JP2003074992A - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus

Info

Publication number
JP2003074992A
JP2003074992A JP2001264202A JP2001264202A JP2003074992A JP 2003074992 A JP2003074992 A JP 2003074992A JP 2001264202 A JP2001264202 A JP 2001264202A JP 2001264202 A JP2001264202 A JP 2001264202A JP 2003074992 A JP2003074992 A JP 2003074992A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
ejector
valve
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001264202A
Other languages
Japanese (ja)
Inventor
Yukikatsu Ozaki
幸克 尾▲崎▼
Tadashi Hotta
忠資 堀田
Hirotsugu Takeuchi
裕嗣 武内
Hiroshi Ishikawa
石川  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2001264202A priority Critical patent/JP2003074992A/en
Publication of JP2003074992A publication Critical patent/JP2003074992A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0407Refrigeration circuit bypassing means for the ejector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration apparatus capable of avoiding pressure rise of a refrigerant in a high pressure side due to increase of refrigerant flow rate and simultaneously raising cooling capacity corresponding to the increase of the refrigerant flow rate. SOLUTION: A bypass passage B is provided for making part of a refrigerant flowing out of a refrigerant radiator 2 bypass an ejector 3 to flow into a gas- liquid separator 4. Control valves 7, 70 and 9 are provided in the halfway of the passage B. When the refrigerant flowing out of the radiator 2 comes to a specific pressure condition, the valves 7, 70 and 9 are opened to allow the refrigerant to flow into the passage B. Thus, the pressure of the refrigerant is surely prevented from being excessively raised, and a refrigeration cycle is stably operated. Further, even when the flow rate of the refrigerant increases, power for a refrigerant compressor 1 is prevented from increasing so that efficiency of the cycle is enhanced. Cooling capacity is raised corresponding to the increase of the refrigerant flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の膨張動力を
利用して冷媒の昇圧を行うエジェクタを用いた冷凍サイ
クル(エジェクタサイクル)装置の冷房能力の向上に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of the cooling capacity of a refrigeration cycle (ejector cycle) device using an ejector for boosting the pressure of a refrigerant by utilizing expansion power of the refrigerant.

【0002】[0002]

【従来の技術】従来より冷凍サイクルでエジェクタを用
いる方法が知られており、例えば、特開平6−2964
号公報には、エジェクタにより冷媒の膨張エネルギを利
用して蒸発器を通過する低圧冷媒の循環・昇圧を行うこ
とにより、サイクル効率を通常のエジェクタを用いない
サイクルより向上させるものが示されている。
2. Description of the Related Art Conventionally, a method of using an ejector in a refrigerating cycle has been known, for example, Japanese Patent Laid-Open No. 6-2964.
Japanese Patent Laid-Open Publication No. 2003-242359 discloses that the expansion energy of the refrigerant is used by the ejector to circulate and pressurize the low-pressure refrigerant passing through the evaporator, thereby improving the cycle efficiency as compared with a cycle without using an ordinary ejector. .

【0003】図12は従来のエジェクタサイクルの模式
図である。1は冷媒を圧縮して昇圧する冷媒圧縮機、2
は高圧冷媒を冷却させる冷媒放熱器、3はエジェクタ、
4は気液分離器、6は冷媒蒸発器、2aと6aはそれぞ
れ冷媒放熱器2及び冷媒蒸発器6に送風するファンであ
る。また、図13はエジェクタ3の断面構造図である。
ノズル31、低圧流入部32、混合部33、ディフュー
ザ34から構成されており、31aは高圧流入部、35
は流出部である。
FIG. 12 is a schematic diagram of a conventional ejector cycle. 1 is a refrigerant compressor for compressing and increasing the pressure of the refrigerant, 2
Is a refrigerant radiator for cooling the high-pressure refrigerant, 3 is an ejector,
Reference numeral 4 is a gas-liquid separator, 6 is a refrigerant evaporator, and 2a and 6a are fans for blowing air to the refrigerant radiator 2 and the refrigerant evaporator 6, respectively. Further, FIG. 13 is a sectional structural view of the ejector 3.
It is composed of a nozzle 31, a low-pressure inflow section 32, a mixing section 33, and a diffuser 34, and 31a is a high-pressure inflow section, and 35
Is the outflow part.

【0004】エジェクタ3の作動について、図13を用
いて説明する。高圧冷媒は高圧流入部31aからノズル
31に流入し、ノズル31により減圧されると共に、冷
媒の膨張エネルギを冷媒の運動エネルギに変換すること
で冷媒の流速は増加し、ノズル先端31cから気液二相
状態の高速の噴流となって噴出する。一方、冷媒蒸発器
6を出た低圧冷媒は、低圧流入部32から、ノズル噴流
回りの圧力低下を利用してエジェクタ3内に吸引され
る。
The operation of the ejector 3 will be described with reference to FIG. The high-pressure refrigerant flows into the nozzle 31 from the high-pressure inflow portion 31a, is decompressed by the nozzle 31, and the expansion energy of the refrigerant is converted into the kinetic energy of the refrigerant, so that the flow velocity of the refrigerant is increased, and the nozzle tip 31c is connected to the gas-liquid mixture. It spouts as a high-speed jet in a phased state. On the other hand, the low-pressure refrigerant that has exited the refrigerant evaporator 6 is sucked into the ejector 3 from the low-pressure inflow portion 32 by utilizing the pressure drop around the nozzle jet flow.

【0005】吸引された低圧冷媒とノズル噴流はエジェ
クタ3の混合部33で混合する。この時、高速のノズル
噴流と低速の低圧冷媒が混合しながら運動量の授受を行
う。そして、混合した冷媒を減速し、運動エネルギを圧
力エネルギに変換するディフューザ34を経て、冷媒は
エジェクタ流出部35から流出する。この過程を通して
低圧冷媒は高圧冷媒の膨張エネルギにより低圧流入部3
2側より昇圧される。
The sucked low-pressure refrigerant and the nozzle jet flow are mixed in the mixing section 33 of the ejector 3. At this time, the high-speed nozzle jet flow and the low-speed low-pressure refrigerant are mixed to transfer momentum. Then, the refrigerant is discharged from the ejector outflow portion 35 through the diffuser 34 that decelerates the mixed refrigerant and converts kinetic energy into pressure energy. Through this process, the low-pressure refrigerant is transferred to the low-pressure inlet 3 by the expansion energy of the high-pressure refrigerant.
It is boosted from the 2 side.

【0006】[0006]

【発明が解決しようとする課題】このエジェクタ3にお
いて、ノズル31の最も流路断面積の小さくなるのど部
31bの面積が一定のため、冷媒流量を冷凍サイクルの
運転条件に応じて調整することができない。負荷変動の
小さな冷凍サイクルでは、のど部31bの面積を運転頻
度の高い定常条件に合わせて設計して冷凍サイクルを運
転することも可能である。
In this ejector 3, since the area of the throat portion 31b of the nozzle 31 having the smallest flow passage cross-sectional area is constant, the refrigerant flow rate can be adjusted according to the operating conditions of the refrigeration cycle. Can not. In a refrigeration cycle with a small load fluctuation, it is possible to operate the refrigeration cycle by designing the area of the throat portion 31b according to a steady condition with a high operating frequency.

【0007】しかし、車両用空調装置等に用いる場合に
は、冷媒圧縮機1が図示しないエンジンで駆動されるた
め、冷媒圧縮機1の回転数が大きく変動し、冷媒流量も
大きく変化する。それを上記と同様な設計でのど部31
bの面積を決めてしまうと、冷媒流量増加時には冷媒圧
力が高くなり、冷媒圧縮機1の動力が増加して冷凍サイ
クルの効率が悪くなるか、又は冷媒圧力が上昇し過ぎて
運転の継続が困難になってしまう。
However, when used in a vehicle air conditioner or the like, since the refrigerant compressor 1 is driven by an engine (not shown), the rotational speed of the refrigerant compressor 1 fluctuates greatly and the refrigerant flow rate also changes greatly. Throat 31 with the same design as above
If the area of b is determined, the refrigerant pressure increases when the refrigerant flow rate increases, the power of the refrigerant compressor 1 increases and the efficiency of the refrigeration cycle deteriorates, or the refrigerant pressure increases too much and the operation continues. It will be difficult.

【0008】特に、脱フロンで二酸化炭素(CO2)を
冷媒に用いた冷凍サイクルでは、高圧側が従来のフロン
と比べて約10倍の圧力で運転しており、高圧でも冷媒
が凝縮しない超臨界サイクルであるため、同じ冷媒流量
変化率に対して圧力の変化量がフロンよりも大きく、ま
た、圧力が急激に変動し易いため冷凍サイクルを安定し
て運転し難いという課題がある。
In particular, in a refrigeration cycle using carbon dioxide (CO 2 ) as a refrigerant for defluorocarbon, the high pressure side operates at a pressure of about 10 times that of conventional freon, and the refrigerant does not condense even at high pressure. Since it is a cycle, the amount of change in pressure is larger than that of CFC for the same rate of change of the refrigerant flow rate, and the pressure tends to change rapidly, which makes it difficult to operate the refrigeration cycle stably.

【0009】また、電動の冷媒圧縮機を用いた電気自動
車用の空調装置や家庭用の空調装置においても、クール
ダウン時のように大きな冷房能力が必要で大きな冷媒流
量を必要とする場合があり、車両用空調装置と同様な課
題が生じる場合がある。
Further, in an air conditioner for an electric vehicle or a home air conditioner using an electric refrigerant compressor, a large cooling capacity may be required and a large refrigerant flow rate may be required as in a cool down. The same problems as those of the vehicle air conditioner may occur.

【0010】本発明は、上記従来の課題に鑑みて成され
たものであり、その目的は、冷媒流量の増加による冷媒
圧力の上昇を回避しつつ、冷媒流量の増加に対応して冷
房能力を向上できる冷凍サイクル装置を提供することに
ある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to avoid the increase of the refrigerant pressure due to the increase of the refrigerant flow rate and to improve the cooling capacity corresponding to the increase of the refrigerant flow rate. It is to provide a refrigeration cycle device that can be improved.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明では以下の技術的手段を採用する。
In order to achieve the above object, the present invention employs the following technical means.

【0012】請求項1記載の発明では、冷媒放熱器
(2)を出た冷媒の一部を、エジェクタ(3)をバイパ
スして気液分離器(4)に流入させるバイパス流路
(B)を設けると共に、そのバイパス流路(B)の途中
に制御弁(7、70、9)を設け、冷媒放熱器(2)を
出た冷媒が所定の圧力条件となった場合に制御弁(7、
70、9)が開いてバイパス流路(B)に冷媒が流れる
ようにしたことを特徴とする。
According to the first aspect of the present invention, the bypass flow passage (B) for allowing a part of the refrigerant discharged from the refrigerant radiator (2) to bypass the ejector (3) and flow into the gas-liquid separator (4). And a control valve (7, 70, 9) in the middle of the bypass flow path (B), and when the refrigerant discharged from the refrigerant radiator (2) reaches a predetermined pressure condition, the control valve (7 ,
70, 9) are opened to allow the refrigerant to flow into the bypass flow passage (B).

【0013】これは、冷媒流量が増加して高圧側の冷媒
圧力が必要以上に高くなってしまう場合に、高圧冷媒の
一部を分岐させてエジェクタ(3)をバイパスして流す
ことで、高圧側の圧力上昇を回避するものである。これ
により、冷媒圧力が上昇し過ぎるのを確実に防止できて
冷凍サイクルを安定して運転できるうえ、冷媒流量増加
時も冷媒圧縮機(1)の動力の増加が抑制されてサイク
ル効率が向上する。
This is because when the refrigerant flow rate increases and the refrigerant pressure on the high-pressure side becomes unnecessarily high, a part of the high-pressure refrigerant is branched so as to bypass the ejector (3) and flow at a high pressure. This is to avoid the pressure increase on the side. As a result, it is possible to reliably prevent the refrigerant pressure from rising too high, and to operate the refrigeration cycle in a stable manner. Further, even when the refrigerant flow rate increases, an increase in power of the refrigerant compressor (1) is suppressed, and cycle efficiency is improved. .

【0014】また、バイパス流路(B)を通ってきた液
冷媒は、エジェクタ(3)を通ってきた液冷媒と共に上
記のように冷媒蒸発器(6)を流れて冷房の効果を発揮
する。そのため、クールダウン時のように大きな冷房能
力が必要なときには、バイパス流路(B)に冷媒を流す
ことで、従来より冷媒蒸発器(6)を流れる流量を大き
くできるので、より大きな冷房能力を得ることができ
る。
The liquid refrigerant that has passed through the bypass flow path (B) flows through the refrigerant evaporator (6) as described above together with the liquid refrigerant that has passed through the ejector (3) to exert the effect of cooling. Therefore, when a large cooling capacity is required, such as during cool down, by flowing the refrigerant through the bypass flow path (B), the flow rate through the refrigerant evaporator (6) can be made larger than in the conventional case, so that a larger cooling capacity can be obtained. Obtainable.

【0015】請求項2記載の発明では、冷媒放熱器
(2)を出た冷媒の一部を、エジェクタ(3)、気液分
離器(4)及び流量調節弁(5)をバイパスして冷媒蒸
発器(6)に流入させるバイパス流路(B)を設けると
共に、そのバイパス流路(B)の途中に制御弁(7、7
0、9)を設け、冷媒放熱器(2)を出た冷媒が所定の
圧力条件となった場合に制御弁(7、70、9)が開い
てバイパス流路(B)に冷媒が流れるようにしたことを
特徴とする。
According to the second aspect of the present invention, a part of the refrigerant discharged from the refrigerant radiator (2) is bypassed through the ejector (3), the gas-liquid separator (4) and the flow rate control valve (5). A bypass flow path (B) for flowing into the evaporator (6) is provided, and a control valve (7, 7) is provided in the middle of the bypass flow path (B).
0, 9) are provided so that the control valve (7, 70, 9) is opened so that the refrigerant flows through the bypass flow passage (B) when the refrigerant discharged from the refrigerant radiator (2) has a predetermined pressure condition. It is characterized by having done.

【0016】これも、冷媒流量が増加して高圧側の冷媒
圧力が必要以上に高くなってしまう場合に、高圧冷媒の
一部を分岐させてエジェクタ(3)をバイパスして流す
ことで高圧側の圧力上昇を回避するものである。
Also in this case, when the refrigerant flow rate increases and the refrigerant pressure on the high pressure side becomes unnecessarily high, a part of the high pressure refrigerant is branched so as to flow by bypassing the ejector (3). This is to avoid the pressure rise of.

【0017】冷媒蒸発器6側の冷媒流路には、流量調節
弁(5)を設ける場合があり、高圧冷媒の一部を分岐さ
せてエジェクタ(3)をバイパスして流しても、この流
量調節弁(5)で冷媒流量が絞られて、思うように高圧
側の圧力上昇を回避できない場合が考えられる。本発明
の場合、その流量調節弁(5)をもバイパスして冷媒蒸
発器(6)に流入させるため、これによっても、冷媒圧
力が上昇し過ぎるのを確実に防止できて冷凍サイクルを
安定して運転できるうえ、冷媒流量増加時も冷媒圧縮機
(1)の動力の増加が抑制されてサイクル効率が向上す
る。
A flow rate control valve (5) may be provided in the refrigerant flow path on the side of the refrigerant evaporator 6, and even if a part of the high pressure refrigerant is branched to flow through the ejector (3), the flow rate of this flow rate is increased. It is conceivable that the flow rate of the refrigerant is throttled by the control valve (5) and the pressure increase on the high pressure side cannot be avoided as expected. In the case of the present invention, since the flow rate control valve (5) is also bypassed to flow into the refrigerant evaporator (6), it is possible to reliably prevent the refrigerant pressure from rising too high, thereby stabilizing the refrigeration cycle. In addition, the operation of the refrigerant compressor (1) is suppressed from increasing even when the refrigerant flow rate increases, and the cycle efficiency improves.

【0018】また、本実施形態においてもエジェクタ
(3)をバイパスした冷媒は冷媒蒸発器6を通過すると
きに、気液分離器(4)からの液冷媒と共に冷房の効果
を発揮するため、クールダウン時のように大きな冷房能
力が必要な時には、従来より冷媒蒸発器(6)を流れる
流量を大きくできるので、より大きな冷房能力を得るこ
とができる。
Also in this embodiment, when the refrigerant bypassing the ejector (3) passes through the refrigerant evaporator 6, it exerts a cooling effect together with the liquid refrigerant from the gas-liquid separator (4), so that it is cool. When a large cooling capacity is required, such as during downtime, the flow rate through the refrigerant evaporator (6) can be increased as compared with the conventional case, and thus a larger cooling capacity can be obtained.

【0019】請求項3記載の発明では、制御弁(7、7
0)は、冷媒放熱器(2)からエジェクタ(3)に至る
冷媒流路(A)の一部を形成すると共に、その冷媒流路
(A)からバイパス流路(B)へ連通する弁口(76)
を持ち、冷媒流路(A)内に所定密度で冷媒ガスを封入
した密閉空間(79)を形成し、その密閉空間(79)
内外の圧力差に応じて変位する変位部材(72)と、そ
の変位部材(72)と連動して弁口(76)を開閉する
弁体(71)とを備え、冷媒流路(A)内圧力が密閉空
間(79)内圧力を越えた場合に変位部材(72)が変
位して弁口(76)が開くようにしたことを特徴とす
る。
In the invention according to claim 3, the control valve (7, 7)
Reference numeral 0) forms a part of the refrigerant flow passage (A) from the refrigerant radiator (2) to the ejector (3) and also communicates with the refrigerant flow passage (A) to the bypass flow passage (B). (76)
And has a closed space (79) in which the refrigerant gas is enclosed at a predetermined density in the refrigerant flow path (A), and the closed space (79) is formed.
A displacement member (72) that is displaced according to a pressure difference between the inside and outside, and a valve body (71) that opens and closes the valve port (76) in conjunction with the displacement member (72) are provided, and When the pressure exceeds the pressure in the closed space (79), the displacement member (72) is displaced and the valve port (76) is opened.

【0020】これは、高圧側である冷媒流路(A)内圧
力が、所定圧力となる密閉空間(79)内圧力以下の時
は、放熱器(2)を出た冷媒の全部がエジェクタ(3)
を通過するが、高圧側である冷媒流路(A)内圧力が、
所定圧力となる密閉空間(79)内圧力を越えた場合に
バイパス流路(B)に高圧冷媒の一部が流れるので、冷
媒流量の増加による高圧上昇を回避することができる。
This is because when the internal pressure of the refrigerant passage (A) on the high pressure side is equal to or lower than the internal pressure of the closed space (79) which is a predetermined pressure, all the refrigerant discharged from the radiator (2) is ejected ( 3)
But the internal pressure of the refrigerant channel (A), which is the high pressure side,
When the pressure in the closed space (79), which is a predetermined pressure, is exceeded, a part of the high-pressure refrigerant flows in the bypass flow path (B), so it is possible to avoid a high pressure increase due to an increase in the refrigerant flow rate.

【0021】また、本制御弁(7、70)は放熱器
(2)を出た高圧冷媒温度に応じて密閉空間(79)内
圧力が変化するので、制御弁(7、70)の開弁圧も高
圧冷媒温度に応じて変化し、開弁圧はCOP(冷凍サイ
クルの成績係数)を極大にする最適制御線とほぼ一致す
るので、サイクルの運転をCOPの高い条件に制御する
ことができる。
Further, since the pressure in the closed space (79) of the control valve (7, 70) changes according to the temperature of the high pressure refrigerant discharged from the radiator (2), the control valve (7, 70) is opened. The pressure also changes according to the high-pressure refrigerant temperature, and the valve opening pressure almost matches the optimum control line that maximizes the COP (coefficient of performance of the refrigeration cycle), so that the cycle operation can be controlled under a high COP condition. .

【0022】請求項4記載の発明では、制御弁(9)
は、弁の上流側である冷媒放熱器(2)を出た冷媒の圧
力が、弁の下流側である気液分離器(4)での冷媒圧
力、又は冷媒蒸発器(6)での冷媒圧力に対して所定の
圧力差を越えた場合に弁が開くようにしたことを特徴と
する。
In the invention according to claim 4, the control valve (9)
Is the pressure of the refrigerant leaving the refrigerant radiator (2) on the upstream side of the valve, the refrigerant pressure in the gas-liquid separator (4) on the downstream side of the valve, or the refrigerant in the refrigerant evaporator (6). It is characterized in that the valve is opened when a predetermined pressure difference with respect to the pressure is exceeded.

【0023】本発明の制御弁(9)は、弁前後の差圧が
所定値を越えたときに開弁する差圧弁(9)である。こ
の差圧弁(9)を用いることにより、冷房の負荷が大き
く冷媒蒸発器(6)内圧力が高くなる、すなわち気液分
離器(4)内圧力も高くなる場合にはエジェクタ(3)
をバイパスする冷媒圧力が高くなり、冷房の負荷が小さ
く冷媒蒸発器(6)内圧力が低くなる、すなわち気液分
離器(4)内圧力も低くなる場合にはエジェクタ(3)
をバイパスする冷媒圧力を低く制御することができる。
The control valve (9) of the present invention is a differential pressure valve (9) that opens when the differential pressure across the valve exceeds a predetermined value. By using this differential pressure valve (9), when the cooling load is large and the pressure inside the refrigerant evaporator (6) is high, that is, the pressure inside the gas-liquid separator (4) is also high, the ejector (3).
When the refrigerant pressure for bypassing is high, the cooling load is small and the refrigerant evaporator (6) internal pressure is low, that is, the gas-liquid separator (4) internal pressure is also low, the ejector (3)
It is possible to control the pressure of the refrigerant that bypasses the low.

【0024】冷媒にCO2を用いたCO2サイクルの場
合、冷媒放熱器(2)の出口冷媒温度が同じ場合、冷媒
圧力が高いほど冷房に寄与するエンタルピ差が大きくな
るため、冷房の負荷の大きい時には差圧弁(9)を開弁
する圧力が高くなって冷房能力も大きくなり、冷房の負
荷が小さい時には差圧弁(9)を開弁する圧力が低くな
って冷房能力も小さくなり、圧縮機(1)の動力の増加
が抑制されて、COPの低下も抑制される。
In the case of the CO 2 cycle using CO 2 to the refrigerant, when the outlet refrigerant temperature of the refrigerant radiator (2) are the same, since the refrigerant pressure increases contributes enthalpy difference in the cooling higher, the cooling load When the load is large, the pressure for opening the differential pressure valve (9) is high and the cooling capacity is large, and when the load of cooling is small, the pressure for opening the differential pressure valve (9) is low and the cooling capacity is small, and the compressor is The increase in power of (1) is suppressed, and the decrease in COP is also suppressed.

【0025】請求項5記載の発明では、気液分離器
(4)に、エジェクタ(3)と制御弁(9)とを内蔵、
又は一体としたことを特徴とする。これにより、全体で
の部品点数が減って加工・組立が容易となる。また、装
置がコンパクトとなるうえ、バイパス流路(B)の配管
等各機器の間を結んでいた管路が削減できるため、車両
等への搭載性や組み付け性が向上する。因みに、上記各
手段の括弧内の符号は、後述する実施形態に記載の具体
的手段との対応関係を示す一例である。
According to the fifth aspect of the invention, the gas-liquid separator (4) includes the ejector (3) and the control valve (9).
Alternatively, it is integrated. As a result, the number of parts as a whole is reduced, and processing / assembly is facilitated. In addition, the apparatus becomes compact and the number of pipelines that connect the various equipments such as the bypass channel (B) can be reduced, so that the mountability and the assemblability on a vehicle or the like are improved. Incidentally, the reference numerals in parentheses of the above-mentioned respective means are examples showing the corresponding relationship with the concrete means described in the embodiments described later.

【0026】[0026]

【発明の実施の形態】次に、本発明の実施形態を、図面
に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0027】(第1実施形態)図1は本発明の第1実施
形態におけるエジェクタサイクルの模式図である。冷媒
には二酸化炭素(CO2)を用いている。1は冷媒を低
圧から高圧に圧縮する冷媒圧縮機、2は高圧冷媒から放
熱するための冷媒放熱器、3は冷媒が膨張するエネルギ
を利用して低圧冷媒の循環・昇圧を行うエジェクタ、4
はエジェクタ3から出た気液二相冷媒を気相と液相に分
離し、気相を冷媒圧縮機1へ、液相を冷媒蒸発器6側に
送る気液分離器、6はその冷媒蒸発器である。また、2
aと6aはそれぞれ冷媒放熱器2及び冷媒蒸発器6に送
風するファンである。
(First Embodiment) FIG. 1 is a schematic diagram of an ejector cycle according to a first embodiment of the present invention. Carbon dioxide (CO 2 ) is used as the refrigerant. Reference numeral 1 is a refrigerant compressor for compressing the refrigerant from low pressure to high pressure, 2 is a refrigerant radiator for radiating heat from the high pressure refrigerant, 3 is an ejector for circulating and boosting the low pressure refrigerant by utilizing energy for expanding the refrigerant.
Is a gas-liquid separator that separates the gas-liquid two-phase refrigerant discharged from the ejector 3 into a gas phase and a liquid phase, and sends the gas phase to the refrigerant compressor 1 and the liquid phase to the refrigerant evaporator 6 side; It is a vessel. Also, 2
Reference characters a and 6a are fans that blow air to the refrigerant radiator 2 and the refrigerant evaporator 6, respectively.

【0028】冷媒放熱器2とエジェクタ3とを結ぶ冷媒
流路Aの途中に分岐を設け、そこでの冷媒の分岐を制御
する制御弁7と、その制御弁7から気液分離器4へと結
ぶ冷媒流路Bとを設けている。図2は、このエジェクタ
サイクルに適用される制御弁7の断面構造図である。
尚、本構造は本出願人が先に出願した特開平9−264
622号公報に記載の制御弁と類似のものである。
A branch is provided in the middle of the refrigerant flow path A connecting the refrigerant radiator 2 and the ejector 3, and a control valve 7 for controlling the branch of the refrigerant there, and the control valve 7 is connected to the gas-liquid separator 4. A coolant channel B is provided. FIG. 2 is a cross-sectional structural view of the control valve 7 applied to this ejector cycle.
Incidentally, this structure is disclosed in Japanese Patent Application Laid-Open No. 9-264
It is similar to the control valve described in Japanese Patent No. 622.

【0029】弁体71を接合したダイヤフラム(変位部
材)72と、ダイヤフラム72を挟んで上側ケース73
・下側ケース74があり、これらは外周部75で溶接さ
れている。76はバイパス流路Bに連通する弁口で、ダ
イヤフラム72の変位に応じて弁体71が上下すること
で弁体71と弁口76の間でバイパス流路Bが開閉され
る。
A diaphragm (displacement member) 72 to which the valve body 71 is joined, and an upper case 73 sandwiching the diaphragm 72.
There is a lower case 74, which is welded at the outer peripheral portion 75. Reference numeral 76 denotes a valve opening communicating with the bypass passage B, and the valve passage 71 is opened and closed according to the displacement of the diaphragm 72, so that the bypass passage B is opened and closed between the valve body 71 and the valve opening 76.

【0030】上側ケース73とダイヤフラム72とによ
り密閉空間79が形成されており、この密閉空間79内
には弁体71を閉じた状態の密閉空間79内体積に対
し、CO2を約600kg/m3の密度で封入している。
80はCO2を封入する封入口で、溶接またはロー付け
により封止部81で封止してある。上側ケース736及
び下側ケース74周りには冷媒放熱器2からエジェクタ
3へ行く高圧冷媒が流れており、密閉空間79内の温度
は周りの高圧冷媒温度とほぼ等しくなっている。
A closed space 79 is formed by the upper case 73 and the diaphragm 72. In this closed space 79, CO 2 is about 600 kg / m with respect to the internal volume of the closed space 79 with the valve body 71 closed. Enclosed at a density of 3 .
Reference numeral 80 denotes a sealing port for sealing CO 2, which is sealed by a sealing portion 81 by welding or brazing. The high-pressure refrigerant flowing from the refrigerant radiator 2 to the ejector 3 flows around the upper case 736 and the lower case 74, and the temperature in the closed space 79 is substantially equal to the surrounding high-pressure refrigerant temperature.

【0031】尚、上側ケース73、ダイヤフラム72、
下側ケース74を溶接した部品は、流路ハウジング82
に設けたステイ83に固定金具84によりねじ止め・溶
接等により固定されている。85は下側ケース74側へ
の冷媒流路である。ロッド77は弁体71に接合してあ
り、圧縮コイルばね78により弁が閉じる方向に力を作
用させている。
The upper case 73, the diaphragm 72,
The parts obtained by welding the lower case 74 are the flow path housing 82.
It is fixed to the stay 83 provided in the above by means of a fixing metal fitting 84 by screwing, welding or the like. Reference numeral 85 is a refrigerant flow path to the lower case 74 side. The rod 77 is joined to the valve body 71, and a compression coil spring 78 exerts a force in a direction of closing the valve.

【0032】これは、冷媒圧力が臨界圧以下となり高圧
側冷媒が気液二相状態で流れている場合、密閉空間79
内温度と周囲の高圧側冷媒温度とは等しくなり、密閉空
間79内圧力(その温度での飽和圧力)と高圧側冷媒圧
力が同じとなってしまい、弁を閉じる力が作用しなくな
り、バイパス流路Bに冷媒が流れるのを防止すると共
に、冷媒の過冷却度が所定値になったところで制御弁が
開くようにするものである。ばね力はダイヤフラム72
での圧力換算で約0.6MPa(高圧側冷媒圧力が臨界
圧力以下の時の開弁時の過冷却度約5℃相当の圧力)で
ある。
This is because when the refrigerant pressure is below the critical pressure and the high-pressure side refrigerant is flowing in a gas-liquid two-phase state, the closed space 79
The internal temperature and the surrounding high-pressure-side refrigerant temperature become equal, the internal pressure of the closed space 79 (saturation pressure at that temperature) and the high-pressure-side refrigerant pressure become the same, and the force to close the valve does not act, and the bypass flow The refrigerant is prevented from flowing into the passage B, and the control valve is opened when the degree of supercooling of the refrigerant reaches a predetermined value. The spring force is the diaphragm 72.
In terms of pressure, it is about 0.6 MPa (pressure corresponding to a supercooling degree of about 5 ° C. when the high-pressure side refrigerant pressure is below the critical pressure when the valve is opened).

【0033】制御弁7の作動について説明する。密閉空
間79内には約600kg/m3のCO2が封入されてい
るので、密閉空間79内圧と温度は図3のCO2のモリ
エル線図に示される600kg/m3の等密度線に沿っ
て変化する。
The operation of the control valve 7 will be described. Since about 600 kg / m 3 of CO 2 is enclosed in the enclosed space 79, the internal pressure and temperature of the enclosed space 79 are along the isopycnic line of 600 kg / m 3 shown in the Mollier diagram of CO 2 in FIG. Change.

