〕図9は本発明の第3実施例
を示したもので、冷凍サイクルを示した図である。この
実施例では、第1冷媒蒸発器13を廃止し第2冷媒蒸発
器14のみを冷凍サイクル1に設けるようにしている。
この場合には、エジェクタ4と気液分離器6とは配管4
9のみにより接続される。
[Third Embodiment] FIG. 9 shows a third embodiment of the present invention and is a view showing a refrigeration cycle. In this embodiment, the first refrigerant evaporator 13 is eliminated and only the second refrigerant evaporator 14 is provided in the refrigeration cycle 1.
In this case, the ejector 4 and the gas-liquid separator 6 are connected to the pipe 4
Connected by 9 only.

【0024】〔変形例〕本実施例では、本発明を車両用
空気調和装置に用いたが、本発明を家庭用空気調和装置
に用いても良い。本実施例では、気液分離器6と第2冷
媒蒸発器14との間を直接配管19によって接続した
が、気液分離器6と第2冷媒蒸発器14との間に減圧装
置を接続していも良い。
[Modification] In the present embodiment, the present invention is applied to the vehicle air conditioner, but the present invention may be applied to a domestic air conditioner. In this embodiment, the gas-liquid separator 6 and the second refrigerant evaporator 14 are directly connected by the pipe 19, but a pressure reducing device is connected between the gas-liquid separator 6 and the second refrigerant evaporator 14. Good.

【0025】[0025]

【発明の効果】本発明は、エジェクタ、気液分離器、冷
媒蒸発器等の各機能部品同士の接続を簡略化でき、且つ
搭載上の制約を受ける車両に冷凍サイクルを搭載した場
合でも常に安定した空調能力を得ることができる。
The present invention can simplify the connection of functional parts such as an ejector, a gas-liquid separator, a refrigerant evaporator, etc., and is always stable even when a refrigeration cycle is mounted on a vehicle subject to mounting restrictions. It is possible to obtain the required air conditioning capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかる冷凍サイクルを示
した構成図である。
FIG. 1 is a configuration diagram showing a refrigeration cycle according to a first embodiment of the present invention.

【図2】本発明の第1実施例にかかる室内熱交換器を示
した斜視図である。
FIG. 2 is a perspective view showing an indoor heat exchanger according to the first embodiment of the present invention.

【図3】(a)、(b)は本発明の第1実施例にかかる
エジェクタとディストリビュータを示した断面図であ
る。
3A and 3B are cross-sectional views showing an ejector and a distributor according to the first embodiment of the present invention.

【図4】本発明の第1実施例にかかる冷凍サイクルのモ
リエル線図である。
FIG. 4 is a Mollier diagram of the refrigeration cycle according to the first embodiment of the present invention.

【図5】本発明の第1実施例にかかる冷房能力比と冷媒
圧縮機の回転数との関係を示したグラフである。
FIG. 5 is a graph showing the relationship between the cooling capacity ratio and the rotation speed of the refrigerant compressor according to the first embodiment of the present invention.

【図6】本発明の第2実施例にかかるシングルタンク式
の積層型室内熱交換器を示した斜視図である。
FIG. 6 is a perspective view showing a single tank type laminated indoor heat exchanger according to a second embodiment of the present invention.

【図7】本発明の第2実施例にかかるシングルタンク式
の積層型室内熱交換器の概略構造を示した構成図であ
る。
FIG. 7 is a configuration diagram showing a schematic structure of a single tank type laminated indoor heat exchanger according to a second embodiment of the present invention.

【図8】本発明の第2実施例にかかるシングルタンク式
の積層型室内熱交換器の概略構造を示した構成図であ
る。
FIG. 8 is a configuration diagram showing a schematic structure of a single tank type laminated indoor heat exchanger according to a second embodiment of the present invention.

【図9】本発明の第3実施例にかかる冷凍サイクルを示
した構成図である。
FIG. 9 is a configuration diagram showing a refrigeration cycle according to a third embodiment of the present invention.

【図10】従来の冷凍サイクルを示した構成図である。FIG. 10 is a configuration diagram showing a conventional refrigeration cycle.

【符号の説明】 1 冷凍サイクル 2 冷媒圧縮機 3 冷媒凝縮器 4 エジェクタ 5 室内熱交換器 6 気液分離器 7 冷媒配管 8 吸引部 9 バイパス配管 13 第1冷媒蒸発器 14 第2冷媒蒸発器[Explanation of Codes] 1 Refrigeration cycle 2 Refrigerant compressor 3 Refrigerant condenser 4 Ejector 5 Indoor heat exchanger 6 Gas-liquid separator 7 Refrigerant pipe 8 Suction part 9 Bypass pipe 13 First refrigerant evaporator 14 Second refrigerant evaporator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒圧縮機、冷媒凝縮器、エジェクタお
よび気液分離器を冷媒配管により環状に接続すると共
に、前記気液分離器の液相冷媒側とエジェクタの吸引部
とを冷媒蒸発器を配したバイパス配管で接続した冷凍サ
イクルにおいて、 前記冷媒蒸発器、前記気液分離器および前記エジェクタ
を一体化したことを特徴とする冷凍サイクル。
1. A refrigerant compressor, a refrigerant condenser, an ejector and a gas-liquid separator are annularly connected by a refrigerant pipe, and a liquid-phase refrigerant side of the gas-liquid separator and a suction portion of the ejector are connected to a refrigerant evaporator. A refrigeration cycle in which the refrigerant evaporator, the gas-liquid separator, and the ejector are integrated in a refrigeration cycle that is connected by an arranged bypass pipe.
JP28468992A 1992-10-22 1992-10-22 Refrigeration cycle Expired - Lifetime JP3265649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28468992A JP3265649B2 (en) 1992-10-22 1992-10-22 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28468992A JP3265649B2 (en) 1992-10-22 1992-10-22 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH06137695A true JPH06137695A (en) 1994-05-20
JP3265649B2 JP3265649B2 (en) 2002-03-11

Family

ID=17681707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28468992A Expired - Lifetime JP3265649B2 (en) 1992-10-22 1992-10-22 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3265649B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074992A (en) * 2001-08-31 2003-03-12 Nippon Soken Inc Refrigeration cycle apparatus
FR2834553A1 (en) * 2002-01-10 2003-07-11 Denso Corp GAS-LIQUID SEPARATOR FOR EJECTOR CYCLE
JP2003294328A (en) * 2002-03-29 2003-10-15 Denso Corp Steam compression refrigerator
FR2840674A1 (en) * 2002-06-11 2003-12-12 Denso Corp Heat exchanger for refrigeration compression cycle in vehicle air conditioning, uses internal heat exchanger with transfer between high and low pressure coolant circuits to compensate reduction in external air flow over internal exchanger
US7040117B2 (en) * 2002-05-13 2006-05-09 Denso Corporation Gas-liquid separator and ejector refrigerant cycle using the same
JP2006228118A (en) * 2005-02-21 2006-08-31 Fuji Electric Retail Systems Co Ltd Vending machine
JP2006258396A (en) * 2005-03-18 2006-09-28 Denso Corp Ejector cycle
EP1719650A1 (en) * 2005-05-04 2006-11-08 Behr GmbH & Co. KG Air conditioning unit for a vehicle
JP2007003170A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector type cycle
JP2007040611A (en) * 2005-08-03 2007-02-15 Denso Corp Vapor compression type refrigeration cycle device
US7178359B2 (en) 2004-02-18 2007-02-20 Denso Corporation Ejector cycle having multiple evaporators
JP2007078349A (en) * 2004-02-18 2007-03-29 Denso Corp Ejector cycle
EP1779047A2 (en) * 2004-07-14 2007-05-02 Carrier Corporation Refrigeration system
JP2007192503A (en) * 2006-01-20 2007-08-02 Denso Corp Unit for ejector type refrigerating cycle
JP2007192504A (en) * 2006-01-20 2007-08-02 Denso Corp Unit for ejector type refrigerating cycle and its manufacturing method
US7254961B2 (en) 2004-02-18 2007-08-14 Denso Corporation Vapor compression cycle having ejector
EP1870648A1 (en) * 2005-04-05 2007-12-26 Denso Corporation Ejector type refrigerating cycle unit
JP2008133983A (en) * 2006-11-28 2008-06-12 Cool Technos:Kk Ultra low temperature gas generator
WO2008105391A1 (en) * 2007-02-27 2008-09-04 Denso Corporation Unit for ejector type refrigeration cycle and refrigeration device using the same
JP2008281338A (en) * 2004-02-18 2008-11-20 Denso Corp Ejector cycle
JP2008309467A (en) * 2005-04-05 2008-12-25 Denso Corp Ejector type refrigerating cycle unit
WO2009090059A1 (en) * 2008-01-18 2009-07-23 Valeo Klimasysteme Gmbh Refrigerant circuit and method for operating a refrigerant circuit
DE102009021704A1 (en) 2008-05-19 2009-11-26 DENSO CORPORATION, Kariya-shi evaporator unit
US7647789B2 (en) 2006-01-19 2010-01-19 Denso Corporation Evaporator unit and ejector type refrigeration cycle
JP2010036737A (en) * 2008-08-05 2010-02-18 Denso Corp Air conditioning device for vehicle
JP2010036738A (en) * 2008-08-05 2010-02-18 Denso Corp Air conditioning device for vehicle
JP2010266198A (en) * 2005-04-01 2010-11-25 Denso Corp Ejector type refrigerating cycle
JP4866416B2 (en) * 2006-02-15 2012-02-01 Gac株式会社 Heat exchanger
US8176744B2 (en) 2007-08-21 2012-05-15 Denso Corporation Refrigeration-cycle component assembly and vehicular refrigeration system
US8201415B2 (en) 2007-06-20 2012-06-19 Denso Corporation Integrated unit for refrigeration cycle device
JP2012255584A (en) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp Distributor and heat pump device
WO2016031156A1 (en) * 2014-08-28 2016-03-03 株式会社デンソー Ejector-type refrigeration cycle
WO2016031157A1 (en) * 2014-08-28 2016-03-03 株式会社デンソー Ejector-type refrigeration cycle
WO2016098204A1 (en) * 2014-12-17 2016-06-23 三菱電機株式会社 Heat exchanger and refrigeration cycle device provided with heat exchanger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329115B (en) * 2005-02-15 2011-03-23 株式会社电装 Evaporator having ejector
CN100580344C (en) * 2005-04-05 2010-01-13 株式会社电装 Ejector type refrigerating cycle unit
JP2010117092A (en) * 2008-11-13 2010-05-27 Denso Corp Refrigerating cycle device

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770412B2 (en) 2000-01-20 2010-08-10 Denso Corporation Integrated unit for refrigerant cycle device and manufacturing method of the same
JP2003074992A (en) * 2001-08-31 2003-03-12 Nippon Soken Inc Refrigeration cycle apparatus
FR2834553A1 (en) * 2002-01-10 2003-07-11 Denso Corp GAS-LIQUID SEPARATOR FOR EJECTOR CYCLE
JP2003294328A (en) * 2002-03-29 2003-10-15 Denso Corp Steam compression refrigerator
US7040117B2 (en) * 2002-05-13 2006-05-09 Denso Corporation Gas-liquid separator and ejector refrigerant cycle using the same
FR2840674A1 (en) * 2002-06-11 2003-12-12 Denso Corp Heat exchanger for refrigeration compression cycle in vehicle air conditioning, uses internal heat exchanger with transfer between high and low pressure coolant circuits to compensate reduction in external air flow over internal exchanger
US7694528B2 (en) 2002-06-11 2010-04-13 Denso Corporation Heat exchanging apparatus
US7254961B2 (en) 2004-02-18 2007-08-14 Denso Corporation Vapor compression cycle having ejector
DE102005038858B4 (en) * 2004-02-18 2018-06-14 Denso Corporation Steam compression circuit with ejector pump
US7178359B2 (en) 2004-02-18 2007-02-20 Denso Corporation Ejector cycle having multiple evaporators
JP2007078349A (en) * 2004-02-18 2007-03-29 Denso Corp Ejector cycle
JP2008281338A (en) * 2004-02-18 2008-11-20 Denso Corp Ejector cycle
EP1779047A4 (en) * 2004-07-14 2010-05-05 Carrier Corp Refrigeration system
EP1779047A2 (en) * 2004-07-14 2007-05-02 Carrier Corporation Refrigeration system
JP4529722B2 (en) * 2005-02-21 2010-08-25 富士電機リテイルシステムズ株式会社 vending machine
JP2006228118A (en) * 2005-02-21 2006-08-31 Fuji Electric Retail Systems Co Ltd Vending machine
JP2006258396A (en) * 2005-03-18 2006-09-28 Denso Corp Ejector cycle
JP2010266198A (en) * 2005-04-01 2010-11-25 Denso Corp Ejector type refrigerating cycle
EP1870648A1 (en) * 2005-04-05 2007-12-26 Denso Corporation Ejector type refrigerating cycle unit
EP1870648A4 (en) * 2005-04-05 2014-12-03 Denso Corp Ejector type refrigerating cycle unit
US7707849B2 (en) * 2005-04-05 2010-05-04 Denso Corporation Unit for ejector type refrigeration cycle
JP2008309467A (en) * 2005-04-05 2008-12-25 Denso Corp Ejector type refrigerating cycle unit
EP1719650A1 (en) * 2005-05-04 2006-11-08 Behr GmbH & Co. KG Air conditioning unit for a vehicle
JP2007003170A (en) * 2005-05-24 2007-01-11 Denso Corp Ejector type cycle
JP4548266B2 (en) * 2005-08-03 2010-09-22 株式会社デンソー Vapor compression refrigeration cycle equipment
JP2007040611A (en) * 2005-08-03 2007-02-15 Denso Corp Vapor compression type refrigeration cycle device
US7647789B2 (en) 2006-01-19 2010-01-19 Denso Corporation Evaporator unit and ejector type refrigeration cycle
US7654108B2 (en) 2006-01-20 2010-02-02 Denso Corporation Unit for refrigerant cycle device
JP2007192504A (en) * 2006-01-20 2007-08-02 Denso Corp Unit for ejector type refrigerating cycle and its manufacturing method
JP2007192503A (en) * 2006-01-20 2007-08-02 Denso Corp Unit for ejector type refrigerating cycle
JP4866416B2 (en) * 2006-02-15 2012-02-01 Gac株式会社 Heat exchanger
JP2008133983A (en) * 2006-11-28 2008-06-12 Cool Technos:Kk Ultra low temperature gas generator
DE112008000519T5 (en) 2007-02-27 2010-01-21 Denso Corporation, Kariya-City Unit for ejector refrigeration cycle and refrigeration cycle apparatus using the same
WO2008105391A1 (en) * 2007-02-27 2008-09-04 Denso Corporation Unit for ejector type refrigeration cycle and refrigeration device using the same
US8534093B2 (en) 2007-02-27 2013-09-17 Denso Corporation Unit for ejector-type refrigeration cycle, and refrigeration cycle device using the same
JP2008209066A (en) * 2007-02-27 2008-09-11 Denso Corp Ejector and unit for ejector type refrigerating cycle
DE112008000519B4 (en) 2007-02-27 2018-12-20 Denso Corporation Unit for ejector refrigeration cycle and refrigeration cycle apparatus using the same
US8201415B2 (en) 2007-06-20 2012-06-19 Denso Corporation Integrated unit for refrigeration cycle device
US8176744B2 (en) 2007-08-21 2012-05-15 Denso Corporation Refrigeration-cycle component assembly and vehicular refrigeration system
WO2009090059A1 (en) * 2008-01-18 2009-07-23 Valeo Klimasysteme Gmbh Refrigerant circuit and method for operating a refrigerant circuit
DE102009021704A1 (en) 2008-05-19 2009-11-26 DENSO CORPORATION, Kariya-shi evaporator unit
US8201620B2 (en) 2008-05-19 2012-06-19 Denso Corporation Evaporator unit
JP2010036737A (en) * 2008-08-05 2010-02-18 Denso Corp Air conditioning device for vehicle
JP2010036738A (en) * 2008-08-05 2010-02-18 Denso Corp Air conditioning device for vehicle
JP2012255584A (en) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp Distributor and heat pump device
WO2016031156A1 (en) * 2014-08-28 2016-03-03 株式会社デンソー Ejector-type refrigeration cycle
JP2016050762A (en) * 2014-08-28 2016-04-11 株式会社デンソー Ejector-type refrigeration cycle
CN106662368A (en) * 2014-08-28 2017-05-10 株式会社电装 Ejector-type refrigeration cycle
CN106796058A (en) * 2014-08-28 2017-05-31 株式会社电装 Ejector-type kind of refrigeration cycle
JP2016050761A (en) * 2014-08-28 2016-04-11 株式会社デンソー Ejector type refrigeration cycle
WO2016031157A1 (en) * 2014-08-28 2016-03-03 株式会社デンソー Ejector-type refrigeration cycle
US10179500B2 (en) 2014-08-28 2019-01-15 Denso Corporation Ejector-type refrigeration cycle
CN106796058B (en) * 2014-08-28 2019-04-09 株式会社电装 Ejector-type refrigeration cycle
DE112015003931B4 (en) 2014-08-28 2021-08-19 Denso Corporation Ejector refrigeration cycle
WO2016098204A1 (en) * 2014-12-17 2016-06-23 三菱電機株式会社 Heat exchanger and refrigeration cycle device provided with heat exchanger

Also Published As

Publication number Publication date
JP3265649B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
JP3265649B2 (en) Refrigeration cycle
US7654108B2 (en) Unit for refrigerant cycle device
US7770412B2 (en) Integrated unit for refrigerant cycle device and manufacturing method of the same
US8099978B2 (en) Evaporator unit
EP1870648B1 (en) Ejector type refrigerating cycle unit
US8534093B2 (en) Unit for ejector-type refrigeration cycle, and refrigeration cycle device using the same
CN100416180C (en) Vapor compression cycle having ejector
US7513128B2 (en) Ejector-type cycle
US7823401B2 (en) Refrigerant cycle device
US20070169512A1 (en) Heat exchanger and refrigerant cycle device using the same
US7832229B2 (en) Integrated unit for refrigerant cycle device
US8365552B2 (en) Evaporator unit having tank provided with ejector nozzle
US20070289318A1 (en) Refrigerant cycle device and heat-exchanger integrated unit with temperature sensor for the same
JP3301169B2 (en) Refrigeration equipment
US8201620B2 (en) Evaporator unit
US7726150B2 (en) Ejector cycle device
US20090095003A1 (en) Refrigeration cycle device
CN101329115B (en) Evaporator having ejector
EP1426714A1 (en) Refrigerating system and condenser for decompression tube system
JPH0510633A (en) Condenser
JP2010014353A (en) Evaporator unit for ejector refrigeration cycle
JP2001289536A (en) Refrigerating apparatus
JPH0526522A (en) Freezing cycle
US6684662B2 (en) Refrigeration system, and condenser for use in decompressing-tube system
JPH0875311A (en) Refrigerating machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

EXPY Cancellation because of completion of term