JP2002130871A - Accumulator - Google Patents

Accumulator

Info

Publication number
JP2002130871A
JP2002130871A JP2000330715A JP2000330715A JP2002130871A JP 2002130871 A JP2002130871 A JP 2002130871A JP 2000330715 A JP2000330715 A JP 2000330715A JP 2000330715 A JP2000330715 A JP 2000330715A JP 2002130871 A JP2002130871 A JP 2002130871A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
accumulator
pipe
refrigerant outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000330715A
Other languages
Japanese (ja)
Inventor
Hisasuke Sakakibara
久介 榊原
Joji Kuroki
丈二 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000330715A priority Critical patent/JP2002130871A/en
Publication of JP2002130871A publication Critical patent/JP2002130871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an accumulator 5 improved in reliability by making an oil returning port 11c clogged hardly. SOLUTION: The opening area of a refrigerant inflow port 11a of refrigerant outflow members 11, 12 is made larger than the passage area of a refrigerant outflow pipe 11b, while the oil returning port 11c is opened on the refrigerant outflow members 11, 12 to take oil in pressure resistant vessels 7, 8, 9 into the refrigerant outflow members 11, 12. According to this method, a pressure loss due to a contracted flow upon flowing of gas refrigerant in the accumulator 5 into the refrigerant inflow port 11a or another pressure loss due to the friction of a pipe upon the flowing of gas refrigerant through the inside of a refrigerant outflow pipeline 11 is lightened, and a pressure difference between the inside of the accumulator 5 and the inside of the refrigerant outflow pipeline 11 is reduced whereby the optimum returning amount of oil can be obtained, even when the diameter of the oil returning port 11c is increased and the clogging of the oil returning port 11c can be made difficult.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蒸気圧縮式冷凍サイ
クルのアキュムレータに関し、特に超臨界蒸気圧縮式等
の冷媒圧力が高い冷凍サイクルに用いて好適なアキュム
レータの構造に関する。
The present invention relates to an accumulator for a vapor compression refrigeration cycle, and more particularly to a structure of an accumulator suitable for use in a refrigeration cycle having a high refrigerant pressure, such as a supercritical vapor compression type.

【0002】[0002]

【従来の技術】圧縮機、放熱器、減圧手段、蒸発器等か
らなる蒸気圧縮式冷凍サイクルにおいて、従来より使用
されているフロン系の冷媒は、オゾン破壊や地球温暖化
作用によりこれらの使用の禁止や縮減の方向への要求が
ある。
2. Description of the Related Art In a vapor compression refrigeration cycle comprising a compressor, a radiator, a decompression means, an evaporator, etc., a CFC-based refrigerant which has been conventionally used is not used due to ozone destruction and global warming. There are requests for bans and reductions.

【0003】そこで、これらのフロン系冷媒の代替冷媒
としてオゾン層を破壊せず、また温室効果能力(GW
P)が1の二酸化炭素を冷媒として使用する冷凍サイク
ルが、特公平7−18602号公報に開示されている。
[0003] Therefore, as an alternative refrigerant to these CFC-based refrigerants, the ozone layer is not destroyed and the greenhouse effect (GW)
A refrigerating cycle using carbon dioxide having P) of 1 as a refrigerant is disclosed in Japanese Patent Publication No. Hei 7-18602.

【0004】そして、フロン系冷媒を用いた冷凍サイク
ルでは、冷媒の凝縮圧力が臨界点以下で使用されるが、
二酸化炭素を冷媒として用いたサイクルでは高圧側が超
臨界域となる超臨界蒸気圧縮式冷凍サイクルとなる。
[0004] In a refrigeration cycle using a chlorofluorocarbon-based refrigerant, the condensing pressure of the refrigerant is used below a critical point.
In a cycle using carbon dioxide as a refrigerant, a supercritical vapor compression refrigeration cycle in which the high pressure side is in a supercritical region is provided.

【0005】図5に、従来のフロン系冷媒の冷凍サイク
ルに用いるアキュムレータの構造図を示す。低圧側の圧
力が低いことより吸入側の圧損を低減するために配管径
は13mm位の太いものとしていたが、上記のような高
圧の冷凍サイクルに用いるアキュムレータでは、耐圧の
ために配管径は6mm位の細いものとなる。
FIG. 5 is a structural view of a conventional accumulator used for a refrigeration cycle of a CFC-based refrigerant. In order to reduce the pressure loss on the suction side due to the low pressure on the low pressure side, the pipe diameter was set to be as large as about 13 mm. It becomes a thin thing.

【0006】また、アキュムレータ内部の冷媒流出配管
に開けられる圧縮機にオイルを戻すためのオイル戻り孔
も、フロン系冷媒の冷凍サイクルでは径1mm位の孔と
していたが、上記のような高圧の冷凍サイクルではアキ
ュムレータ内部と冷媒流出配管内部との差圧も大きくな
るため、オイル戻り量を適量とするには径0.4mm位
の微細な孔となる。
The oil return hole for returning oil to the compressor, which is opened in the refrigerant outflow pipe inside the accumulator, has a diameter of about 1 mm in the refrigeration cycle of the CFC-based refrigerant. In the cycle, since the pressure difference between the inside of the accumulator and the inside of the refrigerant outflow pipe also increases, a fine hole having a diameter of about 0.4 mm is formed in order to make the oil return amount appropriate.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記のような
微細なオイル戻り孔では、圧縮機の摩耗粉等のスラッジ
で孔詰まりを起こし易く、オイル切れとなって圧縮機が
焼き付きを起こしてしまうという問題がある。
However, in such a fine oil return hole as described above, the hole is easily clogged with sludge such as abrasion powder of the compressor, and the oil runs out and the compressor is seized. There is a problem.

【0008】本発明は、上記問題点に鑑みて成されたも
のであり、オイル戻り孔を詰まりにくくして信頼性を向
上させたアキュムレータを提供することを目的とする。
[0008] The present invention has been made in view of the above problems, and has as its object to provide an accumulator in which the oil return hole is hardly clogged and reliability is improved.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、以下の技術的手段を採用する。
In order to achieve the above object, the following technical means are employed.

【0010】請求項1記載の発明では、冷媒流出部材
(11,12)の冷媒流入口(11a)の開口面積を、
冷媒流出管(11b)の通路面積より大きくすると共
に、冷媒流出部材(11,12)にオイル戻り孔(11
c)を開け、耐圧容器(7、8、9)内のオイルを冷媒
流出部材(11,12)に取り込むようにしたことを特
徴とする。
According to the first aspect of the present invention, the opening area of the refrigerant inflow port (11a) of the refrigerant outflow members (11, 12) is
In addition to making the passage area of the refrigerant outflow pipe (11b) larger, an oil return hole (11) is formed in the refrigerant outflow members (11, 12).
c) is opened, and the oil in the pressure-resistant containers (7, 8, 9) is taken into the refrigerant outflow members (11, 12).

【0011】これにより、アキュムレータ内部のガス冷
媒が冷媒流入口に流れ込む際の縮流による圧力損失が軽
減されて、アキュムレータ内部と冷媒流出配管内部との
差圧が小さくなるため、オイル戻り孔の径を大きくして
も適量のオイル戻り量とできることから、オイル戻り孔
の径を大きくして詰まりにくくすることができる。
As a result, the pressure loss due to the contraction of the gas refrigerant inside the accumulator when flowing into the refrigerant inflow port is reduced, and the pressure difference between the inside of the accumulator and the inside of the refrigerant outflow pipe is reduced. Even if is increased, an appropriate amount of oil can be returned, so that the diameter of the oil return hole can be increased to make it difficult to clog.

【0012】請求項2記載の発明では、冷媒流入口(1
1a)の開口面積を、拡管によって冷媒流出管(11
b)の通路面積より大きくしたことを特徴とする。
According to the second aspect of the present invention, the refrigerant inlet (1)
The opening area of 1a) is expanded to expand the refrigerant outflow pipe (11).
It is characterized in that it is larger than the passage area of b).

【0013】これは、新たな部品を用いることなく、冷
媒流出配管の冷媒流入口の部分を拡管することで上記の
効果が得られる。
[0013] The above effect can be obtained by expanding the portion of the refrigerant outflow pipe at the refrigerant inflow port without using new parts.

【0014】請求項3記載の発明では、冷媒流出部材
(11,12)は、耐圧容器(7、8、9)内に配置さ
れた上側に開口部を持つ筒状部品(12)と、冷媒流出
管(11b)より筒状部品(12)内に延びる冷媒流出
配管(11)とを有し、開口部を冷媒流入口(11a)
として構成し、冷媒流入口(11a)の開口面積を冷媒
流出管(11b)の通路面積より大きくしたことを特徴
とする。
According to the third aspect of the present invention, the refrigerant outflow member (11, 12) is provided in the pressure-resistant container (7, 8, 9), and has a cylindrical part (12) having an opening at an upper side; A refrigerant outflow pipe (11) extending from the outflow pipe (11b) into the tubular part (12), and having an opening formed in the refrigerant inflow port (11a).
The opening area of the refrigerant inlet (11a) is larger than the passage area of the refrigerant outlet pipe (11b).

【0015】これは、径の大きな筒状部品と冷媒流出管
となる配管を組み合わせることによっても、冷媒流入口
の開口面積を大きくした冷媒流出経路が構成できる。
[0015] By combining a cylindrical part having a large diameter with a pipe serving as a refrigerant outflow pipe, a refrigerant outflow path having a large opening area of the refrigerant inflow port can be formed.

【0016】請求項4記載の発明では、冷媒流出配管
(11)において、耐圧容器(7、8、9)の底付近に
設けられたオイル戻り孔(11c)近傍から冷媒流入口
(11a)までの部分の断面積を、冷媒流出管(11
b)の通路面積より大きくしたことを特徴とする。
According to the fourth aspect of the present invention, in the refrigerant outflow pipe (11), from the vicinity of the oil return hole (11c) provided near the bottom of the pressure-resistant container (7, 8, 9) to the refrigerant inflow port (11a). The cross-sectional area of the portion is
It is characterized in that it is larger than the passage area of b).

【0017】これにより、冷媒流出配管内部をガス冷媒
が流れる際の管摩擦による圧力損失が軽減されて、アキ
ュムレータ内部と冷媒流出配管内部との差圧が小さくな
るため、オイル戻り孔の径を大きくしても適量のオイル
戻り量とできることから、オイル戻り孔の径を大きくし
て詰まりにくくすることができる。
As a result, pressure loss due to pipe friction when the gas refrigerant flows through the refrigerant outflow pipe is reduced, and the differential pressure between the accumulator and the refrigerant outflow pipe is reduced, so that the diameter of the oil return hole is increased. Even so, an appropriate amount of oil can be returned, so that the diameter of the oil return hole can be increased to make it difficult to clog.

【0018】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。
Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.

【0019】[0019]

【発明の実施の形態】次に、本発明の実施形態を、図面
に基づき説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0020】(第1実施形態)第1の実施形態を図1と
図2を用いて説明する。図1(a)は本発明の第1実施
形態におけるアキュムレータ5の構造図であり、図1
(b)は対応する各部での圧力変化を示したグラフであ
る。図2は蒸気圧縮式冷凍サイクルの模式図である。
(First Embodiment) A first embodiment will be described with reference to FIGS. 1 and 2. FIG. FIG. 1A is a structural view of an accumulator 5 according to the first embodiment of the present invention.
(B) is a graph showing a pressure change in each corresponding part. FIG. 2 is a schematic diagram of a vapor compression refrigeration cycle.

【0021】1はエンジンやモータ等の外部駆動源から
駆動力を受け、低温低圧のガス冷媒を高温高圧のガス冷
媒に断熱圧縮する圧縮機、2は圧縮機1にて断熱圧縮さ
れた高温高圧のガス冷媒を2aの熱交換器を流れている
水等の流体と熱交換させ冷却する放熱器、3は放熱器2
からの高圧冷媒を断熱膨張させ気液二相冷媒とする減圧
手段としての膨張弁、4は膨張弁3にて減圧された気液
二相冷媒と空調空気とを熱交換し、気液二相冷媒を蒸発
させるとともに空調空気を冷却する蒸発器、5は蒸発器
4を出た気液二相冷媒が導入され、この気液二相冷媒を
その比重の差によって気液分離し、気液分離された液冷
媒が蓄えられるアキュムレータである。
A compressor 1 receives a driving force from an external drive source such as an engine or a motor and adiabatically compresses a low-temperature and low-pressure gas refrigerant into a high-temperature and high-pressure gas refrigerant. Radiator for exchanging heat with the fluid such as water flowing through the heat exchanger of 2a for cooling the gas refrigerant of 2a.
The expansion valve as a pressure reducing means for adiabatically expanding the high-pressure refrigerant from the compressor into a gas-liquid two-phase refrigerant, and the heat exchange between the gas-liquid two-phase refrigerant depressurized by the expansion valve 3 and the conditioned air is performed. The evaporator 5 evaporates the refrigerant and cools the conditioned air. The gas-liquid two-phase refrigerant exiting the evaporator 4 is introduced into the evaporator 5, and the gas-liquid two-phase refrigerant is separated into gas and liquid by a difference in specific gravity. An accumulator in which the stored liquid refrigerant is stored.

【0022】アキュムレータ5は、鋼板で筒状の胴体8
の両側に、同じく鋼板で半球形の鏡板7と9を溶接して
耐圧容器を形成している。鏡板7の中央には蒸発器4の
出口と配管で接続するための銅製の冷媒流入配管6がろ
う付け接合されており、蒸発器4からの気液二相冷媒を
ここからアキュムレータ5内に導入する。
The accumulator 5 has a cylindrical body 8 made of a steel plate.
On both sides, the hemispherical end plates 7 and 9 are also welded by a steel plate to form a pressure-resistant container. At the center of the end plate 7, a copper refrigerant inflow pipe 6 for connection with the outlet of the evaporator 4 by a pipe is brazed, and the gas-liquid two-phase refrigerant from the evaporator 4 is introduced into the accumulator 5 therefrom. I do.

【0023】また、鏡板7と胴体8の接合面内側には、
外周近くに複数の孔を開けた分離板10が固定されてい
て、冷媒流入配管6から流入する気液二相冷媒をこれに
衝突させて気液を分離している。
On the inner side of the joint surface between the head plate 7 and the body 8,
A separation plate 10 having a plurality of holes formed near the outer periphery is fixed, and gas-liquid two-phase refrigerant flowing from the refrigerant inflow pipe 6 collides with the separation plate 10 to separate gas and liquid.

【0024】分離板10の下のアキュムレータ5の中央
には、気液分離されたガス冷媒を圧縮機1へ導出する冷
媒流出部材としての銅製の冷媒流出配管11が設置さ
れ、上端面の開口が冷媒流入口11aとなっている。
At the center of the accumulator 5 below the separation plate 10, a refrigerant outlet pipe 11 made of copper is installed as a refrigerant outlet member for guiding gas-liquid separated gas refrigerant to the compressor 1. It is a refrigerant inlet 11a.

【0025】また、冷媒流出配管11の下部の耐圧容器
底近傍の部分には、オイル戻し孔11cが開口してお
り、アキュムレータ5内に溜まった液冷媒中のオイルは
液冷媒とともにこの孔から吸い込まれ、圧縮機1に戻さ
れる。
An oil return hole 11c is opened in the lower portion of the refrigerant outflow pipe 11 near the bottom of the pressure-resistant container, and the oil in the liquid refrigerant accumulated in the accumulator 5 is sucked from this hole together with the liquid refrigerant. And returned to the compressor 1.

【0026】冷媒流出配管11は鏡板9の中央を貫通し
てろう付け接合されており、耐圧容器から出た部分が圧
縮機1の入口と配管で接続するための冷媒流出管11b
となっている。
The refrigerant outlet pipe 11 is brazed through the center of the end plate 9, and a part coming out of the pressure vessel is connected to an inlet of the compressor 1 by a refrigerant outlet pipe 11 b.
It has become.

【0027】次に、上記構成における作動を説明する。Next, the operation of the above configuration will be described.

【0028】蒸発器5を経た気液二相の低圧冷媒は冷媒
流入管6よりアキュムレータ5内に流入する。流入した
低圧冷媒は分離板10に衝突して流速が遅くなり、比重
の大きな液冷媒が耐圧容器下方に溜まるため気液界面1
3が形成される。
The gas-liquid two-phase low-pressure refrigerant having passed through the evaporator 5 flows into the accumulator 5 through the refrigerant inflow pipe 6. The inflowing low-pressure refrigerant collides with the separation plate 10 and the flow velocity is reduced, and the liquid refrigerant having a large specific gravity accumulates below the pressure-resistant container.
3 is formed.

【0029】気液分離されたアキュムレータ5内の上方
のガス冷媒は、冷媒流出配管11の冷媒流入口11aか
ら圧縮機1の吸入作用によって吸入される。
The gas refrigerant above the gas-liquid separated accumulator 5 is sucked from the refrigerant inlet 11a of the refrigerant outlet pipe 11 by the suction action of the compressor 1.

【0030】その際、アキュムレータ5の下部に溜まっ
ている液冷媒中に混入されているオイルは、冷媒流入配
管11の下部に設けられたオイル戻し孔11cから吸入
され、圧縮機1に戻される。
At this time, the oil mixed in the liquid refrigerant stored in the lower part of the accumulator 5 is sucked through an oil return hole 11c provided in the lower part of the refrigerant inflow pipe 11 and returned to the compressor 1.

【0031】本発明の特徴は、冷媒流出配管11におい
て、冷媒流入口11aの開口面積及び、冷媒流入口11
aからオイル戻り孔11c近傍までの部分の断面積を、
拡管によって冷媒流出管11bの通路面積よりも大きく
している。
The present invention is characterized in that, in the refrigerant outlet pipe 11, the opening area of the refrigerant inlet 11a and the refrigerant inlet 11a
The cross-sectional area of the portion from a to the vicinity of the oil return hole 11c is
The expanded pipe is made larger than the passage area of the refrigerant outflow pipe 11b.

【0032】これにより、アキュムレータ5内部のガス
冷媒が冷媒流入口11aに流れ込む際の縮流による圧力
損失や、冷媒流出配管11内部をガス冷媒が流れる際の
管摩擦による圧力損失が軽減されて、アキュムレータ5
内部と冷媒流出配管11内部との差圧が小さくなるた
め、オイル戻り孔11cの径を大きくしても適量のオイ
ル戻り量とできることから、オイル戻り孔11cの径を
大きくして詰まりにくくすることができる。
As a result, the pressure loss due to the contraction of the gas refrigerant inside the accumulator 5 when flowing into the refrigerant inlet 11a and the pressure loss due to pipe friction when the gas refrigerant flows through the refrigerant outlet pipe 11 are reduced. Accumulator 5
Since the pressure difference between the inside and the inside of the refrigerant outflow pipe 11 is reduced, an appropriate amount of oil can be returned even if the diameter of the oil return hole 11c is increased. Can be.

【0033】これを図1(b)のアキュムレータ5内各
部での圧力変化を示すグラフで見てみると、aの圧力で
冷媒流入管6から入ってきた冷媒は、耐圧容器に入った
所で流路面積が拡大することにより圧力ドロップしてb
の圧力となる。
Referring to FIG. 1 (b), which is a graph showing pressure changes at various parts in the accumulator 5, the refrigerant flowing from the refrigerant inflow pipe 6 at the pressure of a indicates that the refrigerant enters the pressure-resistant container. Pressure drop due to an increase in the flow area
Pressure.

【0034】次に、従来の細い冷媒流出配管11(破線
で示す)の場合は、狭い冷媒流入口11aに流れ込むこ
とにより縮流という圧力損失が発生して破線cの圧力と
なる。その後、細い冷媒流出配管11の中を流れること
により、管摩擦という圧力損失が発生して少しずつ圧力
が下がりながらアキュムレータ5から出て行く。
Next, in the case of the conventional narrow refrigerant outflow pipe 11 (shown by a broken line), when the refrigerant flows into the narrow refrigerant inflow port 11a, a pressure loss called a contraction occurs and the pressure becomes the pressure indicated by the broken line c. Thereafter, by flowing through the thin refrigerant outflow pipe 11, a pressure loss called pipe friction is generated, and the refrigerant flows out of the accumulator 5 while the pressure gradually decreases.

【0035】オイル戻し孔11cには、アキュムレータ
5内の圧力bと、冷媒流出配管11内のオイル戻し孔1
1cの位置での圧力c1との圧力差がかかっていた。
The oil return hole 11c has a pressure b in the accumulator 5 and an oil return hole 1 in the refrigerant outlet pipe 11.
There was a pressure difference from the pressure c1 at the position 1c.

【0036】しかし本発明では、まず冷媒流入口11a
の開口面積が大きいので、冷媒が流れ込む時の縮流とい
う圧力損失が軽減されて実線dの圧力となる。その後、
冷媒流出配管11の中を流れる時も、拡管されているた
め管摩擦という圧力損失が軽減されてあまり圧力が下が
らずに冷媒流出管11bに達する。ここで縮流という圧
力損失が発生して、最終的には実線eの圧力となってア
キュムレータ5から出て行く。
However, in the present invention, first, the refrigerant inlet 11a
Has a large opening area, the pressure loss of contraction when the refrigerant flows in is reduced, and the pressure becomes the pressure indicated by the solid line d. afterwards,
Also when flowing through the refrigerant outflow pipe 11, since the pipe is expanded, the pressure loss of pipe friction is reduced, and the pressure reaches the refrigerant outflow pipe 11b without decreasing much. Here, a pressure loss called a contraction occurs, and the pressure finally reaches the pressure indicated by the solid line e and leaves the accumulator 5.

【0037】しかし、オイル戻し孔11cでは、アキュ
ムレータ5内の圧力bと、冷媒流出配管11内の圧力d
との圧力差が小さくなることとなる。
However, in the oil return hole 11c, the pressure b in the accumulator 5 and the pressure d in the refrigerant outflow pipe 11
Will be reduced.

【0038】(第2実施形態)図3は、本発明の第2実
施形態におけるアキュムレータ5の構造図である。
(Second Embodiment) FIG. 3 is a structural view of an accumulator 5 according to a second embodiment of the present invention.

【0039】第1実施形態では上から冷媒が流入して下
へ流出するタイプであったのに対して、これは上から冷
媒が流入して上へ流出するタイプであり、例えば車両用
空調装置の冷凍サイクル等に用いた場合、アキュムレー
タ5を車体に取り付けた後に流入側の配管も流出側の配
管も上から接続作業ができて作業性がよい。
In the first embodiment, the type in which the refrigerant flows in from the upper side and flows out downwards is a type in which the refrigerant flows in from the upper side and flows out upwards. When the accumulator 5 is mounted on a vehicle body, the inflow-side pipe and the outflow-side pipe can be connected from above, so that the workability is good.

【0040】内部構造で第1実施形態と異なるポイント
は、上側に開口部を持つ筒状部品12を分離板10の下
のアキュムレータ5の中央に配置している。そして、そ
の中に銅製の冷媒流出配管11を立てて、分離板10の
中央を貫通し、鏡板7の中央を貫通してろう付け接合さ
れており、耐圧容器から出た部分が圧縮機1の入口と配
管で接続するための冷媒流出管11bとなっている。ま
た、オイル戻し孔11cは、筒状部品12の下部の耐圧
容器底近傍の部分に設けている。
The point of the internal structure different from that of the first embodiment is that a cylindrical part 12 having an opening on the upper side is arranged in the center of the accumulator 5 below the separating plate 10. Then, a refrigerant outflow pipe 11 made of copper is erected therein and penetrated through the center of the separation plate 10 and brazed through the center of the end plate 7. It is a refrigerant outflow pipe 11b for connecting to the inlet by piping. The oil return hole 11c is provided in a lower portion of the tubular part 12 near the bottom of the pressure-resistant container.

【0041】このように、冷媒流出部材として径の大き
な筒状部品12と冷媒流出配管11との2部品に分けて
もよく、それを組み合わせることにより、筒状部品12
の上側開口部が冷媒流入口11aとなった冷媒流出経路
が構成でき、冷媒流入口11aの開口面積及び、冷媒流
入口11aからオイル戻り孔11c近傍までの部分の断
面積を、冷媒流出管11bの通路面積よりも大きくでき
る。
As described above, the refrigerant outflow member may be divided into two parts, ie, the cylindrical part 12 having a large diameter and the refrigerant outflow pipe 11.
A refrigerant outflow path in which an upper opening portion of the refrigerant outlet 11a is formed as a refrigerant outlet 11a. Can be larger than the passage area.

【0042】これによっても、アキュムレータ5内部の
ガス冷媒が冷媒流入口11aに流れ込む際の縮流による
圧力損失や、筒状部品12内部をガス冷媒が流れる際の
管摩擦による圧力損失が軽減されて、アキュムレータ5
内部と筒状部品12内部との差圧が小さくなるため、オ
イル戻り孔11cの径を大きくしても適量のオイル戻り
量とできることから、オイル戻り孔11cの径を大きく
して詰まりにくくすることができる。
As a result, the pressure loss due to the contraction of the gas refrigerant inside the accumulator 5 when flowing into the refrigerant inlet 11a and the pressure loss due to pipe friction when the gas refrigerant flows inside the cylindrical part 12 are reduced. , Accumulator 5
Since the pressure difference between the inside and the inside of the cylindrical part 12 is reduced, an appropriate amount of oil can be returned even if the diameter of the oil return hole 11c is increased. Can be.

【0043】筒状部品12は、鏡板9の中央に接合して
もよいし、冷媒流出配管11の下部に冷媒流出経路を確
保するように保持させてもよい。また、この筒状部品1
2は耐圧条件が厳しくないことより薄肉の管材やナイロ
ン系の樹脂管とすることもできる。
The tubular part 12 may be joined to the center of the end plate 9 or may be held below the refrigerant outflow pipe 11 so as to secure a refrigerant outflow path. Also, this cylindrical part 1
2 can be made of a thin-walled tube material or a nylon-based resin tube because the pressure resistance condition is not severe.

【0044】(その他の実施形態)図4は、本発明の他
の実施形態におけるアキュムレータ5の構造図である。
(Other Embodiments) FIG. 4 is a structural view of an accumulator 5 according to another embodiment of the present invention.

【0045】図4(a)は、図3と同じ上から冷媒が流
入して上へ流出するタイプで、従来のフロン系冷媒の冷
凍サイクルに用いるアキュムレータ5のように、冷媒流
出配管11はU字管形状をしており、その一端のアキュ
ムレータ6内で冷媒流入口11aとして開口する側を拡
管して開口面積を大きくしている。
FIG. 4A shows the same type as FIG. 3 in which the refrigerant flows in from above and flows out. As in the accumulator 5 used in the conventional refrigeration cycle of the CFC-based refrigerant, the refrigerant outflow pipe 11 has a U-outlet. The end area of the one end of the accumulator 6 that opens as the refrigerant inlet 11a is expanded to increase the opening area.

【0046】図4の(b)、(c)は、筒状部品12を
オイル戻し孔11cを空けただけの単純な管材として鏡
板9の中央に接合したもので、(b)は冷媒流出管11
bを上に取り出したもの、(c)は冷媒流出管11bを
下に取り出したものである。
FIGS. 4 (b) and 4 (c) show the cylindrical part 12 joined to the center of the end plate 9 as a simple tube having only the oil return hole 11c, and FIG. 4 (b) shows the refrigerant outlet pipe. 11
b is taken out above, and (c) is taken out the refrigerant outflow pipe 11b.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の第1実施形態におけるアキュ
ムレータの構造図であり、(b)は対応する各部での圧
力変化を示したグラフである。
FIG. 1A is a structural diagram of an accumulator according to a first embodiment of the present invention, and FIG. 1B is a graph showing a pressure change in each corresponding part.

【図2】蒸気圧縮式冷凍サイクルの模式図である。FIG. 2 is a schematic diagram of a vapor compression refrigeration cycle.

【図3】本発明の第2実施形態におけるアキュムレータ
の構造図である。
FIG. 3 is a structural diagram of an accumulator according to a second embodiment of the present invention.

【図4】本発明の他の実施形態におけるアキュムレータ
の構造図である。
FIG. 4 is a structural view of an accumulator according to another embodiment of the present invention.

【図5】従来のフロン系冷媒の冷凍サイクルに用いるア
キュムレータの構造図である。
FIG. 5 is a structural diagram of a conventional accumulator used for a refrigeration cycle of a CFC-based refrigerant.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 放熱器 3 膨張弁(減圧手段) 4 蒸発器 5 アキュムレータ 6 冷媒流入配管 7 鏡板(耐圧容器) 8 胴体(耐圧容器) 9 鏡板(耐圧容器) 11 冷媒流出配管(冷媒流出部材) 11a 冷媒流入口 11b 冷媒流出管 11c オイル戻り孔 12 筒状部品(冷媒流出部材) DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Expansion valve (decompression means) 4 Evaporator 5 Accumulator 6 Refrigerant inflow pipe 7 End plate (pressure-resistant container) 8 Body (pressure-resistant container) 9 End plate (pressure-resistant container) 11 Refrigerant outflow pipe (refrigerant outflow member) 11a Refrigerant inflow port 11b Refrigerant outflow pipe 11c Oil return hole 12 Cylindrical part (refrigerant outflow member)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)、放熱器(2)、減圧手段
(3)、蒸発器(4)、及びアキュムレータ(5)を備
える蒸気圧縮式冷凍サイクルに用いられ、 前記蒸発器(4)からの気液二相冷媒を導入する冷媒流
入配管(6)と、 前記気液二相冷媒をその比重の差によって気液分離さ
せ、気液分離された液冷媒及びガス状冷媒を蓄える耐圧
容器(7、8、9)と、 前記耐圧容器(7、8、9)内に配置され、気液分離さ
れたガス状冷媒を取り出す冷媒流出部材(11,12)
と、 前記冷媒流出部材(11,12)と連結され、前記耐圧
容器(7、8、9)より前記圧縮機(1)へ前記ガス状
冷媒を導出する冷媒流出管(11b)とを備え、 前記冷媒流出部材(11,12)の冷媒流入口(11
a)の開口面積を、前記冷媒流出管(11b)の通路面
積より大きくすると共に、前記冷媒流出部材(11,1
2)にオイル戻り孔(11c)を開け、前記耐圧容器
(7、8、9)内のオイルを前記冷媒流出部材(11,
12)に取り込むようにしたことを特徴とするアキュム
レータ。
1. A vapor compression refrigeration cycle comprising a compressor (1), a radiator (2), a pressure reducing means (3), an evaporator (4), and an accumulator (5). A) a refrigerant inflow pipe (6) for introducing the gas-liquid two-phase refrigerant from the above, and a pressure resistance for separating the gas-liquid two-phase refrigerant into gas and liquid by a difference in specific gravity, and storing the gas-liquid separated liquid refrigerant and gaseous refrigerant. Containers (7, 8, 9); Refrigerant outflow members (11, 12) arranged in the pressure-resistant containers (7, 8, 9) for extracting gaseous refrigerant separated from gas and liquid
And a refrigerant outflow pipe (11b) connected to the refrigerant outflow members (11, 12) and leading the gaseous refrigerant from the pressure-resistant container (7, 8, 9) to the compressor (1), The refrigerant inflow port (11) of the refrigerant outflow member (11, 12)
a) is made larger than the passage area of the refrigerant outflow pipe (11b), and the refrigerant outflow member (11, 1) is opened.
An oil return hole (11c) is opened in 2), and the oil in the pressure-resistant container (7, 8, 9) is removed from the refrigerant outflow member (11, 11).
An accumulator characterized in that the accumulator is incorporated in (12).
【請求項2】 前記冷媒流入口(11a)の開口面積
を、拡管によって前記冷媒流出管(11b)の通路面積
より大きくしたことを特徴とする請求項1に記載のアキ
ュムレータ。
2. The accumulator according to claim 1, wherein an opening area of the refrigerant inlet (11a) is made larger than a passage area of the refrigerant outlet pipe (11b) by expanding a pipe.
【請求項3】 前記冷媒流出部材(11,12)は、前
記耐圧容器(7、8、9)内に配置された上側に開口部
を持つ筒状部品(12)と、前記冷媒流出管(11b)
より前記筒状部品(12)内に延びる冷媒流出配管(1
1)とを有し、前記開口部を前記冷媒流入口(11a)
として構成し、前記冷媒流入口(11a)の開口面積を
前記冷媒流出管(11b)の通路面積より大きくしたこ
とを特徴とする請求項1に記載のアキュムレータ。
3. The refrigerant outflow member (11, 12) includes a tubular part (12) having an opening at an upper side disposed in the pressure-resistant container (7, 8, 9), and the refrigerant outflow pipe (11). 11b)
The refrigerant outflow pipe (1) further extending into the tubular part (12)
1) and the opening is connected to the refrigerant inlet (11a).
The accumulator according to claim 1, wherein an opening area of the refrigerant inflow port (11a) is larger than a passage area of the refrigerant outflow pipe (11b).
【請求項4】 前記冷媒流出部材(11)において、前
記オイル戻り孔(11c)近傍から前記冷媒流入口(1
1a)までの部分の断面積を、前記冷媒流出管(11
b)の通路面積より大きくしたことを特徴とする請求項
1ないし3のいずれかひとつに記載のアキュムレータ。
4. In the refrigerant outflow member (11), the refrigerant inflow port (1) extends from the vicinity of the oil return hole (11c).
The cross-sectional area of the part up to 1a) is
4. The accumulator according to claim 1, wherein the passage area is larger than the passage area of b).
JP2000330715A 2000-10-30 2000-10-30 Accumulator Pending JP2002130871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330715A JP2002130871A (en) 2000-10-30 2000-10-30 Accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330715A JP2002130871A (en) 2000-10-30 2000-10-30 Accumulator

Publications (1)

Publication Number Publication Date
JP2002130871A true JP2002130871A (en) 2002-05-09

Family

ID=18807181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330715A Pending JP2002130871A (en) 2000-10-30 2000-10-30 Accumulator

Country Status (1)

Country Link
JP (1) JP2002130871A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093035A (en) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Welding structure and welding method for aluminum accumulator, and heat exchanger
WO2013080620A1 (en) * 2011-11-29 2013-06-06 株式会社デンソー Accumulator
JP2013134004A (en) * 2011-12-26 2013-07-08 Chiyoda Kucho Kiki Kk Accumulator and method of manufacturing the same
JP2014092353A (en) * 2012-11-07 2014-05-19 Fuji Koki Corp Accumulator
JP2017020731A (en) * 2015-07-13 2017-01-26 株式会社不二工機 accumulator
CN108195104A (en) * 2018-01-23 2018-06-22 珠海格力电器股份有限公司 Fluid reservoir, compressor, air conditioner
EP3671074A4 (en) * 2017-10-04 2021-05-19 Fujikoki Corporation Accumulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104250U (en) * 1972-12-27 1974-09-06
JPS5293918U (en) * 1976-01-12 1977-07-13
JPS5346652U (en) * 1976-09-27 1978-04-20
JPS61127368U (en) * 1985-01-29 1986-08-09

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104250U (en) * 1972-12-27 1974-09-06
JPS5293918U (en) * 1976-01-12 1977-07-13
JPS5346652U (en) * 1976-09-27 1978-04-20
JPS61127368U (en) * 1985-01-29 1986-08-09

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093035A (en) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Welding structure and welding method for aluminum accumulator, and heat exchanger
WO2013080620A1 (en) * 2011-11-29 2013-06-06 株式会社デンソー Accumulator
JP2013113508A (en) * 2011-11-29 2013-06-10 Denso Corp Accumulator
CN103842748A (en) * 2011-11-29 2014-06-04 株式会社电装 Accumulator
US9541316B2 (en) 2011-11-29 2017-01-10 Denso Corporation Accumulator
JP2013134004A (en) * 2011-12-26 2013-07-08 Chiyoda Kucho Kiki Kk Accumulator and method of manufacturing the same
JP2014092353A (en) * 2012-11-07 2014-05-19 Fuji Koki Corp Accumulator
JP2017020731A (en) * 2015-07-13 2017-01-26 株式会社不二工機 accumulator
EP3671074A4 (en) * 2017-10-04 2021-05-19 Fujikoki Corporation Accumulator
CN108195104A (en) * 2018-01-23 2018-06-22 珠海格力电器股份有限公司 Fluid reservoir, compressor, air conditioner
CN108195104B (en) * 2018-01-23 2021-03-02 珠海格力电器股份有限公司 Liquid storage tank, compressor and air conditioner

Similar Documents

Publication Publication Date Title
JP5370028B2 (en) Ejector
JP4356214B2 (en) Oil separator and outdoor unit
JP4897298B2 (en) Gas-liquid separator module
JP5143040B2 (en) Gas-liquid separator and refrigeration cycle apparatus equipped with the gas-liquid separator
JP4903119B2 (en) Gas-liquid separator and air conditioner equipped with it
JP2011247575A (en) Gas-liquid separator, and refrigerating device including the same
EP1961597B1 (en) Air-conditioning system for vehicles
JP2003202168A (en) Gas-liquid separator for eject cycle
JP3617083B2 (en) Receiver integrated refrigerant condenser
JPH1019421A (en) Refrigerating cycle and accumulator used for the cycle
JP2000320933A (en) Gas/liquid separator and its manufacturing method
JP2007032979A (en) Refrigerating cycle device
JP2006003071A (en) Heat exchanger
JP2002130871A (en) Accumulator
JP4096674B2 (en) Vapor compression refrigerator
JP2003074992A (en) Refrigeration cycle apparatus
JP2003004343A (en) Vapor-liquid separator, and air conditioner using it
JP2006266524A (en) Accumulator
JP2008275211A (en) Vapor compression-type refrigerating cycle
JP2002349978A (en) Ejector cycle
JP2003222445A (en) Gas liquid separator for ejector cycle and oil separator
JP5072523B2 (en) Gas-liquid separator and air conditioner
JP5197444B2 (en) Gas-liquid separator and refrigeration cycle equipment equipped with it
JP4897464B2 (en) Vapor compression refrigeration cycle
JP3583266B2 (en) Accumulator for cooling and heating cycle

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050916

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051014