JPH0598368A - Production of high density powder sintered titanium alloy - Google Patents

Production of high density powder sintered titanium alloy

Info

Publication number
JPH0598368A
JPH0598368A JP3260690A JP26069091A JPH0598368A JP H0598368 A JPH0598368 A JP H0598368A JP 3260690 A JP3260690 A JP 3260690A JP 26069091 A JP26069091 A JP 26069091A JP H0598368 A JPH0598368 A JP H0598368A
Authority
JP
Japan
Prior art keywords
powder
titanium
alloy
titanium alloy
high density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3260690A
Other languages
Japanese (ja)
Other versions
JP2576319B2 (en
Inventor
Hidenori Tajima
秀紀 田島
Yuji Kondo
雄治 今藤
Shoji Kubodera
正二 久保寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3260690A priority Critical patent/JP2576319B2/en
Publication of JPH0598368A publication Critical patent/JPH0598368A/en
Application granted granted Critical
Publication of JP2576319B2 publication Critical patent/JP2576319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high density powder sintered titanium alloy capable of being made highly densified. CONSTITUTION:At the time of producing the high density powder sintered titanium alloy by mixing a titanium powder and a previously alloyed alloy powder and subjecting the resulting powder mixture to compacting and to sintering, a powder prepared by crushing spongy titanium in a solvent capable of dessolving NaCl or MgCl2 is used as the titanium powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車部品等に好適
な高密度粉末焼結チタン合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high density powder sintered titanium alloy suitable for automobile parts and the like.

【0002】[0002]

【従来技術】チタン合金は軽量かつ高強度であり、しか
も耐食性に優れているため産業部品から民生部品まで幅
広い応用が期待されている。特に、このような性質を生
かして自動車部品に適用することが検討されている。し
かし、チタンは難加工性材料であるため、溶製材から機
械加工あるいは冷間加工によって製造する方法では、機
械的性質の優れたものが得られるが、コストが高いとい
う欠点がある。このような欠点を回避するため、チタン
合金の素粉末を混合し、所定の形状に成形した後、真空
焼成して焼結体を得る粉末冶金技術の適用が試みられて
いる。
2. Description of the Related Art Titanium alloys are lightweight and have high strength, and since they are excellent in corrosion resistance, they are expected to have a wide range of applications from industrial parts to consumer parts. In particular, it is being studied to apply the above properties to automobile parts. However, since titanium is a difficult-to-process material, the method of manufacturing it from a molten material by machining or cold working can provide excellent mechanical properties, but has the drawback of high cost. In order to avoid such drawbacks, it has been attempted to apply a powder metallurgy technique in which elementary powders of a titanium alloy are mixed, shaped into a predetermined shape, and then fired in a vacuum to obtain a sintered body.

【0003】しかしながら、粉末冶金技術を用いた場
合、製品に空孔が残留するため、機械的性質、特に疲労
強度が低下する。空孔を消滅させるためには、焼結後に
HIP(熱間静水圧プレス)等の2次加工を用いればよ
いが、このような方法を採用するとコストが上昇してし
まい、粉末冶金のメリットを失ってしまう。
However, when powder metallurgy is used, voids remain in the product, and mechanical properties, particularly fatigue strength, are reduced. In order to eliminate the voids, secondary processing such as HIP (hot isostatic pressing) may be used after sintering, but if such a method is adopted, the cost will increase and the merit of powder metallurgy will be obtained. I will lose.

【0004】コストを上昇させることなく高密度のチタ
ン焼結体を得るための注目すべき技術として、特公平2
−50172に開示された方法がある。この方法は、予
めチタン合金を構成する合金元素により所定粒径の予合
金(マスタ−アロイ)を作成し、この予合金と所定粒径
のチタン粉末とを混合し、理論値の80〜90%の密度
を有する圧粉体とし、これを液相が生じる温度未満で焼
結するものである。
As a notable technique for obtaining a high-density titanium sintered body without increasing the cost, Japanese Patent Publication No.
There is a method disclosed in -50172. According to this method, a prealloy (master alloy) having a predetermined particle size is prepared in advance from alloying elements that constitute a titanium alloy, and the prealloy and titanium powder having a predetermined particle size are mixed to obtain a theoretical value of 80 to 90% A green compact having a density of 1 is formed, and the green compact is sintered at a temperature below the temperature at which a liquid phase occurs.

【0005】[0005]

【発明が解決しようとする課題】ところで、特公平2−
50172に開示された技術に限らず、粉末冶金技術に
より焼結合金を製造する場合には、チタン原料として一
般的にスポンジチタンが用いられている。しかしなが
ら、チタン原料として所定粒度のスポンジチタンをその
まま用いた場合には、ある程度の高密度化は図れるもの
の、未だ十分な密度を達成することができない。
By the way, the Japanese Patent Publication No. 2-
Not limited to the technique disclosed in 50172, sponge titanium is generally used as a titanium raw material when producing a sintered alloy by a powder metallurgy technique. However, when sponge titanium having a predetermined particle size is used as the titanium raw material as it is, the density can be increased to some extent, but a sufficient density cannot be achieved yet.

【0006】この発明はかかる事情に鑑みてなされたも
のであって、十分な高密度化を図ることができる高密度
粉末焼結チタン合金の製造方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a high-density powder-sintered titanium alloy capable of achieving sufficient densification.

【0007】[0007]

【課題を解決するための手段及び作用】この発明は、上
記課題を解決するために、チタン粉末と予め合金化され
た合金粉末とを混合し、その混合粉末を成形して焼結す
る高密度粉末焼結チタン合金の製造方法であって、前記
チタン粉末として、スポンジチタンをNaCl又はMg
Cl2 が可溶な溶媒中で粉砕したものを用いることを特
徴とする高密度粉末焼結チタン合金の製造方法を提供す
る。
In order to solve the above-mentioned problems, the present invention provides a high-density structure in which titanium powder and pre-alloyed alloy powder are mixed and the mixed powder is molded and sintered. A method for producing a powder-sintered titanium alloy, comprising sponge titanium as NaCl or Mg as the titanium powder.
Provided is a method for producing a high-density powder-sintered titanium alloy, which is obtained by pulverizing in a solvent in which Cl 2 is soluble.

【0008】本願発明者等が、チタン原料としてスポン
ジチタンをそのまま用いることにより十分な高密度化を
図ることができない原因について検討を重ねた結果、以
下の知見を得るに至った。
The inventors of the present invention have made extensive studies as to the reason why sufficient density cannot be achieved by using titanium sponge as a titanium raw material as it is, and as a result, the following findings have been obtained.

【0009】(1)スポンジチタンはTiCl4 をNa
又はMgで還元して製造されるので、粉末粒子内にNa
Cl又はMgCl2 が残存する。その量は、Naを用い
るハンタ−法の場合には、Clとして0.10〜0.2
0%、Mgを用いるクロ−ル法の場合でClとして0.
08%程度である。NaCl,MgCl2 の分解により
生じるこのClはTiに溶解しないため、焼結時に発生
するClガスに起因するポアが組織中に生成し、これが
そのまま残存して、図1に示すように高密度化を妨げ
る。 (2)チタン粉末として粒度が大きいもの使用するとマ
スタ−アロイとの混合不均一、接触面積(反応面積)の
不足などにより、やはり高密度化を妨げる。
(1) Titanium sponge contains TiCl 4 as Na
Alternatively, since it is produced by reducing with Mg, it is
Cl or MgCl 2 remains. In the case of the Hunter method using Na, the amount is 0.10 to 0.2 as Cl.
0%, Cl in the case of the chlorination method using Mg is 0.1.
It is about 08%. Since this Cl generated by the decomposition of NaCl and MgCl 2 does not dissolve in Ti, pores are generated in the structure due to the Cl gas generated during sintering, and this remains as it is to increase the density as shown in FIG. Interfere with. (2) When titanium powder having a large particle size is used, the density is hampered due to nonuniform mixing with the master-alloy and lack of contact area (reaction area).

【0010】この発明は、このような本願発明者等の知
見に基づいてなされたものである。すなわち、チタン粉
末としてのスポンジチタンをNaCl又はMgCl2
可溶な溶媒中で粉砕することにより、チタン粉末からC
lを除去することができ、しかもチタン粉末を微細化す
ることができる。
The present invention was made based on the findings of the inventors of the present application. That is, by crushing titanium sponge as titanium powder in a solvent in which NaCl or MgCl 2 is soluble, C
l can be removed, and the titanium powder can be made finer.

【0011】なお、この場合の溶媒としては、NaCl
又はMgCl2 が可溶なものであれば良く、NaClの
場合には例えば水、MgCl2 の場合には例えばアルコ
−ル類がある。また、粉砕の方法は特に限定されるもの
ではないが、ボ−ルミル及びアトライタ等を好適に用い
ることができる。
The solvent used in this case is NaCl.
Alternatively, MgCl 2 may be soluble, for example, water in the case of NaCl, and alcohols in the case of MgCl 2 . Further, the pulverizing method is not particularly limited, but a ball mill, an attritor or the like can be preferably used.

【0012】[0012]

【実施例】以下、この発明の実施例について詳細に説明
する。
Embodiments of the present invention will be described in detail below.

【0013】Ti原料粉末としてNaで還元したスポン
ジチタンの篩下(平均粒径100μm程度、これをスポ
ンジファインと称する)を用いた。このスポンジファイ
ン1kgを鋼球10kgが入ったボ−ルミル(容積5リ
ットル)に純水1リットルと共に装入し、2時間粉砕し
た。粉砕前後のスポンジチタンに含まれるCl量を測定
した結果、粉砕前0.20%であったのに対し、粉砕後
は0.05%であり、NaClとして存在する塩素分が
水に溶解して除去されたことが確認された。また、この
粉砕後のチタン粉末の平均粒径は70μmであった。
As the Ti raw material powder, a sieve of titanium sponge reduced with Na (average particle size of about 100 μm, referred to as sponge fine) was used. 1 kg of this sponge fine was charged into a ball mill (volume: 5 liters) containing 10 kg of steel balls together with 1 liter of pure water and pulverized for 2 hours. As a result of measuring the amount of Cl contained in titanium sponge before and after the pulverization, it was 0.20% before the pulverization, whereas it was 0.05% after the pulverization, and the chlorine content existing as NaCl was dissolved in water. It was confirmed that it was removed. The average particle size of the titanium powder after pulverization was 70 μm.

【0014】このチタン粉末にマスタ−アロイ(60A
l−40V)を添加し、Vブレンダ−にて混合し、Ti
−6Al−4Vの原料粉末を作成した。なお、マスタ−
アロイの平均粒径は5μmであった。この原料粉末を6
ton /cm2 の圧力で成形して寸法が12×12×60mm
の成形体を得、この成形体を1260℃で焼結して焼結
チタン合金を製造した。
A master alloy (60A) was added to this titanium powder.
1-40V), mixed with a V blender, and mixed with Ti
A raw material powder of -6Al-4V was prepared. The master
The average particle size of the alloy was 5 μm. 6 of this raw material powder
ton / cm 2 12 × 12 × 60mm when molded with pressure
The molded body of 1 was obtained, and this molded body was sintered at 1260 ° C. to manufacture a sintered titanium alloy.

【0015】比較のため、純水中での粉砕を行っていな
いスポンジチタンを用いて、同様に原料粉末を作成し、
6ton /cm2 の圧力で成形し、1260℃で焼結して焼
結チタン合金を製造した。この際の焼結体の特性を表1
に示す。
For comparison, a raw material powder was similarly prepared using titanium sponge which was not crushed in pure water,
6ton / cm 2 Was molded at a pressure of 1600 ° C. and sintered at 1260 ° C. to produce a sintered titanium alloy. The characteristics of the sintered body at this time are shown in Table 1.
Shown in.

【0016】[0016]

【表1】 [Table 1]

【0017】この表1に示すように、本発明に基づいて
製造した焼結体は、密度及び引張強度がスポンジチタン
をそのまま用いた焼結体よりも高いことがわかる。すな
わち、本発明の方法を用いることにより、Clに起因す
るポアが減少し、しかもチタン粉末が微細化されたこと
から、焼結が促進され、その結果密度が上昇し、引張強
度も上昇することが確認された。
As shown in Table 1, the sintered body produced according to the present invention has higher density and tensile strength than the sintered body using titanium sponge as it is. That is, by using the method of the present invention, the pores due to Cl are reduced, and since the titanium powder is made finer, sintering is promoted, resulting in an increase in density and an increase in tensile strength. Was confirmed.

【0018】[0018]

【発明の効果】この発明によれば、十分な高密度化を図
ることができる高密度粉末焼結チタン合金の製造方法が
提供される。
According to the present invention, there is provided a method for producing a high-density powder-sintered titanium alloy capable of achieving sufficient densification.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cl含有量と密度との関係を示す図。FIG. 1 is a graph showing the relationship between Cl content and density.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタン粉末と予め合金化された合金粉末
とを混合し、その混合粉末を成形して焼結する高密度粉
末焼結チタン合金の製造方法であって、前記チタン粉末
として、スポンジチタンをNaCl又はMgCl2 が可
溶な溶媒中で粉砕したものを用いることを特徴とする高
密度粉末焼結チタン合金の製造方法。
1. A method for producing a high-density powder-sintered titanium alloy, which comprises mixing titanium powder and a pre-alloyed alloy powder, shaping the mixed powder and sintering the mixture, wherein the titanium powder is sponge. A method for producing a high-density powder-sintered titanium alloy, which comprises using titanium pulverized in a solvent in which NaCl or MgCl 2 is soluble.
JP3260690A 1991-10-08 1991-10-08 Manufacturing method of high density powder sintered titanium alloy Expired - Lifetime JP2576319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260690A JP2576319B2 (en) 1991-10-08 1991-10-08 Manufacturing method of high density powder sintered titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260690A JP2576319B2 (en) 1991-10-08 1991-10-08 Manufacturing method of high density powder sintered titanium alloy

Publications (2)

Publication Number Publication Date
JPH0598368A true JPH0598368A (en) 1993-04-20
JP2576319B2 JP2576319B2 (en) 1997-01-29

Family

ID=17351425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260690A Expired - Lifetime JP2576319B2 (en) 1991-10-08 1991-10-08 Manufacturing method of high density powder sintered titanium alloy

Country Status (1)

Country Link
JP (1) JP2576319B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537654A (en) * 2001-08-16 2004-12-16 ビーエイチピー ビリトン イノベーション プロプライアタリー リミテッド Method for producing titanium and titanium alloy products
WO2007135806A1 (en) * 2006-05-18 2007-11-29 Osaka Titanium Technologies Co., Ltd. Process for producing spherical titanium alloy powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537654A (en) * 2001-08-16 2004-12-16 ビーエイチピー ビリトン イノベーション プロプライアタリー リミテッド Method for producing titanium and titanium alloy products
WO2007135806A1 (en) * 2006-05-18 2007-11-29 Osaka Titanium Technologies Co., Ltd. Process for producing spherical titanium alloy powder

Also Published As

Publication number Publication date
JP2576319B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
JPH0583624B2 (en)
US6334882B1 (en) Dense parts produced by uniaxial compressing an agglomerated spherical metal powder
GB1445607A (en) Production of ultra-hard metals
JP2002544375A (en) Metal powder produced by reduction of oxides using gaseous magnesium
US5128080A (en) Method of forming diamond impregnated carbide via the in-situ conversion of dispersed graphite
US4432795A (en) Sintered powdered titanium alloy and method of producing same
CA1233679A (en) Wrought p/m processing for prealloyed powder
JP2576319B2 (en) Manufacturing method of high density powder sintered titanium alloy
JP2821662B2 (en) Titanium-based powder and method for producing the same
JPS59100233A (en) Manufacture of flake-like mother alloy for preparation of dental amalgam
JPH0730418B2 (en) Forming method of Ti-Al intermetallic compound member
JP3032818B2 (en) Titanium boride dispersed hard material
KR950007174B1 (en) Hard alloy process of watch case
JP2576320B2 (en) Manufacturing method of high density powder sintered titanium alloy
JPH02259029A (en) Manufacture of aluminide
US4518427A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
EP1545815B1 (en) Ni-coated ti powders
JPH0429729B2 (en)
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JPH07310101A (en) Reduced iron powder for sintered oilless bearing and its production
US2657128A (en) Silicon-alloyed corrosion-resistant metal powders and related products and processes
RU2746657C1 (en) Method for producing high-density press workpieces with dispersed grains in powder metallurgy of metal-ceramic, mineral-ceramic and refractory alloys
JPH0762184B2 (en) Method for manufacturing Ti alloy product
JPH01275702A (en) Production of sintered powder material
JPS61253301A (en) Alloy steel powder for powder metallurgy and it's production