JP2576319B2 - Manufacturing method of high density powder sintered titanium alloy - Google Patents

Manufacturing method of high density powder sintered titanium alloy

Info

Publication number
JP2576319B2
JP2576319B2 JP3260690A JP26069091A JP2576319B2 JP 2576319 B2 JP2576319 B2 JP 2576319B2 JP 3260690 A JP3260690 A JP 3260690A JP 26069091 A JP26069091 A JP 26069091A JP 2576319 B2 JP2576319 B2 JP 2576319B2
Authority
JP
Japan
Prior art keywords
titanium
powder
alloy
titanium alloy
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3260690A
Other languages
Japanese (ja)
Other versions
JPH0598368A (en
Inventor
秀紀 田島
雄治 今藤
正二 久保寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP3260690A priority Critical patent/JP2576319B2/en
Publication of JPH0598368A publication Critical patent/JPH0598368A/en
Application granted granted Critical
Publication of JP2576319B2 publication Critical patent/JP2576319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、自動車部品等に好適
な高密度粉末焼結チタン合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-density powder sintered titanium alloy suitable for automobile parts and the like.

【0002】[0002]

【従来技術】チタン合金は軽量かつ高強度であり、しか
も耐食性に優れているため産業部品から民生部品まで幅
広い応用が期待されている。特に、このような性質を生
かして自動車部品に適用することが検討されている。し
かし、チタンは難加工性材料であるため、溶製材から機
械加工あるいは冷間加工によって製造する方法では、機
械的性質の優れたものが得られるが、コストが高いとい
う欠点がある。このような欠点を回避するため、チタン
合金の素粉末を混合し、所定の形状に成形した後、真空
焼成して焼結体を得る粉末冶金技術の適用が試みられて
いる。
2. Description of the Related Art Titanium alloys are lightweight and high-strength and have excellent corrosion resistance, so that they are expected to be widely applied to industrial parts and consumer parts. In particular, it is being studied to apply such properties to automotive parts. However, since titanium is a difficult-to-process material, a method of manufacturing from ingot material by machining or cold working can provide excellent mechanical properties, but has a disadvantage of high cost. In order to avoid such a drawback, application of powder metallurgy technology in which a titanium alloy raw powder is mixed, formed into a predetermined shape, and then fired in a vacuum to obtain a sintered body has been attempted.

【0003】しかしながら、粉末冶金技術を用いた場
合、製品に空孔が残留するため、機械的性質、特に疲労
強度が低下する。空孔を消滅させるためには、焼結後に
HIP(熱間静水圧プレス)等の2次加工を用いればよ
いが、このような方法を採用するとコストが上昇してし
まい、粉末冶金のメリットを失ってしまう。
[0003] However, when powder metallurgy is used, pores remain in the product, so that mechanical properties, particularly fatigue strength, are reduced. In order to eliminate pores, secondary processing such as HIP (hot isostatic pressing) may be used after sintering. However, adopting such a method increases costs and reduces the merits of powder metallurgy. I will lose.

【0004】コストを上昇させることなく高密度のチタ
ン焼結体を得るための注目すべき技術として、特公平2
−50172に開示された方法がある。この方法は、予
めチタン合金を構成する合金元素により所定粒径の予合
金(マスタ−アロイ)を作成し、この予合金と所定粒径
のチタン粉末とを混合し、理論値の80〜90%の密度
を有する圧粉体とし、これを液相が生じる温度未満で焼
結するものである。
As a remarkable technique for obtaining a high-density titanium sintered body without increasing the cost, Japanese Patent Publication No.
There is a method disclosed in US Pat. According to this method, a pre-alloy (master alloy) having a predetermined particle size is prepared in advance from alloying elements constituting a titanium alloy, and this pre-alloy is mixed with a titanium powder having a predetermined particle size to obtain 80 to 90% of a theoretical value. And sintered at a temperature lower than a temperature at which a liquid phase is generated.

【0005】[0005]

【発明が解決しようとする課題】ところで、特公平2−
50172に開示された技術に限らず、粉末冶金技術に
より焼結合金を製造する場合には、チタン原料として一
般的にスポンジチタンが用いられている。しかしなが
ら、チタン原料として所定粒度のスポンジチタンをその
まま用いた場合には、ある程度の高密度化は図れるもの
の、未だ十分な密度を達成することができない。
Problems to be Solved by the Invention
When producing a sintered alloy by powder metallurgy, the sponge titanium is generally used as a titanium raw material, not limited to the technology disclosed in Japanese Patent No. 50172. However, when sponge titanium having a predetermined particle size is used as it is as a titanium raw material, a high density can be achieved to some extent, but a sufficient density cannot be achieved yet.

【0006】この発明はかかる事情に鑑みてなされたも
のであって、十分な高密度化を図ることができる高密度
粉末焼結チタン合金の製造方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a high-density powder sintered titanium alloy capable of sufficiently increasing the density.

【0007】[0007]

【課題を解決するための手段及び作用】この発明は、上
記課題を解決するために、チタン粉末と予め合金化され
た合金粉末とを混合し、その混合粉末を成形して焼結す
る高密度粉末焼結チタン合金の製造方法であって、前記
チタン粉末として、スポンジチタンをNaCl又はMg
Cl2 が可溶な溶媒中で粉砕したものを用いることを特
徴とする高密度粉末焼結チタン合金の製造方法を提供す
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a high-density method in which titanium powder and pre-alloyed alloy powder are mixed, and the mixed powder is formed and sintered. A method for producing a powder sintered titanium alloy, wherein titanium sponge is NaCl or Mg as the titanium powder.
Provided is a method for producing a high-density powdered sintered titanium alloy, characterized by using a powder pulverized in a solvent in which Cl 2 is soluble.

【0008】本願発明者等が、チタン原料としてスポン
ジチタンをそのまま用いることにより十分な高密度化を
図ることができない原因について検討を重ねた結果、以
下の知見を得るに至った。
The inventors of the present application have repeatedly studied the causes of the inability to achieve a sufficient high density by directly using sponge titanium as a titanium raw material, and as a result, have obtained the following knowledge.

【0009】(1)スポンジチタンはTiCl4 をNa
又はMgで還元して製造されるので、粉末粒子内にNa
Cl又はMgCl2 が残存する。その量は、Naを用い
るハンタ−法の場合には、Clとして0.10〜0.2
0%、Mgを用いるクロ−ル法の場合でClとして0.
08%程度である。NaCl,MgCl2 の分解により
生じるこのClはTiに溶解しないため、焼結時に発生
するClガスに起因するポアが組織中に生成し、これが
そのまま残存して、図1に示すように高密度化を妨げ
る。 (2)チタン粉末として粒度が大きいもの使用するとマ
スタ−アロイとの混合不均一、接触面積(反応面積)の
不足などにより、やはり高密度化を妨げる。
(1) Titanium sponge is obtained by converting TiCl 4 to Na
Or produced by reduction with Mg, so that Na is contained in the powder particles.
Cl or MgCl 2 remains. In the case of the Hunter method using Na, the amount is 0.10 to 0.2 as Cl.
0%, in the case of the chlorine method using Mg, 0.1% as Cl.
It is about 08%. Since this Cl generated by the decomposition of NaCl and MgCl 2 does not dissolve in Ti, pores caused by Cl gas generated during sintering are generated in the structure and remain as they are, and as shown in FIG. Hinder. (2) If a titanium powder having a large particle size is used, the mixing with the master alloy is not uniform, and the contact area (reaction area) is insufficient.

【0010】この発明は、このような本願発明者等の知
見に基づいてなされたものである。すなわち、チタン粉
末としてのスポンジチタンをNaCl又はMgCl2
可溶な溶媒中で粉砕することにより、チタン粉末からC
lを除去することができ、しかもチタン粉末を微細化す
ることができる。
The present invention has been made based on the findings of the present inventors. That is, by grinding sponge titanium as titanium powder in a solvent in which NaCl or MgCl 2 is soluble,
1 can be removed and the titanium powder can be refined.

【0011】なお、この場合の溶媒としては、NaCl
又はMgCl2 が可溶なものであれば良く、NaClの
場合には例えば水、MgCl2 の場合には例えばアルコ
−ル類がある。また、粉砕の方法は特に限定されるもの
ではないが、ボ−ルミル及びアトライタ等を好適に用い
ることができる。
The solvent used in this case is NaCl
Alternatively, any material may be used as long as MgCl 2 is soluble. In the case of NaCl, for example, there is water, and in the case of MgCl 2 there is, for example, alcohols. The method of pulverization is not particularly limited, but a ball mill, an attritor and the like can be preferably used.

【0012】[0012]

【実施例】以下、この発明の実施例について詳細に説明
する。
Embodiments of the present invention will be described below in detail.

【0013】Ti原料粉末としてNaで還元したスポン
ジチタンの篩下(平均粒径100μm程度、これをスポ
ンジファインと称する)を用いた。このスポンジファイ
ン1kgを鋼球10kgが入ったボ−ルミル(容積5リ
ットル)に純水1リットルと共に装入し、2時間粉砕し
た。粉砕前後のスポンジチタンに含まれるCl量を測定
した結果、粉砕前0.20%であったのに対し、粉砕後
は0.05%であり、NaClとして存在する塩素分が
水に溶解して除去されたことが確認された。また、この
粉砕後のチタン粉末の平均粒径は70μmであった。
As a Ti raw material powder, a sponge titanium reduced with Na was sieved (average particle size: about 100 μm, which is referred to as sponge fine). 1 kg of this sponge fine was charged together with 1 liter of pure water into a ball mill (volume: 5 liters) containing 10 kg of steel balls, and pulverized for 2 hours. As a result of measuring the amount of Cl contained in the titanium sponge before and after the pulverization, it was 0.20% before the pulverization, whereas it was 0.05% after the pulverization. It was confirmed that it had been removed. The average particle size of the crushed titanium powder was 70 μm.

【0014】このチタン粉末にマスタ−アロイ(60A
l−40V)を添加し、Vブレンダ−にて混合し、Ti
−6Al−4Vの原料粉末を作成した。なお、マスタ−
アロイの平均粒径は5μmであった。この原料粉末を6
ton /cm2 の圧力で成形して寸法が12×12×60mm
の成形体を得、この成形体を1260℃で焼結して焼結
チタン合金を製造した。
A master alloy (60A) is added to the titanium powder.
1-40 V), mixed with a V blender, and mixed with Ti.
A raw material powder of -6Al-4V was prepared. Note that the master
The average particle size of the alloy was 5 μm. This raw material powder
ton / cm 2 Molded under pressure of 12 × 12 × 60mm
And a sintered titanium alloy was produced by sintering the molded body at 1260 ° C.

【0015】比較のため、純水中での粉砕を行っていな
いスポンジチタンを用いて、同様に原料粉末を作成し、
6ton /cm2 の圧力で成形し、1260℃で焼結して焼
結チタン合金を製造した。この際の焼結体の特性を表1
に示す。
For comparison, a raw material powder was similarly prepared using titanium sponge which had not been pulverized in pure water.
6ton / cm 2 And sintered at 1260 ° C. to produce a sintered titanium alloy. Table 1 shows the characteristics of the sintered body at this time.
Shown in

【0016】[0016]

【表1】 [Table 1]

【0017】この表1に示すように、本発明に基づいて
製造した焼結体は、密度及び引張強度がスポンジチタン
をそのまま用いた焼結体よりも高いことがわかる。すな
わち、本発明の方法を用いることにより、Clに起因す
るポアが減少し、しかもチタン粉末が微細化されたこと
から、焼結が促進され、その結果密度が上昇し、引張強
度も上昇することが確認された。
As shown in Table 1, it can be seen that the sintered body manufactured according to the present invention has higher density and tensile strength than the sintered body using titanium sponge as it is. That is, by using the method of the present invention, pores caused by Cl are reduced, and the fineness of the titanium powder promotes sintering, resulting in an increase in density and an increase in tensile strength. Was confirmed.

【0018】[0018]

【発明の効果】この発明によれば、十分な高密度化を図
ることができる高密度粉末焼結チタン合金の製造方法が
提供される。
According to the present invention, there is provided a method for producing a high-density powder sintered titanium alloy capable of sufficiently increasing the density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Cl含有量と密度との関係を示す図。FIG. 1 is a diagram showing the relationship between Cl content and density.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チタン粉末と予め合金化された合金粉末
とを混合し、その混合粉末を成形して焼結する高密度粉
末焼結チタン合金の製造方法であって、前記チタン粉末
として、スポンジチタンをNaCl又はMgCl2 が可
溶な溶媒中で粉砕したものを用いることを特徴とする高
密度粉末焼結チタン合金の製造方法。
1. A method for producing a high-density powder-sintered titanium alloy, comprising mixing a titanium powder and a pre-alloyed alloy powder, and molding and sintering the mixed powder, wherein the titanium powder is a sponge. A method for producing a high-density powder sintered titanium alloy, comprising using titanium pulverized in a solvent in which NaCl or MgCl 2 is soluble.
JP3260690A 1991-10-08 1991-10-08 Manufacturing method of high density powder sintered titanium alloy Expired - Lifetime JP2576319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260690A JP2576319B2 (en) 1991-10-08 1991-10-08 Manufacturing method of high density powder sintered titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260690A JP2576319B2 (en) 1991-10-08 1991-10-08 Manufacturing method of high density powder sintered titanium alloy

Publications (2)

Publication Number Publication Date
JPH0598368A JPH0598368A (en) 1993-04-20
JP2576319B2 true JP2576319B2 (en) 1997-01-29

Family

ID=17351425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260690A Expired - Lifetime JP2576319B2 (en) 1991-10-08 1991-10-08 Manufacturing method of high density powder sintered titanium alloy

Country Status (1)

Country Link
JP (1) JP2576319B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR712101A0 (en) * 2001-08-16 2001-09-06 Bhp Innovation Pty Ltd Process for manufacture of titanium products
JP4947690B2 (en) * 2006-05-18 2012-06-06 株式会社大阪チタニウムテクノロジーズ Method for producing titanium-based alloy spherical powder

Also Published As

Publication number Publication date
JPH0598368A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
US4909840A (en) Process of manufacturing nanocrystalline powders and molded bodies
Ryu et al. Mechanical alloying process of 93W-5.6 Ni-1.4 Fe tungsten heavy alloy
US3623849A (en) Sintered refractory articles of manufacture
US3865586A (en) Method of producing refractory compound containing metal articles by high energy milling the individual powders together and consolidating them
US6334882B1 (en) Dense parts produced by uniaxial compressing an agglomerated spherical metal powder
JPH0583624B2 (en)
US4194910A (en) Sintered P/M products containing pre-alloyed titanium carbide additives
JPS6121187B2 (en)
US4787561A (en) Fine granular metallic powder particles and process for producing same
US4432795A (en) Sintered powdered titanium alloy and method of producing same
US4464206A (en) Wrought P/M processing for prealloyed powder
JP2576319B2 (en) Manufacturing method of high density powder sintered titanium alloy
JP3361331B2 (en) Composite consisting of powder of sponge iron and hard phase material
JPH03122205A (en) Manufacture of ti powder
CN113510246A (en) Preparation method of Ti-6Al-4V alloy powder and Ti-6Al-4V alloy powder prepared by same
JP2821662B2 (en) Titanium-based powder and method for producing the same
JP2576320B2 (en) Manufacturing method of high density powder sintered titanium alloy
JP3032818B2 (en) Titanium boride dispersed hard material
JPH02259029A (en) Manufacture of aluminide
US2657128A (en) Silicon-alloyed corrosion-resistant metal powders and related products and processes
JPH0250172B2 (en)
JP2806133B2 (en) Manufacturing method of high density powder sintered titanium alloy
JPH0762184B2 (en) Method for manufacturing Ti alloy product
JPH059509A (en) Sintered body of high-alloy tool steel and production thereof
RU2746657C1 (en) Method for producing high-density press workpieces with dispersed grains in powder metallurgy of metal-ceramic, mineral-ceramic and refractory alloys