【0034】従って、例えば密閉空間79内温度が40
℃の場合は約9.7MPaであり、高圧側冷媒圧力が密
閉空間79内圧力+ばねによる圧力が10.3MPa以
下の場合は、密閉空間79内圧+ばねによる圧力の方が
大きいのでダイヤフラム72は図の下方に押され、弁体
71と弁口76が当たって弁が閉じ、冷媒はバイパス流
路Bを流れない。逆に、高圧側冷媒圧力が10.3MP
aを越えると弁が開き、冷媒はバイパス流路Bを流れ
る。
Therefore, for example, the temperature in the closed space 79 is 40
When the high temperature side refrigerant pressure is less than 10.3 MPa in the closed space 79 and the pressure in the closed space 79 is higher than the pressure in the closed space 79 + the spring, the diaphragm 72 has a larger pressure. When pushed downward in the figure, the valve body 71 and the valve opening 76 hit each other to close the valve, and the refrigerant does not flow in the bypass flow passage B. Conversely, the high-pressure side refrigerant pressure is 10.3MP
When a is exceeded, the valve opens and the refrigerant flows through the bypass flow passage B.

【0035】次に、冷凍サイクルの作動を説明する。冷
媒流量が少なく、高圧側冷媒圧力が制御弁7の開弁圧よ
り低い場合、制御弁7は閉じているので、冷媒は全てエ
ジェクタ3を通過し、従来のエジェクタサイクルと同様
の作動をする。
Next, the operation of the refrigeration cycle will be described. When the refrigerant flow rate is low and the high-pressure side refrigerant pressure is lower than the valve opening pressure of the control valve 7, the control valve 7 is closed, so that all the refrigerant passes through the ejector 3 and operates similarly to the conventional ejector cycle.

【0036】しかし、冷媒流量が増加し、高圧側冷媒圧
力が高くなり、制御弁7の開弁圧を越えると、制御弁7
が開いて、冷媒放熱器2を出た冷媒の一部が制御弁7で
減圧された後、バイパス流路Bを通って気液分離器4に
流れる。気液分離器4に入った冷媒はエジェクタ3から
来た冷媒と混合し、気液分離器4内で気相と液相に分離
され、気相は圧縮機1に、液相は冷媒蒸発器6に至る。
However, when the refrigerant flow rate increases and the high pressure side refrigerant pressure rises and exceeds the opening pressure of the control valve 7, the control valve 7
Is opened and a part of the refrigerant discharged from the refrigerant radiator 2 is decompressed by the control valve 7 and then flows through the bypass flow path B to the gas-liquid separator 4. The refrigerant that has entered the gas-liquid separator 4 mixes with the refrigerant that has come from the ejector 3, and is separated into a gas phase and a liquid phase in the gas-liquid separator 4, the gas phase being the compressor 1 and the liquid phase being the refrigerant evaporator. Up to 6.

【0037】このように、冷媒放熱器2を出た冷媒の一
部を、エジェクタ3をバイパスして気液分離器4に流入
させるバイパス流路Bを設けると共に、そのバイパス流
路Bの途中に制御弁7を設け、冷媒放熱器2を出た冷媒
が所定の圧力条件となった場合に制御弁7が開いてバイ
パス流路Bに冷媒が流れるようにしている。
As described above, the bypass flow path B for allowing a part of the refrigerant discharged from the refrigerant radiator 2 to bypass the ejector 3 and flow into the gas-liquid separator 4 is provided, and in the middle of the bypass flow path B. The control valve 7 is provided so that when the refrigerant discharged from the refrigerant radiator 2 has a predetermined pressure condition, the control valve 7 is opened to allow the refrigerant to flow into the bypass flow passage B.

【0038】これは、冷媒流量が増加して高圧側の冷媒
圧力が必要以上に高くなってしまう場合に、高圧冷媒の
一部を分岐させてエジェクタ3をバイパスして流すこと
で、高圧側の圧力上昇を回避するものである。これによ
り、冷媒圧力が上昇し過ぎるのを確実に防止できて冷凍
サイクルを安定して運転できるうえ、冷媒流量増加時も
冷媒圧縮機1の動力の増加が抑制されてサイクル効率が
向上する。
This is because when the refrigerant flow rate increases and the refrigerant pressure on the high-pressure side becomes unnecessarily high, a part of the high-pressure refrigerant is branched so as to bypass the ejector 3 and flow. It is to avoid pressure rise. As a result, it is possible to reliably prevent the refrigerant pressure from rising too high, and to operate the refrigeration cycle in a stable manner. Further, even when the refrigerant flow rate increases, the increase in power of the refrigerant compressor 1 is suppressed and the cycle efficiency is improved.

【0039】また、バイパス流路Bを通ってきた液冷媒
は、エジェクタ3を通ってきた液冷媒と共に上記のよう
に冷媒蒸発器6を流れて冷房の効果を発揮する。そのた
め、クールダウン時のように大きな冷房能力が必要なと
きには、バイパス流路Bに冷媒を流すことで、従来より
冷媒蒸発器6を流れる流量を大きくできるので、より大
きな冷房能力を得ることができる。
The liquid refrigerant that has passed through the bypass flow path B flows through the refrigerant evaporator 6 as described above together with the liquid refrigerant that has passed through the ejector 3 to exert the effect of cooling. Therefore, when a large cooling capacity is required as in the case of cool down, the flow rate of the refrigerant flowing through the refrigerant evaporator 6 can be increased by flowing the refrigerant through the bypass flow path B, so that a larger cooling capacity can be obtained. .

【0040】(第2実施形態)図4は、本発明の第2実
施形態におけるエジェクタサイクルの模式図である。第
1実施形態とは、冷媒蒸発器6側の冷媒流路の構成、及
びバイパス流路Bの接続先が異なる。冷媒蒸発器6側の
冷媒流路の構成として、5は冷媒蒸発器6を流れる冷媒
流量を調節する流量制御弁であり、冷媒蒸発器6出口の
冷媒過熱度を過熱度検知手段5aで検知し、過熱度が所
定値になるように制御している。また、バイパス流路B
の接続先は、第1実施形態での気液分離器4に変わり、
上記の流量制御弁5と冷媒蒸発器6との間のC部として
いる。
(Second Embodiment) FIG. 4 is a schematic diagram of an ejector cycle according to a second embodiment of the present invention. The configuration of the refrigerant flow passage on the refrigerant evaporator 6 side and the connection destination of the bypass flow passage B are different from those of the first embodiment. As a configuration of the refrigerant flow path on the refrigerant evaporator 6 side, 5 is a flow rate control valve for adjusting the flow rate of the refrigerant flowing through the refrigerant evaporator 6, and the superheat degree detecting means 5a detects the degree of refrigerant superheat at the outlet of the refrigerant evaporator 6. The superheat degree is controlled so as to reach a predetermined value. Also, the bypass flow path B
Is connected to the gas-liquid separator 4 in the first embodiment,
A portion C is provided between the flow control valve 5 and the refrigerant evaporator 6 described above.

【0041】次に、冷凍サイクルの作動を説明する。高
圧側冷媒圧力が制御弁7の開弁圧を越えると、制御弁7
が開き、制御弁7で減圧された気液二相冷媒がバイパス
流路Bを流れるようになる。バイパス流路Bからの冷媒
はC部に流入し、流量制御弁5で減圧された低圧冷媒と
混合し、冷媒蒸発器6を流れ、エジェクタ3に吸引さ
れ、ノズル噴流と混合して昇圧され、気液分離器4に至
る。
Next, the operation of the refrigeration cycle will be described. When the high pressure side refrigerant pressure exceeds the opening pressure of the control valve 7, the control valve 7
Is opened, and the gas-liquid two-phase refrigerant whose pressure has been reduced by the control valve 7 flows through the bypass passage B. The refrigerant from the bypass flow path B flows into the portion C, is mixed with the low-pressure refrigerant whose pressure is reduced by the flow control valve 5, flows through the refrigerant evaporator 6, is sucked by the ejector 3, and is mixed with the nozzle jet flow to be pressurized, It reaches the gas-liquid separator 4.

【0042】このように、冷媒放熱器2を出た冷媒の一
部を、エジェクタ3、気液分離器4及び流量調節弁5を
バイパスして冷媒蒸発器6に流入させるバイパス流路B
を設けると共に、そのバイパス流路Bの途中に制御弁7
を設け、冷媒放熱器2を出た冷媒が所定の圧力条件とな
った場合に制御弁7が開いてバイパス流路Bに冷媒が流
れるようにしている。
In this way, a part of the refrigerant flowing out of the refrigerant radiator 2 bypasses the ejector 3, the gas-liquid separator 4 and the flow rate control valve 5 and flows into the refrigerant evaporator 6, which is a bypass passage B.
And the control valve 7 is provided in the middle of the bypass flow path B.
The control valve 7 is opened to allow the refrigerant to flow into the bypass passage B when the refrigerant discharged from the refrigerant radiator 2 has a predetermined pressure condition.

【0043】これも、冷媒流量が増加して高圧側の冷媒
圧力が必要以上に高くなってしまう場合に、高圧冷媒の
一部を分岐させてエジェクタ3をバイパスして流すこと
で高圧側の圧力上昇を回避するものである。
Also in this case, when the refrigerant flow rate increases and the refrigerant pressure on the high-pressure side becomes unnecessarily high, a part of the high-pressure refrigerant is branched and the ejector 3 is bypassed to flow the pressure on the high-pressure side. It is to avoid rising.

【0044】冷媒蒸発器6側の冷媒流路Bには、流量調
節弁5を設ける場合があり、高圧冷媒の一部を分岐させ
てエジェクタ3をバイパスして流しても、この流量調節
弁5で冷媒流量が絞られて、思うように高圧側の圧力上
昇を回避できない場合が考えられる。本実施形態の場
合、その流量調節弁5をもバイパスして冷媒蒸発器6に
流入させるため、これによっても、冷媒圧力が上昇し過
ぎるのを確実に防止できて冷凍サイクルを安定して運転
できるうえ、冷媒流量増加時も冷媒圧縮機1の動力の増
加が抑制されてサイクル効率が向上する。
A flow rate adjusting valve 5 may be provided in the refrigerant flow path B on the side of the refrigerant evaporator 6, and even if a part of the high pressure refrigerant is branched so as to bypass the ejector 3 and flow. It is possible that the flow rate of the refrigerant is reduced and the increase in pressure on the high-pressure side cannot be avoided as expected. In the case of the present embodiment, since the flow rate control valve 5 is also bypassed and the refrigerant is allowed to flow into the refrigerant evaporator 6, it is possible to reliably prevent the refrigerant pressure from rising too high, and to operate the refrigeration cycle stably. In addition, even when the refrigerant flow rate increases, the increase in power of the refrigerant compressor 1 is suppressed, and the cycle efficiency is improved.

【0045】また、本実施形態においてもエジェクタ3
をバイパスした冷媒は冷媒蒸発器6を通過するときに、
気液分離器4からの液冷媒と共に冷房の効果を発揮する
ため、クールダウン時のように大きな冷房能力が必要な
時には、従来より冷媒蒸発器6を流れる流量を大きくで
きるので、より大きな冷房能力を得ることができる。
The ejector 3 is also used in this embodiment.
When the refrigerant that bypassed is passing through the refrigerant evaporator 6,
Since the cooling effect is exerted together with the liquid refrigerant from the gas-liquid separator 4, when a large cooling capacity is required such as during cool down, the flow rate through the refrigerant evaporator 6 can be increased as compared with the conventional one, so that a larger cooling capacity can be obtained. Can be obtained.

【0046】(第3実施形態)図5は、本発明の第3実
施形態におけるエジェクタサイクルの模式図である。本
実施形態は第1実施形態のサイクルに、冷媒圧縮機1に
吸入する冷媒と冷媒放熱器2を出た冷媒の熱交換を行わ
せる内部熱交換器8を追加したものである。
(Third Embodiment) FIG. 5 is a schematic diagram of an ejector cycle according to a third embodiment of the present invention. In this embodiment, an internal heat exchanger 8 is added to the cycle of the first embodiment to exchange heat between the refrigerant sucked into the refrigerant compressor 1 and the refrigerant discharged from the refrigerant radiator 2.

【0047】内部熱交換器8は、プレスしたアルミニウ
ムのプレートをろう付けで接合し、冷媒圧縮機1に吸入
する冷媒が流通する流路8aと、冷媒放熱器2を出た冷
媒が流通する流路8bとが対向して流れるように構成し
たもので、冷房能力やCOPの向上手段として用いられ
る。
The internal heat exchanger 8 is formed by joining pressed aluminum plates by brazing, and a flow path 8a through which the refrigerant drawn into the refrigerant compressor 1 flows and a flow through which the refrigerant exiting the refrigerant radiator 2 flows. It is configured so as to flow opposite to the passage 8b and is used as a means for improving the cooling capacity and COP.

【0048】図6は、本エジェクタサイクルに適用され
る制御弁70の断面構造図である。制御弁70の感温部
(ダイヤフラム72と上側ケース73に囲まれた密閉空
間79)に冷媒放熱器2を出た冷媒の温度を感知させる
ために、上側ケース73表面上を流れる冷媒流路A1
と、弁体71側の流路A2→A3を仕切部86により仕
切ると共に、下側カバー74の外表面に樹脂の断熱層8
7を設け、内部熱交換器7を通った後の冷媒A2の熱が
ダイヤフラム72側に伝わりにくくした。
FIG. 6 is a sectional structural view of a control valve 70 applied to the present ejector cycle. In order to make the temperature sensing portion of the control valve 70 (the closed space 79 surrounded by the diaphragm 72 and the upper case 73) sense the temperature of the refrigerant that has exited the refrigerant radiator 2, the refrigerant flow path A1 flowing over the surface of the upper case 73.
And the flow path A2 → A3 on the valve body 71 side is partitioned by the partition part 86, and the heat insulating layer 8 made of resin is formed on the outer surface of the lower cover 74.
7 is provided to make it difficult for the heat of the refrigerant A2 after passing through the internal heat exchanger 7 to be transferred to the diaphragm 72 side.

【0049】次に、冷凍サイクルの作動について説明す
る。冷媒放熱器2を出た冷媒は制御弁70の流路A1を
通過し、内部熱交換器8で冷媒圧縮機1に吸入される低
温冷媒により冷却され温度が下がる。その後、制御弁7
0内の流路A2→A3を通過してエジェクタ3に流入す
る。制御弁70の作動は第1実施形態と同じであり、高
圧側冷媒圧力が制御弁70の開弁圧を越えた時は弁が開
いてバイパス流路bに冷媒が流れ、開弁圧以下の時には
弁が閉じている。
Next, the operation of the refrigeration cycle will be described. The refrigerant discharged from the refrigerant radiator 2 passes through the flow path A1 of the control valve 70, is cooled by the low temperature refrigerant sucked into the refrigerant compressor 1 in the internal heat exchanger 8, and is cooled. After that, the control valve 7
It passes through the flow paths A2 → A3 in 0 and flows into the ejector 3. The operation of the control valve 70 is the same as that of the first embodiment, and when the high-pressure side refrigerant pressure exceeds the valve opening pressure of the control valve 70, the valve opens and the refrigerant flows in the bypass flow path b. Sometimes the valve is closed.

【0050】このように、実施形態1を含め、制御弁
7、70は、冷媒放熱器2からエジェクタ3に至る冷媒
流路Aの一部を形成すると共に、その冷媒流路Aからバ
イパス流路bへ連通する弁口76を持ち、冷媒流路A内
に所定密度で冷媒ガスを封入した密閉空間79を形成
し、その密閉空間79内外の圧力差に応じて変位するダ
イアフラム(変位部材)72と、そのダイアフラム72
と連動して弁口76を開閉する弁体71とを備え、冷媒
流路A内圧力が密閉空間79内圧力を越えた場合にダイ
アフラム72が変位して弁口76が開くようにしてい
る。
As described above, including the first embodiment, the control valves 7 and 70 form a part of the refrigerant flow path A from the refrigerant radiator 2 to the ejector 3, and the refrigerant flow path A to the bypass flow path. A diaphragm (displacement member) 72 having a valve port 76 communicating with b, forming a sealed space 79 in which a refrigerant gas is sealed at a predetermined density in a refrigerant flow path A, and displacing in accordance with a pressure difference between the inside and outside of the sealed space 79. And its diaphragm 72
And a valve body 71 that opens and closes the valve port 76 in cooperation with the valve body 76, and the diaphragm 72 is displaced to open the valve port 76 when the internal pressure of the refrigerant passage A exceeds the internal pressure of the sealed space 79.

【0051】これは、高圧側である冷媒流路A内圧力
が、所定圧力となる密閉空間79内圧力以下の時は、放
熱器2を出た冷媒の全部がエジェクタ3を通過するが、
高圧側である冷媒流路A内圧力が、所定圧力となる密閉
空間79内圧力を越えた場合にバイパス流路bに高圧冷
媒の一部が流れるので、冷媒流量の増加による高圧上昇
を回避することができる。
When the internal pressure of the refrigerant passage A on the high pressure side is equal to or lower than the internal pressure of the closed space 79 which is a predetermined pressure, all the refrigerant exiting the radiator 2 passes through the ejector 3.
When the internal pressure of the refrigerant flow path A on the high pressure side exceeds the internal pressure of the closed space 79 that is a predetermined pressure, a part of the high pressure refrigerant flows in the bypass flow path b, so that the high pressure rise due to the increase in the refrigerant flow rate is avoided. be able to.

【0052】また、本制御弁7、70は放熱器2を出た
高圧冷媒温度に応じて密閉空間79内圧力が変化するの
で、制御弁7、70の開弁圧も高圧冷媒温度に応じて変
化し、開弁圧はCOP(冷凍サイクルの成績係数)を極
大にする最適制御線とほぼ一致するので、サイクルの運
転をCOPの高い条件に制御することができる。
Further, since the pressure in the closed space 79 of the control valves 7 and 70 changes according to the temperature of the high pressure refrigerant flowing out of the radiator 2, the opening pressure of the control valves 7 and 70 also changes according to the temperature of the high pressure refrigerant. Since the valve opening pressure changes and the valve opening pressure substantially coincides with the optimum control line that maximizes COP (coefficient of performance of the refrigeration cycle), the cycle operation can be controlled under the condition of high COP.

【0053】(第4実施形態)図7は、本発明の第4実
施形態におけるエジェクタサイクルの模式図である。
(Fourth Embodiment) FIG. 7 is a schematic diagram of an ejector cycle according to a fourth embodiment of the present invention.

【0054】第1実施形態とは制御弁9の構造のみ異な
る。図8は、本エジェクタサイクルに適用される制御弁
(差圧弁)9の断面構造図である。
The structure of the control valve 9 is different from that of the first embodiment. FIG. 8 is a sectional structural view of a control valve (differential pressure valve) 9 applied to the present ejector cycle.

【0055】91は冷媒放熱器2とエジェクタ3を結ぶ
冷媒流路Aに設けた分岐Fと連通する流入口92、及び
気液分離器4に連通する流出口95が形成されたステン
レスや真鍮等の金属製のハウジングであり、このハウジ
ング91内には、流入口92側の空間と流出口95側の
空間とを連通させる弁口93が形成されている。また、
流出口95側空間内には、弁口93の開度を調節する弁
体96が配設されており、この弁体96は、金属製のコ
イルばね(弾性部材)97によって流入口92側の空間
に向けて押圧されている。
Reference numeral 91 is stainless steel, brass or the like having an inflow port 92 communicating with a branch F provided in a refrigerant flow path A connecting the refrigerant radiator 2 and the ejector 3 and an outflow port 95 communicating with the gas-liquid separator 4. The housing 91 is made of a metal, and a valve port 93 is formed in the housing 91 to connect the space on the inflow port 92 side with the space on the outflow port 95 side. Also,
A valve body 96 for adjusting the opening degree of the valve port 93 is arranged in the space on the outflow port 95 side, and the valve body 96 is provided on the inflow port 92 side by a metallic coil spring (elastic member) 97. Pressed towards the space.

【0056】尚ハウジング91は、ハウジング91のう
ち流出口95が形成されている蓋部材94と、流入口9
2が形成されている底部と、円筒状の本体部との3つの
部位から構成されており、底部と本体部は一体成形さ
れ、蓋部材94は、弁体96及びコイルばね97をハウ
ジング91内に収納したあと、溶接やねじ結合等の結合
手段によってハウジング91に結合されている。
The housing 91 includes a lid member 94 in which an outflow port 95 is formed and an inflow port 9 of the housing 91.
2 is formed and a cylindrical main body portion, and the bottom portion and the main body portion are integrally molded. The lid member 94 includes the valve body 96 and the coil spring 97 in the housing 91. After being stored in the housing 91, it is connected to the housing 91 by a connecting means such as welding or screw connection.

【0057】また、98はハウジング91内での弁体9
6の移動を案内(ガイド)するガイドスカートであり、
このガイドスカート98の円筒外周面がハウジング91
の内壁に接触することにより、弁体96の移動が案内さ
れている。更に、ガイドスカート98のうち弁体96の
近傍には、COの流路をなす複数個の穴99が形成さ
れている。
Further, 98 is the valve body 9 in the housing 91.
It is a guide skirt that guides the movement of 6 (guide),
The cylindrical outer peripheral surface of the guide skirt 98 is the housing 91.
The movement of the valve body 96 is guided by contacting the inner wall of the valve. Further, in the vicinity of the valve body 96 of the guide skirt 98, a plurality of holes 99 forming a flow path of CO 2 are formed.

【0058】次に、差圧弁9の作動を説明する。図8か
ら明らかなように、弁体96のうち流入口92側には冷
媒放熱器2の出口側圧力による作用力F1が作用するの
で、弁体96は流出口95側に押圧される。一方、流出
口95側には、気液分離器4内圧力およびコイルばね9
7の弾性力による力F2が作用するので、弁体96は流
入口92側に押圧される。
Next, the operation of the differential pressure regulating valve 9 will be described. As is apparent from FIG. 8, the acting force F1 due to the outlet side pressure of the refrigerant radiator 2 acts on the inflow port 92 side of the valve body 96, so that the valve body 96 is pressed toward the outflow port 95 side. On the other hand, on the outlet 95 side, the pressure inside the gas-liquid separator 4 and the coil spring 9 are increased.
Since the force F2 due to the elastic force of 7 acts, the valve body 96 is pressed toward the inflow port 92 side.

【0059】つまり、作用力F2が作用力F1より大き
い場合には弁体96により弁口93が閉じられてバイパ
ス流路bに冷媒は流れず、作用力F2が作用F1以下の
場合は弁体96が作用力F1により押されて移動し弁口
93が開きバイパス流路bに冷媒が流れる。従って、差
圧弁9の開弁差圧ΔPはコイルばね97が弁体96に及
ぼす弾性力に対応する。
That is, when the acting force F2 is larger than the acting force F1, the valve body 96 closes the valve opening 93 and the refrigerant does not flow into the bypass flow passage b. When the acting force F2 is less than the acting F1, the valve body is closed. 96 is pushed and moved by the acting force F1, the valve port 93 is opened, and the refrigerant flows in the bypass flow path b. Therefore, the valve opening differential pressure ΔP of the differential pressure valve 9 corresponds to the elastic force exerted on the valve body 96 by the coil spring 97.

【0060】例えば、図9は差圧弁9の作動特性の一例
を示すグラフであり、差圧弁9の開弁差圧を8MPaに
設定すると、冷房の負荷が大きく気液分離器4内圧力6
MPaのとき高圧側は14MPaで開弁し、冷房の負荷が
小さく気液分離器4内圧力が4MPaのときは高圧側は
12MPaで開弁することになる。(エジェクタ3の昇圧
量が0.5MPaとすると、負荷の大きいときは蒸発器
圧力は5.5MPa・蒸発器温度18℃、負荷の小さい
ときは蒸発器圧力3.5MPa・蒸発器温度0℃とな
る)このように、制御弁9は、弁の上流側である冷媒放
熱器2を出た冷媒の圧力が、弁の下流側である気液分離
器4での冷媒圧力、又は冷媒蒸発器6での冷媒圧力に対
して所定の圧力差を越えた場合に弁が開くようにしてい
る。
For example, FIG. 9 is a graph showing an example of the operating characteristics of the differential pressure valve 9. When the valve opening differential pressure of the differential pressure valve 9 is set to 8 MPa, the cooling load is large and the pressure 6 in the gas-liquid separator 4 is increased.
When the pressure is MPa, the high pressure side opens at 14 MPa, and when the cooling load is small and the pressure inside the gas-liquid separator 4 is 4 MPa, the high pressure side is
The valve will open at 12 MPa. (Assuming that the pressure increase amount of the ejector 3 is 0.5 MPa, the evaporator pressure is 5.5 MPa and the evaporator temperature is 18 ° C. when the load is large, and the evaporator pressure is 3.5 MPa and the evaporator temperature is 0 ° C. when the load is small. In this way, in the control valve 9, the pressure of the refrigerant leaving the refrigerant radiator 2 on the upstream side of the valve is the refrigerant pressure in the gas-liquid separator 4 on the downstream side of the valve, or the refrigerant evaporator 6 The valve opens when the pressure difference exceeds a predetermined pressure difference with respect to the refrigerant pressure.

【0061】本実施形態の制御弁9は、弁前後の差圧が
所定値を越えたときに開弁する差圧弁9である。この差
圧弁9を用いることにより、冷房の負荷が大きく冷媒蒸
発器6内圧力が高くなる、すなわち気液分離器4内圧力
も高くなる場合にはエジェクタ3をバイパスする冷媒圧
力が高くなり、冷房の負荷が小さく冷媒蒸発器6内圧力
が低くなる、すなわち気液分離器4内圧力も低くなる場
合にはエジェクタ3をバイパスする冷媒圧力を低く制御
することができる。
The control valve 9 of this embodiment is a differential pressure valve 9 that opens when the differential pressure across the valve exceeds a predetermined value. By using the differential pressure valve 9, when the cooling load is large and the internal pressure of the refrigerant evaporator 6 is high, that is, when the internal pressure of the gas-liquid separator 4 is also high, the refrigerant pressure bypassing the ejector 3 is high, and the cooling air is cooled. When the load is small and the internal pressure of the refrigerant evaporator 6 is low, that is, the internal pressure of the gas-liquid separator 4 is also low, the refrigerant pressure bypassing the ejector 3 can be controlled to be low.

【0062】冷媒にCO2を用いたCO2サイクルの場
合、冷媒放熱器2の出口冷媒温度が同じ場合、冷媒圧力
が高いほど冷房に寄与するエンタルピ差が大きくなるた
め、冷房の負荷の大きい時には差圧弁9を開弁する圧力
が高くなって冷房能力も大きくなり、冷房の負荷が小さ
い時には差圧弁9を開弁する圧力が低くなって冷房能力
も小さくなり、圧縮機1の動力の増加が抑制されてCO
Pの低下も抑制される。
[0062] When the CO 2 cycle using CO 2 to the refrigerant, when the outlet refrigerant temperature of the refrigerant radiator 2 are the same, since the refrigerant pressure increases contributes enthalpy difference in the cooling higher, when the load of cooling large The pressure for opening the differential pressure valve 9 increases and the cooling capacity also increases. When the cooling load is small, the pressure for opening the differential pressure valve 9 decreases and the cooling capacity also decreases, increasing the power of the compressor 1. CO is suppressed
The decrease in P is also suppressed.

【0063】(第5実施形態)図10は、本発明の第5
実施形態におけるエジェクタサイクルの模式図であり、
図11は、本エジェクタサイクルに適用されるエジェク
タ・差圧弁一体気液分離器40の断面構造図である。4
1・42は気液分離器のハウジングであり、本実施形態
はハウジング42に、第4実施形態におけるエジェクタ
3と差圧弁9を一体化しており、これによりバイパス流
路bを不要としている。差圧弁9は、第4実施形態と同
じ構造で、作動も同じである。
(Fifth Embodiment) FIG. 10 shows the fifth embodiment of the present invention.
It is a schematic diagram of an ejector cycle in the embodiment,
FIG. 11 is a sectional structural view of an ejector / differential pressure valve integrated gas-liquid separator 40 applied to the present ejector cycle. Four
1, 42 are housings of the gas-liquid separator, and in this embodiment, the ejector 3 and the differential pressure regulating valve 9 in the fourth embodiment are integrated with the housing 42, whereby the bypass flow passage b is unnecessary. The differential pressure valve 9 has the same structure as that of the fourth embodiment and operates in the same way.

【0064】43は高圧冷媒の流入する高圧側流入口、
44はノズル31側と差圧弁9とに冷媒を分岐させる高
圧側流入室で、流入口ブロック45をハウジング42に
組み付けることで形成される。32は冷媒蒸発器6から
の低圧冷媒が流入する低圧側流入口、50は気相冷媒流
出口、51は液相冷媒流出口である。差圧弁9は第4実
施形態と同じ構成のものを用いている。
43 is a high pressure side inlet into which the high pressure refrigerant flows,
Reference numeral 44 denotes a high pressure side inflow chamber for branching the refrigerant to the nozzle 31 side and the differential pressure valve 9 and is formed by assembling the inflow port block 45 to the housing 42. Reference numeral 32 is a low-pressure side inlet into which the low-pressure refrigerant from the refrigerant evaporator 6 flows, 50 is a vapor-phase refrigerant outlet, and 51 is a liquid-phase refrigerant outlet. The differential pressure valve 9 has the same structure as that of the fourth embodiment.

【0065】高圧側流入口43から入った高圧冷媒はノ
ズル31に流入し、金属製のエジェクタハウジング36
内に形成された混合部33及びディフューザ34を通っ
てエジェクタハウジング36から流出する。そして、樹
脂製で一端が閉じられた円筒46内を通り、樹脂製の仕
切り板47上側の気液分離器40の上部空間に吹き出
る。
The high-pressure refrigerant having entered from the high-pressure side inlet 43 flows into the nozzle 31, and the ejector housing 36 made of metal.
It flows out of the ejector housing 36 through the mixing portion 33 and the diffuser 34 formed inside. Then, it passes through a resin-made cylinder 46 whose one end is closed, and blows into the upper space of the gas-liquid separator 40 above the resin partition plate 47.

【0066】そして、仕切り板47の外周に設けた通路
47aを通り、仕切り板47下部の空間に入る。そし
て、液相は重力で下側に、気相は上側に貯まる。気相
は、樹脂製の気相導入管48および49を通り気相流出
口50から流出し、液冷媒は液冷媒流出口51から流出
する。
Then, it passes through a passage 47a provided on the outer periphery of the partition plate 47 and enters the space below the partition plate 47. Then, the liquid phase is stored on the lower side by gravity and the gas phase is stored on the upper side. The vapor phase flows out of the vapor phase outlet 50 through the resin vapor phase introducing pipes 48 and 49, and the liquid refrigerant flows out of the liquid refrigerant outlet port 51.

【0067】仕切り板47は、気液分離器4に流入した
気液混合冷媒が気相導入管48の流入口48aに直接入
ることを防止し、効率的に気相と液相に分離するために
設けたものである。48bは、冷媒と共に圧縮機1へ潤
滑用の冷凍機油を戻すための油戻しポートである。
The partition plate 47 prevents the gas-liquid mixed refrigerant flowing into the gas-liquid separator 4 from directly entering the inflow port 48a of the gas-phase introducing pipe 48, and efficiently separates it into a gas phase and a liquid phase. It was installed in. 48b is an oil return port for returning the refrigerating machine oil for lubrication to the compressor 1 together with the refrigerant.

【0068】このように、気液分離器4に、エジェクタ
3と差圧弁9とを内蔵、又は一体としており、これによ
り、全体での部品点数が減って加工・組立が容易とな
る。また、装置がコンパクトとなるうえ、バイパス流路
bの配管等各機器の間を結んでいた管路が削減できるた
め、車両等への搭載性や組み付け性が向上する。
In this way, the gas-liquid separator 4 has the ejector 3 and the differential pressure valve 9 built-in or integrated therein, which reduces the number of parts as a whole and facilitates processing and assembly. In addition, the apparatus becomes compact and the number of pipelines connecting the various equipments such as the pipeline of the bypass flow path b can be reduced, so that the mountability and the assemblability on the vehicle etc. are improved.

【0069】(その他の実施形態)本発明は、上述した
実施形態にのみ限定されるものではなく、次のように変
形または拡張することができる。上述の実施形態では冷
媒に二酸化炭素を用いた冷凍サイクルについて説明した
が、冷媒にフロンを用いた冷凍サイクルに本発明を適用
しても良い。また、制御弁として、本実施形態にあるよ
うな機械的に作動するものの他に、従来から知られてい
るような電気式膨張弁等の電気的に作動するもので全閉
機能を持ったものを使っても良い。
(Other Embodiments) The present invention is not limited to the above-described embodiments, but can be modified or expanded as follows. Although the refrigeration cycle using carbon dioxide as the refrigerant has been described in the above embodiment, the present invention may be applied to a refrigeration cycle using freon as the refrigerant. Further, as the control valve, in addition to the mechanically operated one as in the present embodiment, an electrically operated one such as a conventionally known electric expansion valve having a fully closing function. May be used.

【0070】尚、第3・第4実施形態でのバイパス流路
bの接続先は、第2実施形態と同様に冷媒蒸発器6の直
前であっても良い。また、第1及び第3〜5実施形態に
おいて、冷媒蒸発器6側の冷媒流路の構成として、第2
実施形態と同様に気液分離器4(40)と冷媒蒸発器6
との間に冷媒流量を調節する流量制御弁5を設けても良
い。この場合の流量制御弁は、第2実施形態と同様の過
熱度制御弁でも良いし、固定絞りのものであっても良
い。
Incidentally, the connection destination of the bypass flow passage b in the third and fourth embodiments may be just before the refrigerant evaporator 6 as in the second embodiment. In addition, in the first and third to fifth embodiments, as the configuration of the refrigerant flow path on the refrigerant evaporator 6 side, the second
Like the embodiment, the gas-liquid separator 4 (40) and the refrigerant evaporator 6
A flow rate control valve 5 for adjusting the flow rate of the refrigerant may be provided between and. The flow control valve in this case may be the same superheat control valve as in the second embodiment or may be a fixed throttle valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態におけるエジェクタサイ
クルの模式図である。
FIG. 1 is a schematic diagram of an ejector cycle according to a first embodiment of the present invention.

【図2】図1のエジェクタサイクルに適用される制御弁
の断面構造図である。
FIG. 2 is a sectional structural view of a control valve applied to the ejector cycle of FIG.

【図3】CO2のモリエル線図である。FIG. 3 is a Mollier diagram of CO 2 .

【図4】本発明の第2実施形態におけるエジェクタサイ
クルの模式図である。
FIG. 4 is a schematic diagram of an ejector cycle according to a second embodiment of the present invention.

【図5】本発明の第3実施形態におけるエジェクタサイ
クルの模式図である。
FIG. 5 is a schematic diagram of an ejector cycle according to a third embodiment of the present invention.

【図6】図5のエジェクタサイクルに適用される制御弁
の断面構造図である。
FIG. 6 is a sectional structural view of a control valve applied to the ejector cycle of FIG.

【図7】本発明の第4実施形態におけるエジェクタサイ
クルの模式図である。
FIG. 7 is a schematic diagram of an ejector cycle according to a fourth embodiment of the present invention.

【図8】図7のエジェクタサイクルに適用される差圧弁
の断面構造図である。
8 is a sectional structural view of a differential pressure valve applied to the ejector cycle of FIG.

【図9】差圧弁の作動特性の一例を示すグラフである。FIG. 9 is a graph showing an example of operating characteristics of a differential pressure valve.

【図10】本発明の第5実施形態におけるエジェクタサ
イクルの模式図である。
FIG. 10 is a schematic diagram of an ejector cycle according to a fifth embodiment of the present invention.

【図11】図10のエジェクタサイクルに適用されるエ
ジェクタ・差圧弁一体気液分離器の断面構造図である。
11 is a cross-sectional structural diagram of an ejector / differential pressure valve integrated gas-liquid separator applied to the ejector cycle of FIG.

【図12】従来のエジェクタサイクルの模式図である。FIG. 12 is a schematic diagram of a conventional ejector cycle.

【図13】エジェクタの断面構造図である。FIG. 13 is a sectional structural view of an ejector.

【符号の説明】[Explanation of symbols]

1 冷媒圧縮機 2 冷媒放熱器 3 エジェクタ 4 気液分離器 5 流量調節弁 6 冷媒蒸発器 7 制御弁 9 差圧弁(制御弁) 32 吸引部 70 制御弁 71 弁体 72 ダイアフラム(変位部材) 76 弁口 79 密閉空間 A 冷媒流路 b バイパス流路 1 Refrigerant compressor 2 Refrigerant radiator 3 ejectors 4 gas-liquid separator 5 Flow control valve 6 Refrigerant evaporator 7 control valve 9 Differential pressure valve (control valve) 32 Suction section 70 Control valve 71 Disc 72 Diaphragm (displacement member) 76 valve 79 enclosed space A refrigerant flow path b Bypass channel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // F16K 31/68 F16K 31/68 R (72)発明者 堀田 忠資 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 武内 裕嗣 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 石川 浩 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 3H057 AA02 BB25 CC13 DD05 EE02 FA22 HH07 HH18 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // F16K 31/68 F16K 31/68 R (72) Inventor Tadatoshi Hotta 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Prefecture Japan Auto Parts Research Institute, Inc. (72) Inventor Yuuji Takeuchi 1-1, Showa-cho, Kariya, Aichi Prefecture DENSO (72) Inventor, Hiroshi Ishikawa 1-1, Showa-cho, Kariya City, Aichi Stock Association F term in company DENSO (reference) 3H057 AA02 BB25 CC13 DD05 EE02 FA22 HH07 HH18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒圧縮機(1)、冷媒放熱器(2)、
エジェクタ(3)及び気液分離器(4)を冷媒流路
(A)で環状に連結すると共に、前記気液分離器(4)
の液相冷媒側と前記エジェクタ(3)の吸引部(32)
とを冷媒流路で連結し、その冷媒流路の途中に冷媒蒸発
器(6)を備えた冷凍サイクル装置において、 前記冷媒放熱器(2)を出た冷媒の一部を、前記エジェ
クタ(3)をバイパスして前記気液分離器(4)に流入
させるバイパス流路(B)を設けると共に、そのバイパ
ス流路(B)の途中に制御弁(7、70、9)を設け、
前記冷媒放熱器(2)を出た冷媒が所定の圧力条件とな
った場合に前記制御弁(7、70、9)が開いて前記バ
イパス流路(B)に冷媒が流れるようにしたことを特徴
とする冷凍サイクル装置。
1. A refrigerant compressor (1), a refrigerant radiator (2),
The ejector (3) and the gas-liquid separator (4) are annularly connected by the refrigerant channel (A), and the gas-liquid separator (4) is also connected.
Liquid-phase refrigerant side and the suction part (32) of the ejector (3)
In a refrigeration cycle apparatus in which a refrigerant flow path is connected to a refrigerant evaporator, and a refrigerant evaporator (6) is provided in the refrigerant flow path, a part of the refrigerant discharged from the refrigerant radiator (2) is part of the ejector (3). ) Is bypassed to flow into the gas-liquid separator (4), and a control valve (7, 70, 9) is provided in the middle of the bypass flow channel (B).
The control valve (7, 70, 9) is opened to allow the refrigerant to flow into the bypass passage (B) when the refrigerant discharged from the refrigerant radiator (2) has a predetermined pressure condition. A characteristic refrigeration cycle device.
【請求項2】 冷媒圧縮機(1)、冷媒放熱器(2)、
エジェクタ(3)及び気液分離器(4)を冷媒流路
(A)で環状に連結すると共に、前記気液分離器(4)
の液相冷媒側と前記エジェクタ(3)の吸引部(32)
とを冷媒流路で連結し、その冷媒流路に冷媒蒸発器
(6)と、その冷媒蒸発器(6)に流入する冷媒の量の
調整と減圧を行う流量調節弁(5)とを備えた冷凍サイ
クル装置において、 前記冷媒放熱器(2)を出た冷媒の一部を、前記エジェ
クタ(3)、前記気液分離器(4)及び前記流量調節弁
(5)をバイパスして前記冷媒蒸発器(6)に流入させ
るバイパス流路(B)を設けると共に、そのバイパス流
路(B)の途中に制御弁(7、70、9)を設け、前記
冷媒放熱器(2)を出た冷媒が所定の圧力条件となった
場合に前記制御弁(7、70、9)が開いて前記バイパ
ス流路(B)に冷媒が流れるようにしたことを特徴とす
る冷凍サイクル装置。
2. A refrigerant compressor (1), a refrigerant radiator (2),
The ejector (3) and the gas-liquid separator (4) are annularly connected by the refrigerant channel (A), and the gas-liquid separator (4) is also connected.
Liquid-phase refrigerant side and the suction part (32) of the ejector (3)
Are connected by a refrigerant flow path, and the refrigerant flow path is provided with a refrigerant evaporator (6) and a flow rate control valve (5) for adjusting the amount of the refrigerant flowing into the refrigerant evaporator (6) and reducing the pressure. In the refrigeration cycle apparatus, a part of the refrigerant discharged from the refrigerant radiator (2) bypasses the ejector (3), the gas-liquid separator (4) and the flow rate control valve (5) to the refrigerant. A bypass flow passage (B) for flowing into the evaporator (6) is provided, and a control valve (7, 70, 9) is provided in the middle of the bypass flow passage (B) to exit the refrigerant radiator (2). A refrigeration cycle apparatus, wherein the control valve (7, 70, 9) is opened to allow the refrigerant to flow into the bypass passage (B) when the refrigerant has a predetermined pressure condition.
【請求項3】 前記制御弁(7、70)は、前記冷媒放
熱器(2)から前記エジェクタ(3)に至る冷媒流路
(A)の一部を形成すると共に、その冷媒流路(A)か
ら前記バイパス流路(B)へ連通する弁口(76)を持
ち、前記冷媒流路(A)内に所定密度で冷媒ガスを封入
した密閉空間(79)を形成し、その密閉空間(79)
内外の圧力差に応じて変位する変位部材(72)と、そ
の変位部材(72)と連動して前記弁口(76)を開閉
する弁体(71)とを備え、前記冷媒流路(A)内圧力
が前記密閉空間(79)内圧力を越えた場合に前記変位
部材(72)が変位して前記弁口(76)が開くように
したことを特徴とする請求項1または請求項2に記載の
冷凍サイクル装置。
3. The control valve (7, 70) forms a part of a refrigerant passage (A) from the refrigerant radiator (2) to the ejector (3), and the refrigerant passage (A). ) To the bypass flow path (B), a closed space (79) is formed in the refrigerant flow path (A) in which a refrigerant gas is filled at a predetermined density, and the closed space ( 79)
The refrigerant flow path (A) includes a displacement member (72) that is displaced according to a pressure difference between the inside and the outside, and a valve body (71) that opens and closes the valve opening (76) in conjunction with the displacement member (72). 3.) When the internal pressure exceeds the internal pressure of the closed space (79), the displacement member (72) is displaced to open the valve opening (76). The refrigeration cycle apparatus according to 1.
【請求項4】 前記制御弁(9)は、弁の上流側である
前記冷媒放熱器(2)を出た冷媒の圧力が、弁の下流側
である前記気液分離器(4)での冷媒圧力、又は前記冷
媒蒸発器(6)での冷媒圧力に対して所定の圧力差を越
えた場合に弁が開くようにしたことを特徴とする請求項
1または請求項2に記載の冷凍サイクル装置。
4. The control valve (9) is provided in the gas-liquid separator (4) where the pressure of the refrigerant leaving the refrigerant radiator (2) on the upstream side of the valve is on the downstream side of the valve. The refrigeration cycle according to claim 1 or 2, wherein the valve is opened when a predetermined pressure difference with respect to the refrigerant pressure or the refrigerant pressure in the refrigerant evaporator (6) is exceeded. apparatus.
【請求項5】 前記気液分離器(4)に、前記エジェク
タ(6)と前記制御弁(9)とを内蔵、又は一体とした
ことを特徴とする請求項4記載の冷凍サイクル装置。
5. The refrigeration cycle apparatus according to claim 4, wherein the gas-liquid separator (4) has the ejector (6) and the control valve (9) built-in or integrated with each other.
JP2001264202A 2001-08-31 2001-08-31 Refrigeration cycle apparatus Pending JP2003074992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264202A JP2003074992A (en) 2001-08-31 2001-08-31 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264202A JP2003074992A (en) 2001-08-31 2001-08-31 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
JP2003074992A true JP2003074992A (en) 2003-03-12

Family

ID=19090850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264202A Pending JP2003074992A (en) 2001-08-31 2001-08-31 Refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP2003074992A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6837069B2 (en) 2002-07-16 2005-01-04 Denso Corporation Refrigerant cycle with ejector
EP1498671A1 (en) * 2003-07-18 2005-01-19 TGK Co., Ltd. Refrigeration cycle
JP2006234225A (en) * 2005-02-23 2006-09-07 Fuji Electric Retail Systems Co Ltd Refrigerant circuit
JP2007078340A (en) * 2005-08-17 2007-03-29 Denso Corp Ejector type refrigerating cycle
JP2010243095A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Refrigerating cycle device and gas-liquid separator
JP2013148229A (en) * 2012-01-17 2013-08-01 Calsonic Kansei Corp Gas-liquid separator and air conditioning device for vehicle
EP2661591A1 (en) * 2011-01-04 2013-11-13 Carrier Corporation Ejector cycle
EP2330364A4 (en) * 2008-10-01 2014-09-03 Mitsubishi Electric Corp Refrigeration cycle device
WO2016191541A1 (en) 2015-05-27 2016-12-01 Carrier Corporation Ejector system and methods of operation
JP2017089964A (en) * 2015-11-09 2017-05-25 株式会社デンソー Ejector type refrigeration cycle
JP2017089963A (en) * 2015-11-09 2017-05-25 株式会社デンソー Ejector type refrigeration cycle
EP3708851A1 (en) * 2019-03-15 2020-09-16 Carrier Corporation Ejector and refrigerating system
US11365913B2 (en) 2016-12-21 2022-06-21 Carrier Corporation Ejector refrigeration system and control method thereof
US11408647B2 (en) 2019-02-02 2022-08-09 Carrier Corporation Enhanced thermally-driven ejector cycles
US11448427B2 (en) 2019-02-02 2022-09-20 Carrier Corporation Heat-recovery-enhanced refrigeration system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52158453U (en) * 1976-05-25 1977-12-01
JPS6093262A (en) * 1983-10-28 1985-05-25 株式会社日立製作所 Air conditioner
JPH0526522A (en) * 1991-07-23 1993-02-02 Nippondenso Co Ltd Freezing cycle
JPH06137695A (en) * 1992-10-22 1994-05-20 Nippondenso Co Ltd Refrigerating cycle
JPH06201226A (en) * 1992-11-13 1994-07-19 Mitsubishi Electric Corp Air-conditioner
JPH07280393A (en) * 1994-04-07 1995-10-27 Nippondenso Co Ltd Flow control valve and refrigerating cycle apparatus using the same
JPH09264622A (en) * 1996-01-25 1997-10-07 Denso Corp Pressure control valve and vapor-compression refrigeration cycle
JPH09318169A (en) * 1996-03-28 1997-12-12 Mitsubishi Electric Corp Refrigerating apparatus
JPH11278045A (en) * 1997-09-24 1999-10-12 Denso Corp Refrigerating cycle device
JP2000257965A (en) * 1999-03-11 2000-09-22 Mitsubishi Electric Corp Refrigeration cycle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52158453U (en) * 1976-05-25 1977-12-01
JPS6093262A (en) * 1983-10-28 1985-05-25 株式会社日立製作所 Air conditioner
JPH0526522A (en) * 1991-07-23 1993-02-02 Nippondenso Co Ltd Freezing cycle
JPH06137695A (en) * 1992-10-22 1994-05-20 Nippondenso Co Ltd Refrigerating cycle
JPH06201226A (en) * 1992-11-13 1994-07-19 Mitsubishi Electric Corp Air-conditioner
JPH07280393A (en) * 1994-04-07 1995-10-27 Nippondenso Co Ltd Flow control valve and refrigerating cycle apparatus using the same
JPH09264622A (en) * 1996-01-25 1997-10-07 Denso Corp Pressure control valve and vapor-compression refrigeration cycle
JPH09318169A (en) * 1996-03-28 1997-12-12 Mitsubishi Electric Corp Refrigerating apparatus
JPH11278045A (en) * 1997-09-24 1999-10-12 Denso Corp Refrigerating cycle device
JP2000257965A (en) * 1999-03-11 2000-09-22 Mitsubishi Electric Corp Refrigeration cycle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6837069B2 (en) 2002-07-16 2005-01-04 Denso Corporation Refrigerant cycle with ejector
EP1498671A1 (en) * 2003-07-18 2005-01-19 TGK Co., Ltd. Refrigeration cycle
US7207186B2 (en) 2003-07-18 2007-04-24 Tgk Co., Ltd. Refrigeration cycle
JP2006234225A (en) * 2005-02-23 2006-09-07 Fuji Electric Retail Systems Co Ltd Refrigerant circuit
JP4529727B2 (en) * 2005-02-23 2010-08-25 富士電機リテイルシステムズ株式会社 Refrigerant circuit
JP2007078340A (en) * 2005-08-17 2007-03-29 Denso Corp Ejector type refrigerating cycle
EP2330364A4 (en) * 2008-10-01 2014-09-03 Mitsubishi Electric Corp Refrigeration cycle device
JP2010243095A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Refrigerating cycle device and gas-liquid separator
EP2661591A4 (en) * 2011-01-04 2016-09-14 Carrier Corp Ejector cycle
EP2661591A1 (en) * 2011-01-04 2013-11-13 Carrier Corporation Ejector cycle
JP2013148229A (en) * 2012-01-17 2013-08-01 Calsonic Kansei Corp Gas-liquid separator and air conditioning device for vehicle
WO2016191541A1 (en) 2015-05-27 2016-12-01 Carrier Corporation Ejector system and methods of operation
US10352592B2 (en) 2015-05-27 2019-07-16 Carrier Corporation Ejector system and methods of operation
JP2017089964A (en) * 2015-11-09 2017-05-25 株式会社デンソー Ejector type refrigeration cycle
JP2017089963A (en) * 2015-11-09 2017-05-25 株式会社デンソー Ejector type refrigeration cycle
US11365913B2 (en) 2016-12-21 2022-06-21 Carrier Corporation Ejector refrigeration system and control method thereof
US11408647B2 (en) 2019-02-02 2022-08-09 Carrier Corporation Enhanced thermally-driven ejector cycles
US11448427B2 (en) 2019-02-02 2022-09-20 Carrier Corporation Heat-recovery-enhanced refrigeration system
EP3708851A1 (en) * 2019-03-15 2020-09-16 Carrier Corporation Ejector and refrigerating system
US11460124B2 (en) 2019-03-15 2022-10-04 Carrier Corporation Ejector and refrigerating system

Similar Documents

Publication Publication Date Title
JP3951840B2 (en) Refrigeration cycle equipment
US7823400B2 (en) Two-stage decompression ejector and refrigeration cycle device
US6651451B2 (en) Variable capacity refrigeration system with a single-frequency compressor
US10465957B2 (en) Ejector-type refrigeration cycle, and ejector
JP2003074992A (en) Refrigeration cycle apparatus
US8282025B2 (en) Ejector
US7059150B2 (en) Vapor-compression refrigerant cycle system with ejector
JP2004085156A (en) Refrigerating cycle
US20010020366A1 (en) Method and apparatus for increasing the efficiency of a refrigeration system
JP4285060B2 (en) Vapor compression refrigerator
JP4776438B2 (en) Refrigeration cycle
WO1999034156A1 (en) Refrigerating cycle
JP2003176958A (en) Ejector cycle
JP2002206823A (en) Accumulator module
JPH11278045A (en) Refrigerating cycle device
US10184704B2 (en) Ejector and ejector-type refrigeration cycle
JP4096674B2 (en) Vapor compression refrigerator
JP2019020063A (en) Ejector-type refrigeration cycle
JP2000035251A (en) Three layers separator in cooling cycle
JP2001201213A (en) Supercritical refrigeration cycle
JPH0658653A (en) Gas liquid separator
JP2003336915A (en) Ejector type decompression device
JP2007093121A (en) Gas-liquid separator for refrigerating cycle
JP4096796B2 (en) Refrigeration cycle equipment
JP2002130871A (en) Accumulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817