JP4947690B2 - Method for producing titanium-based alloy spherical powder - Google Patents

Method for producing titanium-based alloy spherical powder Download PDF

Info

Publication number
JP4947690B2
JP4947690B2 JP2006138730A JP2006138730A JP4947690B2 JP 4947690 B2 JP4947690 B2 JP 4947690B2 JP 2006138730 A JP2006138730 A JP 2006138730A JP 2006138730 A JP2006138730 A JP 2006138730A JP 4947690 B2 JP4947690 B2 JP 4947690B2
Authority
JP
Japan
Prior art keywords
particles
titanium
alloy
powder
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006138730A
Other languages
Japanese (ja)
Other versions
JP2007308755A (en
Inventor
和雄 西岡
誠 藤田
伸弘 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2006138730A priority Critical patent/JP4947690B2/en
Priority to AU2007252758A priority patent/AU2007252758A1/en
Priority to KR1020087030871A priority patent/KR20090018143A/en
Priority to PCT/JP2007/055861 priority patent/WO2007135806A1/en
Priority to EP07739304A priority patent/EP2022582A4/en
Priority to US12/299,854 priority patent/US20090107294A1/en
Publication of JP2007308755A publication Critical patent/JP2007308755A/en
Application granted granted Critical
Publication of JP4947690B2 publication Critical patent/JP4947690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Description

本発明は、Ti−Al合金(Ti:Al=64:36)やTi−6Al−4V合金(Ti:Al:V=90:6:4)といったチタン系合金からなる球状粉末の製造方法に関し、更に詳しくは、製品粒径による合金組成差を小さくできるチタン系合金球状粉末の製造方法に関する。   The present invention relates to a method for producing a spherical powder made of a titanium-based alloy such as a Ti—Al alloy (Ti: Al = 64: 36) or a Ti-6Al-4V alloy (Ti: Al: V = 90: 6: 4). More specifically, the present invention relates to a method for producing a titanium-based alloy spherical powder capable of reducing an alloy composition difference due to a product particle size.

粉末冶金原料等に使用されるチタン系合金球状粉末の製造方法の一つとして、ガスアトマイズ法によるものがある。この方法は、チタン粉末と添加合金元素粉末とを混合した後、その混合粉末を圧縮して溶解原料(コンパクト)となし、これを溶解して得た溶湯を高圧ガスで細かい液滴に飛散させて凝固させることにより、チタン合金の球状粉末を製造するもである。コンパクトを溶解して得た溶湯を高圧ガスで飛散させて凝固させる工程がガスアトマイズであり、球形度の高い粒子を安定的に製造することができる。   One of the methods for producing a titanium-based alloy spherical powder used for powder metallurgy raw materials is by a gas atomizing method. In this method, after mixing titanium powder and additive alloy element powder, the mixed powder is compressed into a melting raw material (compact), and the molten metal obtained by melting this is scattered into fine droplets with high-pressure gas. The spherical powder of the titanium alloy is produced by solidification. The process of scattering and solidifying the molten metal obtained by melting the compact with high-pressure gas is gas atomization, and particles having high sphericity can be stably produced.

この球状粉末製造方法は、例えば特許文献1〜3に記載されており、これらに記載された方法では、コンパクトの溶解に誘導加熱を使用し、棒状コンパクトを下から徐々に非接触溶解することにより連続的に溶湯を形成して流下させ、その溶湯流を直接ガスアトマイズすることにより、るつぼを不要にして、異物との接触による汚染を大幅に軽減することが可能である。そして特許文献1では、この方法によりTi−6Al−4V合金(Ti:Al:V=90:6:4)の球状粉末が製造されており、特許文献2及び3ではTi−Al合金(Ti:Al=64:36)の球状粉末が製造されている。   This spherical powder manufacturing method is described in, for example, Patent Documents 1 to 3, and in these methods, induction heating is used to dissolve the compact, and the rod-shaped compact is gradually dissolved in a non-contact manner from the bottom. By continuously forming and flowing down the molten metal and directly gas atomizing the molten metal, it is possible to eliminate the crucible and greatly reduce contamination due to contact with foreign matter. And in patent document 1, the spherical powder of Ti-6Al-4V alloy (Ti: Al: V = 90: 6: 4) is manufactured by this method, and in patent document 2 and 3, Ti-Al alloy (Ti: A spherical powder of Al = 64: 36) is produced.

特開平5−93213号公報JP-A-5-93213 特開平6−116609号公報JP-A-6-116609 特開2002−241807号公報JP 2002-241807 A

このようなガスアトマイズ法によるチタン系合金球状粉末の製造方法では、製品粒径によって合金組成に差が生じる問題のあることが知られている。具体的に説明すると、特許文献1に記載されたTi−6Al−4V合金粉末の製造方法では、ガスアトマイズした後に分級すると、粒径が小さい粉末中の添加金属元素濃度(Ti−6Al−4V合金ではAl)が原料粉末である混合原料中の比率(配合比)よりも高くなり、逆に粒径が大きい粉末ではこれが低くなるのである。   It is known that such a method for producing a titanium-based alloy spherical powder by the gas atomization method has a problem in that the alloy composition varies depending on the product particle size. Specifically, in the method for producing a Ti-6Al-4V alloy powder described in Patent Document 1, when classification is performed after gas atomization, the concentration of added metal elements in the powder having a small particle size (in the case of Ti-6Al-4V alloy) Al) is higher than the ratio (mixing ratio) in the mixed raw material, which is a raw material powder, and conversely, this is lower for a powder having a large particle size.

ガスアトマイズ合金球状粉末の製品粒径に依存しる合金組成の不均一については、Ti−Al合金の場合が特許文献3で問題視されている。そして、同文献ではこの不均一を解消するためには、溶湯の組成均一化が不可欠であるとの観点から、原料粉末としてガスアトマイズ法で製造された粒径が250μm以下の微細な球状粒子を使用することが、問題解決手段として提示されている。このような球状微細粒子は流動性に優れると共に、見かけ充填密度が高いために、原料粉末が均質に混合したコンパクトを製造することができ、結果として溶湯の組成均一化に有効であると説明されている。   Regarding the non-uniformity of the alloy composition depending on the product particle size of the gas atomized alloy spherical powder, the case of a Ti—Al alloy is regarded as a problem. And in the same literature, in order to eliminate this non-uniformity, from the viewpoint that uniform composition of the molten metal is indispensable, fine spherical particles having a particle size of 250 μm or less manufactured by gas atomization method are used as raw material powder. It is presented as a problem solving means. Such spherical fine particles are excellent in fluidity and high in apparent packing density, so that it is possible to produce a compact in which raw material powders are homogeneously mixed. ing.

具体例としては、原料粉末として粒径が0.75〜12.7mmのスポンジチタン粒と粒径が4〜10mmの粒状アルミを使用した場合は、製品粒度毎のAl濃度の差は最大で2%であり、粒径が0.75〜12.7mmのスポンジチタン粒と粒径が250μm以下のアルミニウム粉を使用した場合は、製品粒度毎のAl濃度の差は最大で2.6%であるとされている(比較例3,4)。これに対し、粒径が250μm以下のガスアトマイズTi粉と粒径が250μm以下のAl粉を使用した場合は、このAl濃度差は最大で0.4%になるとされている(実施例1)。また、粒径が150μm以下のガスアトマイズTi粉と粒径が150μm以下のAl粉を使用した場合は、このAl濃度差は最大で0.3%になるとされている(実施例2)。   As a specific example, when sponge titanium particles having a particle size of 0.75 to 12.7 mm and granular aluminum having a particle size of 4 to 10 mm are used as the raw material powder, the difference in Al concentration for each product particle size is 2 at the maximum. %, And when titanium sponge particles having a particle size of 0.75 to 12.7 mm and aluminum powder having a particle size of 250 μm or less are used, the difference in Al concentration for each product particle size is 2.6% at maximum. (Comparative Examples 3 and 4). On the other hand, when gas atomized Ti powder having a particle size of 250 μm or less and Al powder having a particle size of 250 μm or less are used, the difference in Al concentration is 0.4% at maximum (Example 1). In addition, when a gas atomized Ti powder having a particle size of 150 μm or less and an Al powder having a particle size of 150 μm or less are used, the difference in Al concentration is 0.3% at maximum (Example 2).

しかしながら、ガスアトマイズTi粉末はスポンジチタン粉末と比べて非常に高価であり、これを原料とする対策は経済的でなく、製品粉末の価格を上昇させる結果になる。   However, gas atomized Ti powder is very expensive compared to sponge titanium powder, and measures using this as a raw material are not economical and result in an increase in the price of the product powder.

これに加え、製品がTi−6Al−4V合金粉末の場合は、添加金属元素比率が10%と小さい。このため、Ti−Al合金粉末(添加金属元素比率36%)では許容される程度の粒度間の濃度差も、Ti−6Al−4V合金粉末では許容されない場合があり、Ti−6Al−4V合金粉末の製造では、製品粒度間の組成均一化が特に重要な技術課題となる。   In addition, when the product is Ti-6Al-4V alloy powder, the additive metal element ratio is as small as 10%. For this reason, the Ti-6Al-4V alloy powder may not be allowed in the Ti-6Al-4V alloy powder, even if the Ti-6Al-4V alloy powder has an allowable difference in particle size between the Ti-Al alloy powder (additional metal element ratio 36%). In the production of the above, uniform composition between the product particle sizes is a particularly important technical issue.

本発明の目的は、製品粒径による合金組成差の問題が顕著化する添加合金比率が小さい場合にその合金組成差を大幅に且つ経済的に縮小でき、製品がTi−6Al−4V合金粉末の場合についても、製品粒径による合金組成差を効果的に縮小できるチタン系合金球状粉末の製造方法を提供することにある。 The object of the present invention is to significantly and economically reduce the difference in alloy composition when the ratio of the additive alloy in which the problem of the alloy composition difference due to the product particle size becomes significant is small , and the product is made of Ti-6Al-4V alloy powder. Also in the case, it is providing the manufacturing method of the titanium type alloy spherical powder which can reduce the alloy composition difference by a product particle size effectively.

上記目的を達成するために、本発明者らは原料チタン粒子の種類及び添加金属元素粒子との混合法に着目した。すなわち、原料コストを抑えるためには、ガスアトマイズチタン粉末の使用は避けなければならず、スポンジチタン粉末の使用は不可欠である。そこで本発明者らは、出来るだけ微細なスポンジチタン粉末を製造することを企画した。スポンジチタン粉末の場合も微細であれば合金元素粉末との混合性が向上し、製品粒径による合金組成差を解消できると考えられるからである。しかしながら、ガスアトマイズレベル(250μm以下)の微細なスポンジチタン粉末を製造することは困難である。例えば、展伸材用スポンジチタンの細粒化工程では、通常、大割り、小割りされたスポンジチタン塊がジョークラッシャーにより破砕され、分級(篩分け)により、粒径が0.75〜12.7mmの細粒製品は製造されている。   In order to achieve the above object, the present inventors paid attention to the type of raw material titanium particles and the method of mixing with additive metal element particles. That is, in order to reduce the raw material cost, the use of gas atomized titanium powder must be avoided, and the use of sponge titanium powder is indispensable. Therefore, the present inventors planned to produce a titanium sponge powder as fine as possible. This is because, in the case of the sponge titanium powder, if it is fine, it is considered that the mixing property with the alloy element powder is improved and the difference in the alloy composition due to the product particle size can be eliminated. However, it is difficult to produce a fine sponge titanium powder having a gas atomization level (250 μm or less). For example, in the process of refining the sponge titanium for wrought material, generally, large and small sponge titanium lumps are crushed by a jaw crusher, and classified (sieving), the particle diameter becomes 0.75-12. 7 mm fine-grained products are manufactured.

このような汎用法では、ガスアトマイズレベル(250μm以下)の微細なスポンジチタン粉末を製造することは到底不可能であり、低級品である分級工程での篩下品でさえ、粒径は0.3mm以上である。換言すれば、スポンジチタン粉末の場合、ガスアトマイズレベル(250μm以下)の微細なスポンジチタン粉末を製造することは非常に困難であるが、0.3mm以上の粉末ならば容易に製造可能ということである。   In such a general-purpose method, it is impossible to produce a fine sponge titanium powder with a gas atomization level (250 μm or less), and the particle size is 0.3 mm or more even for a low-class sieve product in a classification process. It is. In other words, in the case of sponge titanium powder, it is very difficult to manufacture a fine sponge titanium powder with a gas atomization level (250 μm or less), but a powder of 0.3 mm or more can be easily manufactured. .

次に、原料粒子の混合法であるが、ガスアトマイズ法によるチタン合金の製造では、原料チタン粒子と添加金属元素粒子との混合に、V型混合機による単純混合が用いられている。そこで本発明者らは、スポンジチタンの細粒化分級工程における篩下品及び製品粉末粒子から、篩分け分級により平均粒径が0.3mm、1mm及び3mmの3種類のスポンジチタン粒を得た。これらとAl粒、V粒とをV型混合機で単純混合し、圧縮して溶解用コンパクトとしてガスアトマイズした。しかしながら、製品粒径によるAl濃度の不均一は解消されなかった。   Next, as a mixing method of raw material particles, in the manufacture of a titanium alloy by a gas atomization method, simple mixing using a V-type mixer is used for mixing raw material titanium particles and additive metal element particles. Therefore, the present inventors obtained three types of sponge titanium particles having an average particle size of 0.3 mm, 1 mm, and 3 mm from the sieved product and the product powder particles in the sponge titanium refinement and classification process by sieving classification. These, Al particles, and V particles were simply mixed with a V-type mixer, compressed, and gas atomized as a compact for dissolution. However, the nonuniformity of Al concentration due to the product particle size was not solved.

また、Al粒とV粒の個別使用に代えて、AlとVの母合金粒を前記Ti粒とをV型混合機で単純混合して同様にガスアトマイズTi合金粉末を製造した。製品粒径によるAl濃度の不均一は若干解消されたが、満足の行くレベルではなかった。ちなみに、Al濃度の不均一はV濃度の不均一と概ね比例しているため、添加金属元素濃度の不均一はAl濃度の不均一で代表することができる。   Further, instead of using Al particles and V particles individually, a gas atomized Ti alloy powder was produced in the same manner by simply mixing Al and V mother alloy particles with the Ti particles using a V-type mixer. Although the nonuniformity of the Al concentration due to the product particle size was slightly eliminated, it was not a satisfactory level. Incidentally, since the nonuniformity of the Al concentration is generally proportional to the nonuniformity of the V concentration, the nonuniformity of the additive metal element concentration can be represented by the nonuniformity of the Al concentration.

このような結果を基礎として、本発明者らは添加金属元素濃度の不均一を解消する方法について再考し、最終的にスポンジチタン粒と添加金属元素粒との混合法に行き着いた。そして、これまでのV型混合機による単純混合を、ボールミルによる粉砕混合に変更した。その結果、Ti粒として、前述した平均粒径が0.3mm、1mm及び3mmの3種類のスポンジチタン粒を使用するにもかかわず、製品粒径によるAl濃度の配合比からのズレは劇的に減少した。   Based on such a result, the present inventors reconsidered a method for eliminating the unevenness of the additive metal element concentration, and finally came to a mixing method of sponge titanium particles and additive metal element particles. And the simple mixing by the V type mixer until now was changed into the pulverization mixing by a ball mill. As a result, despite the use of the above-mentioned three types of sponge titanium particles having an average particle size of 0.3 mm, 1 mm, and 3 mm as the Ti particles, the deviation from the mixing ratio of the Al concentration depending on the product particle size is dramatic. Decreased.

すなわち、原料粒の混合については、これまでは均一性を上げることが第1と考えられ、混合時間等は思考錯誤されてきた。しかしながら、その混合機の種類までを変える考えはなかった。このような状況下で、本発明者らはボールミルのような破砕機能を有する混合機に着目し、様々な角度から考察を加えた結果、粉砕機能を有する混合機を使用するならば、粒子混合過程で粒子、特に添加金属元素粒子の粉砕による細粒化や磨り潰し、更には磨り潰しによるチタン粒への塗り付けなどが進みにより、あたかも微細粒子同士が均一混合したような状況が実現されることを知見した。その結果、添加金属元素粒子の先行溶解が効果的に抑制され、0.3mm以上というような比較的大径の原料粒子を使用しても、最終的には微細球状粒子を使用したとの同等の優れた均一混合効果が得られ、製品粒度による合金組成の不均一が劇的に解消されることを確認した。   That is, with regard to the mixing of raw material grains, it has been considered first to improve the uniformity, and the mixing time and the like have been thought-and-errored. However, there was no idea of changing the type of the mixer. Under such circumstances, the present inventors paid attention to a mixer having a crushing function such as a ball mill, and as a result of considering from various angles, if a mixer having a crushing function is used, particle mixing is performed. In the process, fine particles by grinding, especially grinding of added metal element particles, grinding, and further application of titanium particles by grinding, etc., progresses as if fine particles were uniformly mixed. I found out. As a result, the prior dissolution of the additive metal element particles is effectively suppressed, and even if relatively large diameter raw material particles such as 0.3 mm or more are used, the result is equivalent to using fine spherical particles in the end. It was confirmed that the uniform mixing effect was excellent and the non-uniformity of the alloy composition due to the product grain size was dramatically eliminated.

本発明のチタン系合金球状粉末の製造方法は、かかる知見を基礎として完成されたものであり、添加金属元素比が20%以下のチタン系合金からなる球状粉末の製造方法において、スポンジチタン粒と添加金属元素粒とを、粉砕機能を有する混合機であるボールミル、アトライター又は振動ミルにより混合する工程と、混合機による混合で得られた混合粒を圧縮により棒状溶解原料に成形する工程と、成形された棒状溶解原料を不溶性雰囲気中で誘導加熱して非接触溶解する工程と、非接触溶解により形成される合金溶湯をガスアトマイズ法により粉末化する工程とを包含している。 The method for producing a titanium-based alloy spherical powder of the present invention has been completed on the basis of such knowledge, and in the method for producing a spherical powder made of a titanium-based alloy having an additive metal element ratio of 20% or less, A step of mixing the additive metal element particles with a ball mill, an attritor or a vibration mill, which is a mixer having a pulverizing function, and a step of forming the mixed particles obtained by mixing with the mixer into a rod-shaped molten raw material by compression; It includes a step of inductively heating the formed rod-shaped melting raw material in an insoluble atmosphere to perform non-contact melting, and a step of pulverizing a molten alloy formed by non-contact melting by a gas atomization method.

本発明のチタン系合金球状粉末の製造方法においては、チタン粒と添加金属元素粒との混合に、粉砕機能を有する混合機を使用することにより、不定形なスポンジチタン粒で、しかも0.3mm以上というような大径のチタン粒を使用するにもかかわらず、混合過程で添加金属元素粒の粉砕(或いは磨り潰し)によるチタン粒への固着が起こり、融点が低い添加金属元素粒が先行して溶解する現象が抑制されることにより、微細なガスアトマイズTi粒を使用する場合と同様の優れた均一混合作用が得られ、結果として製品粒度による合金組成の不均一が顕著にかつ経済的に解消される。   In the method for producing a titanium-based alloy spherical powder of the present invention, by using a mixer having a pulverizing function for mixing titanium particles and additive metal element particles, it is possible to obtain amorphous sponge titanium particles and 0.3 mm. Despite the use of large-diameter titanium particles as described above, the additive metal element particles are fixed to the titanium particles by grinding (or grinding) of the additive metal element particles in the mixing process, and the additive metal element particles having a low melting point are preceded. Suppresses the phenomenon of melting, resulting in an excellent uniform mixing action similar to that when using fine gas atomized Ti grains, resulting in a remarkable and economical solution to non-uniform alloy composition due to product grain size. Is done.

より詳しくは、添加金属元素粒が柔らかいAl粒の場合は、専ら磨り潰しによるスポンジチタン粒への擦り付けが起こり、脆いAl−V粒の場合は、専ら微細粒子に細かく粉砕されることによりスポンジチタン粒の粗い表面の凹部への嵌まり込みが起こり、いずれの場合もチタン粒と添加金属元素粒がよく混ざり合ったのと同じ状態となり、そのチタン粒が微細球状粒子でなくとも微細球状粒子と同等の不均一解消効果が得られるのである。これが本発明の第1の特徴である。   More specifically, when the additive metal element particle is a soft Al particle, rubbing to the sponge titanium particle is caused exclusively by grinding, and when it is a brittle Al-V particle, the titanium sponge is finely pulverized into fine particles. In any case, the titanium particles and the additive metal element particles are mixed well, and the titanium particles are not fine spherical particles. An equivalent non-uniformity elimination effect can be obtained. This is the first feature of the present invention.

更に言えば、粉砕機能を有する混合機によるチタン粒と添加金属元素粒との混合では、固相反応であるメカニカルアロイングによる合金化が一部進行し組成不均一の解消に寄与している可能性もある。   Furthermore, in the mixing of titanium grains and additive metal element grains using a mixer having a grinding function, alloying by mechanical alloying, which is a solid-phase reaction, partially proceeds and may contribute to the elimination of compositional non-uniformity. There is also sex.

添加金属元素粒の磨り潰しによる塗り付け作用や、微細粉砕によるチタン粒表面への充填固定は、原料チタン粒が表面の滑らかな球状ガスアトマイズ粒の場合は余り期待できず、むしろ表面の凹凸が激しい安価な不定型スポンジチタン粒の方がより多くを期待できる。すなわち、スポンジチタン粒は表面に多数の凹凸があり、粉砕機能を有する混合機においては、添加金属元素粒がより効果的に固定されるのである。このように、本発明では、粉砕機能を有する混合機に対して、安価なスポンジチタン粒を組み合わせることが重要であり、これが第2の特徴である。   The coating action by grinding of the additive metal element particles and the filling and fixing to the titanium particle surface by fine pulverization cannot be expected much when the raw material titanium particles are spherical gas atomized particles with a smooth surface, rather the surface unevenness is severe More inexpensive amorphous titanium sponge particles can be expected. That is, the sponge titanium particles have a large number of irregularities on the surface, and the additive metal element particles are more effectively fixed in a mixer having a grinding function. Thus, in the present invention, it is important to combine inexpensive sponge titanium particles with a mixer having a pulverizing function, and this is the second feature.

粉砕機能を有する混合機は、具体的にはボールミル、アトライター又は振動ミルなどであり、特に好ましい混合機は、粉砕作用や擦り付け合いによる磨り潰し作用が顕著なボールミルである。   Specifically, the mixer having a pulverizing function is a ball mill, an attritor, a vibration mill, or the like, and a particularly preferable mixer is a ball mill having a remarkable pulverizing action and a grinding action by rubbing.

原料チタン粒として使用するスポンジチタン粒の粒径は、平均で0.3〜5mmが望ましく、より望ましくは0.4〜3mmであり、0.6〜3mmが特に望ましい。なぜなら、粒径が0.3mmより小さいスポンジチタン粒は製造が困難であることに加え、スポンジチタン粒の粒径が小さくなると、製品粉末における不純物金属元素や酸素などの不純物濃度が上昇する傾向となるからである。これはスポンジチタン粒の表面積が増えるためにスポンジチタン粒の製造工程での汚染が増えることによる。   The average particle size of the sponge titanium particles used as the raw material titanium particles is preferably 0.3 to 5 mm, more preferably 0.4 to 3 mm, and particularly preferably 0.6 to 3 mm. This is because it is difficult to produce sponge titanium particles having a particle size of less than 0.3 mm, and when the particle size of the sponge titanium particles becomes small, the concentration of impurities such as impurity metal elements and oxygen in the product powder tends to increase. Because it becomes. This is due to an increase in the surface area of the titanium sponge particles and an increase in contamination in the manufacturing process of the titanium sponge particles.

0.3mm以上のスポンジチタン粒としては、展伸材用スポンジチタンの細粒化分級工程で派生する篩下材の使用が可能であり、むしろその使用が経済的で好ましい。換言すれば、スポンジチタン粒のなかでも特に安価な篩下材を活用できることも、本発明の特徴の一つである。   As the sponge titanium particles having a diameter of 0.3 mm or more, it is possible to use a sieving material derived from a fine particle classification process of sponge titanium for wrought material, and its use is economical and preferable. In other words, it is also one of the features of the present invention that a particularly inexpensive sieving material can be used among the sponge titanium particles.

ガスアトマイズ合金球状粉末の製造原料としては、細粒化されたTi粒が好ましいが、前述のとおりTi粒は高い延性のために細粒化が困難である。そのためガスアトマイズ法やHDH法で細粒化されたTi粒を用いることになるが、その製造コストが嵩み、製品価格が上昇する。本発明では篩下品という低級品を有効活用できるので、細粒化コストを削減することも可能である。これが本発明の第3の特徴である。   As a raw material for producing the gas atomized alloy spherical powder, finely divided Ti particles are preferable. However, as described above, Ti particles are difficult to be fined because of high ductility. For this reason, Ti grains refined by the gas atomization method or HDH method are used, but the production cost increases and the product price increases. In the present invention, a low-grade product called a sieve product can be used effectively, so that the cost for fine granulation can be reduced. This is the third feature of the present invention.

スポンジチタン粒の粒径の上限については、本発明の特徴はスポンジチタン粒の粒径が大きくても製品粉末の組成を均一化できることにあるが、余りに大きすぎても組成均一化の効果は得られ難くなり、この観点から5mm以下が好ましく、3mm以下が特に好ましい。   Regarding the upper limit of the particle size of the sponge titanium particles, the feature of the present invention is that the composition of the product powder can be made uniform even if the particle size of the sponge titanium particles is large, but if the particle size is too large, the effect of uniforming the composition is obtained. From this viewpoint, it is preferably 5 mm or less, and particularly preferably 3 mm or less.

添加金属元素粒の種類は、製品組成に応じて適宜選択されることになり、例えば製品がTi−Al合金粉末の場合はAl粒であり、Ti−6Al−4V合金粉末の場合はAl粒とV粒、或いはAlとVを溶製して得たAl−V母合金粒である。Al粒とV粒と混合して使用するよりもAl−V母合金粒を使用する方が組成均一化の点で有利である。Al粒とV粒は融点が大きく異なるので、スポンジチタン粒への塗り付け作用等によってもAl粒の先行溶解が進み、組成均一化の点で不利となる。   The kind of the additive metal element particles is appropriately selected according to the product composition. For example, when the product is a Ti—Al alloy powder, it is Al particles, and when the product is a Ti-6Al-4V alloy powder, V grains or Al-V master alloy grains obtained by melting Al and V. The use of Al-V master alloy grains is more advantageous in terms of uniform composition than the use of Al grains and V grains mixed. Since the melting points of Al grains and V grains are greatly different, the prior dissolution of Al grains proceeds also due to the application action to the titanium sponge grains, which is disadvantageous in terms of uniform composition.

添加金属元素粒の平均粒径は0.2〜50mmが望ましく、0.5〜30mmが特に望ましい。この粒径が小さすぎると、本発明での特徴的作用である添加金属元素粒の粉砕、或いは磨り潰しに伴うスポンジチタン粒への塗り付け作用が十分に得られず、本発明の効果が不十分となる。反対に大きすぎる場合は混合粉砕初期の粉砕効率が悪化する。   The average particle size of the additive metal element particles is desirably 0.2 to 50 mm, and particularly desirably 0.5 to 30 mm. If this particle size is too small, the effect of the present invention is ineffective because the characteristic action of the present invention, that is, the application of the additive metal element particles to the titanium sponge particles accompanying the pulverization or grinding is not sufficient. It will be enough. On the other hand, when it is too large, the pulverization efficiency in the initial stage of mixing and pulverization deteriorates.

製品粒径による合金組成差の問題は、前述したとおり添加金属元素比が小さい合金製造においてほど顕著となる。この問題を効果的に解決できる本発明は、添加金属元素比が小さい合金製造、具体的には添加金属元素比が20%以下の合金製造において有効であり、なかでも特に、この比率が10%に過ぎないTi−6Al−4V合金の製造において有効である。   As described above, the problem of the difference in the alloy composition due to the product particle size becomes more prominent in the manufacture of an alloy having a small additive metal element ratio. The present invention that can effectively solve this problem is effective in manufacturing an alloy having a small additive metal element ratio, specifically, an alloy having an additive metal element ratio of 20% or less. In particular, this ratio is 10%. Therefore, it is effective in the production of Ti-6Al-4V alloy.

本発明のチタン系合金球状粉末の製造方法は、スポンジチタン粒と添加金属元素粒とを混合し、棒状溶解原料としてガスアトマイズ法によりチタン系合金球状粉末を製造する際に、その粒子混合に粉砕機能を有する混合機であるボールミル、アトライター又は振動ミルを使用することにより、製品粒径による合金組成差の問題が顕著化する添加金属元素比が20%以下の合金粉末を製造において、ガスアトマイズ法による高価な微細球状チタン粒を使用することなく、これを使用するのと同等の高い合金組成の均一性を製品合金粉末に付与することができる。したがって、高品質な合金球状粉末を従来より格段に経済的に製造することができる。その上、スポンジチタン粒としてとりわけ安価な篩下品を使用でき、この点からも経済性の向上を図ることができる。 The titanium alloy spherical powder production method of the present invention is a mixture of sponge titanium particles and additive metal element particles, and when the titanium alloy spherical powder is produced by the gas atomization method as a rod-shaped melting raw material, the particle mixing function is pulverized. By using a ball mill, an attritor, or a vibration mill, which is a mixer having the following, the problem of the alloy composition difference due to the product particle size becomes prominent. In producing an alloy powder having an additive metal element ratio of 20% or less, the gas atomization method is used. Without using expensive fine spherical titanium particles, it is possible to impart a high alloy composition uniformity equivalent to that used to the product alloy powder. Therefore, high-quality alloy spherical powder can be manufactured much more economically than before. In addition, a particularly inexpensive unsieved product can be used as the sponge titanium particles, and the economy can be improved from this point.

以下に本発明の実施形態を説明する。まず、参考例として、添加金属元素比が36%であるTi−Al合金球状粉末を製造する場合について説明する。 Embodiments of the present invention will be described below. First, as a reference example, a case where a Ti—Al alloy spherical powder having an additive metal element ratio of 36% will be described.

原料粉末として、平均粒径が0.3mm以上の比較的粗粒のスポンジチタン粒を用意する。このスポンジチタン粒としては、展伸材用スポンジチタンのジョークラッシャーによる細粒化分級工程で生じる篩下材及び製品(篩上品)を分級して使用する。また、添加金属元素粒として、平均粒径が0.2mm以上、望ましくは0.5mm以上の比較的大径のAl粒を用意する。   As raw material powder, relatively coarse sponge titanium particles having an average particle size of 0.3 mm or more are prepared. As the sponge titanium particles, a sieve material and a product (sieved product) generated in a fine particle classification process by a jaw crusher of sponge titanium for wrought material are classified and used. Also, as the additive metal element particles, relatively large Al particles having an average particle diameter of 0.2 mm or more, desirably 0.5 mm or more are prepared.

原料粉末が用意されると、第1工程として、ボールミルを用いてスポンジチタン粒とAl粒を重量比で64:36の割合で混合する。ボールミルは混合機能だけでなく粉砕機能も有し、混合過程で特にAl粒を小さく粉砕すると共に、粒子同士の押し付け合いにより比較手柔らかいAl粒を磨り潰し、スポンジチタン粒の表面へ擦り付ける。これにより、Al粒がスポンジチタン粒の凹凸表面に強固に固定され、あたかも微細粒子が均一混合したかの状態になる。   When the raw material powder is prepared, as a first step, sponge titanium particles and Al particles are mixed at a weight ratio of 64:36 using a ball mill. The ball mill has not only a mixing function but also a pulverizing function. In the mixing process, the Al particles are particularly pulverized to a small size, and the comparatively soft Al particles are crushed and pressed against the surface of the sponge titanium particles by pressing the particles together. As a result, the Al particles are firmly fixed to the uneven surface of the sponge titanium particles, and it is as if the fine particles are uniformly mixed.

スポンジチタン粒とAl粒の混合が終わると、第2工程として、混合粒を圧縮して棒状の溶解原料となす。圧縮成形法としては金型プレス、冷間静水圧プレスなどの周知の方法を用いることができる。   When the mixing of the sponge titanium particles and the Al particles is completed, the mixed particles are compressed into a rod-shaped melting raw material as the second step. As the compression molding method, a known method such as a die press or a cold isostatic press can be used.

棒状の溶解原料が成形されると、第3工程として、ガスアトマイズ法によりTi−Al合金球状粉末を製造する。具体的には、不活性ガスチャンバー内で棒状の溶解原料を垂直に立て、同じく垂直配置された環状の誘導加熱コイル内側に上から下へ供給する。これにより、溶解原料が下から順次非接触溶解され、Ti−Alの合金溶湯が連続形成されて下方へ流下する。そして、この溶湯流に周囲から不活性ガスを吹き付け、細かく飛散させて凝固させることにより、Ti−Al合金球状粉末を製造する。   When the rod-shaped melting raw material is formed, a Ti—Al alloy spherical powder is produced by a gas atomization method as a third step. Specifically, a rod-shaped melted raw material stands vertically in an inert gas chamber, and is supplied from the top to the bottom inside an annular induction heating coil that is also arranged vertically. As a result, the melted raw materials are sequentially melted in a non-contact manner from the bottom, and a Ti—Al alloy melt is continuously formed and flows downward. And an inert gas is sprayed from the circumference | surroundings to this molten metal flow, and it scatters finely and solidifies, A Ti-Al alloy spherical powder is manufactured.

第1工程でV型混合機による単純混合を用いた場合は、第3工程で低融点のAl粒が先に溶解し、合金組成をばらつかせる原因になるが、本実施形態では前述したとおり第1工程でAl粒がスポンジチタン粒の表面に半ばコーティングされ強固に固定されるため、Alの先行溶解が阻止され、合金組成差が解消される。誘導加熱コイルとしては、特許文献3に示されているように直径が上から下へかけて徐々に小さくなる渦巻き状のものが好ましい。   When simple mixing using a V-type mixer is used in the first step, the low melting point Al particles are first dissolved in the third step, causing the alloy composition to vary, but in this embodiment, as described above, In the first step, Al particles are half-coated on the surface of the sponge titanium particles and firmly fixed, so that the prior dissolution of Al is prevented and the alloy composition difference is eliminated. As the induction heating coil, a spiral coil whose diameter gradually decreases from top to bottom as shown in Patent Document 3 is preferable.

次に、本発明例として、添加金属元素比が10%であるTi−6Al−4V合金球状粉末を製造する場合について説明する。 Next, as an example of the present invention, a case of manufacturing a Ti-6Al-4V alloy spherical powder having an additive metal element ratio of 10% will be described.

原料粉末として、平均粒径が0.3mm以上の比較的粗粒のスポンジチタン粒を用意する。このスポンジチタン粒としては、展伸材用スポンジチタンのジョークラッシャーによる細粒化分級工程で生じる篩下材及び製品(篩上品)を分級して使用する。また、添加金属元素粒として、平均粒径が0.2mm以上、望ましくは0.5mm以上の比較的大径のAl−V合金粒(Al:V=6:4の母合金粒)を用意する。   As raw material powder, relatively coarse sponge titanium particles having an average particle size of 0.3 mm or more are prepared. As the sponge titanium particles, a sieve material and a product (sieved product) generated in a fine particle classification process by a jaw crusher of sponge titanium for wrought material are classified and used. Further, as the additive metal element particles, Al-V alloy particles having a relatively large diameter (Al: V = 6: 4 mother alloy particles) having an average particle diameter of 0.2 mm or more, desirably 0.5 mm or more are prepared. .

原料粉末が用意されると、第1工程として、ボールミルを用いてスポンジチタン粒とAl−V合金粒を重量比で9:1の割合で混合する。ボールミルは混合機能だけでなく粉砕機能も有する。Al−V母合金粒はTiよりも脆いために混合過程で特に小さく粉砕され、スポンジチタン粒の粗い表面の凹部に強固に詰め込まれ固定されることにより、あたかも微細球状粒子が均一混合したかの如き状態になる。   When the raw material powder is prepared, as a first step, sponge titanium particles and Al—V alloy particles are mixed at a weight ratio of 9: 1 using a ball mill. The ball mill has not only a mixing function but also a grinding function. Since the Al-V master alloy grains are more brittle than Ti, they are pulverized particularly small during the mixing process, and are tightly packed and fixed in the recesses on the rough surface of the sponge titanium grains, as if the fine spherical particles were uniformly mixed. It becomes such a state.

スポンジチタン粒とAl−V合金粒の混合が終わると、第2工程として、混合粒を圧縮して棒状の溶解原料となす。圧縮成形法としては金型プレス、冷間静水圧プレスなどの周知の方法を用いることができる。   When the mixing of the sponge titanium particles and the Al-V alloy particles is completed, the mixed particles are compressed into a rod-shaped melting raw material as a second step. As the compression molding method, a known method such as a die press or a cold isostatic press can be used.

棒状の溶解原料が成形されると、第3工程として、ガスアトマイズ法によりTi−6Al−4V合金球状粉末を製造する。具体的には、不活性ガスチャンバー内で棒状の溶解原料を垂直に立て、同じく垂直配置された環状の誘導加熱コイル内側に上から下へ供給する。これにより、溶解原料が下から徐々に非接触溶解され、Ti−6Al−4Vの合金溶湯が連続形成されて下方へ流下する。そして、この溶湯流に周囲から不活性ガスを吹き付け、細かく飛散させて凝固させることにより、Ti−6Al−4V合金球状粉末を製造する。   When the rod-shaped melting raw material is formed, a Ti-6Al-4V alloy spherical powder is produced by a gas atomization method as a third step. Specifically, a rod-shaped melted raw material stands vertically in an inert gas chamber, and is supplied from the top to the bottom inside an annular induction heating coil that is also arranged vertically. As a result, the melted raw material is gradually non-contact melted from below, and a Ti-6Al-4V alloy melt is continuously formed and flows downward. And an inert gas is sprayed from the circumference | surroundings to this molten metal flow, and it disperses finely and solidifies, A Ti-6Al-4V alloy spherical powder is manufactured.

本実施形態でも、前述したとおり第1工程で添加金属元素粒であるAl−V合金粒が微細粒子に細かく粉砕されスポンジチタン粒の表面に機械的嵌合により強固に固定されるため、添加金属元素の先行溶解が阻止され、合金組成差が解消される。誘導加熱コイルとしては、特許文献3に示されているように直径が上から下へかけて徐々に小さくなる渦巻き状のものが好ましい。   Also in this embodiment, since the Al-V alloy particles, which are additive metal element particles, are finely pulverized into fine particles and firmly fixed to the surface of the sponge titanium particles by mechanical fitting in the first step as described above, the additive metal Pre-dissolution of elements is prevented and the alloy composition difference is eliminated. As the induction heating coil, a spiral coil whose diameter gradually decreases from top to bottom as shown in Patent Document 3 is preferable.

前述の方法によりTi−6Al−4V合金球状粉末を製造する場合に、スポンジチタン粒及びAl−V合金粒の平均粒径を様々に変更した。スポンジチタン粒としては、展伸材用スポンジチタンのジョークラッシャーによる細粒化分級工程で生じる篩下材及び製品(篩上品)を分級して使用した。混合機としてはボールミルを用いた。製造されたTi−6Al−4V合金球状粉末のAl濃度、Fe濃度及びO濃度を調査した。製品粒径は45μm以下である。比較参照のために、混合機としてV型混合機を用いた場合についても同様の調査を行った。結果を表1に示す。   When the Ti-6Al-4V alloy spherical powder was produced by the above-described method, the average particle diameters of the sponge titanium grains and the Al-V alloy grains were variously changed. As the sponge titanium particles, sieved materials and products (sieved products) generated in the refinement and classification process of the expanded titanium sponge titanium jaw crusher were used. A ball mill was used as the mixer. The Al concentration, Fe concentration, and O concentration of the produced Ti-6Al-4V alloy spherical powder were investigated. The product particle size is 45 μm or less. For comparison purposes, the same investigation was performed for the case where a V-type mixer was used as the mixer. The results are shown in Table 1.

スポンジチタン粒の平均粒径が0.3mmの場合、Al濃度の配合比(6.0%)からのずれは0.05%(ずれ率は0.05/6=約1/100)と極めて小さい(実施例4)。これは混合機にボールミルを用いたためである。なぜなら、混合機にV型混合機を用いた場合は他の条件が同一であるにもかかわらず、Al濃度の配合比(6.0%)からのずれは0.5%(ずれ率は0.5/6=約1/10)と非常に大きい(比較例2)。だだし、チタン粒の表面が粗く、その粒径が小さく表面積が大きいために、不純物濃度は幾分高くなる。   When the average particle diameter of the sponge titanium particles is 0.3 mm, the deviation from the Al concentration blending ratio (6.0%) is 0.05% (the deviation rate is 0.05 / 6 = about 1/100). Small (Example 4). This is because a ball mill was used for the mixer. This is because when the V-type mixer is used as the mixer, the deviation from the Al concentration blending ratio (6.0%) is 0.5% (the deviation rate is 0) even though the other conditions are the same. .5 / 6 = about 1/10) and very large (Comparative Example 2). However, since the surface of the titanium grains is rough, the grain size is small and the surface area is large, the impurity concentration is somewhat higher.

スポンジチタン粒の平均粒径が3mmと非常に大きい場合でも、Al濃度の配合比(6.0%)からのずれは0.2%(ずれ率は0.2/6=1/30)と小さい(実施例3)。不純物濃度については、スポンジチタン粒の粒径か大きく表面積が小さいために、低レベルに抑制されている。   Even when the average particle diameter of the sponge titanium particles is as large as 3 mm, the deviation from the blending ratio of Al concentration (6.0%) is 0.2% (the deviation rate is 0.2 / 6 = 1/30). Small (Example 3). The impurity concentration is suppressed to a low level because the particle size of the sponge titanium particles is large and the surface area is small.

スポンジチタン粒の平均粒径が1mmの場合は、Al−V合金粒の平均粒径が上記と同じ10mmの場合と、これより小さい0.5mmの場合についての結果が示されている。Al−V合金粒の平均粒径が上記と同じ10mmの場合は、Al濃度の配合比(6.0%)からのずれは、スポンジチタン粒の平均粒径が0.3mmの場合と同じ0.05%(ずれ率は0.05/6=約1/100)で、非常に小さい(実施例2)。不純物濃度は、スポンジチタン粒の平均粒径が0.3mmの場合よりも粒径が大きく表面積が小さいために、スポンジチタン粒の平均粒径が3mmの場合に近い低レベルに抑制されている。   When the average particle diameter of the sponge titanium particles is 1 mm, the results are shown for the case where the average particle diameter of the Al-V alloy particles is 10 mm, which is the same as described above, and 0.5 mm, which is smaller than the above. When the average particle diameter of the Al-V alloy particles is 10 mm as described above, the deviation from the Al concentration blending ratio (6.0%) is the same as when the average particle diameter of the sponge titanium particles is 0.3 mm. 0.05% (the deviation rate is 0.05 / 6 = about 1/100), which is very small (Example 2). The impurity concentration is suppressed to a low level close to that when the average particle size of the sponge titanium particles is 3 mm because the particle size is larger and the surface area is smaller than when the average particle size of the sponge titanium particles is 0.3 mm.

Al−V合金粒の平均粒径が0.5mmの場合は、Al濃度の配合比(6.0%)からのずれは、0.1%(ずれ率は0.1/6=1/60)と若干増大する(実施例1)。これは、ボールミルによる混合でAl−V合金粒の粉砕が十分に進まなかったためである。不純物濃度はスポンジチタン粒の平均粒径に支配されるため、実施例2と同じである。   When the average particle diameter of the Al—V alloy grains is 0.5 mm, the deviation from the Al concentration blending ratio (6.0%) is 0.1% (the deviation rate is 0.1 / 6 = 1/60). ) And increase slightly (Example 1). This is because the pulverization of the Al-V alloy grains did not proceed sufficiently by mixing with the ball mill. Since the impurity concentration is governed by the average particle diameter of the sponge titanium particles, it is the same as in Example 2.

Figure 0004947690
Figure 0004947690

なお上記実施例では、製品であるTi−6Al−4V合金球状粉末の粒径は45μm以下と細粒である。この場合、添加金属元素濃度(ここではAl濃度で代表)は原料混合粉末における混合比よりも高くなっており、本発明はその濃度偏差の解消に寄与しているが、前記の製品粒径が大きい場合は、細粒の場合とは反対に添加金属元素濃度(ここではAl濃度)が原料混合粉末における混合比よりも低くなる。本発明はこの場合の濃度偏差の解消に有効なことはいうまでもない。   In the above example, the product Ti-6Al-4V alloy spherical powder has a fine particle size of 45 μm or less. In this case, the additive metal element concentration (represented here by the Al concentration) is higher than the mixing ratio in the raw material mixed powder, and the present invention contributes to the elimination of the concentration deviation. When it is larger, the concentration of the added metal element (here, the Al concentration) is lower than the mixing ratio in the raw material mixed powder, contrary to the case of fine particles. It goes without saying that the present invention is effective in eliminating the concentration deviation in this case.

すなわち、本発明は製品粒径による合金組成差を大幅に且つ経済的に縮小することができるのである。   That is, the present invention can greatly and economically reduce the alloy composition difference due to the product particle size.

Claims (4)

添加金属元素比が20%以下のチタン系合金からなる球状粉末の製造方法において、スポンジチタン粒と添加金属元素粒とを、粉砕機能を有する混合機であるボールミル、アトライター又は振動ミルにより混合する工程と、混合機による混合で得られた混合粒を圧縮により棒状溶解原料に成形する工程と、成形された棒状溶解原料を不活性雰囲気中で誘導加熱により非接触溶解する工程と、非接触溶解により形成される合金溶湯をガスアトマイズ法により粉末化する工程とを含むチタン系合金球状粉末の製造方法。 In a method for producing a spherical powder composed of a titanium-based alloy having an additive metal element ratio of 20% or less, sponge titanium particles and additive metal element particles are mixed by a ball mill, an attritor or a vibration mill which is a mixer having a pulverizing function. A step of forming mixed particles obtained by mixing with a mixer into a rod-shaped melting raw material by compression, a step of non-contact melting of the molded rod-shaped melting raw material by induction heating in an inert atmosphere, and non-contact melting And a step of pulverizing the molten alloy formed by the gas atomization method. 前記添加金属元素粉末は、AlとVの母合金(Al:V=6:4)であり、これを用いてTi−6Al−4V球状粉末を製造する請求項に記載のチタン系合金球状粉末の製造方法。 The additive metal element powder, Al and V master alloy (Al: V = 6: 4 ) a and, titanium-based alloy spherical claim 1 you produce Ti-6Al-4V spherical powder using this Powder manufacturing method. Ti−6Al−4Vからなる球状粉末の製造方法において、スポンジチタン粒と、AlとVの母合金(Al:V=6:4)からなる添加金属元素粒とを、粉砕機能を有する混合機であるボールミル、アトライター又は振動ミルにより混合する工程と、混合機による混合で得られた混合粒を圧縮により棒状溶解原料に成形する工程と、成形された棒状溶解原料を不活性雰囲気中で誘導加熱により非接触溶解する工程と、非接触溶解により形成される合金溶湯をガスアトマイズ法により粉末化する工程とを含むチタン系合金球状粉末の製造方法。 The method of manufacturing a spherical powder comprising Ti-6Al-4V, sponge titanium particles and, of Al and V master alloy and an additive metal element particles made of (Al:: V = 6 4 ), a mixer having a pulverizing function A step of mixing by a ball mill, an attritor or a vibration mill, a step of forming mixed grains obtained by mixing by a mixer into a rod-shaped molten raw material by compression, and induction heating of the formed rod-shaped molten raw material in an inert atmosphere A method for producing a titanium-based alloy spherical powder, which includes a step of non-contact melting by a gas and a step of pulverizing a molten alloy formed by non-contact melting by a gas atomizing method. 前記スポンジチタン粒は平均粒径が0.3〜5mmであり、前記添加金属元素粉末は平均粒径が0.2〜50mmである請求項に記載のチタン系合金球状粉末の製造方法。 The titanium sponge particles have an average particle diameter of Ri 0.3~5mm der method of manufacturing a titanium-based alloy spherical powder according to the additive metal element powder according to claim 3 mean particle size of Ru 0.2~50mm der .
JP2006138730A 2006-05-18 2006-05-18 Method for producing titanium-based alloy spherical powder Active JP4947690B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006138730A JP4947690B2 (en) 2006-05-18 2006-05-18 Method for producing titanium-based alloy spherical powder
AU2007252758A AU2007252758A1 (en) 2006-05-18 2007-03-22 Process for producing spherical titanium alloy powder
KR1020087030871A KR20090018143A (en) 2006-05-18 2007-03-22 Process for producing spherical titanium alloy powder
PCT/JP2007/055861 WO2007135806A1 (en) 2006-05-18 2007-03-22 Process for producing spherical titanium alloy powder
EP07739304A EP2022582A4 (en) 2006-05-18 2007-03-22 Process for producing spherical titanium alloy powder
US12/299,854 US20090107294A1 (en) 2006-05-18 2007-03-22 Process for producing spherical titanium alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138730A JP4947690B2 (en) 2006-05-18 2006-05-18 Method for producing titanium-based alloy spherical powder

Publications (2)

Publication Number Publication Date
JP2007308755A JP2007308755A (en) 2007-11-29
JP4947690B2 true JP4947690B2 (en) 2012-06-06

Family

ID=38723119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138730A Active JP4947690B2 (en) 2006-05-18 2006-05-18 Method for producing titanium-based alloy spherical powder

Country Status (6)

Country Link
US (1) US20090107294A1 (en)
EP (1) EP2022582A4 (en)
JP (1) JP4947690B2 (en)
KR (1) KR20090018143A (en)
AU (1) AU2007252758A1 (en)
WO (1) WO2007135806A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489244B (en) 2011-03-22 2013-12-18 Norsk Titanium Components As Method for production of alloyed titanium welding wire
JP2014515792A (en) * 2011-04-27 2014-07-03 マテリアルズ アンド エレクトロケミカル リサーチ コーポレイション Low cost processing method to produce spherical titanium and spherical titanium alloy powder
ITMO20130084A1 (en) * 2013-03-29 2014-09-30 K4Sint S R L METAL MECHANICAL ALLOCATION PROCEDURE
WO2015175726A1 (en) 2014-05-13 2015-11-19 University Of Utah Research Foundation Production of substantially spherical metal powers
KR20170101927A (en) 2014-12-02 2017-09-06 더 유니버시티 오브 유타 리서치 파운데이션 Deoxidation of molten salts of metal powders
JP7197597B2 (en) * 2017-11-24 2022-12-27 コリア インスティテュート オブ マテリアルズ サイエンス Titanium-aluminum alloy for 3D printing with excellent high-temperature properties and its production method
CN109877332A (en) * 2019-04-16 2019-06-14 上海材料研究所 A method of improving titanium or titanium alloy gas-atomised powders fine powder rate
KR102370831B1 (en) * 2020-10-26 2022-03-07 한국생산기술연구원 Nanoparticle dispersion strengthened titanium powder with improved uniformity and manufacturing method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263947A (en) * 1989-04-03 1990-10-26 Tokushu Denkyoku Kk Manufacture of high strength steel containing dispersed carbide
US4999051A (en) * 1989-09-27 1991-03-12 Crucible Materials Corporation System and method for atomizing a titanium-based material
JPH0593213A (en) * 1991-06-04 1993-04-16 Sumitomo Shichitsukusu Kk Production of titanium and titanium alloy powder
JP2576319B2 (en) * 1991-10-08 1997-01-29 日本鋼管株式会社 Manufacturing method of high density powder sintered titanium alloy
JPH05239571A (en) * 1992-03-02 1993-09-17 Sumitomo Light Metal Ind Ltd Production of ti-al intermetallic compound
JPH06116609A (en) 1992-10-06 1994-04-26 Sumitomo Sitix Corp Production of metal powder
JP3839493B2 (en) * 1992-11-09 2006-11-01 日本発条株式会社 Method for producing member made of Ti-Al intermetallic compound
US6010661A (en) * 1999-03-11 2000-01-04 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
JP2002241807A (en) 2001-02-13 2002-08-28 Sumitomo Titanium Corp Method for manufacturing titanium-aluminum alloy powder
CN100439013C (en) * 2001-02-16 2008-12-03 株式会社大阪钛技术 Titanium powder sintered compact
JP2002339006A (en) * 2001-05-15 2002-11-27 Sumitomo Titanium Corp Method for manufacturing titanium and titanium alloy powder
ATE360101T1 (en) * 2002-02-15 2007-05-15 Toudai Tlo Ltd MAGNESIUM-BASED COMPOSITE MATERIAL AND PRODUCTION PROCESS THEREOF
JP2004087264A (en) * 2002-08-26 2004-03-18 Mitsui Mining & Smelting Co Ltd Negative electrode material for non-water electrolysis liquid secondary battery, and its manufacturing method
JP3819352B2 (en) * 2002-10-21 2006-09-06 三井金属鉱業株式会社 Electronic component firing jig

Also Published As

Publication number Publication date
EP2022582A1 (en) 2009-02-11
AU2007252758A1 (en) 2007-11-29
JP2007308755A (en) 2007-11-29
EP2022582A4 (en) 2010-07-21
US20090107294A1 (en) 2009-04-30
KR20090018143A (en) 2009-02-19
WO2007135806A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4947690B2 (en) Method for producing titanium-based alloy spherical powder
KR102048062B1 (en) Titanium powder, its products, and sintered products
JP2004232079A (en) Auxiliary material powder for powder metallurgy, iron based powdery mixture for powder metallurgy, and production method therefor
CN101223294A (en) Method for the manufacture of titanium alloy structure
MXPA02002563A (en) Powder composition comprising aggregates of iron powder and additives and a flow agent and a process for its preparation.
CN106001588A (en) Ultrafine aluminum alloy powder and production method thereof
CN103209789A (en) Mixed powder for powder metallurgy, and method for manufacturing same
JP2002020801A (en) Iron-based powdery mixture for powder metallurgy
JP2005307348A (en) Iron-based powder mixture for powder metallurgy
CN102463348A (en) Iron-based mixed powder used for powder metallurgy
JP2005232592A (en) Iron-based powdery mixture for powder metallurgy
JPH0551683A (en) Hypereutectic al-si powder metallurgical alloy with high strength
JP2002339006A (en) Method for manufacturing titanium and titanium alloy powder
JP3325390B2 (en) Metal powder for manufacturing parts by compression molding and sintering and method for manufacturing the powder
US4168967A (en) Nickel and cobalt irregularly shaped granulates
JP2002241807A (en) Method for manufacturing titanium-aluminum alloy powder
JP5544930B2 (en) Granulated powder, porous sintered body and metal filter
JP3354468B2 (en) Method for producing particle-dispersed sintered titanium matrix composite
JP7296232B2 (en) Method for producing solid spherical powder and method for producing shaped products
JP2004002964A (en) Iron-based powder mixture
WO2005087411A1 (en) Iron-based powder mixture for powder metallurgy
JP2009091624A (en) Aluminum-based material and manufacturing method therefor
JPH0688153A (en) Production of sintered titanium alloy
JP2002180103A (en) Iron-base powder mixture for powder-metallurgy
JP3474847B2 (en) Manufacturing method of high purity titanium ingot

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250