JP4947803B2 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JP4947803B2
JP4947803B2 JP2008104564A JP2008104564A JP4947803B2 JP 4947803 B2 JP4947803 B2 JP 4947803B2 JP 2008104564 A JP2008104564 A JP 2008104564A JP 2008104564 A JP2008104564 A JP 2008104564A JP 4947803 B2 JP4947803 B2 JP 4947803B2
Authority
JP
Japan
Prior art keywords
dehumidifying
electrodes
pair
regeneration
dehumidifying device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008104564A
Other languages
Japanese (ja)
Other versions
JP2009220094A (en
Inventor
明憲 施
朝琴 黄
名山 鄭
育立 林
廷位 黄
雅文 周
建良 陳
敏郎 洪
及青 彭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2009220094A publication Critical patent/JP2009220094A/en
Application granted granted Critical
Publication of JP4947803B2 publication Critical patent/JP4947803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Gases (AREA)

Description

本発明は除湿装置に関する。特に帯電粒子再生着脱と吸着式乾燥を結合した除湿装置及びその再生構造に係る。   The present invention relates to a dehumidifier. In particular, the present invention relates to a dehumidifying apparatus that combines charged particle regeneration attachment / detachment and adsorption drying and a regeneration structure thereof.

一般家庭で使われている公知の除湿方式は、冷媒圧縮機システムにより空気中の湿気を冷凝縮し、室内空気乾燥の目的を達成するものである。しかし、冷媒の使用はオゾン層破壊の問題を派生するため、冷媒を不要とする除湿技術の開発が重視されている。   A known dehumidification method used in general households achieves the purpose of indoor air drying by cold condensing moisture in the air using a refrigerant compressor system. However, since the use of a refrigerant leads to the problem of ozone layer destruction, the development of a dehumidification technique that does not require a refrigerant is emphasized.

除湿の技術において、回転ホイール式吸着除湿の技術は、圧縮機と冷媒を使用しない。除湿体が室内空気の湿気を吸着し、続いて、電熱により空気を加熱し、除湿体再生側へと流し、湿気の着脱を行う。再生側の高温高湿の空気は熱交換器中に導入され、冷凝縮を行い、集水盆に冷凝縮水分を収集し、家庭用除湿装置の目的を達成する。回転ホイール式除湿機は、除湿体により吸湿する特性により除湿メカニズムを完成するため、環境中の気体温度及び湿度条件の制限を受けない。しかも、公知の圧縮機を使用しないため、騒音が低く、冷媒の使用を回避可能であるなどの技術的長所を備える。   In the dehumidification technique, the rotary wheel type adsorption dehumidification technique does not use a compressor and a refrigerant. The dehumidifying body adsorbs the humidity of the room air, and then heats the air by electric heating, flows it to the dehumidifying body regeneration side, and attaches and detaches the moisture. The high-temperature and high-humidity air on the regeneration side is introduced into the heat exchanger, where it cools and condenses, collects the cold condensed moisture in the catchment basin, and achieves the purpose of a household dehumidifier. Since the rotating wheel type dehumidifier completes the dehumidifying mechanism by the characteristic of absorbing moisture by the dehumidifying body, it is not subject to restrictions on gas temperature and humidity conditions in the environment. In addition, since a known compressor is not used, it has technical advantages such as low noise and avoidance of refrigerant.

回転ホイール式吸着除湿機1の作用原理は図1に示す。図1に示すように、室内の高湿気流90は熱交換器10に吸収され、次に除湿体11に進入する。こうして該除湿体11は気流90内の水分を吸着することができる。吸着が完了した乾燥気流92は、除湿ファン12により室内へと送風され、空気除湿の作業を完成する。一方、電熱器13は循環気流91の温度を上昇させ、高温の循環気流91と該除湿体11上の水分子の温度差により、該除湿体11中の水分子を気化着脱する。続いて、高温高湿の循環気流91は熱交換器10に進入後、該除湿機1位置口の比較的低温の高湿気流90と熱交換を行う。これにより該熱交換器10内の高温高湿空気は、冷凝縮により液体水93となり、冷凝縮後の水分は収集され排出される。循環気流91は再び管路に従い電熱器13に戻り、前記動作を繰り返し、湿気着脱の循環動作を完成する。上記除湿体11、電熱器13、熱交換器10がそれぞれの機能により風道を経て結合後、除湿効果を備える除湿機1となる。   The principle of operation of the rotating wheel type adsorption dehumidifier 1 is shown in FIG. As shown in FIG. 1, the indoor high-humidity airflow 90 is absorbed by the heat exchanger 10 and then enters the dehumidifying body 11. Thus, the dehumidifier 11 can adsorb moisture in the airflow 90. The dried airflow 92 that has been absorbed is blown into the room by the dehumidifying fan 12 to complete the air dehumidifying operation. On the other hand, the electric heater 13 raises the temperature of the circulating airflow 91, and vaporizes and removes the water molecules in the dehumidifying body 11 due to the temperature difference between the hot circulating airflow 91 and the water molecules on the dehumidifying body 11. Subsequently, the high-temperature and high-humidity circulating airflow 91 enters the heat exchanger 10 and then exchanges heat with the relatively low-temperature high-humidity airflow 90 at the position of the dehumidifier 1. As a result, the high-temperature and high-humidity air in the heat exchanger 10 becomes liquid water 93 by cold condensation, and the water after cold condensation is collected and discharged. The circulating air flow 91 returns to the electric heater 13 again according to the pipeline, and the above operation is repeated to complete the moisture attaching / detaching circulation operation. After the dehumidifying body 11, the electric heater 13, and the heat exchanger 10 are combined through the air path by their functions, the dehumidifier 1 having a dehumidifying effect is obtained.

前記の回転ホイール式吸着除湿機は、すべて電熱器により再生側気流を加熱し、再生空気温度を上げている。該技術の加熱着脱メカニズムは主に以下の2つの部分に分けられる。
(一).気流熱交換気化:加熱により循環する再生温度の勾配は、熱交換が発生する熱量気化により、除湿体内の除湿構造中の水分を除去する。湿気着脱の効果を達成するため、湿気の着脱過程では高温空気の製造が必要で、しかも長時間の気化を行う必要がある。よって、乾燥除湿の目的を達成するためには、極めて高い消費電力を必要とする。
(二).放射熱気化:加熱器中の電熱線は電流の通電により高温を発生する。この熱量は放射熱の形式で、除湿体内の構造中の水分子は直接吸収され放射熱で気化着脱される。放射熱量と表面温度の4乗は正比例するため、電熱器表面は400℃以上となり、放射熱は極めて高くなる。よって、発生する湿気着脱効果は前記(一)中の気流熱交換気化着脱に比べ、はるかに重要である。
All of the above rotating wheel type adsorption dehumidifiers heat the regeneration-side airflow with an electric heater to raise the regeneration air temperature. The heat attachment / detachment mechanism of the technology is mainly divided into the following two parts.
(1). Air flow heat exchange vaporization: The gradient of the regeneration temperature circulating by heating removes moisture in the dehumidifying structure in the dehumidified body by vaporization of heat generated by heat exchange. In order to achieve the effect of attaching / detaching moisture, it is necessary to produce high-temperature air in the process of attaching / detaching moisture, and it is necessary to vaporize for a long time. Therefore, extremely high power consumption is required to achieve the purpose of dry dehumidification.
(2). Radiant heat vaporization: Heating wire in the heater generates high temperature when current is applied. This amount of heat is in the form of radiant heat, and water molecules in the structure in the dehumidified body are directly absorbed and vaporized and removed by radiant heat. Since the radiant heat amount and the fourth power of the surface temperature are in direct proportion, the surface of the electric heater becomes 400 ° C. or higher, and the radiant heat becomes extremely high. Therefore, the generated moisture attachment / detachment effect is much more important than the air flow heat exchange vaporization attachment / detachment in (1) above.

上記2項の気化メカニズムに対する分析により、公知の加熱式再生着脱方式は、加熱循環気流が起す間接気化着脱、或いは放射熱が水分子により吸収されると同時に大部分の放射熱量も除湿体に吸収されるため、回避不能な電力消費過多の出所を引き起こしてしまう。別に、放射熱量が引き起こす吸湿構造体表面温度の上昇も、水分子の吸収に不利であり、除湿能力を大幅に低下させる。よって、加熱式再生着脱方式は回転ホイール式除湿装置の電力消費を上げ、除湿効率低下の主因となっている。   According to the analysis of the vaporization mechanism described in the above item 2, the known heating type regeneration attachment / detachment method is such that indirect vaporization attachment / detachment caused by a heating circulation airflow or radiant heat is absorbed by water molecules and most of the radiant heat is also absorbed by the dehumidifier. As a result, excessive power consumption is unavoidable. In addition, an increase in the surface temperature of the hygroscopic structure caused by the amount of radiant heat is also disadvantageous for the absorption of water molecules, and greatly reduces the dehumidifying capacity. Therefore, the heating type removably attaching / detaching method increases the power consumption of the rotating wheel type dehumidifier and is a main cause of dehumidification efficiency reduction.

上記問題を克服するため、図2の概略図が示す日本特許文献1が開発された。該構造はプラズマ方式を利用し公知の加熱により除湿体を着脱する方式で、該技術中では、除湿ユニット17両側に設置する電極15と16を利用し、プラズマを発生し、除湿ユニット17が吸着した水分を離脱させる。該技術は別種のイオンを利用し水分を着脱する技術を掲示し、電力消費過多の問題を克服することができるが、該技術は開放式の気流設計を用い、また該技術は除湿が必要であると同時に、過失も必要な空間18と19に応用される。よって、該技術により製造されるシステムは大型の開放式気流システムに属する。また、該公開案において、その電極15と16は熱プラズマ(thermal plasma)の駆動方式に属し、小電圧(5〜10ボルト)を利用する方式により電極を駆動しプラズマを発生する。   In order to overcome the above problem, Japanese Patent Application Publication No. JP-A-2001-26083, which is schematically shown in FIG. 2, has been developed. This structure uses a plasma system and attaches and detaches a dehumidifying body by known heating. In this technique, the electrodes 15 and 16 installed on both sides of the dehumidifying unit 17 are used to generate plasma, and the dehumidifying unit 17 is adsorbed. To release the moisture. Although this technology uses a different type of ion to detach and remove moisture, it can overcome the problem of excessive power consumption, but it uses an open airflow design and the technology requires dehumidification. At the same time, negligence is also applied to spaces 18 and 19 where they are needed. Therefore, the system manufactured by this technology belongs to a large open airflow system. In this publication, the electrodes 15 and 16 belong to a thermal plasma driving method, and drive the electrodes by a method using a small voltage (5 to 10 volts) to generate plasma.

特開2001-179037JP2001-179037

本発明が解決しようとする課題は、除湿装置水分着脱の再生構造を提供し、高電圧を利用し電極板の放電を操作し、これにより該再生構造を通過した気流は遊離化し帯電粒子を発生し、該帯電粒子は水分子を極めて容易に着脱させることができ、こうして除湿装置の水分を吸着する部品はより低い温度で、或いは加熱空気を必要としない状況で、十分な水分を着脱することができる除湿装置を提供することである。   The problem to be solved by the present invention is to provide a regeneration structure for dehumidifying and dehydrating the moisture, operating the discharge of the electrode plate using a high voltage, thereby freeing the airflow passing through the regeneration structure and generating charged particles However, the charged particles can attach and detach water molecules very easily, and thus the moisture absorbing parts of the dehumidifier can attach and detach sufficient moisture at a lower temperature or in a situation where heated air is not required. It is providing the dehumidification apparatus which can do.

上記課題を解決するため、本発明は下記の除湿装置を提供する。該除湿装置は帯電粒子を利用し水分着脱を行い、水分を吸着する回転ホイールの水分着脱効率を向上させることができ、加熱器の消費電力を低下させ、これにより回転ホイール式除湿機の除湿効率を向上させ、省エネ効果を備えるため、公知の高電力消費の電熱水分着脱の除湿システムに取って代わることができ、該除湿装置は、水分子と材料吸着においてエネルギーの無駄を減少させることができ、再生電力消費を大幅に低下させることができ、また消費電力が低いため、温度もより低くなり、よって熱伝導損失を減少させることができ、除湿装置の吸着材料の加熱された状況も緩和され、吸湿量が拡大し、こうして除湿システムの性能をさらに向上させることができ、ある実施例では、本発明の除湿装置は冷凝縮回路、除湿体、再生部を含み、該冷凝縮回路内には循環気流を備え、該除湿体は気流を通過させ、該気流の水分を吸収でき、該再生部は該除湿体の片側に設置し、しかも該冷凝縮回路と連接し、該再生部はプラズマにより該循環気流を遊離化し、該遊離化した該循環気流は該除湿体上の水分を着脱し、別種の実施例では、本発明の除湿装置はさらに一対の電極、一対の絶縁体を含み、該一対の電極はそれぞれ一定の距離を隔て、該各電極は複数の気体通路を備え、該一対の絶縁体は該一対の電極とそれぞれ連接し、該各絶縁体は複数の絶縁構造を備え、該各絶縁構造は該各気体通路とそれぞれ対応する。   In order to solve the above problems, the present invention provides the following dehumidifying device. The dehumidifying device uses charged particles to attach and detach moisture, and can improve the moisture attachment and detachment efficiency of the rotating wheel that adsorbs moisture, thereby reducing the power consumption of the heater and thereby dehumidifying efficiency of the rotating wheel type dehumidifier. In order to improve energy efficiency and save energy, it can replace the known high power consumption dehumidifying system for attaching and detaching heat and moisture, and the dehumidifying device can reduce waste of energy in adsorbing water molecules and materials. Regenerative power consumption can be greatly reduced, and since the power consumption is low, the temperature can also be lowered, thus reducing the heat conduction loss, and the heated situation of the adsorbent material of the dehumidifier is also alleviated In some embodiments, the dehumidifying device of the present invention includes a cold condensing circuit, a dehumidifying body, and a regenerative unit. The cold condensing circuit is provided with a circulating airflow, the dehumidifying body allows the airflow to pass therethrough and absorbs moisture of the airflow, and the regeneration unit is installed on one side of the dehumidifying body, and the cold condensing circuit and The regenerating unit liberates the circulating airflow by plasma, and the liberated circulating air attaches and detaches moisture on the dehumidifying body. In another embodiment, the dehumidifying device of the present invention further includes a pair of electrodes. A pair of insulators, each of the pair of electrodes being separated from each other by a certain distance, each electrode having a plurality of gas passages, each of the pair of insulators being connected to each of the pair of electrodes, and each of the insulators Comprises a plurality of insulating structures, each insulating structure corresponding to each gas passage.

請求項1の発明は、冷凝縮回路、除湿体、再生部を含み、
該冷凝縮回路内には循環気流を備え、
該除湿体は気流を通過させ、該気流の水分を吸収でき、
該再生部は該除湿体の片側に設置し、しかも該冷凝縮回路と連接し、該再生部はプラズマにより該循環気流を遊離化し、該遊離化した該循環気流は該除湿体上の水分を着脱し、該再生部は一対の電極、一対の絶縁体を含み、
該一対の電極は該除湿体の両側にそれぞれ設置し、該各電極は該循環気流を通過させる複数の気体通路を備え、該一対の電極の間には5000ボトル以上の電位差が形成され、しかも、該一対の電極の間の放電電流範囲は100ミリアンペア内であり、
該一対の絶縁体は該一対の電極とそれぞれ連接し、各該絶縁体には各該気体通路に対応する通孔が形成されたことを特徴とする除湿装置としている。
請求項2の発明は、前記冷凝縮回路は冷凝縮盤管、再生ファンを含み、
該冷凝縮盤管は該再生部と連接し、該冷凝縮盤管内には複数の流路を備え、該循環気流を通過させ、
該再生ファンは該冷凝縮盤管及び該再生部と連接することを特徴とする請求項1記載の除湿装置としている。
請求項3の発明は、前記各電極はさらに複数の通孔を備え、これにより複数の該気体通路を形成することを特徴とする請求項1記載の除湿装置としている。
請求項4の発明は、前記絶縁体はさらに複数の柱体を備え各該柱体の内部には通孔を備えたことを特徴とする請求項3記載の除湿装置としている。
請求項5の発明は、前記各電極はさらに複数の凸柱を備え、該各凸柱内には該気体通路を備えることを特徴とする請求項1記載の除湿装置としている。
請求項6の発明は、前記各凸柱はさらに該電極を貫通し、該電極の両側にそれぞれ設置されることを特徴とする請求項5記載の除湿装置としている。
請求項7の発明は、前記各電極はさらに複数の錐形凸柱を備え、該錐形凸柱の周囲には少なくとも1個の開孔を備え、該気体通路を形成することを特徴とする請求項1記載の除湿装置としている。
請求項8の発明は、前記除湿装置はさらに加熱ユニットを備え、該冷凝縮盤管に進入する循環気流の温度を上昇させることを特徴とする請求項1記載の除湿装置としている。
請求項9の発明は、前記除湿体はホイール体で、回転運動を行うことを特徴とする請求項1記載の除湿装置としている。
請求項10の発明は、前記絶縁体と該除湿体の表面の距離は0.1〜5mmであることを特徴とする請求項1記載の除湿装置としている。
請求項11の発明は、前記除湿装置はさらに高圧電源サプライヤを含み、高電圧を該一対の電極に提供することを特徴とする請求項1記載の除湿装置としている。
請求項12の発明は、除湿装置の再生構造において、該再生構造は除湿装置内に設けられ、該除湿装置は、冷却回路、除湿体及び再生構造を包含し、該冷却回路は、その内に循環気流を有し、該除湿体は、気流を通過させて該気流の水分を吸収し、該再生構造は、該除湿体の一側に設置されると共に該冷却回路と接続され、該再生構造はプラズマで該循環気流を遊離化し、該遊離化した該循環気流に該除湿体上の水分を着脱させ、該再生構造は、
一対の電極、一対の絶縁体を含み、
該一対の電極はそれぞれ一定の距離を隔て、該各電極は該循環気流を通過させる複数の気体通路を備え、該一対の電極の間には5000ボトル以上の電位差が形成され、しかも、該一対の電極の間の放電電流範囲は100ミリアンペア内であり、
該一対の絶縁体は該一対の電極とそれぞれ連接し、各該絶縁体には各該気体通路に対応する通孔が形成されたことを特徴とする除湿装置の再生構造としている。
請求項13の発明は、前記各電極はさらに複数の通孔を備え、これにより複数の該気体通路を形成することを特徴とする請求項12記載の除湿装置の再生構造としている。
請求項14の発明は、前記各通孔の直径は0.5〜8mmであることを特徴とする請求項13記載の除湿装置の再生構造としている。
請求項15の発明は、前記絶縁体はさらに複数の柱体を備え、各該柱体の内部には通孔を備えた、電極の通孔と連通することを特徴とする請求項13記載の除湿装置の再生構造としている。
請求項16の発明は、前記各電極はさらに複数の凸柱を備え、該各凸柱内には該気体通路を備えることを特徴とする請求項12記載の除湿装置の再生構造としている。
請求項17の発明は、前記絶縁体の通孔が電極の凸柱を通過させていることを特徴とする請求項16記載の除湿装置の再生構造としている。
請求項18の発明は、前記各通孔の直径は0.5〜8mmであることを特徴とする請求項17記載の除湿装置の再生構造としている。
請求項19の発明は、前記各電極はさらに複数の錐形凸柱を備え、該錐形凸柱の周囲には少なくとも1個の開孔を備え、この開孔が気体通路を形成することを特徴とする請求項12記載の除湿装置の再生構造としている。
請求項20の発明は、通孔が電極の凸柱を通過させていることを特徴とする請求項19記載の除湿装置の再生構造としている。
請求項21の発明は、前記各通孔構造の直径は0.5〜8mmであることを特徴とする請求項20記載の除湿装置の再生構造としている。
The invention of claim 1 includes a cold condensing circuit, a dehumidifying body, and a regeneration unit,
A circulating air flow is provided in the cold condensing circuit,
The dehumidifier allows air to pass through and absorbs moisture from the air stream;
The regeneration unit is installed on one side of the dehumidifying body, and is connected to the cold condensing circuit. The regeneration unit liberates the circulating airflow by plasma, and the liberated circulating airflow removes moisture on the dehumidifying body. The reproducing unit includes a pair of electrodes and a pair of insulators,
The pair of electrodes is installed on both sides of the dehumidifying body, each electrode is provided with a plurality of gas passages through which the circulating air flow passes, and a potential difference of 5000 bottles or more is formed between the pair of electrodes, The discharge current range between the pair of electrodes is within 100 milliamps;
The pair of insulators is a dehumidifier, characterized in that the pair of electrodes and is connected respectively to each the insulator is Rutsuana to correspond to each said gas passage is formed.
According to a second aspect of the present invention, the cold condensing circuit includes a cold condenser disk tube and a regeneration fan,
The cold condenser tube is connected to the regeneration unit, and the cold condenser plate is provided with a plurality of flow paths, and allows the circulating air flow to pass through.
2. The dehumidifying device according to claim 1, wherein the regeneration fan is connected to the cold condenser panel tube and the regeneration unit.
The invention according to claim 3 is the dehumidifying device according to claim 1, wherein each of the electrodes further includes a plurality of through holes, thereby forming a plurality of the gas passages.
According to a fourth aspect of the present invention, in the dehumidifying device according to the third aspect, the insulator further includes a plurality of pillars, and through holes are provided in the pillars.
The invention according to claim 5 is the dehumidifying device according to claim 1, wherein each of the electrodes further includes a plurality of convex columns, and the gas passage is provided in each of the convex columns.
The invention according to claim 6 is the dehumidifying device according to claim 5 , wherein each of the convex columns further penetrates the electrode and is installed on both sides of the electrode .
The invention of claim 7 is characterized in that each of the electrodes further includes a plurality of conical convex columns, and at least one opening is formed around the conical convex columns to form the gas passage. A dehumidifying device according to claim 1 .
The invention according to claim 8 is the dehumidifier according to claim 1, wherein the dehumidifier further comprises a heating unit, and raises the temperature of the circulating airflow entering the cold condenser panel tube .
The invention according to claim 9 is the dehumidifying device according to claim 1 , wherein the dehumidifying body is a wheel body and performs a rotational motion .
A tenth aspect of the present invention is the dehumidifying device according to the first aspect , wherein the distance between the insulator and the surface of the dehumidifying body is 0.1 to 5 mm .
According to an eleventh aspect of the present invention, the dehumidifying apparatus further includes a high voltage power supply supplier, and provides a high voltage to the pair of electrodes .
According to a twelfth aspect of the present invention, in the regeneration structure of the dehumidifying device, the regeneration structure is provided in the dehumidifying device, and the dehumidifying device includes a cooling circuit, a dehumidifying body, and a regeneration structure, and the cooling circuit is included therein. The dehumidifying body has a circulating air flow and passes the air flow to absorb moisture in the air flow. The regeneration structure is installed on one side of the dehumidification body and connected to the cooling circuit, and the regeneration structure Liberates the circulating airflow with plasma, allows moisture on the dehumidifier to be attached to and detached from the liberated circulating airflow,
Including a pair of electrodes, a pair of insulators,
Each of the pair of electrodes is provided with a certain distance, and each electrode includes a plurality of gas passages through which the circulating airflow passes. A potential difference of 5000 bottles or more is formed between the pair of electrodes, The discharge current range between the electrodes is within 100 milliamps,
The pair of insulators are connected to the pair of electrodes, respectively, and each insulator is provided with a through hole corresponding to each gas passage .
According to a thirteenth aspect of the present invention, there is provided the regeneration structure for a dehumidifying device according to the twelfth aspect , wherein each of the electrodes further includes a plurality of through holes, thereby forming a plurality of the gas passages .
A fourteenth aspect of the present invention is the dehumidifying device regeneration structure according to the thirteenth aspect , wherein the diameter of each through hole is 0.5 to 8 mm .
According to a fifteenth aspect of the present invention, the insulator further includes a plurality of pillars, and each pillar has a through hole and communicates with a through hole of the electrode. The regeneration structure of the dehumidifier is used.
According to a sixteenth aspect of the present invention , there is provided the regeneration structure of the dehumidifying device according to the twelfth aspect , wherein each of the electrodes further includes a plurality of convex columns, and the gas passages are provided in the respective convex columns .
According to a seventeenth aspect of the present invention, there is provided the regeneration structure for a dehumidifying device according to the sixteenth aspect , wherein the through hole of the insulator passes through the convex column of the electrode .
An eighteenth aspect of the present invention is the dehumidifying device regeneration structure according to the seventeenth aspect , wherein the diameter of each through hole is 0.5 to 8 mm .
According to a nineteenth aspect of the present invention, each of the electrodes further includes a plurality of conical convex columns, and at least one aperture is formed around the conical convex columns, and the aperture forms a gas passage. The regeneration structure of the dehumidifying device according to claim 12 is characterized .
According to a twentieth aspect of the present invention, there is provided a regeneration structure for a dehumidifying device according to the twentieth aspect, wherein the through hole passes through the convex column of the electrode .
According to a twenty-first aspect of the present invention, there is provided the regeneration structure for a dehumidifying device according to the twenty-second aspect , wherein the diameter of each through hole structure is 0.5 to 8 mm .

上記のように、本発明は連続式帯電循環気流を発生し、吸着部品上の水分を着脱し、公知の電熱着脱方式の除湿装置に取って代わることができる。本発明は帯電粒子着脱乾燥技術を利用し、高エネルギー帯電粒子が形成する駆動力と電場を利用し、水分子と除湿構造間の吸着力を直接改変可能で、こうして湿気は吸着部品上に着脱される。本発明は低電力で水分着脱効果を達成可能であるため、再生着脱システムの消費電力を低下させることができ、公知の高電力消費の電熱システムに取って代わることができ、大幅な省エネ効果を備える。   As described above, the present invention generates a continuous charging circulation air flow, attaches and detaches moisture on the adsorbing component, and can replace a known electric heat attaching and detaching type dehumidifying device. The present invention utilizes the charged particle attachment / detachment drying technology, and can use the driving force and electric field formed by the high energy charged particles to directly modify the adsorption force between the water molecule and the dehumidifying structure, so that the moisture is attached to and detached from the adsorption component. Is done. Since the present invention can achieve the moisture attachment / detachment effect with low power, it can reduce the power consumption of the regeneration attachment / detachment system, can replace the known high power consumption electric heating system, and has a significant energy saving effect. Prepare.

本発明の特徴、目的、機能を明らかにするため、本発明装置の構造と設計の理念に関して以下に詳細に説明する。本発明除湿装置の実施例概略図である図3に示すように、除湿装置2は冷凝縮回路20、除湿体21、再生部22を含む。該冷凝縮回路20は冷凝縮盤管201と再生ファン202を含む。該冷凝縮盤管201の入口端2010は、管路により、再生部22の出口端220と連接する。図示を単純化するため、図3では連接管路を図示していないが、該項技術の習熟者の本発明実施状態に対する理解には影響しない。本実施例において、該冷凝縮盤管201は複数の冷凝縮管路2011を備え、その内部には流路を備え、これにより循環気流91は流動することができる。該冷凝縮盤管201の主要な目的は、外部環境の除湿されるべき気流90を通過させ、該冷凝縮盤管201において流動する循環気流91と熱交換を行わせることである。よって、該各冷凝縮管路2011間には間隙を備え、気流90を通過させる。該冷凝縮盤管201は公知の技術に属するため、詳述しない。該再生ファン202は該冷凝縮盤管201の出口端2012及び該再生部22の入口端221と連接する。該再生ファン202の目的は、循環気流91の圧力を拡大することで、これにより該循環気流91は加速する。   In order to clarify the features, objects, and functions of the present invention, the structure and design philosophy of the apparatus of the present invention will be described in detail below. As shown in FIG. 3, which is a schematic diagram of an embodiment of the dehumidifying device of the present invention, the dehumidifying device 2 includes a cold condensation circuit 20, a dehumidifying body 21, and a regeneration unit 22. The cold condensing circuit 20 includes a cold condensing disc tube 201 and a regeneration fan 202. The inlet end 2010 of the cold condenser tube 201 is connected to the outlet end 220 of the regenerator 22 through a pipe line. In order to simplify the illustration, the connecting pipes are not shown in FIG. 3, but this does not affect the understanding of the implementation state of the present invention by those skilled in the art. In the present embodiment, the cold condensing tube 201 includes a plurality of cold condensing pipes 2011 and a flow path therein, whereby the circulating air flow 91 can flow. The main purpose of the cold condenser tube 201 is to allow the air flow 90 to be dehumidified in the external environment to pass through and to exchange heat with the circulating air flow 91 flowing in the cold condenser plate pipe 201. Therefore, a gap is provided between the cold condensing pipelines 2011, and the airflow 90 is allowed to pass therethrough. Since the cold condenser tube 201 belongs to a known technique, it will not be described in detail. The regeneration fan 202 is connected to the outlet end 2012 of the cold condenser panel tube 201 and the inlet end 221 of the regeneration unit 22. The purpose of the regeneration fan 202 is to increase the pressure of the circulating airflow 91, thereby accelerating the circulating airflow 91.

該除湿体21は該気流90を通過させることができる。該除湿体21内部には除湿構造210を備え、気流90内に含まれる水分を吸収する。本実施例において、該除湿体21はホイール体で、回転運動を行うことができる。当然、該除湿体21の構造は他の構造の設計を利用することができ、本発明のホイール体に限定するものではない。該除湿体21もまた公知の技術に属するため、詳述しない。該再生部22は該除湿体21の片側に設置し、該再生部22はプラズマにより該循環気流91を遊離化することができる。これにより該遊離化したが循環気流91は該除湿体21上に吸着する水分を着脱しする。本実施例では、該再生部22は外ケース体222を備え、その内部は循環気流91を通過させることができる。該外ケース体222内部には該除湿体21の一部を収納することができ、こうして該外ケース体222内部の流動するイオン化された循環気流91は、該除湿体21を通過し、該除湿体21上の水分を着脱することができる。   The dehumidifying body 21 can pass the air flow 90. The dehumidifying body 21 includes a dehumidifying structure 210 that absorbs moisture contained in the airflow 90. In this embodiment, the dehumidifying body 21 is a wheel body and can perform a rotational motion. Of course, the structure of the dehumidifying body 21 can utilize the design of other structures, and is not limited to the wheel body of the present invention. Since the dehumidifier 21 also belongs to a known technique, it will not be described in detail. The regeneration unit 22 is installed on one side of the dehumidifying body 21, and the regeneration unit 22 can liberate the circulating airflow 91 by plasma. As a result, the circulation air flow 91 attaches and detaches moisture adsorbed on the dehumidifying body 21 although it is liberated. In the present embodiment, the reproducing unit 22 includes an outer case body 222 through which the circulating airflow 91 can pass. A part of the dehumidifying body 21 can be accommodated inside the outer case body 222, and thus the ionized circulating air flow 91 flowing inside the outer case body 222 passes through the dehumidifying body 21 and is dehumidified. The moisture on the body 21 can be attached and detached.

除湿を待つ気流90の流速を加速し、除湿の効果を制御するため、本実施例では、さらに除湿ファン24を設置し、該除湿体21を通過した乾燥気流を該除湿装置2の外に排出することができる。この他、該除湿装置2はさらに加熱ユニット23を設置することができる。その位置は必要に応じて決め、増設するかどうかも必要に応じて決める。本実施例では、該加熱ユニット23は該再生部22の出口端2012と該冷凝縮盤管201の間に設置する。該加熱ユニット23は熱量を該循環気流91に提供し、循環気流91の温度を上げることができ、こうして水分着脱の冷凝縮効果を向上させることができる。   In this embodiment, in order to accelerate the flow rate of the airflow 90 waiting for dehumidification and control the effect of dehumidification, a dehumidifying fan 24 is further installed, and the dry airflow that has passed through the dehumidifying body 21 is discharged out of the dehumidifying device 2. can do. In addition, the dehumidifying device 2 can further be provided with a heating unit 23. The position is determined as necessary, and whether or not to add is determined as necessary. In the present embodiment, the heating unit 23 is installed between the outlet end 2012 of the regeneration unit 22 and the cold condenser disk 201. The heating unit 23 can provide heat to the circulating airflow 91 to increase the temperature of the circulating airflow 91, thus improving the cold condensation effect of moisture attachment / detachment.

続いて、本発明の再生部の各種実施方式について説明する。本発明再生部の第一実施例概略図である図4に示すように、該再生部22は一対の電極223、226及び一対の絶縁体224、225を備える。該一対の電極223、226は導電材質で、かつそれぞれ該除湿体21の両側に設置する。該各電極223、226上には複数の気体流路を備え、循環気流を通過させる。該一対の絶縁体224、225はそれぞれ該電一対の極223、226と連接し、該一対の電極223、226が放電過程においてショートしないようにする。図4中では、該一対の絶縁体224、225と該除湿体21間には間隔距離228、229を備える。本実施例では、該間隔距離228、229(放電可能間隙)は10mm以下で、0.1mm〜5mmが最適である。但し、これに限定しない。該一対の絶縁体224、225と該一対の電極223、226の連接方式は、該電極を包覆し、或いは該電極表面と緊密に接触する方式により設置する。この他、該一対の絶縁体224、225は複数の該気流流路と対応する絶縁構造2240を備える。   Next, various implementation methods of the reproducing unit of the present invention will be described. As shown in FIG. 4 which is a schematic diagram of a first embodiment of the reproducing unit of the present invention, the reproducing unit 22 includes a pair of electrodes 223 and 226 and a pair of insulators 224 and 225. The pair of electrodes 223 and 226 are made of a conductive material and are installed on both sides of the dehumidifying body 21, respectively. A plurality of gas flow paths are provided on each of the electrodes 223 and 226, and a circulating air flow is passed therethrough. The pair of insulators 224 and 225 are connected to the pair of electrodes 223 and 226, respectively, so that the pair of electrodes 223 and 226 are not short-circuited in the discharge process. In FIG. 4, distances 228 and 229 are provided between the pair of insulators 224 and 225 and the dehumidifier 21. In the present embodiment, the distances 228 and 229 (dischargeable gaps) are 10 mm or less, and optimally 0.1 mm to 5 mm. However, it is not limited to this. The connection method of the pair of insulators 224 and 225 and the pair of electrodes 223 and 226 is installed by covering the electrodes or in close contact with the electrode surfaces. In addition, the pair of insulators 224 and 225 includes an insulating structure 2240 corresponding to the plurality of air flow paths.

この他、該再生部22はさらに高圧電源サプライヤ227を備え、該一対の電極223、226と電気的に連接し、該一対の電極223、226に放電に必要な電力を提供する。該高圧電源サプライヤ227は限電流型高周波数、高圧交流高圧電源サプライヤ或いは限電流型高周波数、高圧直流高圧電源サプライヤから選択することができる。本実施例では、該高圧電源サプライヤ227が提供する高電圧値は5000ボルト以上で、しかも40000ボルト以下である。これにより該一対の電極223と226の間には5000ボルト〜40000ボルトの電位差が形成され、同時に、該一対の電極223と226の間の放電電流範囲は100ミリアンペア内であるが、これに限定しない。   In addition, the regeneration unit 22 further includes a high-voltage power supply supplier 227, which is electrically connected to the pair of electrodes 223 and 226, and supplies the pair of electrodes 223 and 226 with electric power necessary for discharge. The high voltage power supply supplier 227 can be selected from a current limiting type high frequency, high voltage AC high voltage power supply supplier or a current limiting type high frequency, high voltage DC high voltage power supply supplier. In this embodiment, the high voltage value provided by the high voltage power supply supplier 227 is 5000 volts or more and 40000 volts or less. As a result, a potential difference of 5000 volts to 40000 volts is formed between the pair of electrodes 223 and 226, and at the same time, the discharge current range between the pair of electrodes 223 and 226 is within 100 milliamperes, but the present invention is not limited thereto. do not do.

本発明図4の電極と絶縁体の立体概略図である図5に示すように、図中の電極223と226及び絶縁体224と225は、相同の構造である。よって図5中では、電極223と絶縁体224を代表とする。図5に示すように、該電極223の外形は円形で、かつ該電極223上には複数の通孔2230を備え、該気流流路を形成する。該通孔2230の直径は0.5mm〜8mmであるが、これに限定しない。図4と図5中で示す電極と通孔の形状は円形であるが、実際は多辺形或いは他の任意の形状とすることができる。これは該項技術の習熟者は本発明に基づき、必要に応じて変化を加えることができる。図5が示す実施例では、該絶縁体224内部の凹部2242は複数の絶縁構造2240を備え、それは柱体の形式である。該各絶縁構造2240内には絶縁通路2241を備え、該電極223の通孔2230と対応する。該絶縁通路2241の直径は0.5mm〜8mmである。該絶縁体224の材質は高酸化アルミニウム、セラミック、石英、高分子材料、テフロン(登録商標)、ホリエーテルエーテルケトン(peek)、或いはエポキシ樹脂であるが、これに限定しない。上記材質は単独で使用することができ、或いは混合し使用することができる。例えば、図4中左側の絶縁体224はテフロン(登録商標)で、右側の絶縁体225は石英である。図5に戻り示すように、該絶縁体224の構造形状は、多辺形或いは円盤状で、盤面内の絶縁構造2240は円柱体或いは多辺形柱体である。該絶縁通路2241の断面は、規則的或いは不規則的な孔である。   As shown in FIG. 5, which is a three-dimensional schematic diagram of the electrode and insulator of FIG. 4, the electrodes 223 and 226 and insulators 224 and 225 in the figure have a homologous structure. Therefore, in FIG. 5, the electrode 223 and the insulator 224 are representative. As shown in FIG. 5, the outer shape of the electrode 223 is circular, and a plurality of through holes 2230 are provided on the electrode 223 to form the air flow channel. The diameter of the through hole 2230 is 0.5 mm to 8 mm, but is not limited thereto. The shape of the electrodes and through-holes shown in FIGS. 4 and 5 is circular, but in practice it can be a polygon or any other shape. This is because a person skilled in the art can make changes as required based on the present invention. In the embodiment shown in FIG. 5, the recess 2242 inside the insulator 224 comprises a plurality of insulating structures 2240, which are in the form of pillars. Each insulating structure 2240 includes an insulating passage 2241 corresponding to the through hole 2230 of the electrode 223. The diameter of the insulating passage 2241 is 0.5 mm to 8 mm. A material of the insulator 224 is high aluminum oxide, ceramic, quartz, a polymer material, Teflon (registered trademark), polyetheretherketone (peak), or an epoxy resin, but is not limited thereto. The above materials can be used alone or in combination. For example, the left insulator 224 in FIG. 4 is Teflon (registered trademark), and the right insulator 225 is quartz. As shown in FIG. 5, the insulator 224 has a polygonal shape or a disk shape, and the insulating structure 2240 in the surface is a cylindrical body or a polygonal column. The cross section of the insulating passage 2241 is a regular or irregular hole.

本発明再生部の第二実施例概略図である図6、図6の電極と絶縁体の立体概略図である図7に示すように、再生部26は一対の電極261と一対の絶縁体262を備える。本実施例では、該各電極261は該除湿体21の両側に相対設置し、かつ該各電極261の外形は円盤状の金属であるが、これに限定しない。例えば、多辺形の外形とすることができる。該電極261の盤面において複数の凸柱2610を設置し、該各凸柱2610内には気体通路2611を備える。本実施例では、該各凸柱2610は該電極261を貫通し、また該電極261の両側にそれぞれ設置する。該一対の電極は高圧電源サプライヤ227とそれぞれ電気的に連接する。該高圧電源サプライヤ227が提供する高圧電値は5000ボルト以上で、しかも40000ボルト以下である。これにより該一対の電極261間には5000ボルト〜40000ボルトの電位差を形成し、同時に該一対の電極間の放電電流範囲は100ミリアンペア内であるが、これに限定しない。   As shown in FIG. 6 which is a schematic diagram of the second embodiment of the reproducing unit of the present invention and FIG. 7 which is a three-dimensional schematic diagram of the electrodes and insulators of FIG. 6, the reproducing unit 26 has a pair of electrodes 261 and a pair of insulators 262. Is provided. In this embodiment, each electrode 261 is relatively installed on both sides of the dehumidifying body 21, and the outer shape of each electrode 261 is a disk-shaped metal, but this is not limitative. For example, it can be a polygonal outer shape. A plurality of convex columns 2610 are installed on the surface of the electrode 261, and a gas passage 2611 is provided in each convex column 2610. In this embodiment, each convex column 2610 penetrates the electrode 261 and is installed on both sides of the electrode 261. The pair of electrodes are electrically connected to the high-voltage power supply supplier 227, respectively. The high piezoelectric power provided by the high voltage power supply supplier 227 is 5000 volts or more and 40000 volts or less. Thereby, a potential difference of 5000 volts to 40000 volts is formed between the pair of electrodes 261, and at the same time, the discharge current range between the pair of electrodes is within 100 milliamperes, but this is not limitative.

該一対の絶縁体262は該一対の電極261とそれぞれ連接する。連接方式は、包覆或いは表面緊密接触の方式により該電極間の相互ショートを防止する。本実施例では、放電可能な間隔距離263と264は0.1mm〜5mmの間であるが、これに限定しない。該絶縁体262の材質は高酸化アルミニウム、セラミック、石英、高分子材料、テフロン(登録商標)、ホリエーテルエーテルケトン(peek)、或いはエポキシ樹脂であるが、これに限定しない。上記材質は単独で使用することができ、或いは混合し使用することができる。例えば、図7に示すように、該絶縁体262上にはさらに複数の該凸柱2610と相対する絶縁構造2620を設置することができる。本実施例の絶縁構造2620は通孔構造で、その直径は0.5mm〜8mmで、該凸柱2610を通過させることができる。該絶縁体262の通孔2620の厚みは該凸柱2610が突出するが電極表面の高度より大きい。また、該絶縁体262の外形は図7に示す円形に限定せず、多辺形或いは他の形状とすることができる。本実施例の該絶縁体262の厚みは1mm〜5mmである。   The pair of insulators 262 are connected to the pair of electrodes 261, respectively. In the connection method, mutual short-circuit between the electrodes is prevented by covering or surface close contact method. In this embodiment, the dischargeable distances 263 and 264 are between 0.1 mm and 5 mm, but are not limited thereto. The material of the insulator 262 is high aluminum oxide, ceramic, quartz, polymer material, Teflon (registered trademark), polyetheretherketone (peak), or epoxy resin, but is not limited thereto. The above materials can be used alone or in combination. For example, as shown in FIG. 7, a plurality of insulating structures 2620 facing the plurality of convex columns 2610 can be provided on the insulator 262. The insulating structure 2620 of this embodiment has a through-hole structure, and the diameter is 0.5 mm to 8 mm, and the convex column 2610 can be passed therethrough. The thickness of the through hole 2620 of the insulator 262 is larger than the height of the electrode surface although the protruding column 2610 protrudes. Further, the outer shape of the insulator 262 is not limited to the circular shape shown in FIG. 7, and can be a polygonal shape or other shapes. The thickness of the insulator 262 in this embodiment is 1 mm to 5 mm.

本発明再生部の第三実施例概略図である図8、図8の電極と絶縁体の立体概略図である図9に示すように、再生部27は一対の電極271と一対の絶縁体272を備える。本実施例では、該各電極271は該除湿体21の両側に相対設置し、かつ該各電極271の外形は円盤状の金属であるが、これに限定しない。例えば、多辺形の外形とすることができる。該電極271の盤面において複数の錐状凸柱2710を設置し、該各錐状凸柱2710内には少なくとも1個の気体通路2711を備える。本実施例では3個である。   As shown in FIG. 8 which is a schematic diagram of the third embodiment of the reproducing unit of the present invention and FIG. 9 which is a three-dimensional schematic diagram of the electrodes and insulators of FIG. 8, the reproducing unit 27 has a pair of electrodes 271 and a pair of insulators 272. Is provided. In the present embodiment, each electrode 271 is relatively installed on both sides of the dehumidifying body 21 and the outer shape of each electrode 271 is a disk-shaped metal, but is not limited thereto. For example, it can be a polygonal outer shape. A plurality of conical convex columns 2710 are provided on the surface of the electrode 271, and at least one gas passage 2711 is provided in each conical convex column 2710. In this embodiment, there are three.

また本発明の電極の錐状凸柱2710の別種の実施例概略図である図10に示すように、本実施例では該錐状凸柱2710周囲の気体通路2711は1個である。或いは図11に示すように、本実施例では該錐状凸柱2710周囲の気体通路2711は2個である。該気体通路2711の形状或いは数量は、必要に応じて決め、本発明の実施例に限定しない。該一対の電極は高圧電源サプライヤ227とそれぞれ電気的に連接する。該高圧電源サプライヤ227が提供する高圧電値は5000ボルト以上で、しかも40000ボルト以下である。これにより該一対の電極271間には5000ボルト〜40000ボルトの電位差を形成し、同時に該一対の電極271間の放電電流範囲は100ミリアンペア内となる。該絶縁体272の構造は図6に示す構造と相同であるため、ここでは記載しない。   Further, as shown in FIG. 10, which is a schematic diagram of another embodiment of the conical convex column 2710 of the electrode of the present invention, in this embodiment, there is one gas passage 2711 around the conical convex column 2710. Alternatively, as shown in FIG. 11, in this embodiment, there are two gas passages 2711 around the conical convex column 2710. The shape or quantity of the gas passage 2711 is determined as necessary and is not limited to the embodiment of the present invention. The pair of electrodes are electrically connected to the high-voltage power supply supplier 227, respectively. The high piezoelectric power provided by the high voltage power supply supplier 227 is 5000 volts or more and 40000 volts or less. As a result, a potential difference of 5000 volts to 40000 volts is formed between the pair of electrodes 271, and at the same time, the discharge current range between the pair of electrodes 271 is within 100 milliamperes. Since the structure of the insulator 272 is similar to that shown in FIG. 6, it is not described here.

続いて、本発明の除湿装置の動作について説明する。図3、4に示すように、除湿を待つ気流90は該冷凝縮盤管201を通過し、先ず該冷凝縮盤管201内の循環気流と熱交換を行う。次に該除湿体21を通過し、最後に該除湿ファン24により装置2外へと排出される。該除湿体21内部には除湿構造210と吸着剤を備え、気流90内の水分子を吸収するため、乾燥気流92が形成される。水蒸気を吸着し飽和した除湿体21は再生着脱の過程を経れば、湿気の吸着を継続することができ、乾燥空気を連続的に製造することができる。該一対の電極223、226は該高圧電源サプライヤ227と電気的に連接するため、該高圧電源サプライヤ227が高電圧を該一対の電極223、226に提供する時、該一対の電極223、226は常圧環境において大気放電を行うことができる。この時、電極を通過する循環気流91は遊離され電子、プラスイオン、活性分子と原子が混合しプラズマ状態となる。続いて、遊離化した循環気流91は該除湿体21内の除湿構造を通過する時、水分子と該除湿構造210の物理吸着作用を改変し、これにより該除湿体21内の水分は該除湿構造210表面により着脱される。着脱された水分は、さらに循環気流91により除湿体21から離され、該冷凝縮盤管201中に進入し冷凝縮される。冷凝縮された水分は集水盤29中に滴り落ちる。湿気凝結を完成した後の循環気流91は、該再生ファン202により駆動され、管路から該再生部22中に入り、水分着脱循環を繰り返す。   Then, operation | movement of the dehumidification apparatus of this invention is demonstrated. As shown in FIGS. 3 and 4, the airflow 90 waiting for dehumidification passes through the cold condenser disk 201 and first exchanges heat with the circulating airflow in the cold condenser disk 201. Next, it passes through the dehumidifying body 21 and is finally discharged out of the apparatus 2 by the dehumidifying fan 24. The dehumidifying body 21 includes a dehumidifying structure 210 and an adsorbent, and a dry air flow 92 is formed to absorb water molecules in the air flow 90. If the dehumidifying body 21 adsorbed and saturated with water vapor is subjected to the process of regeneration and attachment, moisture adsorption can be continued and dry air can be continuously produced. The pair of electrodes 223, 226 are in electrical communication with the high voltage power supplier 227, so that when the high voltage power supplier 227 provides a high voltage to the pair of electrodes 223, 226, the pair of electrodes 223, 226 Atmospheric discharge can be performed in a normal pressure environment. At this time, the circulating airflow 91 passing through the electrodes is released and electrons, positive ions, active molecules and atoms are mixed to form a plasma state. Subsequently, when the liberated circulating air flow 91 passes through the dehumidifying structure in the dehumidifying body 21, the physical adsorption action of water molecules and the dehumidifying structure 210 is modified, whereby the moisture in the dehumidifying body 21 is changed to the dehumidifying body. It is attached and detached by the surface of the structure 210. The detached moisture is further separated from the dehumidifying body 21 by the circulating air flow 91 and enters the cold condenser disk 201 to be cold condensed. The cold condensed water drops into the water collecting board 29. The circulation airflow 91 after completing the moisture condensation is driven by the regeneration fan 202 and enters the regeneration unit 22 through a pipe line, and repeats moisture attachment / detachment circulation.

上記は本発明の実施例に過ぎず本発明の範囲を限定するものではない。本発明の特許請求範囲に基づき行う均等変化及び修飾は、本発明の意義を失わず、また本発明の精神と範囲を離脱しないため、本発明のさらに別の実施状況と見なす。   The above are only examples of the present invention and do not limit the scope of the present invention. The equivalent changes and modifications made based on the claims of the present invention do not lose the meaning of the present invention and do not depart from the spirit and scope of the present invention, and thus are regarded as still another embodiment of the present invention.

上記のように、本発明が提供する除湿装置及びその再生構造は、低電力消費の状況において、吸着した水分子は吸着材料から極めて容易に着脱されるため、該産業の競争力を向上させることができ、周辺産業の発展を牽引することができる。よって特許申請の要件に符合する。   As described above, the dehumidifying device and the regeneration structure thereof provided by the present invention improve the competitiveness of the industry because the adsorbed water molecules are very easily detached from the adsorbing material in a low power consumption situation. Can drive the development of surrounding industries. Therefore, it meets the requirements for patent application.

公知の電熱脱着式除湿機の作動概略図である。It is an operation schematic diagram of a publicly known electrothermal desorption type dehumidifier. 公知技術のプラズマ除湿及び加湿装置の概略図である。It is the schematic of the plasma dehumidification and humidification apparatus of a well-known technique. 本発明除湿装置の実施例概略図である。It is the Example schematic of this invention dehumidification apparatus. 本発明再生部の第一実施例概略図である。FIG. 3 is a schematic diagram of a first embodiment of the reproducing unit of the present invention. 本発明図4の電極と絶縁体の立体概略図である。FIG. 5 is a three-dimensional schematic diagram of the electrode and insulator of FIG. 4 of the present invention. 本発明再生部の第二実施例概略図である。It is a 2nd Example schematic of this invention reproduction | regeneration part. 図6の電極と絶縁体の立体概略図である。It is the three-dimensional schematic diagram of the electrode and insulator of FIG. 本発明再生部の第三実施例概略図である。It is a 3rd Example schematic of this invention reproduction | regeneration part. 図8の電極と絶縁体の立体概略図である。It is the three-dimensional schematic of the electrode and insulator of FIG. 本発明の気体通路分布の別種の実施例概略図である。It is the Example of another kind of example of the gas passage distribution of this invention. 本発明の気体通路分布の別種の実施例概略図である。It is the Example of another kind of example of the gas passage distribution of this invention.

符号の説明Explanation of symbols

1 除湿器
10 熱交換器
11 除湿体
12 除湿ファン
13 電熱器
15、16 電極
17 除湿ユニット
18、19 空間
2 除湿装置
20 冷凝縮回路
201 冷凝縮盤管
2010 入口端
2011 冷凝縮管路
2012 出口端
202 再生ファン
21 除湿体
210 除湿構造
22 再生部
220 出口端
221 入口端
222 外ケース体
223、226 電極
2230 通孔
224、225 絶縁体
2240 絶縁構造
2241 絶縁通路
2242 凹部
227 高圧電源サプライヤ
228 229 間隔距離
23 加熱ユニット
24 除湿ファン
26 再生部
261 電極
2610 凸柱
2611 気体通路
262 絶縁体
2620 通孔
263、264 間隔距離
27 再生部
271 電極
2710 凸柱
2711 気体通路
272 絶縁体
2720 通孔
29 集水盤
90 気流
91 循環気流
92 乾燥気流
93 液体水
DESCRIPTION OF SYMBOLS 1 Dehumidifier 10 Heat exchanger 11 Dehumidifier 12 Dehumidifying fan 13 Electric heater 15, 16 Electrode 17 Dehumidifying unit 18, 19 Space 2 Dehumidifier 20 Cold condensing circuit 201 Cold condensing panel pipe 2010 Inlet end 2011 Cold condensing duct line 2012 Outlet end 202 Regenerative fan 21 Dehumidifying body 210 Dehumidifying structure 22 Regenerating section 220 Outlet end 221 Inlet end 222 Outer case body 223, 226 Electrode 2230 Through hole 224, 225 Insulator 2240 Insulating structure 2241 Insulating passage 2242 Recess 227 High voltage power supply supplier 228 229 Distance 23 Heating unit 24 Dehumidifying fan 26 Regenerating unit 261 Electrode 2610 Convex column 2611 Gas passage 262 Insulator 2620 Through-hole 263, 264 Spacing distance 27 Reproducing unit 271 Electrode 2710 Convex column 2711 Gas passage 272 Insulator 2720 Through-hole 29 Water collecting panel 90 Airflow 91 Circulation Flow 92 dry stream 93 liquid water

Claims (21)

冷凝縮回路、除湿体、再生部を含み、
該冷凝縮回路内には循環気流を備え、
該除湿体は気流を通過させ、該気流の水分を吸収でき、
該再生部は該除湿体の片側に設置し、しかも該冷凝縮回路と連接し、該再生部はプラズマにより該循環気流を遊離化し、該遊離化した該循環気流は該除湿体上の水分を着脱し、該再生部は一対の電極、一対の絶縁体を含み、
該一対の電極は該除湿体の両側にそれぞれ設置し、該各電極は該循環気流を通過させる複数の気体通路を備え、該一対の電極の間には5000ボトル以上の電位差が形成され、しかも、該一対の電極の間の放電電流範囲は100ミリアンペア内であり、
該一対の絶縁体は該一対の電極とそれぞれ連接し、各該絶縁体には各該気体通路に対応する通孔が形成されたことを特徴とする除湿装置。
Including cold condensing circuit, dehumidifier, regenerator,
A circulating air flow is provided in the cold condensing circuit,
The dehumidifier allows air to pass through and absorbs moisture from the air stream;
The regeneration unit is installed on one side of the dehumidifying body, and is connected to the cold condensing circuit. The regeneration unit liberates the circulating airflow by plasma, and the liberated circulating airflow removes moisture on the dehumidifying body. The reproducing unit includes a pair of electrodes and a pair of insulators,
The pair of electrodes is installed on both sides of the dehumidifying body, each electrode is provided with a plurality of gas passages through which the circulating air flow passes, and a potential difference of 5000 bottles or more is formed between the pair of electrodes, The discharge current range between the pair of electrodes is within 100 milliamps;
The pair of insulators said pair of electrodes and then connecting each dehumidifier in each the insulator, characterized in that Rutsuana to correspond to each the gas path is formed.
前記冷凝縮回路は冷凝縮盤管、再生ファンを含み、
該冷凝縮盤管は該再生部と連接し、該冷凝縮盤管内には複数の流路を備え、該循環気流を通過させ、
該再生ファンは該冷凝縮盤管及び該再生部と連接することを特徴とする請求項1記載の除湿装置。
The cold condensing circuit includes a cold condenser tube and a regeneration fan,
The cold condenser tube is connected to the regeneration unit, and the cold condenser plate is provided with a plurality of flow paths, and allows the circulating air flow to pass through.
The dehumidifying device according to claim 1, wherein the regeneration fan is connected to the cold condenser panel tube and the regeneration unit.
前記各電極はさらに複数の通孔を備え、これにより複数の該気体通路を形成することを特徴とする請求項1記載の除湿装置。   The dehumidifying device according to claim 1, wherein each electrode further includes a plurality of through holes, thereby forming a plurality of the gas passages. 前記絶縁体はさらに複数の柱体を備え各該柱体の内部には通孔を備えたことを特徴とする請求項3記載の除湿装置。 The dehumidifying device according to claim 3, wherein the insulator further includes a plurality of pillars, and a through hole is provided in each pillar. 前記各電極はさらに複数の凸柱を備え、該各凸柱内には該気体通路を備えることを特徴とする請求項1記載の除湿装置。   2. The dehumidifying device according to claim 1, wherein each electrode further includes a plurality of convex columns, and the gas passages are provided in the respective convex columns. 前記各凸柱はさらに該電極を貫通し、該電極の両側にそれぞれ設置されることを特徴とする請求項5記載の除湿装置。6. The dehumidifying device according to claim 5, wherein each of the convex columns further penetrates the electrode and is installed on both sides of the electrode. 前記各電極はさらに複数の錐形凸柱を備え、該錐形凸柱の周囲には少なくとも1個の開孔を備え、該気体通路を形成することを特徴とする請求項1記載の除湿装置。2. The dehumidifying device according to claim 1, wherein each of the electrodes further includes a plurality of conical convex columns, and at least one aperture is formed around the conical convex columns to form the gas passage. . 前記除湿装置はさらに加熱ユニットを備え、該冷凝縮盤管に進入する循環気流の温度を上昇させることを特徴とする請求項1記載の除湿装置。The dehumidifier according to claim 1, further comprising a heating unit, wherein the dehumidifier increases the temperature of the circulating airflow entering the cold condenser tube. 前記除湿体はホイール体で、回転運動を行うことを特徴とする請求項1記載の除湿装置。The dehumidifying device according to claim 1, wherein the dehumidifying body is a wheel body and performs a rotational motion. 前記絶縁体と該除湿体の表面の距離は0.1〜5mmであることを特徴とする請求項1記載の除湿装置。The dehumidifier according to claim 1, wherein a distance between the insulator and the surface of the dehumidifier is 0.1 to 5 mm. 前記除湿装置はさらに高圧電源サプライヤを含み、高電圧を該一対の電極に提供することを特徴とする請求項1記載の除湿装置。The dehumidifying device according to claim 1, further comprising a high-voltage power supplier, and providing a high voltage to the pair of electrodes. 除湿装置の再生構造において、該再生構造は除湿装置内に設けられ、該除湿装置は、冷却回路、除湿体及び再生構造を包含し、該冷却回路は、その内に循環気流を有し、該除湿体は、気流を通過させて該気流の水分を吸収し、該再生構造は、該除湿体の一側に設置されると共に該冷却回路と接続され、該再生構造はプラズマで該循環気流を遊離化し、該遊離化した該循環気流に該除湿体上の水分を着脱させ、該再生構造は、In the regeneration structure of the dehumidifying device, the regeneration structure is provided in the dehumidifying device, and the dehumidifying device includes a cooling circuit, a dehumidifying body, and a regenerating structure, and the cooling circuit has a circulating airflow therein, and The dehumidifying body allows the air stream to pass through and absorbs moisture from the air stream, and the regeneration structure is installed on one side of the dehumidifying body and connected to the cooling circuit, and the regeneration structure causes the circulating air stream to flow with plasma. Liberated, the moisture on the dehumidifying body is attached to and detached from the liberated circulating airflow,
一対の電極、一対の絶縁体を含み、  Including a pair of electrodes, a pair of insulators,
該一対の電極はそれぞれ一定の距離を隔て、該各電極は該循環気流を通過させる複数の気体通路を備え、該一対の電極の間には5000ボトル以上の電位差が形成され、しかも、該一対の電極の間の放電電流範囲は100ミリアンペア内であり、  Each of the pair of electrodes is provided with a certain distance, and each electrode includes a plurality of gas passages through which the circulating airflow passes. A potential difference of 5000 bottles or more is formed between the pair of electrodes, The discharge current range between the electrodes is within 100 milliamps,
該一対の絶縁体は該一対の電極とそれぞれ連接し、各該絶縁体には各該気体通路に対応する通孔が形成されたことを特徴とする除湿装置の再生構造。  The regeneration structure of a dehumidifying device, wherein the pair of insulators are respectively connected to the pair of electrodes, and through holes corresponding to the gas passages are formed in the insulators.
前記各電極はさらに複数の通孔を備え、これにより複数の該気体通路を形成することを特徴とする請求項12記載の除湿装置の再生構造。13. The dehumidifying device regeneration structure according to claim 12, wherein each electrode further includes a plurality of through holes, thereby forming a plurality of the gas passages. 前記各通孔の直径は0.5〜8mmであることを特徴とする請求項13記載の除湿装置の再生構造。14. The dehumidifying device regeneration structure according to claim 13, wherein the diameter of each through hole is 0.5 to 8 mm. 前記絶縁体はさらに複数の柱体を備え、各該柱体の内部には通孔を備えた、電極の通孔と連通することを特徴とする請求項13記載の除湿装置の再生構造。The regeneration structure for a dehumidifying device according to claim 13, wherein the insulator further includes a plurality of pillars, and each pillar is provided with a through hole and communicates with a through hole of the electrode. 前記各電極はさらに複数の凸柱を備え、該各凸柱内には該気体通路を備えることを特徴とする請求項12記載の除湿装置の再生構造。13. The dehumidifying device regeneration structure according to claim 12, wherein each of the electrodes further includes a plurality of convex columns, and the gas passages are provided in the convex columns. 前記絶縁体の通孔が電極の凸柱を通過させていることを特徴とする請求項16記載の除湿装置の再生構造。The regeneration structure of a dehumidifying device according to claim 16, wherein the through hole of the insulator passes through the convex column of the electrode. 前記各通孔の直径は0.5〜8mmであることを特徴とする請求項17記載の除湿装置の再生構造。The dehumidifying device regeneration structure according to claim 17, wherein the diameter of each through hole is 0.5 to 8 mm. 前記各電極はさらに複数の錐形凸柱を備え、該錐形凸柱の周囲には少なくとも1個の開孔を備え、この開孔が気体通路を形成することを特徴とする請求項12記載の除湿装置の再生構造。13. Each of the electrodes further includes a plurality of conical convex columns, and at least one aperture is formed around the conical convex columns, and the aperture forms a gas passage. Regeneration structure of the dehumidifier. 通孔が電極の凸柱を通過させていることを特徴とする請求項19記載の除湿装置の再生構造。The regeneration structure of a dehumidifier according to claim 19, wherein the through-hole passes through the convex column of the electrode. 前記各通孔構造の直径は0.5〜8mmであることを特徴とする請求項20記載の除湿装置の再生構造。The dehumidifying device regeneration structure according to claim 20, wherein the diameter of each through-hole structure is 0.5 to 8 mm.
JP2008104564A 2008-03-17 2008-04-14 Dehumidifier Expired - Fee Related JP4947803B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW97109268A TWI359932B (en) 2008-03-17 2008-03-17 Dehumidifier and a regenerator thereof
TW097109268 2008-03-17

Publications (2)

Publication Number Publication Date
JP2009220094A JP2009220094A (en) 2009-10-01
JP4947803B2 true JP4947803B2 (en) 2012-06-06

Family

ID=41237467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104564A Expired - Fee Related JP4947803B2 (en) 2008-03-17 2008-04-14 Dehumidifier

Country Status (2)

Country Link
JP (1) JP4947803B2 (en)
TW (1) TWI359932B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201311336A (en) 2011-09-09 2013-03-16 Ind Tech Res Inst Adsorption unit, adsorption device and method for regenerating thereof
CN103084156A (en) * 2011-11-04 2013-05-08 财团法人工业技术研究院 Dehumidification device and electrifying desorption device thereof
JP5453490B2 (en) * 2011-12-21 2014-03-26 財團法人工業技術研究院 Dehumidification and release device and system
CN103877834B (en) 2012-12-20 2016-08-10 财团法人工业技术研究院 Dehumidification system
CN105688617A (en) * 2016-04-11 2016-06-22 珠海市臻的科技有限公司 Front-end refrigerating and regenerated gas recycling and heating system for adsorbing drying machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258930B2 (en) * 1999-12-27 2009-04-30 ダイキン工業株式会社 Dehumidifying / humidifying device, dehumidifying / humidifying device and air conditioner
JP4349895B2 (en) * 2003-10-31 2009-10-21 株式会社トーミック Regeneration device for high-frequency or microwave of moisture-absorbing element body in dehumidification device and regeneration method thereof
JP4341410B2 (en) * 2004-01-21 2009-10-07 ダイキン工業株式会社 Humidity control device
JP4997803B2 (en) * 2005-12-06 2012-08-08 パナソニック株式会社 Dehumidifier
JP4757745B2 (en) * 2006-08-30 2011-08-24 三菱電機株式会社 Air purification device, air purifier, and air conditioner

Also Published As

Publication number Publication date
TW200940919A (en) 2009-10-01
TWI359932B (en) 2012-03-11
JP2009220094A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP2010158661A (en) Desorption device with low energy consumption and dehumidifying device thereof
JP5564527B2 (en) Dehumidifying device and energizing / desorbing device thereof
US8043414B2 (en) Method and apparatus for desorption and dehumidifier using the same
CN101879438B (en) Low energy consumption desorption device and dehumidifying device thereof
JP4947803B2 (en) Dehumidifier
JP2010131583A (en) Dehumidifying apparatus of low power consumption
US20160146479A1 (en) Dehumidification device and dehumidification system
CN102989258A (en) Adsorption module, adsorption device and regeneration method thereof
CN101537302B (en) Dehumidifier and regeneration structure thereof
JP5722525B2 (en) Low energy consumption desorption method and equipment
JP5521106B1 (en) Dehumidification system
JP5453490B2 (en) Dehumidification and release device and system
CN101368753A (en) Liquid-solid mixed dehumidifier and dehumidification method
TW201037239A (en) Apparatus of low energy consumption for desorbtion and dehumidifier using the same
CN110454877A (en) Using the interior heat type air dewetting plate of magnetothermal effect
KR102222265B1 (en) Dehumidifying apparatus and method using thermoelectric module
JP2014089013A (en) Adsorption heat exchanger for desiccant air conditioning device
KR101464830B1 (en) Dehumidification device and electrified desorption device thereof
EP2735356A1 (en) Dehumidification device and electrified desorption device thereof
TWI443291B (en) Device for desorption and dehumidification and system using the same
WO2014194714A1 (en) Adsorption-type dehumidifier
KR100832476B1 (en) Dehumidifier
CN114573212B (en) Drying apparatus and drying method
KR101710779B1 (en) Apparatus for dehumidifier and humidifier
CN107321140A (en) Dehumidifying wheel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees