TW201037239A - Apparatus of low energy consumption for desorbtion and dehumidifier using the same - Google Patents

Apparatus of low energy consumption for desorbtion and dehumidifier using the same Download PDF

Info

Publication number
TW201037239A
TW201037239A TW98111986A TW98111986A TW201037239A TW 201037239 A TW201037239 A TW 201037239A TW 98111986 A TW98111986 A TW 98111986A TW 98111986 A TW98111986 A TW 98111986A TW 201037239 A TW201037239 A TW 201037239A
Authority
TW
Taiwan
Prior art keywords
adsorbent material
sub
dehumidification
electrodes
metal
Prior art date
Application number
TW98111986A
Other languages
Chinese (zh)
Other versions
TWI368014B (en
Inventor
Ming-Shiann Shih
Yu-Li Lin
Jau-Chyn Huang
Ting-Wei Huang
Yen-Hsun Chi
Yo-Ming Chang
Ming-Shan Jeng
Ya-Wen Chou
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW098111986A priority Critical patent/TWI368014B/en
Priority to JP2009115359A priority patent/JP2010158661A/en
Priority to US12/549,789 priority patent/US8187368B2/en
Publication of TW201037239A publication Critical patent/TW201037239A/en
Application granted granted Critical
Publication of TWI368014B publication Critical patent/TWI368014B/en

Links

Abstract

An apparatus of low energy consumption for desorption is provided in the present invention, which utilizes a pair of electrodes, coupled to an absorbing material, to provide an electrical potential to the absorbing material. Then, an electrical current is conducted through the absorbing material directly so as to desorb the substances absorbed within the absorbing material. By means of the apparatus of the present invention, it is able to enhance the desorbing efficiency and reducing the energy consumption during desorption. In another embodiment, the present invention further provides a dehumidifier for providing a continuous dry flow to absorb the moisture desorbed from the absorbing material so that the dehumidifier is capable of removing moisture of the air repeatedly so as to reduce the humidity of environment economically.

Description

201037239 . 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種環境狀態控制技術,尤其是指一種 利用通電的方式使材料導電而進行脫附的一種低耗能脫附 裝置及其除濕裝置。 • 【先前技術】 傳統上一般家用除濕機之除濕方式是以冷媒壓縮機系 ()、统來冷凝空氣中之水氣,以達到室内空氣乾燥之目的。但 是由於使用CFC冷媒所衍生的臭氧層破壞問題,開發不需 冷煤的除濕技術,愈來愈受到重視。轉輪式吸附除濕裝置 即不需使用壓縮機與冷媒,藉由除濕輪吸附室内空氣水 _氣,然後再以電熱加熱空氣流經除濕輪再生侧,進行水汽 脫附。再生側的高溫高濕空氣導入熱交換器中進行冷凝, .以集水盒收集冷凝水份,達到家用除濕裝置之目地。由於 除屋輪式除濕機以除濕輪吸濕的特性完成除濕機制,具有 Ο μ環境氣體溫度及財條件限制,並且不需使用傳統的 • 壓縮機’因此具有低臂音及避免冷煤使料技術優勢。 " 轉輪式吸附除濕機1其作用原理流程如圖一所示, • 其係將室内潮濕的氣流9 0吸經熱交換器丨〇,再進入吸附 =料11,使得吸附材料得以吸附氣流90内之水份。吸附 ^成的乾燥氣流92由除濕風機12排入室内,即完成空 J除濕工作。另-方面’電熱器13提升循環氣流91 : 溫ΐ,藉由高溫之循環氣流91與吸附材料11上水分子 的溫度差,將吸附材料11中的水分子汽化脫附。接著高 5 201037239 ’ 入之循環氣流91進人熱交換器1G後,與除濕機1 古、、低'现度之潮濕氣流90進行熱交換,熱交換器内的 =濕上氣即可冷凝成液態水93,冷凝後之水份被收 ^ 而循環氣流91再循管路回到再生電熱器13,進 行刖$之動作,以完成水氣脫附之循環動作。由上述吸 =材料11電熱為13及熱交換器10各別功能經風道結 . 0後,即可成為一具除濕效果的除濕機i。 一 ^除濕輪内之吸附材料主要為多孔型結構,孔洞結構 〇 一般為蜂巢狀(Honeycomb Type)或皺褶狀(corrugate201037239. 6. Description of the Invention: [Technical Field] The present invention relates to an environmental state control technology, and more particularly to a low-energy desorption device for desorbing a material by means of energization and dehumidification thereof Device. • [Prior Art] Traditionally, the dehumidification method of a general household dehumidifier is to use a refrigerant compressor system to condense the water in the air to achieve indoor air drying. However, due to the destruction of the ozone layer derived from the use of CFC refrigerant, the development of dehumidification technology that does not require cold coal has received increasing attention. The rotary adsorption dehumidification device does not need to use the compressor and the refrigerant, and the indoor air water is adsorbed by the dehumidification wheel, and then the electric heating air is heated to flow through the regeneration side of the dehumidification wheel to perform water vapor desorption. The high-temperature and high-humidity air on the regeneration side is introduced into the heat exchanger for condensation, and the condensed water is collected by the water collecting box to reach the purpose of the household dehumidifier. Since the house dehumidifier completes the dehumidification mechanism with the moisture absorption characteristics of the dehumidification wheel, it has Ομ ambient gas temperature and financial conditions, and does not require the use of a conventional compressor. Therefore, it has low arm sound and avoids cold coal. Technical advantages. " The principle of the principle of the rotary adsorption dehumidifier 1 is shown in Figure 1. • It sucks the indoor humid airflow 90 into the heat exchanger and then enters the adsorption = material 11, so that the adsorbent material can adsorb the gas flow. 90% of the water. The adsorbed dry air stream 92 is discharged into the room by the dehumidifying fan 12, that is, the air J dehumidification operation is completed. In another aspect, the electric heater 13 raises the circulating gas stream 91: by temperature, the water molecules in the adsorbent material 11 are vaporized and desorbed by the temperature difference between the high temperature circulating gas stream 91 and the water molecules on the adsorbent material 11. Then the high 5 201037239 'into the circulating airflow 91 into the heat exchanger 1G, and the dehumidifier 1 ancient, low 'current humidity gas 90 heat exchange, the heat exchanger inside the = wet gas can be condensed into The liquid water 93, the condensed water is collected, and the circulating air stream 91 is returned to the regenerative electric heater 13 through the pipeline to perform the action of 刖$ to complete the circulation operation of the water vapor desorption. The above-mentioned suction material 11 is electrically heated to 13 and the respective functions of the heat exchanger 10 are passed through the air duct. After 0, the dehumidifier i can be a dehumidifying effect. The adsorption material in the dehumidification wheel is mainly a porous structure, and the pore structure 〇 is generally honeycomb (Honeycomb Type) or corrugated (corrugate)

Type)除濕的作用主要是利用結構體中無數的微孔與吸 以物理吸附方式捕捉氣體中的水分子,產生乾燥 空氣。除濕輪的水份吸附量視許多因素而定,包括吸附 劑的型式和份量、進氣之溫度和濕度、除濕輪的厚度、 蜂巢結構之表面積、空氣流過除濕輪的速度,以及除濕 1旋轉速度等。另—再生循環風道,則需將吸附於除濕 結構體中的水份進行脫附排&,以此不斷的吸附與脫 Ο 附,即可達到除濕及再生的功能。此所謂再生循環風道 指,是,熱器13出口與吸附材料U (除濕輪)交界面經 • 熱父換.器10至氣流進入電熱器13入口,因此對吸附材 . 料11 (除濕輪)而言,入風口為加熱空氣進入除濕輪再 生側,出風口為高溫高濕空氣進入熱交換器前之再生侧 輪面,在轉輪式吸附除濕系統中,再生側的高溫高濕空 氣進入冷凝裝置後,與管外低溫的空氣進行熱交換, 凝裝置内的高温高濕空氣即可冷凝出液態水。 τ 傳統轉輪式吸附除濕裝置,皆是以電熱器加熱再生 6 201037239 側氣流提高再生空氣溫度,此部分的加熱脫附機制主要 分為兩部份:(一)氣流熱交換汽化:以加熱再生側氣流 產生溫度梯度,以熱交換所產生的熱量汽化除濕結構體 孔洞中的水份,水汽脫附過程需製造高溫空氣,而且須 進行長時間的汽化,才能達到水汽脫附的效果,因此需 要消耗極高的能量才可達到烘乾除濕的目標。(二)輻射 熱汽化:加熱器中電熱絲通過電流後產生高溫,此一熱 量以輻射熱的形式,使除濕結構體微孔中的水分子可以 直接吸收輻射熱汽化脫附。由於輻射熱量與表面溫度成 四次方正比,電熱絲表面皆高於400°C以上,輻射熱量極 高,因此所產生的水汽脫附效應遠較氣流熱交換汽化脫 附更為重要。由上述兩項汽化機制分析,傳統加熱式再 生脫附法,不論是加熱再生氣流造成間接汽化脫附,或 是輻射熱被水分子吸收的同時,大部分輻射熱量也被吸 濕結構體所吸收,此兩項因素皆成為無可避免的耗能來 源。另外,輻射熱量所造成吸濕結構體表面溫度上升, 也不利於水分子的吸附,大幅降低除濕能力。因此加熱 式再生脫附法,是造成轉輪式除濕裝置耗能偏高,除濕 效率降低的主因。 【發明内容】 本發明提供一種低耗能脫附裝置,其係在吸附材料兩 側設置有電極,藉由對該電極通電使得電流得以通過該吸 附材料而造成溫度上升,同時在某些條件下可能影響被吸 附分子與吸附材料間的吸引力,進而脫附被該吸附材料所 7 Ο ❹ 201037239 吸附之物質。另外,更可以於對應電極之設 使得氣流得以通過通電之吸附材料,以增加: 更提供-種_裝置,其仙電極錢施加電 上,使吸附材料得以吸附空氣中的水氣而降 濕度。由於該除濕裝置具有再生循環的氣流可以帶 ,脫附之水氣,由於本發日㈣藉由通電直接對吸附材料產 生脫附的仙,不彡貞先加熱^氣,因此 熱損失,降低脫附能耗。 在-實施财,本發明提供一種低耗能脫附裝置,包 括·一吸附材料’其係提供吸附至少一物質;以及 極結構,其係與該吸附材料之兩侧相偶接,每一 構具有複數_互縣之子電極;以及—電壓源,其係: 該對電極結構相偶接’該電壓源係提供—電壓於該極 結構,使該吸附材料導通電流進而脫附。 χ 在另-實施例中,本發明更提供—種除濕裝置,包括. -冷凝部,其係提供—循職流;—吸轉料,其 一氣流通過,該吸附材料係吸附該氣流内之至少一物餅: -再生部’其係與該冷凝部以及該吸附材料相偶接,二具 生部係導引該循環氣流通過該吸附材料,該再生部更^ -對電極結構、’其係與該吸附材料之兩側相偶接σ,每二 電極結構具有複數個相互絕緣之子電極;一 电!綠,其传 與該對電極結構相偶接’該電壓源係提供—電壓給該對雷 極結構,使該吸附材料導通電流進而脫附。 /、h 8 201037239 【實施方式】 為使貴審查委員能對本發明之特徵、目的及功能有 更進一步的認知與瞭解,下文特將本發明之裝置的相關細 部結構以及設計的理念緣由進行說明,以使得審查委員可 以了解本發明之特點,詳細說明陳述如下: .請參閱圖二所示,該圖係為本發明之低耗能脫附裝置 ,實施例示意圖。在本實施例中,該脫附裝置3具有一吸附 材料30、一對電極結構31與32以及一電壓源33。該吸附 P 材料30,其係提供吸附空氣中所含有之有機揮發物、氮氣 或者是水份等,但不以此為限。一般而言,比較常見的是 該吸附材料係應用於家用除濕設備,例如:除濕輪式除濕 設備,但不以此為限。至於該吸附材料之材質,係可為多 孔性材質,例如:沸石、矽膠、活性碳、奈米碳管、分子 篩或金屬有機架構複合物(metal organic framework)等。 此外,該吸附材料亦可為儲氫金屬之非多孔性材質。 該對電極結構31與32,其係與該吸附材料30之兩侧 0 相偶接。該電壓源33,其係與該對電極結構31與32相偶 接,該電壓源33係提供一電壓於該對電極結構31與32。 . 該電壓源33係可為直流電或者是交流電。由於電極結構 31與32施加在吸附材料30之二端,當通電之後,利用短 暫高壓電位形成的驅動力,或使被吸附之物質解離或使被 吸附之物質與特定金屬離子形成的結合分子產生離子導電 特性。直接改變被吸附物質與吸附材料間的導電狀態,使 被吸附之物質脫附離開該吸附物質。本發明之電流導通的 機制可以是吸附材料中的離子躍遷,也可以是被吸附的物 9 201037239 質解離所造成的離衫質子料是前述二種作 綜合結果。在此情況下,大部分的”可以直接施加 吸附之物質上,造成有效的脫附,因而減少耗能。 Ο 〇 為了讓吸附材料在旋轉時僅於吸附材ς之ς定區 產生脫附的反應’以及讓吸附材料之其他區域維持㈣的 ,果’在電極上更具有絕緣體來將料分錢數個區域。 ,個區域之間因為有絕緣體的存在之故,因此可以確保電 極通電時僅有特定區域有能力導電’使得賴材料上對應 通電電極的區域可以產生脫附效果’而其他未被通電的電 極區域則可以維持吸附物質的能力。請參閱圖三Α所示, 該圖係為本發明之f極結構正視示_。在本實施财, 以電極結構31㈣,該電減構31具麵數個子電極 310。由於本發明之吸附材料係為圓柱狀,因此每一個子電 極310之外形係為一扇形。每一個子電極31〇具有一絕緣 框架犯以及-導電結構312。在本實施例中,、該絕緣框 架311係設在該子電極310之兩侧使相鄰之子電極得 以保持絕緣。絕緣框架311之材料係可為高氧化鋁、陶瓷、 石英、高分子材料、鐵氟龍、peek、電木或環氧 特質可以單獨使用,也可以混合使用心=中上 乡巴緣框架厚度介於1細!之〜5mm,但不以此為限。而該導電 結構312則設置在子電極31〇之外緣。該導電妗 本實施例中,係為金屬條或者是金屬線。 為了加強導電性能,該導電結構312更具有網結 構313 ’其表面具有規則或不規則的孔洞,以提供氣進入 吸附材料30。該金屬網結構313之材料並無一定限制,只 201037239 要是可以導電的金屬材料即可。請參閱圖三B所示,該圖 係為沿圖三A之剖面線將電極結構與吸附材料剖開之剖面 示意圖。其中,剖面線沿圖三A之FF方向將電極結構以及 中心區域之絕緣框架311與吸附材料剖成如圖三B之狀 態。在金屬網結構313與吸附材料30間更具有一導電層 314,以降低接觸電阻,並促使電流均勻分布。在本實施例 中,該導電層314係為抗氧化導電材料,其係可強化每一 子電極310與吸附材料30之間的電路導電性能與穩定性避 免發生異常放電電弧破壞吸附材料。該導電層314之材料 可用純金屬材料(金、白金)或合金材料(不鏽鋼)或任何 可能具導電性之金屬氧化物或非金屬氧化物等(如Indium Tin Oxide, ITO,(In2〇3+Sn〇2))。塗布方式以各式工程上 常見之工藝,例如:減:鑛、蒸鍵或喷塗、刷塗或含浸的方 式達成。該金屬網之設置亦可以提供保護該導電層,避免 導電層遭受破壞而影響導電特性。 請參閱圖四所示,該圖係為本發明之電極結構作動示 意圖。由於本實施例之吸附材料會轉動,因此為了能夠讓 每一個子電極310可以單獨通電,該電壓源33更偶接有一 電刷結構330,其係可在吸附材料30轉動時,雖隨著吸附 材料30轉動之位置而與不同之子電極310電性連接。在圖 四中,當吸附材料30轉動時,與電刷330接觸的金屬框 312會將電傳導致整個子電極310,由於電極結構31與32 係相互對應,被電刷330所接觸到的子電極310與320間 所對應到的吸附材料區域300會因為子電極310與子電極 320間的電場而使得吸附材料區域300導電。由於本發明 11 201037239 . 之電極結構31與32具有絕緣框架311與321的設計,所 以當電刷330接觸到電極結構31與32的金屬框312與322 時,由於導電僅有對應到接觸位置的吸附材料區域300, 因此可以確保僅有對應到區域300的吸附材料有電流通過 而進行脫附。至於沒有對應到通電的吸附材料則可以繼續 ^ 吸附動作,使得該吸附材料可以同時具有吸附與脫附的效 果。 請參閱圖五A與圖五B所示,該圖係為本發明之電極 結構其他貫施例不意圖。在圖五A中’該電極結構31可以 為塗佈在吸附材料30表面之抗氧化的導電層314a,藉由 溝槽314b作為絕緣帶,使得該電極結構31具有複數個子 電極。在圖五A中之絕緣區除了利用溝槽之外,更可以在 溝槽上設置絕緣框架以增加絕緣效果。如圖五B所示,為 了增加電性接觸之效果,在導電層314a所形成的每一個子 電極的邊緣上設置導電結構314 c ’其係可為金屬條、金屬 線或者是金屬網等材料。圖五A與圖五B雖然以電極結構 q 31來說明,但對於電極結構32的實施方式也是相同。請 參閱圖六所示,在對應電刷330所接觸到的脫附結構區域 * 之兩側更可以設置一再生風道34。該再生風道34可以將 _ 氣流9 0導入對應通電的脫附結構區域内,措由氣流通過對 應通電之脫附結構區域之吸附材料,將被脫附的物質帶 出,以增加脫附速度。為了增加氣流帶出物質之效率,該 氣流90可以是經過加熱的較高溫度氣流,以輔助脫附再增 加脫附速度。 前述之實施例係為吸附材料會轉動的實施例,在本發 12 201037239 明所提供之另一實施例中,其吸附材料並不需要藉由轉動 而與電刷電性連接,而是藉由分電控制使得每一個子電極 階段性的通電。請參閱圖七所示,該圖係為本發明之電極 結構另一實施例示意圖。以電極結構31為例,其係分配成 複數個相互絕緣之子電極315與315a〜315g,其係分別具 有外金屬框316與内金屬框317,在金屬框316與317之 兩側具有絕緣框架318與319。而每一個子電極315與 315a〜315g,獨立引出導電電纜332。每一個子電極315與 315a〜315g與導電電纜電訊連接之位置可為外環的金屬框 316,亦可為内環的金屬框317。每一子電極315與 315a〜315g的導電電纜332,有規律依序的連接至電源分配 單元331。電源分配單元331係與電壓源33電訊連接,該 電源分配單元331可接收定位控制信號,適時依序的將電 力供應至特定的子電極。例如:電力先供應至吸附材料上 之子電極315,接著供應至子電極315a,依序為315b〜 315g,此依序供電的結果,等同於吸附材料依序旋轉再生 的功能。因每個子電極之間有絕緣框架的存在,因此可以 確保電極通電時僅有特定區域才能導電,使得吸附材料對 應通電子電極的區域可以產生脫附效果,其他未被通電的 子電極區域則可以維持吸附的動作。電源分配單元331由 邏輯運算單元、計時元件、電力開關等單元所組成;電力 開關可為機械式的繼電器、配電盤或半導體元件所構成的 固態開關等元件。本實施例之電源分配單元係屬於習用技 術之元件,在此不作贅述。 請蒼閱圖八A與圖八B所不’其中圖八A係為本發明 13 201037239 旋轉之再生風道實施例側視示意圖;圖八B係為旋轉再生 風道之送風侧立體示意圖。在本實施例的特徵是吸附材料 30不動而由再生風道35以及收集風道36旋轉,並由定位 感測模組來感測再生風道與收集風道3 6之位置。在本實施 例中,再生風道35與收集風道36係相互對應且可同步進 行轉動運動。該再生風道35具有一殼體350,其係可提供 氣流進入。該殼體350係與一轉軸351相連接。該轉軸351 可以接收旋轉動力單元(如馬達)的旋轉動力而帶動該再生 風道之殼體350轉動。在該轉轴351内更具有一流道352 以提供氣流355進入。由於收集風道36藉由轉軸351與再 生風道35同步轉動,因此通過吸附材料30之氣流355會 經由收集風道36而流出該吸附材料30。該定位感測模組 可為機械結構、光學偵測、磁場偵測、或音波偵測等具有 位移偵測功能的元件,例如常見的微動開關、光敏開關、 磁簧開關或超音波感知器等元件。例如,在本實施例中, 該光學模組具有一光發射元件354,其係設置於該再生風 道上。另一光訊號接收元件353,則設置於每一個子電極 上。當再生風道已完全覆蓋子電極時,即時傳出定位控制 信號至電源分配單元,經由電源分配單元控制再生風道的 停止旋轉且於適當時間,輸出電力至吸附材料上被覆蓋之 子電極,進行再生的程序。收集風道除了前述之同步轉動 之設計外,亦可以如圖八C所示之方式,收集風道37並不 轉動,而是設置於吸附材料30之另一側以收集通過該吸附 材料之氣流355。 上述脫附方法可以適用於任何具有電導通能力或吸附 14 201037239 水分後具有電導通能力的吸附材料與被吸附分子組合,實 施時可以是應用在固定床或塔式脫附,也可以應用在轉輪 脫附。例如應用在家用轉輪式滴水除濕機,圖九係為以除 濕機中使用的本發明之具有電極之吸附材料進行測試之結 果。原除濕機脫附水量約6. 6公升/天(20°C,60%RH),脫 附係採熱風加熱方式,所需的耗電量為600瓦特(如圖一所 示),相當於每脫附lg水量,需要7854J的能量。而在除 濕輪不旋轉的實驗中,採用電極通電而非熱風脫附,耗能 僅為4200〜4700J/g。圖九中的縱軸是吸附材料重量的下降 程度,表示脫附的水量,橫軸則為時間。不同的曲線代表 多次的實驗,每次實驗的操作電壓為90伏特,而吸附材料 之材質為沸石與矽膠,其直徑為77公厘,在改變通電脫附 時間長短不同,而得到不同的脫附效果。其中▲代表脫附 時間為3秒,代表脫附時間為6秒,♦代表脫附時間為 10秒以及#代表脫附時間為15秒。而在每條曲線上所標 示的數字是實際量測的耗電量除上脫附水量而得。由圖九 可知,最佳的脫附是效果是在吸附材料通電時間經過6秒 的狀態下,耗能最少。也就是說,採用電極通電的方法可 以省能45%以上(由7854J/g下降至4200J/g)。圖九的數 據雖然是在除濕輪不轉動的情形下進行測試,但是相同的 原理可以利用在各種情況,包括塔式與轉動式的轉輪,差 別僅在於電極接觸型式的改變。 利用前述之脫附裝置,本發明更提供一種除濕裝置。 參閱圖十所示,該圖係為本發明之除濕裝置實施例示意 圖。該除濕裝置4包括有一冷凝部40、一吸附材料41以 15 201037239 及一再生部42。該冷凝迴部40包括有一冷凝盤管401以 及循環管路402。該冷凝盤管401之具有一入口端4010 以及一出口端4012。在本實施例中,該冷凝盤管401具 有複數個冷凝管路4011,其内具有流道以提供一循環氣 流91流動。由於該冷凝盤管401主要之目的是讓外部環 境要被除濕的氣流90通過以與在冷凝盤管401内流動之 循環氣流91進行熱交換使得在冷凝盤管401内的循環氣 流内的水氣凝結成水而流至收集盤46内,因此每一個冷 凝管路4011間具有缝隙以提供氣流90通過。由於該冷凝 盤管401係屬於習用技術,因此在此不作贅述。該再生部 42其係與該吸附材料41相偶接。該再生部42具有一對 電極結構421與422、一再生風道423以及一再生風機 424。該對電極結構421與422其連接關係與前述之電極 結構31與32相同,在此不作贅述。該再生風道423,其 係具有一殼體4230以形成氣流通道。在殼體4230之一側 具有一出口端4231其係與該冷凝盤管401之入口端4010 相連接。殼體4231之另一側具有一入口端4232,其係與 該再生風機424相連接。該再生風機424之目的在於增加 循環氣流91之壓力,以加速循環氣流91之速度。 該吸附材料41,其係可提供氣流90通過。該吸附材 料41内部具有微結構410以吸收氣流90内含之水份。在 本實施例中,該吸附材料41係為一輪體,其係可進行一 旋轉運動,當然該吸附材料41之結構亦可利用其他結構 之設計,並不以本發明之輪體為限。該吸附材料41亦屬 於習用技術,其細部結構在此不作贅述。當吸附材料旋轉 16 201037239 .至定位時,對應到再生風道42之子電極4210與4220與 電壓源45會導通,因此通過之電流會脫附子電極4210與 4220所對應之吸附材料4Π所吸附之物質。在本實施例 中,該再生部42之殼體4230 ’其内可提供循環氣流91 通過,該殼體4230内部可以提供容納該吸附材料41之一 • 部,使得於該殼體4230内部流動之循環氣流91可以通過 , 該吸附材料41以帶走因通電而脫附之物質。 為了增加待除濕之氣流9〇之流速以控制除濕之效 〇 果,在本實施例中,更可以設置一除濕風機44以將通過 吸附材料41之乾燥氣流92排出裝置4外。此外,該除濕 裝置4更可以設置一加熱單元43 ’其位置可視需求而選 擇增設與否,在本實施例中該加熱單元43係設置於該再 生部42之入口端4232與該再生風機424之間。該加熱單 元43可以提供熱量給該循環氣流91以增加循環氣流91 之溫度,進而舞升脱附水份之冷凝效果。 惟以上所述者,僅為本發明之實施例,當不能以之限 〇 制本發明範圍。即大凡依本發明申請專利範圍所做之均等 變化及修飾,仍將不失本發明之要義所在,亦不脫離本發 • 明之精神和範圍,故都應視為本發明的進一步實施狀況。 • 綜合上述,本發明提供之低耗能脫附裝置及其除濕裝 置,由於具有降低能源使用以及增加脫附效果之優點。因 此已經可以提高該產業之競爭力以及帶動週遭產業之發 展,誠已符合發明專利法所規定申請發明所需具備之^ 件,故爰依法呈提發明專利之申請,謹請貴審查委員允 撥時間惠予審視,並賜准專利為禱。 17 201037239 . 【圖式簡單說明】 圖一係為習用之使用除濕轉輪的除濕裝置示意圖。 圖二係為本發明之低耗能脫附裝置實施例示意圖。 圖三A係為本發明之電極結構正視示意圖。 圖三B係為沿圖三A之剖面線將電極結構與吸附材料剖開 , 之剖面示意圖。 , 圖四係為本發明之電極結構作動不意圖。 圖五A與圖五B係為本發明之電極結構其他實施例示意圖。 0 圖六係為本發明之電極結構連接有再生風道示意圖。 圖七係為本發明之電極結構另一實施例示意圖。 圖八A至八C係為本發明旋轉之再生風道實施例示意圖。 圖九係為以除濕機中使用的本發明之具有電極之吸附材料 進行測試之結果。 圖十係為本發明之除濕裝置實施例示意圖。_ 【主要元件符號說明】 Q 卜除濕機 10-熱交換器 11-除濕體 ' 12-除濕風機 13-電熱器 3-脫附裝置 30、 300-吸附材料 31、 32-電極結構 201037239 . 310、320-子電極 311、 321-絕緣框架 312、 322-導電結構 313- 金屬網結構 314- 導電層 33- 電壓源 3 3 0 -電刷 34- 再生風道 〇 35- 再生風道 350-殼體 351 -轉轴 352- 流道 353- 光訊號接收元件 354- 光發射元件 3 5 5 -氣流 〇 3 6 -收集風道 37-收集風道 ' 4-除濕裝置 4 0 -冷凝部 40卜冷凝盤管 4010- 入口端 4011- 冷凝管路 4012- 出口端 19 201037239 . 402-循環管路 41- 吸附材料 410- 除濕結構 411- 吸附材料 42- 再生部 421、422-電極結構 4210、4220-子電極 423-再生風道 ❹ 4230- 殼體 4231- 出口端 4232- 入口端 423-再生風道 4230- 殼體 4231- 出口端 4232- 入口端 Ο 424-再生風機 43- 加熱單元 44- 除濕風機 45- 電壓源 46- 收集盤 90- 濕氣流 91- 循環氣流 92- 乾燥氣流 20 201037239 93-液態水 ΟType) Dehumidification mainly uses the numerous micropores in the structure to absorb the water molecules in the gas by physical adsorption to produce dry air. The amount of moisture adsorbed by the dehumidification wheel depends on many factors, including the type and size of the adsorbent, the temperature and humidity of the intake air, the thickness of the dehumidification wheel, the surface area of the honeycomb structure, the speed of the air flowing through the dehumidification wheel, and the dehumidification 1 rotation. Speed, etc. In addition, the regeneration circulation air passage needs to desorb and drain the water adsorbed in the dehumidification structure, thereby continuously adsorbing and desorbing, thereby achieving the functions of dehumidification and regeneration. The so-called regenerative circulation air duct means that the outlet of the heat exchanger 13 and the adsorbent material U (dehumidifying wheel) pass through the interface. • The hot parent exchanges the device 10 to the airflow and enters the inlet of the electric heater 13, so that the adsorbent material 11 (dehumidification wheel) In the case of the air inlet, the heated air enters the regeneration side of the dehumidification wheel, and the air outlet is the regeneration side wheel surface before the high temperature and high humidity air enters the heat exchanger. In the rotary type adsorption dehumidification system, the high temperature and high humidity air on the regeneration side enters. After the condensing device, heat exchange is performed with the low temperature air outside the tube, and the high temperature and high humidity air in the condensing device can condense the liquid water. τ Traditional rotary adsorption dehumidification device is heated by electric heater 6 201037239 Side air flow to increase the temperature of regeneration air. The heating desorption mechanism of this part is mainly divided into two parts: (1) Air heat exchange vaporization: heating regeneration The side airflow generates a temperature gradient, and the heat generated by the heat exchange vaporizes the moisture in the pores of the dehumidification structure. The water vapor desorption process needs to produce high temperature air, and must be vaporized for a long time to achieve the effect of water vapor desorption. The extremely high energy consumption can achieve the goal of drying and dehumidification. (2) Radiation Thermal vaporization: The heating wire in the heater generates a high temperature after passing the current. This heat is in the form of radiant heat, so that the water molecules in the micropores of the dehumidifying structure can directly absorb the radiant heat vaporization and desorption. Since the radiant heat is proportional to the surface temperature in quadratic, the surface of the heating wire is above 400 °C, and the radiant heat is extremely high, so the resulting water vapor desorption effect is far more important than the gas flow heat exchange vaporization desorption. According to the above two vaporization mechanisms, the traditional heating regeneration desorption method, whether it is heated in the regenerative gas stream caused by indirect vaporization desorption, or the radiant heat is absorbed by the water molecules, most of the radiant heat is also absorbed by the hygroscopic structure. Both of these factors have become an inevitable source of energy. In addition, the radiant heat causes the surface temperature of the absorbent structure to rise, which is also detrimental to the adsorption of water molecules and greatly reduces the dehumidification capacity. Therefore, the heating type regenerative desorption method is the main cause of the high energy consumption and the dehumidification efficiency of the rotary dehumidifier. SUMMARY OF THE INVENTION The present invention provides a low-energy desorption device that is provided with electrodes on both sides of an adsorbent material, and the current is allowed to pass through the adsorbent material to cause a temperature rise by energizing the electrode, and under certain conditions. It may affect the attraction between the adsorbed molecules and the adsorbent material, and then desorb the substances adsorbed by the adsorbent 7 Ο ❹ 201037239. In addition, the corresponding electrode can be configured to allow the airflow to pass through the energized adsorbent material to increase: a device is provided, and the adsorbent material is adsorbed to absorb moisture in the air to lower the humidity. Since the dehumidification device has a regenerative circulation gas flow, the desorbed water gas is directly desorbed by the energization by the energization on the present day (4), and the heat is not heated, so the heat loss is reduced. With energy consumption. In the present invention, the present invention provides a low-energy desorption device comprising: an adsorbent material that provides adsorption of at least one substance; and a polar structure that is coupled to both sides of the adsorbent material, each structure a sub-electrode having a plurality of _ mutual county; and a voltage source, wherein: the pair of electrode structures are coupled to each other 'the voltage source provides a voltage to the pole structure to cause the adsorbent material to conduct current and thereby desorb. In another embodiment, the present invention further provides a dehumidification device comprising: - a condensation portion, which provides a --running flow; - a suction material through which a gas stream passes, the adsorbent material adsorbing the gas stream At least one cake: - a regenerating portion' is coupled to the condensation portion and the adsorbent material, and the two living portions guide the circulating gas stream through the adsorbent material, the regenerative portion further - a counter electrode structure, It is coupled with the two sides of the adsorbent material to sigma, and each two-electrode structure has a plurality of mutually insulated sub-electrodes; one electric! Green, which is coupled to the pair of electrode structures. The voltage source provides a voltage to the pair of lightning structures to cause the adsorbent material to conduct current and thereby desorb. /, h 8 201037239 [Embodiment] In order to enable the reviewing committee to further understand and understand the features, objects and functions of the present invention, the related detailed structure of the device of the present invention and the design concept of the design are explained below. In order to enable the reviewing committee to understand the features of the present invention, the detailed description is as follows: Please refer to FIG. 2, which is a schematic diagram of an embodiment of the low energy dissipating device of the present invention. In the present embodiment, the desorption device 3 has an adsorbent material 30, a pair of electrode structures 31 and 32, and a voltage source 33. The adsorbed P material 30 is provided for adsorbing organic volatile matter, nitrogen or water contained in the air, but is not limited thereto. In general, it is common for the adsorbent material to be applied to household dehumidification equipment, such as dehumidification wheel dehumidification equipment, but not limited thereto. As the material of the adsorbent material, it may be a porous material such as zeolite, silicone, activated carbon, carbon nanotube, molecular sieve or metal organic framework. In addition, the adsorbent material may also be a non-porous material of the hydrogen storage metal. The pair of electrode structures 31 and 32 are coupled to the two sides of the adsorbent material 30. The voltage source 33 is coupled to the pair of electrode structures 31 and 32, and the voltage source 33 provides a voltage to the pair of electrode structures 31 and 32. The voltage source 33 can be direct current or alternating current. Since the electrode structures 31 and 32 are applied to both ends of the adsorbent material 30, after the energization, the driving force generated by the transient high-voltage potential, or the dissociation of the adsorbed substance or the binding molecule formed by the adsorbed substance and the specific metal ion is generated. Ion conductive properties. The conductive state between the adsorbed substance and the adsorbent material is directly changed, and the adsorbed substance is desorbed away from the adsorbed substance. The current conduction mechanism of the present invention may be an ion transition in the adsorbent material, or may be an adsorbed material. 9 201037239 The disproportionation of the litchi protons is the result of the foregoing two. In this case, most of the "can be directly applied to the adsorbed material, resulting in effective desorption, thus reducing energy consumption. Ο 〇 In order to allow the adsorbent material to rotate, only the desorption zone of the adsorbent material is desorbed. The reaction 'and the other areas of the adsorbent material are maintained (4), the fruit 'is more insulator on the electrode to divide the material into several areas. Because there is an insulator between the areas, it can ensure that only the electrode is energized. There is a specific area that has the ability to conduct 'so that the area of the material corresponding to the energized electrode can produce a desorption effect' while other areas of the electrode that are not energized can maintain the ability to adsorb the substance. See Figure 3, the figure is The f-pole structure of the present invention is shown in the front view. In the present embodiment, the electrode structure 31 (4) has an electrode structure 31 having a plurality of sub-electrodes 310. Since the adsorbent material of the present invention is cylindrical, each sub-electrode 310 The shape is a fan shape, and each of the sub-electrodes 31 has an insulating frame and a conductive structure 312. In this embodiment, the insulating frame 311 is disposed in the sub-electric The adjacent sub-electrodes are kept insulated on both sides of the 310. The material of the insulating frame 311 can be high alumina, ceramic, quartz, polymer material, Teflon, peek, bakelite or epoxy. The core can be mixed and used. The thickness of the middle and upper ridge frame is less than or equal to 5 mm, but not limited thereto. The conductive structure 312 is disposed at the outer edge of the sub-electrode 31. In order to enhance the electrical conductivity, the conductive structure 312 has a mesh structure 313 'having regular or irregular holes on its surface to provide gas into the adsorbent material 30. The metal mesh structure 313 There is no limit to the material, only 201037239 can be conductive metal material. Please refer to Figure 3B, which is a cross-sectional view of the electrode structure and the adsorbent material along the section line of Figure 3A. The hatching line cuts the electrode structure and the insulating frame 311 of the central region and the adsorbing material into the state of FIG. 3B along the FF direction of FIG. 3A. There is a guide between the metal mesh structure 313 and the adsorbing material 30. The layer 314 is used to reduce the contact resistance and promote the uniform distribution of the current. In the embodiment, the conductive layer 314 is an oxidation-resistant conductive material which can strengthen the circuit electrical conductivity between each of the sub-electrodes 310 and the adsorbent material 30. And stability to avoid abnormal discharge arc damage to the adsorbent material. The conductive layer 314 can be made of pure metal material (gold, platinum) or alloy material (stainless steel) or any metal oxide or non-metal oxide that may be conductive ( Such as Indium Tin Oxide, ITO, (In2〇3+Sn〇2). The coating method is achieved by various engineering common processes, such as: reduction: ore, steaming or spraying, brushing or impregnation. The arrangement of the metal mesh can also provide protection for the conductive layer to prevent the conductive layer from being damaged and affecting the conductive properties. Referring to Figure 4, the figure is an illustration of the operation of the electrode structure of the present invention. Since the adsorbent material of the embodiment rotates, in order to enable each of the sub-electrodes 310 to be individually energized, the voltage source 33 is further coupled with a brush structure 330, which can be adsorbed while the adsorbent material 30 is rotated. The material 30 is electrically connected to the different sub-electrodes 310 at the position of rotation. In FIG. 4, when the adsorbent material 30 is rotated, the metal frame 312 that is in contact with the brush 330 will cause the entire sub-electrode 310 to be electrically transmitted, and the electrode contacted by the brush 330 due to the electrode structures 31 and 32 are mutually corresponding. The adsorbent material region 300 corresponding between the electrodes 310 and 320 causes the adsorbent material region 300 to conduct electricity due to the electric field between the sub-electrode 310 and the sub-electrode 320. Since the electrode structures 31 and 32 of the present invention 11 201037239 have the design of the insulating frames 311 and 321 , when the brush 330 contacts the metal frames 312 and 322 of the electrode structures 31 and 32, since the conduction only corresponds to the contact position By adsorbing the material region 300, it is therefore ensured that only the adsorbent material corresponding to the region 300 has a current passing therethrough for desorption. As for the adsorbent material which does not correspond to the energization, the adsorption action can be continued, so that the adsorbent material can simultaneously have the effects of adsorption and desorption. Please refer to FIG. 5A and FIG. 5B, which are not intended to be other embodiments of the electrode structure of the present invention. In Fig. 5A, the electrode structure 31 may be an anti-oxidation conductive layer 314a coated on the surface of the adsorbent material 30, and the trench structure 314b serves as an insulating tape such that the electrode structure 31 has a plurality of sub-electrodes. In addition to the use of the trenches in the insulating region of Fig. 5A, an insulating frame may be provided on the trench to increase the insulating effect. As shown in FIG. 5B, in order to increase the effect of electrical contact, a conductive structure 314c' may be disposed on the edge of each sub-electrode formed by the conductive layer 314a, which may be a metal strip, a metal wire or a metal mesh. . Although FIG. 5A and FIG. 5B are explained with the electrode structure q 31, the embodiment of the electrode structure 32 is also the same. Referring to FIG. 6, a regenerative duct 34 may be disposed on both sides of the desorption structure area* to which the corresponding brush 330 is in contact. The regeneration air duct 34 can introduce the airflow 90 into the corresponding deenergized structure region, and the airflow passes through the adsorbing material corresponding to the energized desorption structure region, and the desorbed material is taken out to increase the desorption speed. . To increase the efficiency of the gas stream to carry out the material, the gas stream 90 can be a heated, higher temperature gas stream to aid in desorption and increase the rate of desorption. The foregoing embodiment is an embodiment in which the adsorbent material is rotated. In another embodiment provided by the present invention, the adsorbent material does not need to be electrically connected to the brush by rotation, but by The power distribution control causes each sub-electrode to be energized stepwise. Please refer to FIG. 7, which is a schematic view of another embodiment of the electrode structure of the present invention. Taking the electrode structure 31 as an example, it is distributed into a plurality of mutually insulated sub-electrodes 315 and 315a-315g having an outer metal frame 316 and an inner metal frame 317, respectively, and an insulating frame 318 on both sides of the metal frames 316 and 317. With 319. And each of the sub-electrodes 315 and 315a to 315g independently lead to the conductive cable 332. The position of each of the sub-electrodes 315 and 315a-315g and the conductive cable can be electrically connected to the metal frame 316 of the outer ring or the metal frame 317 of the inner ring. The conductive cables 332 of each of the sub-electrodes 315 and 315a to 315g are regularly and sequentially connected to the power distribution unit 331. The power distribution unit 331 is in telecommunication connection with a voltage source 33, and the power distribution unit 331 can receive a positioning control signal to sequentially supply power to a specific sub-electrode. For example, the electric power is first supplied to the sub-electrode 315 on the adsorbent material, and then supplied to the sub-electrode 315a in the order of 315b to 315g. The result of the sequential power supply is equivalent to the function of sequentially rotating and regenerating the adsorbent material. Because there is an insulating frame between each sub-electrode, it can be ensured that only a certain area can conduct electricity when the electrode is energized, so that the area of the adsorbing material corresponding to the electron-electrode electrode can produce a desorption effect, and other sub-electrode areas that are not energized can be Maintain the action of adsorption. The power distribution unit 331 is composed of a logic operation unit, a timing element, a power switch, and the like; the power switch can be a mechanical relay, a switchboard, or a solid state switch composed of a semiconductor component. The power distribution unit of this embodiment is an element of the prior art and will not be described herein. Please refer to FIG. 8A and FIG. 8B for details. FIG. 8A is a side view of the embodiment of the regenerative air duct of the present invention 13 201037239; FIG. 8B is a schematic perspective view of the air supply side of the rotating regeneration duct. The feature of this embodiment is that the adsorbent material 30 is not moved but is rotated by the regeneration duct 35 and the collecting duct 36, and the position of the regeneration duct and the collecting duct 36 is sensed by the positioning sensing module. In the present embodiment, the regeneration duct 35 and the collection duct 36 correspond to each other and can perform a rotational motion in synchronization. The regenerative duct 35 has a housing 350 that provides airflow in. The housing 350 is coupled to a rotating shaft 351. The rotating shaft 351 can receive the rotational power of a rotary power unit (e.g., a motor) to drive the housing 350 of the regenerative air passage to rotate. There is a more advanced channel 352 within the spindle 351 to provide airflow 355 entry. Since the collecting duct 36 is rotated in synchronization with the regenerating duct 35 by the rotating shaft 351, the air stream 355 passing through the adsorbing material 30 flows out of the adsorbing material 30 via the collecting duct 36. The positioning sensing module can be a component with displacement detection function such as mechanical structure, optical detection, magnetic field detection, or sound wave detection, such as a common micro switch, a photosensitive switch, a reed switch, or an ultrasonic sensor. element. For example, in the present embodiment, the optical module has a light emitting element 354 disposed on the regeneration duct. Another optical signal receiving element 353 is disposed on each of the sub-electrodes. When the regeneration air duct has completely covered the sub-electrode, the positioning control signal is immediately transmitted to the power distribution unit, and the rotation of the regeneration air passage is controlled by the power distribution unit to output the power to the covered sub-electrode on the adsorbent material at an appropriate time. Regeneration procedure. In addition to the aforementioned synchronous rotation design, the collecting duct may also be arranged in the manner shown in FIG. 8C, and the collecting duct 37 is not rotated, but is disposed on the other side of the adsorbing material 30 to collect the airflow passing through the adsorbing material. 355. The above desorption method can be applied to any adsorbent material having electrical conductivity or adsorbing 14 201037239 water and having an electrical conductivity combined with the adsorbed molecules, and can be applied to a fixed bed or tower desorption, or can be applied to a transfer. The wheel is detached. For example, it is applied to a household rotary drip dehumidifier, and Fig. 9 is a result of testing with an adsorbent material having an electrode of the present invention used in a dehumidifier. The original dehumidifier desorption water is about 6.6 liters / day (20 ° C, 60% RH), the desorption system is heated by the hot air, and the required power consumption is 600 watts (as shown in Figure 1), which is equivalent to Each desorption of lg water requires 7854J of energy. In the experiment where the dehumidification wheel does not rotate, the electrode is energized instead of hot air desorption, and the energy consumption is only 4200~4700 J/g. The vertical axis in Fig. 9 is the degree of decrease in the weight of the adsorbent material, indicating the amount of water desorbed, and the horizontal axis is time. Different curves represent multiple experiments. The operating voltage of each experiment is 90 volts, and the material of the adsorbent material is zeolite and tannin, which has a diameter of 77 mm. The length of the electrification desorption time is different, and different desorption is obtained. Attached to the effect. Where ▲ represents a desorption time of 3 seconds, representing a desorption time of 6 seconds, ♦ represents a desorption time of 10 seconds and # represents a desorption time of 15 seconds. The number indicated on each curve is the actual measured power consumption divided by the amount of desorbed water. It can be seen from Fig. 9 that the best desorption is that the energy consumption is the least when the adsorption material is energized for 6 seconds. That is to say, the method of energizing the electrodes can save more than 45% (from 7854 J/g to 4200 J/g). The data of Fig. 9 is tested while the dehumidification wheel is not rotating, but the same principle can be utilized in a variety of situations, including tower and rotary wheels, differing only in the type of electrode contact. The present invention further provides a dehumidification apparatus using the aforementioned desorption apparatus. Referring to Figure 10, there is shown a schematic view of an embodiment of a dehumidification apparatus of the present invention. The dehumidifying device 4 includes a condensation portion 40, an adsorbent material 41, 15 201037239, and a regeneration portion 42. The condensing return portion 40 includes a condensing coil 401 and a circulation line 402. The condensing coil 401 has an inlet end 4010 and an outlet end 4012. In the present embodiment, the condensing coil 401 has a plurality of condensing lines 4011 having flow passages therein to provide a flow of circulating gas 91. Since the main purpose of the condensing coil 401 is to allow the external environment to be dehumidified by the air stream 90 to exchange heat with the circulating air stream 91 flowing in the condensing coil 401, the moisture in the circulating airflow in the condensing coil 401 Condensed into water and flows into the collection tray 46, so that there is a gap between each of the condensation lines 4011 to provide passage of the gas stream 90. Since the condensing coil 401 is a conventional technique, it will not be described herein. The regeneration unit 42 is coupled to the adsorbent 41. The regeneration unit 42 has a pair of electrode structures 421 and 422, a regeneration duct 423, and a regenerative fan 424. The pair of electrode structures 421 and 422 are connected in the same manner as the electrode structures 31 and 32 described above, and are not described herein. The regeneration duct 423 has a housing 4230 to form an air flow passage. On one side of the housing 4230, there is an outlet end 4231 which is connected to the inlet end 4010 of the condensing coil 401. The other side of the housing 4231 has an inlet end 4232 that is coupled to the regeneration fan 424. The purpose of the regeneration fan 424 is to increase the pressure of the circulating gas stream 91 to accelerate the velocity of the circulating gas stream 91. The adsorbent material 41 is configured to provide a flow of air through 90. The adsorbent material 41 has a microstructure 410 therein to absorb moisture contained in the gas stream 90. In this embodiment, the adsorbent material 41 is a wheel body, which can perform a rotary motion. Of course, the structure of the adsorbent material 41 can also be designed by other structures, and is not limited to the wheel body of the present invention. The adsorbent material 41 is also a conventional technique, and the detailed structure thereof will not be described herein. When the adsorbent material rotates 16 201037239 . to the positioning, the sub-electrodes 4210 and 4220 corresponding to the regeneration duct 42 and the voltage source 45 are turned on, so that the current passing through the desorbing substances adsorbed by the adsorbent materials 4 corresponding to the sub-electrodes 4210 and 4220 . In this embodiment, the housing 4230' of the regeneration portion 42 can provide a circulating airflow 91 therein, and the interior of the housing 4230 can provide a portion for accommodating the adsorbent material 41 so that the interior of the housing 4230 flows. The circulating gas stream 91 can pass through the adsorbent material 41 to remove the substance desorbed by energization. In order to increase the flow rate of the air stream to be dehumidified to control the dehumidification effect, in the present embodiment, a dehumidifying fan 44 may be further provided to discharge the drying air stream 92 passing through the adsorbing material 41 out of the apparatus 4. In addition, the dehumidifying device 4 can further be provided with a heating unit 43 ′, and the position of the heating unit 43 can be selected and added. In the embodiment, the heating unit 43 is disposed at the inlet end 4232 of the regeneration unit 42 and the regenerative fan 424. between. The heating unit 43 can provide heat to the circulating gas stream 91 to increase the temperature of the circulating gas stream 91, thereby elevating the condensation effect of the desorbed water. However, the above is only an embodiment of the present invention, and the scope of the present invention is not limited thereto. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention. • In summary, the low-energy desorption device and the dehumidifying device thereof provided by the present invention have the advantages of reducing energy use and increasing desorption. Therefore, it has been possible to improve the competitiveness of the industry and promote the development of the surrounding industries. Cheng has already met the requirements for applying for inventions as stipulated in the invention patent law. Therefore, the application for invention patents is submitted according to law. Time is worthy of scrutiny and patents are granted as prayers. 17 201037239 . [Simple description of the drawings] Figure 1 is a schematic diagram of a dehumidification device using a dehumidification rotor. Figure 2 is a schematic diagram of an embodiment of the low energy detachment device of the present invention. Figure 3A is a front elevational view of the electrode structure of the present invention. Figure 3B is a schematic cross-sectional view of the electrode structure and the adsorbent material taken along the section line of Figure 3A. Figure 4 is a schematic diagram of the operation of the electrode structure of the present invention. 5A and 5B are schematic views showing other embodiments of the electrode structure of the present invention. 0 Fig. 6 is a schematic view showing the connection of the regenerative duct of the electrode structure of the present invention. Figure 7 is a schematic view showing another embodiment of the electrode structure of the present invention. 8A to 8C are schematic views showing an embodiment of a rotating regeneration duct of the present invention. Fig. 9 is a result of testing with an adsorbent material having an electrode of the present invention used in a dehumidifier. Figure 10 is a schematic view of an embodiment of the dehumidification apparatus of the present invention. _ [Main component symbol description] Q Bu dehumidifier 10 - Heat exchanger 11 - Dehumidification body ' 12 - Dehumidifier fan 13 - Electric heater 3 - Desorption device 30, 300 - Adsorption material 31, 32 - Electrode structure 201037239 . 320-Sub-electrode 311, 321 - Insulation frame 312, 322 - Conductive structure 313 - Metal mesh structure 314 - Conductive layer 33 - Voltage source 3 3 0 - Brush 34 - Regenerative duct 〇 35 - Regenerative duct 350 - Housing 351 - Rotary shaft 352 - Runner 353 - Optical signal receiving element 354 - Light emitting element 3 5 5 - Air flow 〇 3 6 - Collecting air duct 37 - Collecting air duct ' 4- Dehumidifying device 4 0 - Condensing part 40 condensing disk Tube 4010 - inlet end 4011 - condensation line 4012 - outlet end 19 201037239 . 402 - circulation line 41 - adsorbent material 410 - dehumidification structure 411 - adsorbent material 42 - regeneration section 421, 422 - electrode structure 4210, 4220 - subelectrode 423-Regeneration air duct ❹ 4230- Housing 4231 - Outlet end 4232 - Inlet end 423 - Regeneration duct 4230 - Housing 4231 - Outlet end 4232 - Inlet end Ο 424 - Regenerative fan 43 - Heating unit 44 - Dehumidifying fan 45 - Voltage Source 46 - Collection Disk 90 - Wet Air Flow 91 - Circulating Air Flow 92 - Dry Air Flow 20 20103723 9 93-liquid water Ο

21twenty one

Claims (1)

201037239 七、申請專利範圍: 1. 一種低耗能脫附裝置,包括: 一吸附材料,其係提供吸附至少一物質;以及 一對電極結構,其係分別與該吸附材料之兩側相偶 接,每一個電極結構具有複數個相互絕緣之子電 極,以及 一電壓源,其係與該對電極結構相偶接,該電壓源係 提供一電壓於該對電極結構,使該吸附材料導通電 1 流進而脫附。 2. 如申請專利範圍第1項所述之低耗能脫附裝置,其係更 具有一再生風道以提供一氣流通過該吸附材料將脫離 該吸附材料之物質帶出該吸附材料。 3. 如申請專利範圍第2項所述之低耗能脫附裝置,其中該 吸附材料不轉動,而該再生風道係進行一轉動運動。 4. 如申請專利範圍第3項所述之低耗能脫附裝置,其中該 吸附材料不轉動時,每一電極結構上之每一子電極分別 1 獨立引出導電電纜,並藉由該導電電纜連接至一電源分 配單元。 - 5.如申請專利範圍第2項所述之低耗能脫附裝置,其中該 _ 再生風道不轉動,而該吸附材料係進行一轉動運動。 6. 如申請專利範圍第5項所述之低耗能脫附裝置,其中該 吸附材料係進行轉動運動時,每一電極結構之更與一電 刷偶接。 7. 如申請專利範圍第2項所述之低耗能脫附裝置,其中該 氣流係為一經過加熱之氣流。 22 201037239 8. 如申請專利範圍第1項所述之低耗能脫附裝置,其中電 壓係為一交流電壓或者是直流電壓。 9. 如申請專利範圍第1項所述之低耗能脫附裝置,其中每 一子電極係為一導電層,其係塗佈於該吸附材料之表 面。 10. 如申請專利範圍第9項所述之低耗能脫附裝置,其中 該導電層之材料係為純金屬材料、合金材料、金屬氧化 物或非金屬氧化物。 、 11.如申請專利範圍第1項所述之低耗能脫附裝置,其中 每一電極結構更具有: 導電結構,其係與該吸附材料相偶接;以及 複數個絕緣框架,其係設置於該導電結構上,以將該 導電結構分成複數個相互絕緣之子電極。 12. 如申請專利範圍第11項所述之低耗能脫附裝置,其中 每一子電極與該吸附材料之間更具有一導電層。 13. 如申請專利範圍第12項所述之低耗能脫附裝置,其中 & 該導電層之材料係為純金屬材料、合金材料、金屬氧化 物或非金屬氧化物。 . 14.如申請專利範圍第11項所述之低耗能脫附裝置,其中 該導電結構係選擇為金屬網、金屬條或者是金屬線。 15. 如申請專利範圍第1項所述之低耗能脫附裝置,其中 該電壓源更具有一分電單元,其係分別與該複數個子電 極電性連接。 16. 如申請專利範圍第1項所述之低耗能脫附裝置,其中 該吸附材料其係進行一轉動運動。 23 201037239 17.如申請專利範圍第1項所述之低耗能脫附裝置,其中 該吸附材料之材質,係為沸石、矽膠、活性碳、奈米碳 管、分子篩或金屬有機架構複合物(metal organic framework)之多孔隙材質或者是儲氫金屬之非多孔性 材質。 ' 18.如申請專利範圍第1項所述之低耗能脫附裝置,其中 該吸附材料係為具有電導通能力或者是吸附物質之後 具有電導通能力之材質。 〇 19. 一種除濕裝置,包括: 一冷凝部,其係提供一循環氣流; 一吸附材料,其係提供一氣流通過,該吸附材料係吸 附該氣流内之至少一物質; 〇 一再生部,其係與該冷凝部以及該吸附材料相偶接, 該再生部係'導引該循環氣流通過該吸附材料,該再 生部更具有一對電極結構,其係與該吸附材料之兩 侧相偶接,每一個電極結構具有複數個相互絕緣之 子電極; 一電壓源,其係與該對電極結構相偶接,該電壓源係 提供一電壓給該對電極結構,使該吸附材料導通電 流進而脫附。 20. 如申請專利範圍第19項所述之除濕裝置,該再生部其 係更具有一再生風道以提供該循環氣流通過該吸附材 料將脫離該吸附材料之物質帶出該吸附材料。 21.如申請專利範圍第20項所述之除濕裝置,其中該再生 風道係進行一轉動運動。 24 201037239 22. 如申請專利範圍第20項所述之除濕裝置,其中該再生 部更具有一加熱單元以提供加熱該循環氣流。 23. 如申請專利範圍第19項所述之除濕裝置,其中電壓係 為一交流電壓或者是直流電壓。 24. 如申請專利範圍第19項所述之除濕裝置,其中每一子 電極係為一導電層,其係塗佈於該吸附材料之表面。 25. 如申請專利範圍第24項所述之除濕裝置,其中該導電 層之材料係為純金屬材料、合金材料、金屬氧化物或非 、金屬氧化物。 26. 如申請專利範圍第19項所述之除濕裝置,其中每一電 極結構更具有: 導電結構,其係與該吸附材料相偶接;以及 複數個絕緣框架,其係設置於該導電結構上,以將該 導電結構分成複數個相互絕緣之子電極。 27. 如申請專利範圍第26項所述之除濕裝置,其中每一子 電極與該吸附材料之間更具有一導電層。 1 28.如申請專利範圍第27項所述之除濕裝置,其中該導電 層之材料係為純金屬材料、合金材料、金屬氧化物或非 . 金屬氧化物。 , 29.如申請專利範圍第26項所述之除濕裝置,其中該導電 結構係選擇為金屬網、金屬條或者是金屬線。 30. 如申請專利範圍第19項所述之除濕裝置,其中該電壓 源更具有一電源分配單元,其係分別與該複數個子電極 電性連接。 31. 如申請專利範圍第19項所述之除濕裝置,其中該吸附 25 201037239 材料其係進行一轉動運動。 32. 如申請專利範圍第19項所述之除濕裝置,其中該冷凝 部係包括有一由複數個冷凝管所組成之冷凝盤管。 33. 如申請專利範圍第19項所述之除濕裝置,其中該吸附 材料之材質,係為沸石、矽膠、活性碳、奈米碳管、分 子篩或金屬有機架構複合物(metal organic framework) 之多孔隙材質或者是儲氫金屬之非多孔性材質。 34. 如申請專利範圍第19項所述之除濕裝置,其中該吸附 J 材料係為具有電導通能力或者是吸附物質之後具有電 導通能力之材質。 26201037239 VII. Patent application scope: 1. A low-energy desorption device comprising: an adsorbent material for providing adsorption of at least one substance; and a pair of electrode structures respectively coupled to the two sides of the adsorbent material Each of the electrode structures has a plurality of mutually insulated sub-electrodes, and a voltage source coupled to the pair of electrode structures, the voltage source providing a voltage to the pair of electrode structures to conduct the current to the adsorbent material Further desorption. 2. The low energy dissipating device of claim 1, further comprising a regeneration air passage to provide a gas flow through the adsorbent material to carry the material out of the adsorbent material out of the adsorbent material. 3. The low energy dissipating device of claim 2, wherein the adsorbent material does not rotate and the regenerative duct performs a rotational movement. 4. The low-energy desorption device according to claim 3, wherein, when the adsorbent material is not rotated, each of the sub-electrodes on each electrode structure separately leads out a conductive cable, and the conductive cable is used Connect to a power distribution unit. 5. The low energy detachment device of claim 2, wherein the _ regeneration tract does not rotate and the sorbent material performs a rotational movement. 6. The low energy detachment device of claim 5, wherein each of the electrode structures is coupled to a brush when the adsorbent material is in a rotational motion. 7. The low energy detachment device of claim 2, wherein the gas stream is a heated gas stream. 22 201037239 8. The low energy detachment device of claim 1, wherein the voltage is an alternating voltage or a direct current voltage. 9. The low energy detachment device of claim 1, wherein each of the sub-electrodes is a conductive layer applied to a surface of the adsorbent material. 10. The low energy detachment device of claim 9, wherein the material of the conductive layer is a pure metal material, an alloy material, a metal oxide or a non-metal oxide. 11. The low-energy desorption device according to claim 1, wherein each electrode structure further comprises: a conductive structure coupled to the adsorbent material; and a plurality of insulating frames, the system is configured And on the conductive structure, the conductive structure is divided into a plurality of sub-electrodes insulated from each other. 12. The low energy detachment device of claim 11, wherein each of the sub-electrodes and the adsorbent material further has a conductive layer. 13. The low energy detachment device of claim 12, wherein the material of the conductive layer is a pure metal material, an alloy material, a metal oxide or a non-metal oxide. 14. The low energy dissipating device of claim 11, wherein the electrically conductive structure is selected from the group consisting of a metal mesh, a metal strip or a metal wire. 15. The low energy detachment device of claim 1, wherein the voltage source further has a power distribution unit electrically connected to the plurality of sub-electrodes. 16. The low energy detachment device of claim 1, wherein the sorbent material is subjected to a rotational movement. The invention relates to a low-energy desorption device according to claim 1, wherein the material of the adsorbent material is zeolite, tannin, activated carbon, carbon nanotube, molecular sieve or metal organic structure composite ( The porous material of the metal organic framework or the non-porous material of the hydrogen storage metal. 18. The low-energy desorption device according to claim 1, wherein the adsorbent material is a material having electrical conductivity or an electrical conductivity after adsorbing the material. 〇 19. A dehumidification device comprising: a condensation portion that provides a circulating gas stream; an adsorbent material that provides a flow of gas, the adsorbent material adsorbs at least one substance in the gas stream; And the condensing portion and the adsorbing material are coupled to each other, the regenerative portion is configured to 'guide the circulating airflow through the adsorbent material, and the regenerating portion further has a pair of electrode structures coupled to the two sides of the adsorbent material Each of the electrode structures has a plurality of mutually insulated sub-electrodes; a voltage source coupled to the pair of electrode structures, the voltage source providing a voltage to the pair of electrode structures to cause the adsorbent material to conduct current and thereby desorb . 20. The dehumidification device of claim 19, wherein the regeneration portion further has a regeneration air passage to provide the circulating air flow through the adsorption material to carry the material out of the adsorption material out of the adsorption material. 21. The dehumidification apparatus of claim 20, wherein the regeneration duct performs a rotational movement. The dehumidification device of claim 20, wherein the regeneration portion further has a heating unit to provide heating of the circulating gas stream. 23. The dehumidification device of claim 19, wherein the voltage is an alternating voltage or a direct current voltage. 24. The dehumidification device of claim 19, wherein each of the sub-electrodes is a conductive layer applied to a surface of the adsorbent material. 25. The dehumidification device of claim 24, wherein the material of the conductive layer is a pure metal material, an alloy material, a metal oxide or a non-metal oxide. 26. The dehumidification device of claim 19, wherein each of the electrode structures further comprises: a conductive structure coupled to the adsorbent material; and a plurality of insulating frames disposed on the conductive structure And dividing the conductive structure into a plurality of mutually insulated sub-electrodes. 27. The dehumidification device of claim 26, wherein each of the sub-electrodes and the adsorbent material further has a conductive layer. The dehumidifying device of claim 27, wherein the material of the conductive layer is a pure metal material, an alloy material, a metal oxide or a non-metal oxide. 29. The dehumidification device of claim 26, wherein the electrically conductive structure is selected from the group consisting of a metal mesh, a metal strip, or a metal wire. 30. The dehumidification device of claim 19, wherein the voltage source further has a power distribution unit electrically connected to the plurality of sub-electrodes. 31. The dehumidification device of claim 19, wherein the adsorption 25 201037239 material is subjected to a rotational movement. 32. The dehumidification apparatus of claim 19, wherein the condensation section comprises a condensation coil composed of a plurality of condensation tubes. 33. The dehumidification device according to claim 19, wherein the adsorbent material is made of zeolite, tannin, activated carbon, carbon nanotube, molecular sieve or metal organic framework. The pore material is a non-porous material of hydrogen storage metal. The dehumidification device according to claim 19, wherein the adsorbed J material is a material having electrical conductivity or an electrical conductivity after adsorbing the substance. 26
TW098111986A 2009-01-12 2009-04-10 Apparatus of low energy consumption for desorbtion and dehumidifier using the same TWI368014B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW098111986A TWI368014B (en) 2009-04-10 2009-04-10 Apparatus of low energy consumption for desorbtion and dehumidifier using the same
JP2009115359A JP2010158661A (en) 2009-01-12 2009-05-12 Desorption device with low energy consumption and dehumidifying device thereof
US12/549,789 US8187368B2 (en) 2009-01-12 2009-08-28 Low power consuming desorption apparatus and dehumidifier using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098111986A TWI368014B (en) 2009-04-10 2009-04-10 Apparatus of low energy consumption for desorbtion and dehumidifier using the same

Publications (2)

Publication Number Publication Date
TW201037239A true TW201037239A (en) 2010-10-16
TWI368014B TWI368014B (en) 2012-07-11

Family

ID=44856588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098111986A TWI368014B (en) 2009-01-12 2009-04-10 Apparatus of low energy consumption for desorbtion and dehumidifier using the same

Country Status (1)

Country Link
TW (1) TWI368014B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747528B2 (en) 2011-09-09 2014-06-10 Industrial Technology Research Institute Adsorption unit, adsortion device, and method for regenerating thereof
TWI453364B (en) * 2011-11-04 2014-09-21 Ind Tech Res Inst Dehumidifier and electricity desertion apparatus thereof
US9109807B2 (en) 2011-12-21 2015-08-18 Industrial Technology Research Institute Device for desorption and dehumidification and system using the same
US9242208B2 (en) 2013-11-20 2016-01-26 Industrial Technology Research Institute Regenerating-type compressed air drier and dehumidificating-and-regenerating unit
US9463414B2 (en) 2014-08-26 2016-10-11 Industrial Technology Research Institute Dehumidifying unit, layered temperature control dehumidifying element, drying device and method for temperature controlling the same
US9884284B2 (en) 2014-08-26 2018-02-06 Industrial Technology Research Institute Dehumidifying unit, layered temperature control dehumidifying element and drying device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747528B2 (en) 2011-09-09 2014-06-10 Industrial Technology Research Institute Adsorption unit, adsortion device, and method for regenerating thereof
TWI453364B (en) * 2011-11-04 2014-09-21 Ind Tech Res Inst Dehumidifier and electricity desertion apparatus thereof
US9180400B2 (en) 2011-11-04 2015-11-10 Industrial Technology Research Institute Electrified desorption device for dehumidification
US9109807B2 (en) 2011-12-21 2015-08-18 Industrial Technology Research Institute Device for desorption and dehumidification and system using the same
US9242208B2 (en) 2013-11-20 2016-01-26 Industrial Technology Research Institute Regenerating-type compressed air drier and dehumidificating-and-regenerating unit
US9463414B2 (en) 2014-08-26 2016-10-11 Industrial Technology Research Institute Dehumidifying unit, layered temperature control dehumidifying element, drying device and method for temperature controlling the same
US9884284B2 (en) 2014-08-26 2018-02-06 Industrial Technology Research Institute Dehumidifying unit, layered temperature control dehumidifying element and drying device

Also Published As

Publication number Publication date
TWI368014B (en) 2012-07-11

Similar Documents

Publication Publication Date Title
TWI453364B (en) Dehumidifier and electricity desertion apparatus thereof
JP2010158661A (en) Desorption device with low energy consumption and dehumidifying device thereof
CN101879438B (en) Low energy consumption desorption device and dehumidifying device thereof
US8043414B2 (en) Method and apparatus for desorption and dehumidifier using the same
US8747528B2 (en) Adsorption unit, adsortion device, and method for regenerating thereof
TWI361101B (en) Method and apparatus of low energy consumption for desorbtion
TW201037239A (en) Apparatus of low energy consumption for desorbtion and dehumidifier using the same
JP2001062242A (en) Dehumidifying device
CN101785952B (en) Desorption method and device with low energy consumption
TWI359932B (en) Dehumidifier and a regenerator thereof
JP5453490B2 (en) Dehumidification and release device and system
EP2735356A1 (en) Dehumidification device and electrified desorption device thereof
KR101464830B1 (en) Dehumidification device and electrified desorption device thereof
TWI443291B (en) Device for desorption and dehumidification and system using the same
CN105457456A (en) Split internal-heating type adsorption rotating plate and rotating wheel dehumidifier where adsorption rotating plate is applied
JP4341410B2 (en) Humidity control device
WO2023234218A1 (en) Voc removal method
JP2010207710A (en) Dehumidifier and dehumidification system using the same
KR20040016050A (en) Rotary dehumidifier apparatus dehumidifying method
KR20050084736A (en) The dehumidification device using desiccant
KR20110096620A (en) Heat exchanger for airconditioner
JP2001033062A (en) Air conditioner
CN105387537A (en) Split internal heating absorbing rotary plate and rotary wheel dehumidifier applying absorbing rotary plate
JPH05301012A (en) Open adsorption type air conditioner

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees