JP4947145B2 - 復号装置、復号方法、及びプログラム - Google Patents

復号装置、復号方法、及びプログラム Download PDF

Info

Publication number
JP4947145B2
JP4947145B2 JP2009520189A JP2009520189A JP4947145B2 JP 4947145 B2 JP4947145 B2 JP 4947145B2 JP 2009520189 A JP2009520189 A JP 2009520189A JP 2009520189 A JP2009520189 A JP 2009520189A JP 4947145 B2 JP4947145 B2 JP 4947145B2
Authority
JP
Japan
Prior art keywords
bits
quantization error
scale
spectrum
frequency domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009520189A
Other languages
English (en)
Other versions
JPWO2008155835A1 (ja
Inventor
政直 鈴木
正清 田中
美由紀 白川
義照 土永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2008155835A1 publication Critical patent/JPWO2008155835A1/ja
Application granted granted Critical
Publication of JP4947145B2 publication Critical patent/JP4947145B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/005Correction of errors induced by the transmission channel, if related to the coding algorithm

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

本発明は、音声及び音楽等のオーディオ信号を圧縮/伸張するオーディオ符号化/復号技術に関する。特に、本発明は、オーディオ信号の符号化データを復号する際に、量子化誤差を補正する技術に関するものである。
オーディオ信号を周波数領域の信号に変換して符号化する方式の一例としてISO/IEC 13818-7 MPEG-2 AAC(Advanced Audio Coding)方式が知られている。AAC方式はワンセグ放送やデジタルAV機器等の音声符号化方式として採用されている。
図1にAAC方式を採用した符号化装置1の構成例を示す。図1に示す符号化装置1は、MDCT(modified discrete cosine transform)部11、心理聴覚分析部12、量子化部13、ハフマン符号化部14を有する。
この符号化装置1では、MDCT部11が、入力音をMDCT変換により周波数領域データであるMDCT係数に変換する。また、心理聴覚分析部12が、入力音に対して心理聴覚分析を行い、聴覚的に重要な周波数と重要でない周波数を区別するためのマスキング閾値を求める。
量子化部13は、マスキング閾値に基づいて聴覚的に重要でない周波数領域のデータの量子化ビット数を少なくし、重要な周波数領域のデータに多くの量子化ビットを割り当て、周波数領域データの量子化を行う。量子化部13からは、量子化されたスペクトル値である量子化値と、スケール値が出力され、それらはハフマン符号化部14でハフマン符号化され、符号化データとして符号化装置1から出力される。なお、スケール値とは、オーディオ信号の周波数領域への変換後のスペクトル波形の倍率を示す数字であり、MDCT係数を浮動小数点形式で表した場合の指数部に相当する。また、スペクトル値は、MDCT係数を浮動小数点形式で表した場合の仮数部に相当し、上記スペクトルの波形に相当する。つまり、MDCT係数は、スペクトル値×2スケール値と表現できる。
図2にAAC方式の復号装置2の構成例を示す。図2に示す復号装置2は、ハフマン復号部21、逆量子化部22、及び逆MDCT部23を有する。この復号装置2は、図1に示す符号化装置1で符号化された符号化データを受信し、ハフマン復号部21が符号化データを量子化値とスケール値に変換する。そして、逆量子化部22が量子化値とスケール値を逆量子化値(MDCT係数)に変換し、逆MDCT部23がMDCT係数を時間領域の信号に変換し、復号音を出力する。
なお、量子化誤差の補正に関連する先行技術文献として、下記の特許文献1〜4がある。
特開2006−60341号公報 特開2001−102930号公報 特開2002−290243号公報 特開平11−4449号公報
図1に示した符号化装置1における量子化部13でMDCT係数を量子化する際には、例えば図3に示すような量子化誤差が発生する。図3では、量子化前のMDCT係数に比べて量子化後のMDCT係数が大きくなる場合を示しているが、量子化前のMDCT係数に比べて量子化後のMDCT係数が小さくなる場合もある。
通常は、量子化誤差が発生しても復号後の音質に大きな影響はない。しかし、入力音が大振幅(0dB付近)の場合であって、量子化後のMDCT係数が量子化前に比べて大きくなる場合には、圧縮データを従来の復号装置2で復号すると、復号音の振幅も大きくなり、復号音の振幅がPCM(Pulse Code Modulation)データの語長(例えば16bit)を越えてしまう場合がある。この場合、PCMデータの語長を超えた部分はデータとして表現できないので、オーバーフローが発生し、その結果、異常音(クリップ音)が聞こえるという問題がある。例えば、図4に示す大振幅の入力音を符号化し、復号した復号音が図5に示すようなPCMデータの語長を超えるものである場合に、クリップが発生する。
特に、低ビットレート(高圧縮)条件では、量子化誤差が大きくなりやすいため、上記のクリップ音が発生しやすい。クリップ音の原因となる量子化誤差は、符号化装置側で発生するため、従来の復号装置では上記クリップ音の問題を解決することが困難である。
本発明は上記の問題点に鑑みてなされたものであり、復号装置が符号化データを復号してオーディオ信号を出力する際に、量子化誤差により発生する異常音を削減する技術を提供することを目的とする。
上記の課題を解決するために、本発明の一実施形態によれば、オーディオ信号の周波数領域データのスケール値とスペクトル値とをそれぞれ符号化することにより得られた符号化データを復号し、オーディオ信号を出力する復号装置が提供される。この復号装置は、前記符号化データを復号及び逆量子化し、前記オーディオ信号の周波数領域データを取得する周波数領域データ取得手段と、前記符号化データから、前記スケール値の符号化データのビット数であるスケールビット数、又は前記スペクトル値の符号化データのビット数であるスペクトルビット数を算出するビット数算出手段と、前記スケールビット数又は前記スペクトルビット数に基づき、前記周波数領域データの量子化誤差を推定する量子化誤差推定手段と、前記量子化誤差に基づき補正量を算出し、前記周波数領域データ取得手段により得られた前記周波数領域データを当該補正量を用いて補正する補正手段と、前記補正手段により補正された前記周波数領域データを前記オーディオ信号に変換する変換手段とを有する。
前記復号装置において、前記ビット数算出手段は、前記スケールビット数と前記スペクトルビット数の合計に対する前記スケールビット数又は前記スペクトルビット数の割合を算出し、前記量子化誤差推定手段は、当該割合に基づき前記量子化誤差を推定することとしてもよい。
また、前記量子化誤差推定手段は、前記スケールビット数又は前記スペクトルビット数と前記量子化誤差との間の予め定められた対応関係を用いて前記量子化誤差を推定することとしてもよい。また、前記量子化誤差推定手段は、前記周波数領域データ取得手段により得られた前記周波数領域データを取得し、前記スケールビット数又は前記スペクトルビット数と前記量子化誤差との間の予め定められた複数の対応関係の中から1つの対応関係を前記周波数領域データの値の大きさに基づき選択し、選択された対応関係を用いて前記量子化誤差を推定することとしてもよい。
また、前記復号装置において、前記補正手段は、前記周波数領域データ取得手段により得られた前記周波数領域データを取得し、前記量子化誤差と前記補正量との間の予め定められた複数の対応関係の中から1つの対応関係を当該周波数領域データの値の大きさに基づき選択し、選択された対応関係を用いて前記補正量を算出するようにしてもよい。上記の構成により、周波数領域データの値の大きさに応じて、適切な補正量を算出できる。
また、前記復号装置は、前記符号化データからビットレートを算出するビットレート算出手段を更に有してもよく、その場合、前記量子化誤差推定手段は、前記スケールビット数又は前記スペクトルビット数と前記量子化誤差との間の予め定められた複数の対応関係の中から1つの対応関係を前記ビットレートに基づき選択し、選択された対応関係を用いて前記量子化誤差を推定するようにしてもよい。また、この場合、前記補正手段は、前記量子化誤差と前記補正量との間の予め定められた複数の対応関係の中から1つの対応関係を前記ビットレートに基づき選択し、選択された対応関係を用いて前記補正量を算出することとしてもよい。これにより、ビットレートに応じて、適切な補正量を算出できる。
本発明によれば、符号化データから算出したスケールビット数又はスペクトルビット数に基づき量子化誤差を推定し、当該量子化誤差に基づき算出した補正量を用いて逆量子化データを補正することとしたので、復号装置が符号化データを復号してオーディオ信号を出力する際に、量子化誤差により発生する異常音を削減することが可能となる。
従来の符号化装置の構成例を示す図である。 従来の復号装置の構成例を示す図である。 量子化誤差を説明するための図である。 入力音の例を示す図である。 図4に示す入力音に対応する復号音を示す図である。 本発明の実施の形態に係る復号装置の基本構成を示す図である。 スペクトルビット数とスケールビット数の関係を説明するための図である。 MDCT係数の補正を示す図である。 本発明の第1の実施の形態に係る復号装置の構成図である。 第1の実施の形態に係る復号装置の動作を説明するためのフローチャートである。 スペクトル値のハフマン符号帳の例を示す図である。 スケール値のハフマン符号帳の例を示す図である。 スケールビット数と量子化誤差の対応関係の例を示す図である。 スペクトルビット数と量子化誤差の対応関係の例を示す図である。 スケールビット数と量子化誤差の対応関係の例を示す図である。 スペクトルビット数と量子化誤差の対応関係の例を示す図である。 量子化誤差と補正量との対応関係の例を示す図である。 第2の実施の形態における復号装置の構成を示す図である。 スケールビット数と量子化誤差との対応関係を複数用意する場合の例を示す図である。 スペクトルビット数と量子化誤差との対応関係を複数用意する場合の例を示す図である。 第3の実施の形態における復号装置の構成を示す図である。 量子化誤差と補正量の対応関係を複数用意する場合の例を示す図である。 第4の実施の形態における復号装置の構成を示す図である。 スケールビット数と量子化誤差との対応関係を複数用意する場合の例を示す図である。 スペクトルビット数と量子化誤差との対応関係を複数用意する場合の例を示す図である。 第5の実施の形態における復号装置の構成を示す図である。 量子化誤差と補正量の対応関係を複数用意する場合の例を示す図である。 第6の実施の形態における復号装置の動作を説明するためのフローチャートである。 本発明の実施の形態に係る復号装置を含む受信機の例を示す図である。 コンピュータシステムの構成の一例を示す図である。
符号の説明
1 符号化装置
11 MDCT部
12 心理聴覚分析部
13 量子化部
14 ハフマン符号化部
2〜9 復号装置
21、31、40、50、60、70、90 ハフマン復号部
22、32、41、51、61、71、91 逆量子化部
23、33、42、52、62、72、92 逆MDCT部
34、45、55、65、75、95 ビット数算出部
35、46、56、66、77、97 量子化誤差推定部
36、47、57、67、78、98 補正量算出部
37、48、58、68、79、99 スペクトル補正部
43、53、63、73、93 オーバラップ加算部
44、54、64、74、94 記憶バッファ
49、59、69、80、100 データ格納部
76、96 ビットレート算出部
110 受信機
111 アンテナ
112 復調部
113 復号部
114 スピーカ
115 表示部
120 コンピュータシステム
121 CPU
122 メモリ
123 通信装置
124 入出力装置
125 記憶装置
126 読み取り装置
以下、図面を参照して本発明の実施の形態について説明する。なお、以下で説明する各実施の形態ではAAC方式に対応した復号装置を例にとるが、本発明はAAC方式のみでなく、オーディオ信号を周波数領域データに変換し、スペクトル値とスケール値とを符号化し、これらを復号するオーディオ符号化/復号方式であればどのような方式にでも適用可能である。
(実施の形態の基本構成)
本発明の実施の形態に係る復号装置3の基本構成を図6に示す。この復号装置3は、ハフマン復号部31、逆量子化部32、逆MDCT部33、ビット数算出部34、量子化誤差推定部35、補正量算出部36、及びスペクトル補正部37を有している。この復号装置3は、ビット数算出部34、量子化誤差推定部35、補正量算出部36、及びスペクトル補正部37を有する点が従来の復号装置と異なる。以下、この復号装置3の動作を説明する。
復号装置3では、ハフマン復号部31が、入力された符号化データに含まれる量子化されたスペクトル値のハフマン符号語と、スケール値のハフマン符号語とをそれぞれ復号して量子化されたスペクトル値である量子化値とスケール値とを算出する。また、逆量子化部32は量子化値を逆量子化してスペクトル値を算出し、スペクトル値とスケール値とから補正前MDCT係数を算出する。
一方、ハフマン復号部31は、符号化データに含まれる量子化されたスペクトル値のハフマン符号語とスケール値のハフマン符号語とをビット数算出部34に入力する。そして、ビット数算出部34は、スペクトル値のハフマン符号語とスケール値のハフマン符号語のそれぞれのビット数を算出し、それらを量子化誤差推定部35に入力する。なお、以下、スペクトル値のハフマン符号語のビット数をスペクトルビット数と呼び、スケール値のハフマン符号語のビット数をスケールビット数と呼ぶこととする。
量子化誤差推定部35は、スペクトルビット数もしくはスケールビット数、又はスペクトルビット数とスケールビット数の両方を用いて量子化誤差を推定し、推定した量子化誤差を補正量算出部36に入力する。補正量算出部36は、量子化誤差推定部35で推定された量子化誤差に基づき補正量を算出し、それをスペクトル補正部37に入力する。スペクトル補正部37は、当該補正量を用いて補正前MDCT係数を補正し、補正後MDCT係数を逆MDCT部33に出力する。そして、逆MDCT部33は、補正後MDCT係数に対して逆MDCTを実行し、復号音を出力する。
次に、上記のビット数算出部34、量子化誤差推定部35、補正量算出部36、及びスペクトル補正部37により行われるMDCT係数の補正の基本的概念を説明する。
AAC方式のような変換符号化方式においては、一般に1フレーム内でMDCT係数の符号化データ(スペクトル値の符号語とスケール値の符号語)が使用できるビット数はビットレートに応じて予め決められる。従って、1フレーム内において、スケールビット数が多ければ、スペクトルビット数は小さく、スペクトルビット数が大きければスケールビット数は小さい。例えば、図7に示すように、スペクトル値の符号語とスケール値の符号語が合計で100ビット使用できる場合において、スペクトルビット数が30ビットであればスケールビット数は70ビットであり、スペクトルビット数が70ビットであればスケールビット数は30ビットである。また、1周波数帯域毎に使用できるビット数も予め決められており、スケールビット数が多ければ、スペクトルビット数は小さく、スペクトルビット数が大きければスケールビット数は小さいという関係が周波数帯域毎に成り立つ。なお、フレームとは、単独でオーディオ信号に復号できる単位であり、一定のサンプル数を含むものである。
ここで、図7に示すように、スぺクトルビット数が小さいということは、スペクトル値に割り当てられている符号量が少ないということであり、スペクトル値は荒く表現されていることになり、量子化誤差は大きいと推定できる。また、スケールビット数が大きければスぺクトルビット数が小さいことになり、上記と同様に量子化誤差は大きいと推定できる。また、スケールビット数が大きい場合は、波形の倍率の絶対値が大きいことを意味するから、その場合、波形は荒く表現されていると推定できる。この観点からも、スケールビット数が大きければ量子化誤差は大きいと推定できる。逆に、スケールビット数が小さい場合は量子化誤差は小さいと推定できる。同様に、スペクトルビット数が大きい場合も量子化誤差は小さいと推定できる。
上記の点から、量子化誤差推定部35は、ビット数算出部34で算出したビット数に基づき量子化誤差の大きさを推定する。スぺクトルビット数とスケールビット数の合計が一定であれば、スぺクトルビット数とスケールビット数のうちのどちらか一方が分かれば量子化誤差を推定できる。
また、例えば、1フレーム単位あるいは1周波数帯域単位でスぺクトルビット数とスケールビット数の合計が時間とともに変わる場合でも、1フレームあるいは1周波数帯域内で使用できるビット数には限りがあるから、スケールビット数が大きければ、スペクトルビット数は小さく、スペクトルビット数が大きければスケールビット数は小さいという関係は成り立つ。よって、このような場合は、スぺクトルビット数とスケールビット数の合計に対するスぺクトルビット数又はスケールビット数の割合から量子化誤差を推定できる。
そして、補正量算出部36は、量子化誤差が大きいほどMDCT係数の補正量を大きくするように補正量を決定し、スペクトル補正部37が図8に示すようにMDCT係数を補正する。
(第1の実施の形態)
図9は、本発明の第1の実施の形態に係る復号装置4の構成図である。図9に示すように、本実施の形態における復号装置4はハフマン復号部40、逆量子化部41、逆MDCT部42、オーバラップ加算部43、記憶バッファ44、ビット数算出部45、量子化誤差推定部46、補正量算出部47、スペクトル補正部48、及びデータ格納部49を有する。図9は、図8に示した復号装置をより詳細に示したものであり、図9におけるハフマン復号部40、逆量子化部41、逆MDCT部42、ビット数算出部45、量子化誤差推定部46、補正量算出部47、スペクトル補正部48は、それぞれ図8に示した対応する機能部と同様の機能を有する。また、データ格納部49は、処理に必要なテーブル等のデータを格納している。AAC方式では、符号化装置において、1フレームのブロックをある間隔だけオーバラップさせながら符号化処理を行っているため、復号装置では、逆MDCT処理で得られたフレームの時間信号と前フレームの時間信号とをオーバラップさせて加算し、復号音を出力する。このことから、図9の復号装置4はオーバラップ加算部43と記憶バッファ44を備えている。
次に、復号装置4の動作を図10のフローチャートを参照して説明する。
復号装置4があるフレーム(以下、現フレームと呼ぶ)の符号化データを受信する。ハフマン復号部40は、受信した符号化データをハフマンデコードして、各周波数帯域におけるMDCT係数のスペクトル値(量子化値)とスケール値を算出する(ステップ1)。なお、AAC方式では、1フレーム内の周波数帯域数はサンプリング周波数によって異なるが、例えばサンプリング周波数が48kHzの場合は1フレーム内の周波数帯域数は最大49個である。
また、ハフマン復号部40は、1つの周波数帯域の量子化値とスケール値とを逆量子化部41に入力し、逆量子化部41が補正前MDCT係数を算出する(ステップ2)。一方、ハフマン復号部40は、上記の周波数帯域の量子化値のハフマン符号語とそのスケール値のハフマン符号語、及びそれぞれに対応する符号帳番号をビット数算出部45に入力し、ビット数算出部45は、それぞれのハフマン符号語のビット数であるスペクトルビット数とスケールビット数を算出する(ステップ3)。
そして、ビット数算出部45は、算出されたスペクトルビット数とスケールビット数を量子化誤差推定部46に入力し、量子化誤差推定部46は、スペクトルビット数もしくはスケールビット数、又はこれら両方を用いて量子化誤差を算出する(ステップ4)。なお、スペクトルビット数のみ、もしくはスケールビット数のみを用いて量子化誤差を推定する場合、ビット数算出部45は、スペクトルビット数のみ、もしくはスケールビット数のみを算出することとしてもよい。
量子化誤差推定部46により算出された量子化誤差は補正量算出部47に入力され、補正量算出部47は、量子化誤差に基づき補正前MDCT係数に対する補正量を算出する(ステップ5)。
補正量算出部47は算出した補正量をスペクトル補正部48に入力し、スペクトル補正部48は、当該補正量に基づいて、逆量子化部41から受信した補正前MDCT係数を補正し、補正後のMDCT係数(補正後MDCT部と呼ぶ)を算出する(ステップ6)。
そして、復号装置4は、ステップ2〜ステップ6の処理を現フレームの全ての周波数帯域について行う(ステップ7、ステップ2〜6)。スペクトル補正部48において全周波数帯域分の補正後MDCT係数が求められると、それらが逆MDCT部42に入力される。
逆MDCT部42は、全周波数帯域分の補正後MDCT係数を逆MDCT変換して現フレームの時間信号を出力する(ステップ8)。逆MDCT部42から出力された時間信号は、オーバラップ加算部43に入力されるとともに記憶バッファ44内に記憶される(ステップ9)。
そして、オーバラップ加算部43では、逆MDCT部42から供給された現フレームの時間信号と、記憶バッファ44内に記憶された前フレームの時間信号とをオーバラップさせて加算し、復号音を出力する(ステップ10)。
次に、ビット数算出部45、量子化誤差算出部46、補正量算出部47、及びスペクトル補正部48の処理について詳細に説明する。まず、ビット数算出部45について説明する。
ビット数算出部45は、スペクトルビット数とスケールビット数を求める。これらはスペクトル値(量子化値)とスケール値のそれぞれのハフマン符号語のビット数を直接数えることにより求めることが可能である。また、次に説明するように、ハフマン符号帳を用いて求めることもできる。
本実施の形態におけるISOのAACの規格(13818-7 Part7)では、ハフマン符号化に使用する符号帳(テーブル)が規格化されている。具体的には、スケール値に対しては1種類の符号帳が定められ、スペクトル値に対しては11種類の符号帳が定められている。なお、どの符号帳を使うかは、符号化データに含まれている符号帳情報に基づいて決定される。
図11Aにスペクトル値のハフマン符号帳の例を示し、図11Bにスケール値のハフマン符号帳の例を示す。図11A,11Bに示すように、ハフマン符号帳は、ハフマン符号語、そのビット数、及びスペクトル値(量子化値)を含む。従って、復号装置4のデータ格納部49が符号帳を格納し、ビット数算出部45が、符号化データに含まれるハフマン符号語に基づいてハフマン符号帳を参照することにより、ハフマン符号帳からスペクトルビット数及びスケールビット数を算出することができる。
例えば、スペクトル値のハフマン符号語が1F1である場合は、図11Aより、スペクトルビット数は9ビットと算出できる、また、量子化値は1と算出できる。スケール値のハフマン符号語が7FFF3である場合は、図11Bより、スケールビット数は19ビットと算出され、スケール値は+60と算出される。なお、AAC方式では、1つ前の周波数帯域(f-1)と現周波数帯域(f)のスケール値の差分がハフマン符号化される。従って、上記のようにして算出された差分(+60)を周波数帯域f-1のスケール値から差し引いた値が現周波数帯域fでのスケール値となる。
次に、量子化誤差推定部46について説明する。前述したように、スペクトルビット数とスケールビット数の合計に対するスケールビット数の割合が大きいほど量子化誤差が大きくなり、合計に対するスケールビット数の割合が小さいほど量子化誤差が小さくなると推定できる。また、同様に、スペクトルビット数とスケールビット数の合計に対するスペクトルビット数の割合が小さいほど量子化誤差が大きくなり、合計に対するスペクトルビット数の割合が大きいほど量子化誤差が小さくなると推定できる。また、ペクトルビット数とスケールビット数の合計が一定であれば、スペクトルビット数のみ又はスケールビット数のみの大きさで量子化誤差を推定できる。
各周波数帯域においてスペクトルビット数とスケールビット数の合計が一定である場合は、例えば図12に示す右上がりの曲線を用いて、スペクトルビット数(Bscale)から量子化誤差(Err)を求めることができる。また、曲線に代えて直線を用いることもできる。復号装置4は、図12に示す曲線のグラフのデータを、スケールビット数と量子化誤差の対応関係を表すテーブルとしてデータ格納部49に格納してもよいし、図12の曲線を近似的に表す式として保持してもよい。そのような式として例えば以下に示すものがある。下記の式において、xはスケールビット数、yは量子化誤差、a、b,cは定数である。
y=a・x+bx+c
同様に、図13に示す右下がりの曲線のグラフを用いることにより、スペクトルビット数から量子化誤差を求めることができる。
スペクトルビット数とスケールビット数の合計に対するスケールビット数又はスペクトルビット数の割合を量子化誤差推定に用いる場合は、まず、下記の式によりその割合を求める。そして、図12及び図13に示す対応関係と同様の対応関係を用いて量子化誤差を求める。
割合=スケールビット数/(スケールビット数+スペクトルビット数)、又は、
割合=スペクトルビット数/(スケールビット数+スペクトルビット数)
スケールビット数に着目する場合について、スケールビット数又は全ビット数に対するスケールビット数の割合が一定値以上の場合に、量子化誤差を予め定めた上限値でクリップしてもよい。つまり、図14に示す形状の曲線を用いて量子化誤差を求める。スペクトルビット数に着目する場合については、スペクトルビット数又は全ビット数に対するスペクトルビット数の割合が一定値以下の場合に、量子化誤差を予め定めた上限値でクリップすることになる。つまり、図15に示す形状の曲線を用いて量子化誤差を求める。このようなクリップ処理を行うことにより、量子化誤差推定値が過大になることを防止できる。
次に補正量算出部47について説明する。補正量算出部47は基本的には、量子化誤差が大きいほど、補正量が大きくなるように補正量を算出する。ただし、補正量が過大にならないように補正量の上限値を設けてもよい。更に、補正量の下限値を設けてもよい。
補正量の上限値と下限値を設けた場合における量子化誤差と補正量との対応関係の例を図16に示す。補正量算出部47は、図16の対応関係を示すテーブルもしくは式を用いて、量子化誤差から補正量を算出する。図16において、ある周波数帯域における量子化誤差がErrである場合、補正量αが算出される。また、量子化誤差が上限値ErrH以上である場合は、補正量は量子化誤差の値にかかわらずαHとなる。また、量子化誤差が下限値ErrL以下である場合は、補正量は量子化誤差の値にかかわらずαLとなる。つまり、図16に示す対応関係を用いる場合、補正量は下記の式に示すとおりとなる。例えば、αH=1、αL=0とすることができる。これは、量子化誤差がErrL以下の場合にはMDCT係数の補正をしないことを意味している。
Figure 0004947145
次に、スペクトル補正部48について説明する。ある周波数fにおける補正前のMDCT係数を MDCT(f)、補正量をα、補正後のMDCT係数をMDCT'(f)とすると、スペクトル補正部は次の式に基づき補正後のMDCT係数であるMDCT'(f)を算出する。
MDCT'(f) = (1-α)MDCT(f)
例えば、α=0(補正量が0)の場合は、補正前と補正後のMDCT係数は等しい値になる。上記の式は、ある1つの周波数帯域のみで補正した場合であるが、次式のように隣接周波数帯域との間で補間を行ってもよい。
MDCT'(f) = k・MDCT(f-1) + (1-k)(1-α)MDCT(f) (0≦k≦1)
以上説明した通り、本実施の形態ではスペクトルビット数又はスケールビット数から量子化誤差を推定し、量子化誤差に基づいてMDCT係数を補正する。これにより、符号化装置で発生する量子化誤差を小さくすることができる。このため、振幅の大きいトーン信号もしくはスイープ信号等が入力された場合に、復号装置の復号音においてクリップ音が発生するという従来技術における問題を解決することができる。
(第2の実施の形態)
図17に、第2の実施の形態における復号装置5の構成を示す。第2の実施の形態における復号装置5は、第1の実施の形態の復号装置4と同様の機能部を有する。ただし、量子化誤差推定部56の処理が量子化誤差推定部46の処理と異なる。また、図17に示すとおり、復号装置5においては、逆量子化部51で算出された補正前MDCT係数が量子化誤差推定部56に入力される。この点も第1の実施の形態と異なる点である。その他の機能に関しては、第1の実施の形態と第2の実施の形態とは同じである。
一般に、補正前MDCT係数である逆量子化値の絶対値が大きい場合は、それが小さい場合に比べて、スペクトル値の量子化の幅が大きいと考えられ、量子化誤差も大きいと考えられる。従って、逆量子化値の絶対値が大きい場合と小さい場合とで、スケールビット数が同じ又はスペクトルビット数が同じであれば、逆量子化値が大きい場合のほうが量子化誤差は大きいと考えられる。つまり、逆量子化値の大きさによって、スケールビット数又はスペクトルビット数が量子化誤差に寄与する度合いが変化する。
第2の実施の形態では、この点を考慮している。つまり、スケールビット数に着目する場合には、図18に示すように、スケールビット数と量子化誤差との対応関係を複数用意し、それらをデータ格納部59が格納している。もしくは、これらの対応関係を式として保持している。そして、量子化誤差推定部56は、逆量子化値の大きさに応じて使用する対応関係を切り替え、スケールビット数に基づき量子化誤差を算出している。すなわち、図18の場合において、量子化誤差推定部56は、逆量子化値の大きさが予め定めた閾値以上の場合は、対応関係Aを使用し、逆量子化値が当該閾値未満の場合は対応関係Bを使用する。
図18に示すように、ある周波数帯域におけるスケールビット数がBscaleの場合、対応関係Aを使用する場合の量子化誤差はErr1となり、対応関係Bを使用する場合の量子化誤差はErr2となる。
全ビット数に対するスケールビット数の割合を用いる場合も、図18に示す複数の対応関係と同様の対応関係を用いることができる。また、スペクトルビット数に着目して量子化誤差を推定する場合には、図19に示す複数の対応関係を用いることができる。全ビット数に対するスペクトルビット数の割合を用いる場合も同様である。
(第3の実施の形態)
第3の実施の形態は第2の実施の形態と同じ観点に基づくものである。第3の実施の形態における復号装置6の構成図を図20に示す。図20の構成は、逆量子化値である補正前MDCT係数が補正量算出部67に供給される点が第1の実施の形態と異なり、また、補正量算出部67の処理が第1の実施の形態と異なる。その他の点は第1の実施の形態と同じである。
第3の実施の形態の復号装置6は、図21に示すように量子化誤差と補正量の対応関係を複数保持しており、補正量算出部67が、逆量子化値の大きさに応じて対応関係を切り替える。例えば、逆量子化値が所定の閾値未満である場合、補正量算出部67は対応関係Dを選択する。その場合において、補正量算出部67は、量子化誤差がErrであれば補正量をαとする。また、逆量子化値が所定の閾値以上である場合、補正量算出部67は対応関係Cを選択する。その場合において、補正量算出部67は、量子化誤差がErrであれば補正量をα'とする。
(第4の実施の形態)
次に、本発明の第4の実施の形態について説明する。図22に、第4の実施の形態における復号装置7の構成を示す。第4の実施の形態における復号装置7は、第1の実施の形態の復号装置4と比較して、ビットレート算出部76を含む点と、量子化誤差推定部77の処理が量子化誤差推定部46の処理と異なる点が異なる。その他の機能に関しては、第1の実施の形態と第4の実施の形態とは同じである。
一般に、符号化におけるビットレートが小さい場合は、それが大きい場合に比べて、スペクトル値の量子化の幅が大きいと考えられ、量子化誤差も大きいと考えられる。つまり、ビットレートによってスケールビット数又はスペクトルビット数が量子化誤差に寄与する度合いが変化する。なお、ビットレートとは単位時間(例えば1秒間)のオーディオ信号を符号化データとして表現するために用いるビットの数である。
第4の実施の形態では、この点を考慮し、スケールビット数に着目する場合には、図23に示すようにスケールビット数と量子化誤差との対応関係を複数用意し、それらを復号装置7のデータ格納部80が格納している。もしくは、これらの対応関係を式として保持している。
図22の構成において、ビットレート算出部76が符号化データのビットレートを算出し、それを量子化誤差推定部77に入力する。なお、ビットレートは、符号化データのビット数から算出することもできるし、フレームのヘッダ情報から取得してもよい。図23の対応関係を用いる場合において、量子化誤差推定部77は、ビットレート算出部76から入力されたビットレートに対応する対応関係を選択し、その対応関係を用いてスケールビット数に基づき量子化誤差を算出している。すなわち、量子化誤差推定部77は、ビットレートが予め決めた閾値以上の場合は、図23に示す対応関係Eを使用する。また、量子化誤差推定部77は、ビットレートが閾値未満の場合は対応関係Fを使用する。
図23に示すように、ある周波数帯域におけるスケールビット数がBscaleの場合、対応関係Fを使用する場合の量子化誤差はErr1となり、対応関係Eを使用する場合の量子化誤差はErr2となる。
全ビット数に対するスケールビット数の割合を用いる場合も、図23に示す複数の対応関係と同様の対応関係を用いることができる。また、スペクトルビット数に着目して量子化誤差を推定する場合には、図24に示す複数の対応関係を用いることができる。全ビット数に対するスペクトルビット数の割合を用いる場合も同様である。
(第5の実施の形態)
第5の実施の形態は第4の実施の形態と同じ観点に基づくものである。第5の実施の形態における復号装置9の構成を図25に示す。図25の構成は、ビットレート算出部96がビットレートを補正量算出部98に入力する点と、量子化誤差推定部97ではなく補正量算出部98において複数の対応関係から1つの対応関係を選択する点が第4の実施の形態と異なる。
第5の実施の形態の復号装置9は、図26に示したように量子化誤差と補正量の対応関係を複数保持しており、補正量算出部98が、ビットレートの大きさに応じて対応関係を切り替える。例えば、ビットレートが所定の閾値以上である場合、補正量算出部98は対応関係Hを選択する。その場合において、補正量算出部98は、量子化誤差がErrであれば補正量をαとする。また、ビットレートが所定の閾値未満である場合、補正量算出部98は対応関係Gを選択する。その場合において、補正量算出部98は、量子化誤差がErrであれば補正量をα'とする。
(第6の実施の形態)
次に、本発明の第6の実施の形態について説明する。第6の実施の形態の全体の装置構成は第1の実施の形態における図9に示したものと同じであるので、以下、図9の構成に基づき説明を行う。第6の実施の形態と第1の実施の形態とでは、処理動作が異なる。以下、図27のフローチャートを参照して第6の実施の形態における復号装置4の動作を説明する。
復号装置4が現フレームの符号化データを受信する。ハフマン復号部40は、受信した符号化データをハフマンデコードして、各周波数帯域におけるMDCT係数のスペクトル値(量子化値)とスケール値を算出する(ステップ21)。また、ハフマン復号部40は、1つの周波数帯域の量子化値とスケール値とを逆量子化部41に入力し、逆量子化部41は、量子化値とスケール値とから補正前MDCT係数を算出する(ステップ22)。一方、ハフマン復号部40は、上記周波数帯域の量子化値のハフマン符号語とそのスケール値のハフマン符号語、及びそれぞれに対応する符号帳番号をビット数算出部45に入力し、ビット数算出部45がスペクトルビット数とスケールビット数を算出する。また、ビット数算出部45は、これまでに求めたスペクトルビット数の合計に今回求めたスペクトルビット数を加算してスペクトルビット数の合計を求め、これまでに求めたスケールビット数の合計に今回求めたスケールビット数を加算してスケールビット数の合計を求める(ステップ23)。
復号装置4は、ステップ22〜ステップ23の手順を繰り返し、ビット数算出部45は、現フレームにおける全周波数帯域のスペクトルビット数の合計と、全周波数帯域のスケールビット数の合計を算出する。また、逆量子化部41は、全周波数帯域の補正前MDCT係数を算出する。
そして、ビット数算出部45は、算出されたスペクトルビット数の合計とスケールビット数の合計を量子化誤差推定部46に入力し、量子化誤差推定部46は、スペクトルビット数の合計もしくはスケールビット数の合計、又はこれら両方を用いて、全周波数帯域に関する量子化誤差を算出する(ステップ25)。ここでは、第1の実施の形態で説明した対応関係と同様の対応関係を用いて量子化誤差を算出する。
量子化誤差推定部46により算出された量子化誤差は補正量算出部47に入力され、補正量算出部47は、量子化誤差に基づき全周波数帯域の補正前MDCT係数に対する補正量を算出し(ステップ26)、算出した補正量をスペクトル補正部48に入力する。補正量の求め方は第1の実施の形態と同様である。
スペクトル補正部48は、補正量算出部47で得られた補正量に基づいて、逆量子化部41から入力された補正前MDCT係数を補正し、補正後MDCT係数を算出する(ステップ27)。本実施の形態におけるスペクトル補正部48は、全周波数帯域に対して一律同じ補正量で各補正前MDCT係数を補正し、補正した全周波数帯域のMDCT係数を逆MDCT部42に入力する。
逆MDCT部42は、全周波数帯域分の補正後MDCT係数を逆MDCT変換して現フレームの時間信号を出力する(ステップ28)。逆MDCT部42から出力された時間信号は、オーバラップ加算部43に入力されるとともに記憶バッファ44内に記憶される(ステップ29)。
そして、オーバラップ加算部43では、逆MDCT部42から供給された現フレームの時間信号と、記憶バッファ44内に記憶された前フレームの時間信号とをオーバラップさせて加算をし、復号音を出力する(ステップ30)。
本実施の形態では、フレームの全周波数帯域の補正量を求め、全周波数帯域のMDCT係数を補正することとしている。これに代えて、全周波数帯域の一部の複数の周波数帯域分のスペクトルビット数の合計もしくはスケールビット数の合計から補正量を算出し、その複数の周波数帯域分のMDCT係数を一律に補正する処理を、全周波数帯域に達するまで行うこととしてもよい。
また、第2〜第5の実施の形態で説明した処理と本実施の形態の処理を組み合わせてもよい。
第1〜第6の実施の形態における復号装置は、放送受信用機器、通信機器、オーディオ再生機器等の様々な機器に適用できる。一例として、地上デジタルテレビ放送を受信するための受信機110の構成を図28に示す。この受信機110は、放送電波を受信するアンテナ111、OFDM変調された信号の復調を行う復調部112、復調部112により取り出された符号化データの復号を行う復号部113、音を出力するスピーカ114、及び画像を出力する表示部115を有している。復号部113内に、画像デコーダと音声デコーダが備えられ、音声デコーダが本実施の形態で説明した復号装置の機能を有する。
また、第1〜第6の実施の形態の復号装置の各機能部は、ハードウェアとして実現してもよいし、コンピュータシステムにプログラムを実行させることにより実現してもよい。図29にそのようなコンピュータシステム120の構成の一例を示す。図29に示すように、当該コンピュータシステム120は、CPU121、メモリ122、通信装置123、音声の出力部を含む入出力装置124、ハードディスクドライブ等の記憶装置125、CD-ROM等の記録媒体の読み取り装置126を備えている。
本実施の形態で説明した復号処理を行うプログラムはCD-ROM等の記録媒体から読み取り装置126により読み取られ、コンピュータシステム120にインストールされる。また、当該プログラムをネットワーク上のサーバからダウンロードすることとしてもよい。このプログラムがコンピュータシステム120で実行されることにより、例えば記憶装置125に格納された符号化データが読み出され、復号され、復号音として出力される。また、通信装置123によりネットワークから符号化データを受信し、それを復号し、復号音として出力することもできる。
本発明は、上記の実施例に限定されることなく、特許請求の範囲内で種々変更・応用が可能である。

Claims (17)

  1. オーディオ信号の周波数領域データのスケール値とスペクトル値とをそれぞれ符号化することにより得られた符号化データを復号し、オーディオ信号を出力する復号装置であって、
    前記符号化データを復号及び逆量子化し、前記オーディオ信号の周波数領域データを取得する周波数領域データ取得手段と、
    前記符号化データから、前記スケール値の符号化データのビット数であるスケールビット数、又は前記スペクトル値の符号化データのビット数であるスペクトルビット数を算出するビット数算出手段と、
    前記スケールビット数又は前記スペクトルビット数に基づき、前記周波数領域データの量子化誤差を推定する量子化誤差推定手段と、
    前記量子化誤差に基づき補正量を算出し、前記周波数領域データ取得手段により得られた前記周波数領域データを当該補正量を用いて補正する補正手段と、
    前記補正手段により補正された前記周波数領域データを前記オーディオ信号に変換する変換手段と
    を有することを特徴とする復号装置。
  2. 前記ビット数算出手段は、前記スケールビット数と前記スペクトルビット数の合計に対する前記スケールビット数又は前記スペクトルビット数の割合を算出し、前記量子化誤差推定手段は、当該割合に基づき前記量子化誤差を推定する請求項1に記載の復号装置。
  3. 前記量子化誤差推定手段は、前記スケールビット数又は前記スペクトルビット数と前記量子化誤差との間の予め定められた対応関係を用いて前記量子化誤差を推定する請求項1に記載の復号装置。
  4. 前記量子化誤差推定手段は、前記周波数領域データ取得手段により得られた前記周波数領域データを取得し、前記スケールビット数又は前記スペクトルビット数と前記量子化誤差との間の予め定められた複数の対応関係の中から1つの対応関係を前記周波数領域データの値の大きさに基づき選択し、選択された対応関係を用いて前記量子化誤差を推定する請求項1に記載の復号装置。
  5. 前記補正手段は、前記周波数領域データ取得手段により得られた前記周波数領域データを取得し、前記量子化誤差と前記補正量との間の予め定められた複数の対応関係の中から1つの対応関係を当該周波数領域データの値の大きさに基づき選択し、選択された対応関係を用いて前記補正量を算出する請求項1に記載の復号装置。
  6. 前記復号装置は、前記符号化データからビットレートを算出するビットレート算出手段を更に有し、
    前記量子化誤差推定手段は、前記スケールビット数又は前記スペクトルビット数と前記量子化誤差との間の予め定められた複数の対応関係の中から1つの対応関係を前記ビットレートに基づき選択し、選択された対応関係を用いて前記量子化誤差を推定する請求項1に記載の復号装置。
  7. 前記復号装置は、前記符号化データからビットレートを算出するビットレート算出手段を更に有し、
    前記補正手段は、前記量子化誤差と前記補正量との間の予め定められた複数の対応関係の中から1つの対応関係を前記ビットレートに基づき選択し、選択された対応関係を用いて前記補正量を算出する請求項1に記載の復号装置。
  8. 前記ビット数算出手段は、複数の周波数帯域のスケールビット数又はスペクトルビット数の合計を前記スケールビット数又は前記スペクトルビット数として算出し、
    前記補正手段は、前記複数の周波数帯域それぞれの周波数領域データを前記補正量を用いて補正する請求項1ないし7のうちいずれか1項に記載の復号装置。
  9. オーディオ信号の周波数領域データのスケール値とスペクトル値とをそれぞれ符号化することにより得られた符号化データを復号し、オーディオ信号を出力する復号装置が実行する復号方法であって、
    前記符号化データから、前記スケール値の符号化データのビット数であるスケールビット数、又は前記スペクトル値の符号化データのビット数であるスペクトルビット数を算出するビット数算出ステップと、
    前記スケールビット数又は前記スペクトルビット数に基づき、前記周波数領域データの量子化誤差を推定する量子化誤差推定ステップと、
    前記量子化誤差に基づき補正量を算出する補正量算出ステップと、
    前記符号化データを復号及び逆量子化することにより得られた周波数領域データを前記補正量を用いて補正する補正ステップと、
    前記補正ステップで補正された前記周波数領域データを前記オーディオ信号に変換する変換ステップと
    を有することを特徴とする復号方法。
  10. 前記ビット数算出ステップは、前記スケールビット数と前記スペクトルビット数の合計に対する前記スケールビット数又は前記スペクトルビット数の割合を算出するステップを有し、前記量子化誤差推定ステップは、当該割合に基づき前記量子化誤差を推定するステップを有する請求項9に記載の復号方法。
  11. 前記量子化誤差推定ステップは、前記スケールビット数又は前記スペクトルビット数と前記量子化誤差との間の予め定められた対応関係を用いて前記量子化誤差を推定するステップを有する請求項9に記載の復号方法。
  12. 前記量子化誤差推定ステップは、前記符号化データを復号及び逆量子化することにより得られた前記周波数領域データを取得し、前記スケールビット数又は前記スペクトルビット数と前記量子化誤差との間の予め定められた複数の対応関係の中から1つの対応関係を前記周波数領域データの値の大きさに基づき選択し、選択された対応関係を用いて前記量子化誤差を推定するステップを有する請求項9に記載の復号方法。
  13. 前記補正量算出ステップは、前記符号化データを復号及び逆量子化することにより得られた前記周波数領域データを取得し、前記量子化誤差と前記補正量との間の予め定められた複数の対応関係の中から1つの対応関係を当該周波数領域データの値の大きさに基づき選択し、選択された対応関係を用いて前記補正量を算出するステップを有する請求項9に記載の復号方法。
  14. 前記復号方法は、前記符号化データからビットレートを算出するビットレート算出ステップを更に有し、
    前記量子化誤差推定ステップは、前記スケールビット数又は前記スペクトルビット数と前記量子化誤差との間の予め定められた複数の対応関係の中から1つの対応関係を前記ビットレートに基づき選択し、選択された対応関係を用いて前記量子化誤差を推定するステップを有する請求項9に記載の復号方法。
  15. 前記復号方法は、前記符号化データからビットレートを算出するビットレート算出ステップを更に有し、
    前記補正量算出ステップは、前記量子化誤差と前記補正量との間の予め定められた複数の対応関係の中から1つの対応関係を前記ビットレートに基づき選択し、選択された対応関係を用いて前記補正量を算出するステップを有する請求項9に記載の復号方法。
  16. 前記ビット数算出ステップは、複数の周波数帯域のスケールビット数又はスペクトルビット数の合計を前記スケールビット数又は前記スペクトルビット数として算出するステップを有し、
    前記補正ステップは、前記複数の周波数帯域それぞれの周波数領域データを前記補正量を用いて補正するステップを有する請求項9ないし15のうちいずれか1項に記載の復号方法
  17. コンピュータを、オーディオ信号の周波数領域データのスケール値とスペクトル値とをそれぞれ符号化することにより得られた符号化データを復号し、オーディオ信号を出力する復号装置として機能させるプログラムであって、前記コンピュータを、
    前記符号化データを復号及び逆量子化し、前記オーディオ信号の周波数領域データを取得する周波数領域データ取得手段、
    前記符号化データから、前記スケール値の符号化データのビット数であるスケールビット数、又は前記スペクトル値の符号化データのビット数であるスペクトルビット数を算出するビット数算出手段、
    前記スケールビット数又は前記スペクトルビット数に基づき、前記周波数領域データの量子化誤差を推定する量子化誤差推定手段、
    前記量子化誤差に基づき補正量を算出し、前記周波数領域データ取得手段により得られた前記周波数領域データを当該補正量を用いて補正する補正手段、
    前記補正手段により補正された前記周波数領域データを前記オーディオ信号に変換する変換手段
    として機能させるためのプログラム。
JP2009520189A 2007-06-20 2007-06-20 復号装置、復号方法、及びプログラム Expired - Fee Related JP4947145B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/062419 WO2008155835A1 (ja) 2007-06-20 2007-06-20 復号装置、復号方法、及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2008155835A1 JPWO2008155835A1 (ja) 2010-08-26
JP4947145B2 true JP4947145B2 (ja) 2012-06-06

Family

ID=40156001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009520189A Expired - Fee Related JP4947145B2 (ja) 2007-06-20 2007-06-20 復号装置、復号方法、及びプログラム

Country Status (6)

Country Link
US (1) US8225160B2 (ja)
EP (1) EP2161720A4 (ja)
JP (1) JP4947145B2 (ja)
KR (1) KR101129153B1 (ja)
CN (1) CN101681626B (ja)
WO (1) WO2008155835A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49334E1 (en) 2005-10-04 2022-12-13 Hoffberg Family Trust 2 Multifactorial optimization system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2565394T3 (es) 2011-12-15 2016-04-04 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Aparato, método y programa informático para evitar artefactos de recorte
CN107073463B (zh) 2014-10-16 2020-10-20 株式会社科特拉 废气净化用催化剂
US10992314B2 (en) * 2019-01-21 2021-04-27 Olsen Ip Reserve, Llc Residue number systems and methods for arithmetic error detection and correction

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402058B1 (en) * 1989-06-07 1996-03-27 Canon Kabushiki Kaisha Predictive decoding device correcting code errors
JP3134392B2 (ja) * 1991-08-29 2001-02-13 ソニー株式会社 信号符号化装置及び方法、信号復号装置及び方法、信号記録装置及び方法、並びに信号再生装置及び方法
JPH05103309A (ja) * 1991-10-04 1993-04-23 Canon Inc 情報伝送方法及び装置
JP3170193B2 (ja) * 1995-03-16 2001-05-28 松下電器産業株式会社 画像信号の符号化装置及び復号装置
WO1998058468A1 (fr) * 1997-06-19 1998-12-23 Kabushiki Kaisha Toshiba Systeme de transmission avec multiplexage de donnees d'information, multiplexeur et demultiplexeur utilises a cet effet et codeur et decodeur pour correction d'erreurs
JP3645689B2 (ja) * 1997-06-13 2005-05-11 ペンタックス株式会社 画像圧縮装置および量子化テーブル作成装置
US6298085B1 (en) * 1997-10-23 2001-10-02 Sony Corporation Source encoding using shuffling of data to provide robust error recovery in a burst error-environment
US7184426B2 (en) * 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US6047035A (en) * 1998-06-15 2000-04-04 Dspc Israel Ltd. Method and device for quantizing the input to soft decoders
US7010737B2 (en) * 1999-02-12 2006-03-07 Sony Corporation Method and apparatus for error data recovery
JP3630590B2 (ja) * 1999-08-25 2005-03-16 沖電気工業株式会社 復号化装置及び伝送システム
JP3804902B2 (ja) * 1999-09-27 2006-08-02 パイオニア株式会社 量子化誤差補正方法及び装置並びにオーディオ情報復号方法及び装置
JP2002290243A (ja) * 2001-03-28 2002-10-04 Mitsubishi Electric Corp 符号化方法、符号化装置、復号方法、及び復号装置
US6947487B2 (en) * 2001-04-18 2005-09-20 Lg Electronics Inc. VSB communication system
JP2002328698A (ja) * 2001-04-27 2002-11-15 Mitsubishi Electric Corp 音響信号復号装置
JP3942882B2 (ja) * 2001-12-10 2007-07-11 シャープ株式会社 ディジタル信号符号化装置およびそれを備えたディジタル信号記録装置
JP3702464B2 (ja) * 2002-05-08 2005-10-05 ソニー株式会社 データ変換装置およびデータ変換方法、学習装置および学習方法、並びにプログラムおよび記録媒体
JP2004088470A (ja) * 2002-08-27 2004-03-18 Sony Corp 復号装置及び復号方法
CN101834610B (zh) * 2003-10-06 2013-01-30 数字方敦股份有限公司 通过通信信道接收从源发射的数据的方法和装置
JP4199712B2 (ja) * 2004-08-18 2008-12-17 日本電信電話株式会社 復号映像の量子化誤差低減方法及びその装置と、その量子化誤差低減方法の実現に用いられる復号映像の量子化誤差低減プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
US8874477B2 (en) * 2005-10-04 2014-10-28 Steven Mark Hoffberg Multifactorial optimization system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49334E1 (en) 2005-10-04 2022-12-13 Hoffberg Family Trust 2 Multifactorial optimization system and method

Also Published As

Publication number Publication date
CN101681626B (zh) 2012-01-04
WO2008155835A1 (ja) 2008-12-24
KR20100009642A (ko) 2010-01-28
CN101681626A (zh) 2010-03-24
JPWO2008155835A1 (ja) 2010-08-26
KR101129153B1 (ko) 2012-03-27
EP2161720A4 (en) 2012-06-13
US8225160B2 (en) 2012-07-17
US20100174960A1 (en) 2010-07-08
EP2161720A1 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
KR101001170B1 (ko) 오디오 코딩
JP4426483B2 (ja) オーディオ信号の符号化効率を向上させる方法
KR101162275B1 (ko) 오디오 신호 처리 방법 및 장치
JP5267362B2 (ja) オーディオ符号化装置、オーディオ符号化方法及びオーディオ符号化用コンピュータプログラムならびに映像伝送装置
EP2471063B1 (en) Signal processing apparatus and method, and program
US20030195742A1 (en) Encoding device and decoding device
US11437053B2 (en) Audio decoding device, audio encoding device, audio decoding method, audio encoding method, audio decoding program, and audio encoding program
US20140200899A1 (en) Encoding device and encoding method, decoding device and decoding method, and program
US7734053B2 (en) Encoding apparatus, encoding method, and computer product
JP2020073986A (ja) 音声符号化装置および方法
US20070078646A1 (en) Method and apparatus to encode/decode audio signal
US20070168186A1 (en) Audio coding apparatus, audio decoding apparatus, audio coding method and audio decoding method
EP2395503A2 (en) Audio signal encoding and decoding method, and apparatus for same
KR20060135699A (ko) 신호 복호화 장치 및 신호 복호화 방법
CN113544773A (zh) 用于包括全丢帧隐藏和部分丢帧隐藏的lc3隐藏的解码器和解码方法
US20100191534A1 (en) Method and apparatus for compression or decompression of digital signals
US9076440B2 (en) Audio signal encoding device, method, and medium by correcting allowable error powers for a tonal frequency spectrum
JP4603485B2 (ja) 音声・楽音符号化装置及び音声・楽音符号化方法
JP4947145B2 (ja) 復号装置、復号方法、及びプログラム
US20080255860A1 (en) Audio decoding apparatus and decoding method
JP3255022B2 (ja) 適応変換符号化方式および適応変換復号方式
JP2008158301A (ja) 信号処理装置、信号処理方法、再生装置、再生方法、電子機器
JP6713424B2 (ja) 音声復号装置、音声復号方法、プログラム、および記録媒体
JP4721355B2 (ja) 符号化データの符号化則変換方法および装置
JP4125520B2 (ja) 変換符号化されたデータの復号方法及び変換符号化されたデータの復号装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees