JP4943869B2 - Blood pressure measurement device - Google Patents

Blood pressure measurement device Download PDF

Info

Publication number
JP4943869B2
JP4943869B2 JP2007014090A JP2007014090A JP4943869B2 JP 4943869 B2 JP4943869 B2 JP 4943869B2 JP 2007014090 A JP2007014090 A JP 2007014090A JP 2007014090 A JP2007014090 A JP 2007014090A JP 4943869 B2 JP4943869 B2 JP 4943869B2
Authority
JP
Japan
Prior art keywords
blood pressure
air bag
cuff
pulse wave
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007014090A
Other languages
Japanese (ja)
Other versions
JP2008178540A (en
Inventor
孝博 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP2007014090A priority Critical patent/JP4943869B2/en
Publication of JP2008178540A publication Critical patent/JP2008178540A/en
Application granted granted Critical
Publication of JP4943869B2 publication Critical patent/JP4943869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、血圧測定装置及び血圧測定方法に係り、特に阻血用のカフを用いてオシロメトリツク方式で血圧測定を行う技術に関する。   The present invention relates to a blood pressure measurement device and a blood pressure measurement method, and more particularly to a technique for measuring blood pressure by an oscillometric method using an ischemic cuff.

阻血用カフを用いた血圧測定法における収縮期血圧の求め方はカフの圧力を動脈内の最高圧力である収縮期血圧以上に一旦上げることで、動脈の血流が止められた後に、下げることで血管圧とカフの圧力が一致したときに血流が流れる現象を検出して求めている。   The method of obtaining systolic blood pressure in the blood pressure measurement method using an ischemic cuff is to raise the cuff pressure once higher than the systolic blood pressure, which is the highest pressure in the artery, and lower it after the blood flow in the artery is stopped In this case, the blood flow is detected when the blood vessel pressure and the cuff pressure coincide with each other.

オシロメトリック方式の血圧計によれば、収縮期血圧以上の高い圧力までカフ圧力を上昇させ、次第にカフ圧力を下降させながら測定部位の動脈の容積変化に基づいて発生する動脈の振動を検出し、振動の振幅変化により血圧を決定していた。   According to the oscillometric sphygmomanometer, the cuff pressure is increased to a pressure higher than the systolic blood pressure, and the arterial vibration generated based on the change in the volume of the artery at the measurement site is detected while gradually decreasing the cuff pressure. The blood pressure was determined by the change in amplitude of vibration.

これに対して、コロトコフ方式(聴診法)によれば、収縮期血圧以上にカフ圧力を上げ、一度血流を止めた後に、徐々にカフ圧力を降下させ、血流の再開するタイミングで発生するコロトコフ音をカフの下流側となる末梢側で検出し、そのときの阻血用空気袋の内圧を収縮期血圧値(最高血圧値)として求め、コロトコフ音が消滅した阻血用空気袋の内圧を拡張期血圧値(最低血圧値)として求めている。   On the other hand, according to the Korotkoff method (auscultation method), the cuff pressure is raised above the systolic blood pressure, and once the blood flow is stopped, the cuff pressure is gradually lowered and the blood flow is resumed. The Korotkoff sound is detected at the distal side downstream of the cuff, the internal pressure of the air bag for ischemia at that time is obtained as the systolic blood pressure value (maximum blood pressure value), and the internal pressure of the air bag for ischemia in which the Korotkoff sound has disappeared is expanded It is calculated as the blood pressure value (minimum blood pressure value).

上記のオシロメトリツク方式は、血流が再開する現象を、カフ下の動脈の容積変化を阻血用空気袋の圧力振動として捕らえる方法である。このため、コロトコフ方式において必要となるコロトコフ音の検出を行うためのマイクロフォンまたは聴診器が不要となるので、コストダウンできる利点がある。   The oscillometric method is a method of capturing the phenomenon of blood flow resumption as a change in the volume of the artery under the cuff as a pressure vibration of the air bag for ischemia. This eliminates the need for a microphone or a stethoscope for detecting Korotkoff sound, which is necessary in the Korotkoff method, and has the advantage of reducing costs.

また、コロトコフ方式の血圧計は、血圧測定時に発生するノイズ(カフ布、カフチューブの擦過音、振動)は、ノイズの周波数成分がコロトコフ音の周波数成分に近いことからノイズがコロトコフ音として誤検出されやすい欠点を有する。   In addition, the Korotkoff sphygmomanometer detects noise (cuff cloth, cuff tube rubbing noise, vibration) generated during blood pressure measurement as the frequency component of the noise is close to the frequency component of the Korotkoff sound. Has the disadvantage of being easily done.

これに対してオシロメトリツク方式で用いる圧力変動の周波数成分は、コロトコフ音の周波数成分よりもかなり低く、血圧測定時に発生するノイズ周波数と大きく乖離している。このために、オシロメトリツク方式はノイズの影響を受けにくく、またマイクロフォンと動脈の位置合わせが重要なコロトコフ方式に比べて、カフ装着時に多少の位置ずれがあっても、十分に測定可能な方法であることから家庭で用いる自動血圧計用としては好適である。   On the other hand, the frequency component of the pressure fluctuation used in the oscillometric method is considerably lower than the frequency component of the Korotkoff sound, and greatly deviates from the noise frequency generated during blood pressure measurement. For this reason, the oscillometric method is less susceptible to noise, and can be measured sufficiently even when there is some misalignment compared to the Korotkoff method, where positioning of the microphone and artery is important. Therefore, it is suitable for an automatic blood pressure monitor used at home.

しかしながら、オシロメトリツク方式は血管圧迫特性に起因する収縮期血圧(最高血圧値)の検出に関する問題がある。空気袋を測定部位に巻き付け、この空気袋を加圧減圧して血圧を測定するリバロッチカフは幅方向の中央部ではカフ圧力を反映した圧迫力を得ることができる。しかし、中央部よりにズレると、カフ圧力を反映した圧迫力が得られず、中央部からカフの端部方向に圧迫力が徐々に減少してしまい、端部ではゼロとなる特性を示す。   However, the oscillometric method has a problem related to detection of systolic blood pressure (maximum blood pressure value) due to blood vessel compression characteristics. The Ribarochchi cuff, which winds an air bag around a measurement site and pressurizes and depressurizes the air bag to measure the blood pressure, can obtain a compressive force reflecting the cuff pressure at the center in the width direction. However, if it deviates from the central portion, the compression force reflecting the cuff pressure cannot be obtained, and the compression force gradually decreases from the central portion toward the end portion of the cuff, and the end portion exhibits zero characteristics.

このような特性により、収縮期血圧以上にカフ圧を上げて、阻血状態から徐々にカフ圧を下げてまさに収縮期血圧を測定しようとするタイミングであって、カフ圧力が収縮期血圧よりもやや高い状態の時に、血流はカフの中央部のみで止められることになる。この結果、血流は心臓の拍動に同期して、カフの上流部からカフの中央部まで侵入しては戻される現象が生じる。この現象によって、収縮期血圧の検出指標となるカフの下流側(前腕側)への血流の再開現象を検出する脈波の発生が、カフ圧が収縮期血圧より高いときにすでに生じてしまうという問題がある。   Due to these characteristics, the cuff pressure is increased more than the systolic blood pressure, and the cuff pressure is gradually decreased from the ischemic state to measure the systolic blood pressure. The cuff pressure is slightly higher than the systolic blood pressure. When high, blood flow is stopped only at the center of the cuff. As a result, a phenomenon occurs in which the blood flow enters and returns from the upstream portion of the cuff to the central portion of the cuff in synchronization with the pulsation of the heart. Due to this phenomenon, the generation of a pulse wave that detects the resumption of blood flow downstream of the cuff (forearm side), which is a detection index of systolic blood pressure, has already occurred when the cuff pressure is higher than the systolic blood pressure. There is a problem.

また、カフ圧力が収縮期血圧以下になり、血流が再開すると、再開した血流による容積変化が、カフ下の中央部から下流側で発生することとなるが、この容積変化は、カフ圧力が動脈圧よりわずかに低い状態であるために血管が、短い時間開いた後に、すぐに閉じてしまうため、カフ下の下流側の容積変化は、上流側の容積変化に比較すると非常に小さい。オシロメトリック方式で検出される脈波は、上述のカフ下の上流側の容積変化と下流側の容積変化が重なった容積変化であるので、血流の再開に基づく脈波の変化のみを選択して検出することは非常に困難になる。以上が、オシロメトリック方式がコロトコフ方式に較べて、収縮期血圧の測定におけるS/N比悪化の原因となっていた。   In addition, when the cuff pressure becomes lower than the systolic blood pressure and the blood flow is resumed, a volume change due to the resumed blood flow occurs downstream from the center part under the cuff. Since the vessel is slightly below the arterial pressure, the blood vessel closes immediately after opening for a short time, so the downstream volume change under the cuff is very small compared to the upstream volume change. Since the pulse wave detected by the oscillometric method is a volume change in which the upstream volume change under the cuff and the downstream volume change overlap, only the pulse wave change based on the resumption of blood flow is selected. It becomes very difficult to detect. As described above, the oscillometric method causes the deterioration of the S / N ratio in the measurement of systolic blood pressure as compared with the Korotkoff method.

この血流の再開検出における上記の問題点を解決するために、従来より、以下の対策を図っている。   In order to solve the above-described problems in the detection of the resumption of blood flow, the following measures have been conventionally taken.

カフの圧力を収縮期血圧よりさらに下降させていくと徐々に心臓の1拍動周期の内で、動脈圧がカフの圧力より高くなる時間が長くなることによるカフ下の下流側の容積変化の増加により、徐々に脈波の振幅が大きくなる。また、鬱血の度合いにもよるが、カフより動脈末梢部位の血管内圧がカフ圧力よりも大きくなると、末梢からの圧反射現象が発生するので、この反射により脈波が急に大きくなる。   When the pressure of the cuff is further lowered from the systolic blood pressure, the volume change on the downstream side under the cuff is gradually increased because the time during which the arterial pressure becomes higher than the cuff pressure becomes longer within one heart cycle. The increase gradually increases the amplitude of the pulse wave. Further, although depending on the degree of congestion, if the intravascular pressure at the peripheral portion of the artery is higher than the cuff pressure, the pressure reflection phenomenon from the periphery occurs, and the pulse wave suddenly increases due to this reflection.

さらにカフ圧力の減圧が進むと、カフの内圧よりもカフより末梢部位の血管内圧が大きくなる時間が長くなり、さらに1振動周期内で血管が閉じている時間が無くなる寸前では、カフの上流部位と下流部位の血管が同時に全開となり脈波の振幅が最大となる現象が発生する。   As the cuff pressure is further reduced, the time during which the vascular pressure in the peripheral region is larger than the cuff in the peripheral region is longer than the cuff pressure, and the upstream region of the cuff is just before the blood vessel is closed within one vibration cycle. A phenomenon occurs in which the blood vessels in the downstream portion are fully opened at the same time and the amplitude of the pulse wave is maximized.

オシロメトリック法の収縮期血圧の測定では、このときの容積変化は、収縮期血圧測定時のタイミングにおけるカフ下の容積変化は主にカフ下の血管容積全体の約50%に相当するカフ中心部より上流側の変化であるので、カフ下の略全体の血管が全開と全閉を繰り返すことにより生じる最大脈波振幅の約50%の脈波振幅になるタイミングを収縮期血圧とする方法を採用している。   In the measurement of systolic blood pressure by the oscillometric method, the volume change at this time is the cuff center portion where the volume change under the cuff mainly corresponds to about 50% of the whole blood volume under the cuff. Since this is a change on the upstream side, a method is adopted in which the systolic blood pressure is set at a timing at which the pulse wave amplitude of about 50% of the maximum pulse wave amplitude generated by repeating the fully open and fully closed blood vessels under the cuff repeatedly. is doing.

しかしながら、この割合は、カフの巻き方によるカフ下の脈波形成に寄与する上流部、下流部の容積のアンバランス、カフを巻く強さによるコンプライアンスの差、末梢部位の血管内圧の上昇の大きさ、および変化率の影響を受ける。また、末梢部位の血管内圧の上昇には、血圧測定の繰り返し時間の短さによる鬱血の程度が影響するが、主として生体の個体差である血圧値、末梢循環の程度、末梢側の血管コンプライアンスが影響する。   However, this ratio indicates that the upstream and downstream volume imbalance contributes to the formation of the pulse wave under the cuff due to the cuff winding, the compliance difference due to the cuffing strength, and the increase in the intravascular pressure at the peripheral site. And affected by the rate of change. In addition, the increase in intravascular pressure at the peripheral site is affected by the degree of congestion due to the short repetition time of blood pressure measurement, but the blood pressure value, the degree of peripheral circulation, the vascular compliance on the peripheral side, which are mainly individual differences in the living body, are affected. Affect.

これらの問題解決を図るためにダブルカフ方式が提案されている。このダブルカフ方式では、血管の圧迫に用いる阻血用空気袋と、阻血用空気袋下の中央部において脈波のみを検出する脈波検出用空気袋を阻血機能とは分離して設けている。このダブルカフ方式によれば、オシロメトリック方式で問題となる上記の収縮期血圧測定時の阻血用空気袋下の上流側の容積変化に基づく脈波の影響を軽減できるので、収縮期血圧の決定の目安になる阻血用空気袋下の下流側の容積変化をS/N比良く検出できる。(特許文献1)
しかし、収縮期血圧の検出タイミングでは、阻血用空気袋下の上流側に侵入する血流は脈波検出用空気袋のすぐそばまで侵入する。この侵入による振動が一部脈波検出用空気袋に伝わる。また、脈波検出用空気袋を阻血用空気袋の下方に設けているので、阻血用空気袋で検出された阻血用空気袋下のカフ上流側の容積変化に基づくカフの振動が接している脈波検出用空気袋に一部伝わる結果、収縮期血圧の測定のS/N比を悪化させることがあった。
In order to solve these problems, a double cuff method has been proposed. In this double cuff system, a blood-breaking air bag used for compressing a blood vessel and a pulse-wave detection air bag for detecting only a pulse wave are provided separately from the blood-blocking function at a central portion below the blood-breaking air bag. According to the double cuff method, the influence of the pulse wave based on the volume change on the upstream side under the air bag for ischemia at the time of measuring the systolic blood pressure, which is a problem in the oscillometric method, can be reduced. It is possible to detect a change in volume on the downstream side under the air bag for ischemia as a guideline with a good S / N ratio. (Patent Document 1)
However, at the detection timing of systolic blood pressure, the blood flow that enters the upstream side under the air bag for ischemia enters the immediate vicinity of the air bag for detecting the pulse wave. The vibration due to this invasion is partially transmitted to the pulse wave detection air bag. In addition, since the pulse wave detection air bag is provided below the ischemic air bag, the cuff vibration based on the volume change on the upstream side of the cuff below the ischemic air bag detected by the ischemic air bag is in contact. As a result of partial transmission to the pulse wave detection air bag, the S / N ratio in measurement of systolic blood pressure may be deteriorated.

そこで、阻血用空気袋で血管が圧閉されている時に脈波検出用空気袋ヘのカフ上流側から侵入してくる血流を近づけないように、脈波検出用空気袋の圧迫性能を上げるためのバッキングを設置し、脈波検出用空気袋と阻血用空気袋の間に阻血用空気袋からの伝達脈波をダンピングするための緩衝材を設置し、さらに阻血用空気袋下の上流側に脈波をダンピングするための緩衝材を設ける提案もなされている。(特許文献2)
しかしながら、この提案によれば、脈波検出用空気袋の圧迫力の向上はできるが、カフの上流部から脈波の侵入してくる位置を脈波検出用空気袋から離す距離にばらつきが大きいという問題点がある。また、使用部材のダンピング特性にも限界があるので、脈波の比較的高い周波数成分の減衰は行うことができるが低い成分までは十分に減衰することができない。このため、収縮期血圧をS/N比良く検出することができない場合があった。
Therefore, the pressure detection performance of the pulse wave detection air bag is improved so that the blood flow entering from the cuff upstream side to the pulse wave detection air bag is not brought close when the blood vessel is closed with the air bag for ischemia. A backing material is installed between the air bag for pulse wave detection and the air bag for ischemia, and a buffer material for damping the transmitted pulse wave from the air bag for ischemia is installed. There has also been proposed a buffer material for damping the pulse wave. (Patent Document 2)
However, according to this proposal, the compression force of the pulse wave detection bladder can be improved, but there is a large variation in the distance that the position where the pulse wave enters from the upstream part of the cuff is separated from the pulse wave detection bladder. There is a problem. In addition, since the damping characteristics of the member used are limited, a relatively high frequency component of the pulse wave can be attenuated, but a low component cannot be sufficiently attenuated. For this reason, the systolic blood pressure may not be detected with a good S / N ratio.

また、ダブルカフ方式において、1つの圧力センサを用いて阻血用空気袋の圧力と脈波検出用空気袋の圧力の双方を検出する場合、カフ圧力が収縮期血圧以上の場合に生じているカフ上流側の血管容積変化が阻血用空気袋で検出され、配管を介して圧力センサに伝わるので、阻血用空気袋内の脈波変化を減衰する必要が生じる。   Further, in the double cuff method, when both the pressure of the ischemic bladder and the pressure of the pulse wave detecting bladder are detected using one pressure sensor, the cuff upstream generated when the cuff pressure is equal to or higher than the systolic blood pressure. Since the change in blood vessel volume on the side is detected by the air bag for ischemia and transmitted to the pressure sensor via the pipe, it is necessary to attenuate the change in pulse wave in the air bag for ischemia.

そこで、ダブルカフ法によれば、阻血用空気袋と平行に容量の大きな例えば500cc以上の容積バッファタンクと阻血用空気袋と脈波検出用空気袋との間に流体抵抗器を設けて脈波を平滑化して阻血用空気袋で検出された脈波を減衰している。
特開2004−195056号公報 特許第3667326号公報
Therefore, according to the double cuff method, a fluid resistor is provided between a large capacity buffer tank having a capacity of, for example, 500 cc or more in parallel with the air bag for ischemia, the air bag for ischemia and the air bag for detecting the pulse wave, thereby The pulse wave detected by the air bag for smoothing is attenuated by smoothing.
JP 2004-195056 A Japanese Patent No. 3667326

したがって、本発明は上述したような状況に鑑みてなされたものであり、オシロメトリック方式の改良版であるダブルカフ方式の血圧計において、収縮期血圧測定時のS/N比を悪化させるカフ上流側の脈波を減衰させS/N比を向上でき、かつ1つの圧力センサを用いて阻血用空気袋を阻血する圧力と脈波検出用空気袋の脈波を検出する場合に、大きな容積バッファタンクを不用にして小型化を図ることができるように構成された血圧測定装置及び血圧測定方法を目的としている。   Therefore, the present invention has been made in view of the above situation, and in the double cuff sphygmomanometer which is an improved version of the oscillometric method, the cuff upstream side worsens the S / N ratio at the time of systolic blood pressure measurement. A large volume buffer tank that can improve the S / N ratio by attenuating the pulse wave and detecting the pressure of the air bag for the ischemia and the pulse wave of the air bag for detecting the pulse wave using one pressure sensor An object of the present invention is to provide a blood pressure measurement device and a blood pressure measurement method that are configured such that the size can be reduced without using the device.

上述した課題を解決するために、本発明の血圧測定装置によれば、血圧測定部位に対して着脱自在に設けられるカフ部材と、前記カフ部材の血圧測定部位に接する側に敷設され血圧測定部位の全体を圧迫する阻血用空気袋と、前記阻血用空気袋に敷設され血圧測定部位の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋に敷設され血圧測定部位の動脈下流側を圧迫する脈波検出用空気袋と、から構成されるカフ本体と、前記カフ本体を加圧および減圧するために配管を介して接続される加減圧手段と、を備えた血圧測定装置であって、前記配管は、前記阻血用空気袋および前記サブ空気袋に接続される第1配管と、前記脈波検出用空気袋と前記脈波検出用空気袋の圧力変化からカフ圧信号を得るカフ圧力検出手段との間に接続される第2配管と、前記第1配管と前記第2配管との間で分岐接続されるバイパス流路とからなり、前記カフ圧信号に重畳する脈波を検出して脈波信号を得る脈波検出手段と、前記カフ圧信号と前記脈波信号とに基づき血圧値を決定する血圧検出手段と、前記血圧値を表示する血圧表示手段と、を備え、第1音響抵抗と第2音響抵抗と音響イナータンスと音響コンプライアンスとを含む音響インピーダンス手段を、前記バイパス流路に接続することにより、前記減圧時において前記カフ圧信号に含まれる心拍振動周波数の圧力変動分を減衰させることを特徴としている。   In order to solve the above-described problem, according to the blood pressure measurement device of the present invention, a cuff member that is detachably attached to a blood pressure measurement site, and a blood pressure measurement site that is laid on the side of the cuff member that contacts the blood pressure measurement site. An air bag for ischemia that compresses the entire body, a sub-air bag that is laid on the air bag for ischemia and compresses the heart side of the blood pressure measurement site, and a downstream side of the artery for the blood pressure measurement site that is laid on the air bag for ischemia A blood pressure measuring device comprising: a cuff main body configured to include a pulse wave detecting air bag; and a pressure increasing / decreasing means connected via a pipe to pressurize and depressurize the cuff main body, The pipe has a first pipe connected to the air bag for ischemia and the sub air bag, a cuff pressure detection for obtaining a cuff pressure signal from a pressure change of the pulse wave detection air bag and the pulse wave detection air bag. Second arrangement connected between the means And a pulse wave detecting means for detecting a pulse wave superimposed on the cuff pressure signal and obtaining a pulse wave signal, comprising a bypass flow path branched and connected between the first pipe and the second pipe, A blood pressure detection means for determining a blood pressure value based on the cuff pressure signal and the pulse wave signal; and a blood pressure display means for displaying the blood pressure value, the first acoustic resistance, the second acoustic resistance, the acoustic inertance, and the acoustic An acoustic impedance means including compliance is connected to the bypass flow path to attenuate the pressure fluctuation of the heartbeat vibration frequency included in the cuff pressure signal during the decompression.

また、前記第1配管側から接続され、かつ第1流路長と第1内径孔とを有する管体をコイル状に巻き付けた第1コイル体により前記第1音響抵抗と第1音響イナータンスを得るとともに、前記第2配管側から接続され、かつ第2流路長と第2内径孔とを有する管体をコイル状に巻き付けた第2コイル体により前記第2音響抵抗と第2音響イナータンスを得るとともに、前記第1コイル体と前記第2コイル体との間に接続される容積部を有した容積体により前記音響コンプライアンスを得るように前記音響インピーダンス手段が構成されることを特徴としている。   In addition, the first acoustic resistance and the first acoustic inertance are obtained by a first coil body that is connected from the first piping side and is wound in a coil shape with a tube body having a first flow path length and a first inner diameter hole. In addition, the second acoustic resistance and the second acoustic inertance are obtained by a second coil body that is connected from the second piping side and is wound in a coil shape with a tubular body having a second flow path length and a second inner diameter hole. In addition, the acoustic impedance means is configured to obtain the acoustic compliance by a volume body having a volume portion connected between the first coil body and the second coil body.

また、前記第1コイル体の第1入口端部と第1出口端部と、前記第2コイル体の第2入口端部と第2出口端部とを揃えて収容するための1組の縦溝部を有する円筒体に対して前記第1コイル体と前記第2コイル体とを積層させて収納し、前記第1出口端部と前記第2出口端部とに接続される接続開口部を有する前記容積体に対して直に接続したことを特徴としている。   In addition, a set of vertical portions for accommodating the first inlet end portion and the first outlet end portion of the first coil body and the second inlet end portion and the second outlet end portion of the second coil body in alignment. The first coil body and the second coil body are stacked and stored in a cylindrical body having a groove, and has a connection opening connected to the first outlet end and the second outlet end. It is characterized in that it is directly connected to the volume body.

ここで、さらなる本発明の特徴は、以下本発明を実施するための最良の形態および添付図面によって明らかになるものである。   Further features of the present invention will become apparent from the best mode for carrying out the present invention and the accompanying drawings.

本発明によれば、阻血用空気袋の血圧測定部位側の上流部に設けられたサブカフと、配管から分岐するパイパス流路に設けられる音響インピーダンス装置により、カフ圧力が収縮期血圧より高いときに、カフ上流側で発生する脈波を減衰することができ、収縮期血圧の検出指標となるカフ下流側に流れる血流により生じる脈波をS/N比良く検出でき、精度の良い血圧計を実現でき、かつ大きなバッファタンクが不要となり小型化が図れることとなる。   According to the present invention, when the cuff pressure is higher than the systolic blood pressure by the sub-cuff provided in the upstream portion on the blood pressure measurement site side of the air bag for ischemia and the acoustic impedance device provided in the bypass flow path branched from the pipe. The pulse wave generated on the upstream side of the cuff can be attenuated, and the pulse wave generated by the blood flow flowing downstream of the cuff, which is a detection index of systolic blood pressure, can be detected with a high S / N ratio. This can be realized and a large buffer tank is not required, and the size can be reduced.

以下に、本発明の実施形態について添付の図面を参照して説明すると、図1は本発明の一実施形態の血圧測定装置を示すブロック図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram showing a blood pressure measurement device according to an embodiment of the present invention.

本図の実施形態において、カフ本体1は、上腕部を含む血圧測定部位に対して着脱自在に設けられる布製のカフ部材2を備えており、カフ部材2の裏面の端部に破線図示の雄面ファスナー3を設け、表面の端部に雌面ファスナー4を設けている。このカフ部材2を図示のように上腕に巻き付け、各面ファスナーを係止することで、カフ本体1の着脱ができるように構成されている。ここで、面ファスナーは一例に過ぎず、これ以外の部材でもよく、また筒状に形成しておき上腕を挿入するアームイン式でも良い。   In the embodiment shown in the figure, the cuff body 1 includes a cloth cuff member 2 that is detachably provided to a blood pressure measurement site including the upper arm portion, and a male cuff indicated by a broken line is provided at the end of the back surface of the cuff member 2. A surface fastener 3 is provided, and a female surface fastener 4 is provided at the end of the surface. The cuff member 2 is wound around the upper arm as shown in the figure, and the hook-and-loop fastener 1 is locked so that the cuff body 1 can be attached and detached. Here, the hook-and-loop fastener is merely an example, and other members may be used, or an arm-in type in which the upper arm is inserted after being formed in a cylindrical shape may be used.

このカフ部材2の血圧測定部位側には血圧測定部位の全体を圧迫するための破線図示の阻血用空気袋8が敷設されている。また、この阻血用空気袋8の血圧測定部位に接する側には血圧測定部位の心臓H側を圧迫するために幅がより狭く形成された破線図示のサブ空気袋9が敷設されている。これらの阻血用空気袋8およびサブ空気袋9は加減圧手段であるポンプ27、電磁開閉弁26に対して接続される一方の配管を構成する軟質チューブからなる第1配管6に接続されておりポンプ27のモータMの駆動に伴い外気を開口部6cから導入して加圧を行い、電磁開閉弁26への通電により開口部6dからの排気を行うことで各空気袋の減圧ができるように構成されている。   On the blood pressure measurement site side of the cuff member 2, an air bag 8 for ischemia shown in broken lines is laid to press the entire blood pressure measurement site. In addition, a sub air bag 9 shown in a broken line having a narrower width is laid on the side in contact with the blood pressure measurement site of the ischemic air bladder 8 so as to compress the heart H side of the blood pressure measurement site. The air bag 8 for ischemia and the sub air bag 9 are connected to the first pipe 6 made of a soft tube constituting one pipe connected to the pump 27 and the electromagnetic opening / closing valve 26 which are pressure increasing / decreasing means. As the motor M of the pump 27 is driven, outside air is introduced through the opening 6c to pressurize it, and the air opening / closing valve 26 is energized to exhaust air from the opening 6d so that each air bag can be decompressed. It is configured.

また、阻血用空気袋8の血圧測定部位に接する側には血圧測定部位の血管下流側を圧迫し、脈波を検出するための脈波検出用空気袋10が後述する遮断装置5を介在させて敷設されている。この脈波検出用空気袋10には一方の配管を構成するために軟質チューブからなる第2配管7が接続されており、上記の第1配管6とともにコネクタ21で本体20から着脱自在に設けられている。コネクタ21で着脱可能に接続されているが、一体配管としてもよい。   In addition, the side of the blood pressure measuring part 8 in contact with the blood pressure measuring part presses the blood vessel downstream side of the blood pressure measuring part, and a pulse wave detecting air bag 10 for detecting a pulse wave interposes a blocking device 5 described later. Is laid. The pulse wave detection air bag 10 is connected to a second pipe 7 made of a soft tube to constitute one pipe, and is detachably provided from the main body 20 by the connector 21 together with the first pipe 6. ing. Although it is detachably connected by the connector 21, it may be an integral pipe.

第1配管6と第2配管7は分岐部6a、7aからバイパス流路18が接続されており、このバイパス流路18を介して脈波検出用空気袋10の加圧および減圧が行われる。   The bypass pipe 18 is connected to the first pipe 6 and the second pipe 7 from the branch portions 6 a and 7 a, and the pulse wave detection air bag 10 is pressurized and depressurized through the bypass path 18.

また第2配管7には第1配管6の音響フィルタ22にて脈波成分が減衰された脈波変化と阻血用空気袋内の阻血圧力変化と脈波検出用空気袋10の圧力変化とからカフ圧信号を得るカフ圧力検出手段である圧力センサ30が接続されており、この圧力センサ30に対してアナログ電気信号に変換する圧力計測部31が接続されており、さらにA/Dコンバータ32が接続されており、デジタル信号を中央制御部33にカフ圧信号を出力するように構成されている。   The second pipe 7 includes a change in pulse wave in which a pulse wave component is attenuated by the acoustic filter 22 of the first pipe 6, a change in ischemic pressure in the air bag for ischemia, and a change in pressure in the air bag 10 for detecting the pulse wave. A pressure sensor 30 which is a cuff pressure detecting means for obtaining a cuff pressure signal is connected, a pressure measuring unit 31 for converting the pressure sensor 30 into an analog electric signal is connected, and an A / D converter 32 is further connected. It is connected and configured to output a cuff pressure signal to the central control unit 33 as a digital signal.

この中央制御部33はコンピュータにより読取り可能な各種制御プログラムを記憶したROM,RAM等を含んでおり、カフ圧信号に重畳する脈波を検出して脈波信号を得る脈波検出手段とカフ圧信号(=カフ阻血圧力)とに基づき血圧値を決定する血圧検出手段となる脈波処理部34、カフ圧力処理部35、血圧測定部37、表示制御部38が予め制御プログラムとして内蔵されている。   The central control unit 33 includes a ROM, a RAM, and the like that store various computer-readable control programs. The central control unit 33 detects a pulse wave superimposed on the cuff pressure signal and obtains a pulse wave signal and a cuff pressure. A pulse wave processing unit 34, a cuff pressure processing unit 35, a blood pressure measurement unit 37, and a display control unit 38, which are blood pressure detection means for determining a blood pressure value based on a signal (= cuff ischemic pressure), are preinstalled as control programs. .

また、中央制御部33には、血圧値を表示する血圧表示手段である液晶表示部40と、上記のポンプ27の駆動制御を行うポンプ駆動部42と、電磁開閉弁26の開閉駆動を行うためのバルブ駆動制御部41が接続されており、乾電池を含む電源部44からの電力供給に伴い血圧測定に必要な各動作を行えるように構成されている。   Further, the central control unit 33 performs opening / closing drive of the liquid crystal display unit 40 which is a blood pressure display means for displaying a blood pressure value, the pump drive unit 42 which performs drive control of the pump 27, and the electromagnetic opening / closing valve 26. The valve drive control unit 41 is connected, and each operation necessary for blood pressure measurement can be performed in accordance with power supply from the power supply unit 44 including a dry battery.

一方、バイパス流路18には細管からなる第1音響抵抗と第2音響抵抗と音響イナータンスと音響コンプライアンスとを加えて構成される破線図示の音響インピーダンス手段22が図示のように接続されている。   On the other hand, the bypass channel 18 is connected with acoustic impedance means 22 shown by a broken line, which is configured by adding a first acoustic resistance, a second acoustic resistance, acoustic inertance, and acoustic compliance, which are formed of thin tubes, as illustrated.

このようにバイパス流路に接続することで、後述の減圧時においてサブ空気袋と阻血用空気袋の圧力信号に含まれるカフ圧力が収縮期血圧以上のときのカフ上流側の血管容積変化により発生するサブカフと阻血用空気袋の圧力変動分を減衰させるようにしている。   By connecting to the bypass channel in this way, it occurs due to a change in blood vessel volume on the upstream side of the cuff when the cuff pressure included in the pressure signal of the sub-air bag and the ischemic air bag is higher than the systolic blood pressure at the time of decompression described later. The pressure fluctuation of the subcuff and the air bag for ischemia is attenuated.

図2(a)は、カフ本体1を上腕に装着した後の様子を図示した外観斜視図、(b)は(a)のY-Y線矢視断面図である。また、図3は図2(a)のX-X線矢視断面図である。   2A is an external perspective view illustrating a state after the cuff body 1 is attached to the upper arm, and FIG. 2B is a cross-sectional view taken along the line YY of FIG. 3 is a cross-sectional view taken along line XX in FIG.

図2、図3において、既に説明済みの構成または部品については同様の符号を附して説明を割愛すると、先ず、図2(a)において、カフ本体1の上腕部への装着後に、サブ空気袋9が心臓側に位置する一方、脈波検出用空気袋10は遮断装置5が介在されて測定部位の動脈上に位置している。また、第1配管6と第2配管7は図示のように平行に外部に出ている状態となる。   In FIG. 2 and FIG. 3, the same reference numerals are given to the components or parts already described, and the description will be omitted. First, in FIG. 2A, after the cuff body 1 is attached to the upper arm, the sub air While the bag 9 is positioned on the heart side, the pulse wave detection air bag 10 is positioned on the artery of the measurement site with the blocking device 5 interposed. Moreover, the 1st piping 6 and the 2nd piping 7 will be in the state which has come out outside in parallel like illustration.

また、図2(b)において、遮断装置5が阻血用空気袋8と脈波検出用空気袋10との間において空気層を形成するように設けられており阻血用空気袋の心拍による振動が脈波検出用空気袋10に伝達することを防止している。   In FIG. 2 (b), the blocking device 5 is provided so as to form an air layer between the blood bag 8 for ischemia and the air bag 10 for pulse wave detection. Transmission to the pulse wave detection air bag 10 is prevented.

このため遮断装置5は、図4の立体分解図をさらに参照して、軟質シート材料から形成されるとともに脈波検出用空気袋10の密閉袋の表面形状を有した第1シート部材15と、同じく脈波検出用空気袋10の密閉袋の表面形状を有しており阻血用空気袋8の密閉袋上に位置される第2シート部材16と、第1シート部材15と第2シート部材16の両端の短片の間に夫々設けられるとともに短片の全長を有する第1スペーサ部材13、13とを備えている。また、第1シート部材15と、第2シート部材16の間の中央には正方形の第2スペーサ部材14が設けられており、装着後の第1シート部材1と前記第2シート部材との密着を防止することで、図2(b)に図示のように同じ厚さの空気層を維持できるようにしている。   For this reason, the blocking device 5 further refers to the three-dimensional exploded view of FIG. 4, and is formed of a soft sheet material and has a first sheet member 15 having a surface shape of a sealed bag of the pulse wave detection air bag 10, Similarly, the second sheet member 16, the first sheet member 15, and the second sheet member 16, which have the surface shape of the air bag for the pulse wave detection air bag 10, are positioned on the air bag for the ischemic air bag 8. The first spacer members 13 are provided between the short pieces at both ends of the first spacer members 13 and 13 and have the entire length of the short pieces. In addition, a square second spacer member 14 is provided in the center between the first sheet member 15 and the second sheet member 16, and the first sheet member 1 and the second sheet member after attachment are in close contact with each other. By preventing this, an air layer having the same thickness can be maintained as shown in FIG.

また、図4において、密閉袋の両端の短片に、密閉袋の短片の全長を有する夫々第3スペーサ部材12、12をさらに設けることで、脈波検出用空気袋10内に、規定量以上の空気が入るように配慮されている。   Further, in FIG. 4, the third spacer members 12 and 12 each having the entire length of the short piece of the hermetic bag are further provided on the short pieces at both ends of the hermetic bag, so that the pulse wave detection air bag 10 has a predetermined amount or more. Care is taken to allow air to enter.

次に図5(b)の阻血用空気袋8とサブ空気袋9の外観斜視図を参照して、このサブ空気袋9は、図示の大きさに限定されず、阻血用空気袋8から一部がはみ出るようにしても良く、心臓側に正しく配置されるのであれば、阻血用空気袋8と同じ上下方向の全長を備えていても良い。   Next, referring to the external perspective view of the air bag 8 for ischemia and the sub air bag 9 shown in FIG. 5 (b), the sub air bag 9 is not limited to the size shown in the drawing, The portion may protrude, and if it is correctly arranged on the heart side, it may have the same vertical length as that of the air bag 8 for ischemia.

このサブ空気袋9は、第1配管6と全体が折り曲げ可能な棒部材11とを軟質樹脂からなる表裏シート材9a、9bで上下から挟持した後に、フランジ部9fを第1配管6(図5(c)参照)とともに連続して熱溶着して内部を密閉状態にするとともに連通部を棒部材11の長手方向に沿うように形成した一体成形密閉袋として準備される。このとき同時に阻血用空気袋8についても棒部材11を軟質樹脂からなる表裏シート材8a、8bで上下から挟持した後に、フランジ部8fを図示のように連続して高周波溶着して内部を密閉状態にした一体成形密閉袋として準備する。この後に、一方の密閉袋を矢印方向に折り曲げることで、棒部材11も約180度折り曲げられることにより図5(a)に図示したような状態を得る。   The sub air bag 9 includes a first pipe 6 and a bar member 11 that can be bent as a whole by sandwiching the front and back sheet materials 9a and 9b made of a soft resin from above and below, and then attaching the flange portion 9f to the first pipe 6 (FIG. 5). (see (c)) is prepared as an integrally formed hermetic bag in which the inside is hermetically sealed by continuous heat welding and the communicating portion is formed along the longitudinal direction of the rod member 11. At the same time, the rod member 11 is also sandwiched from the top and bottom sheet materials 8a and 8b made of a soft resin from the top and bottom of the air bag 8 for ischemia, and then the flange portion 8f is continuously welded at a high frequency as shown in the figure so that the inside is sealed. Prepare as a one-piece sealed bag. After that, by folding one of the sealed bags in the direction of the arrow, the bar member 11 is also bent about 180 degrees to obtain the state shown in FIG.

この構成によれば、従来のように阻血用空気袋8に個別に接続されていた配管が不要になるのでその分コストダウンできるとともに、加圧時において先ず最初にサブ空気袋9が膨張され、その後に阻血用空気袋8が加圧膨張されることになる。   According to this configuration, the piping individually connected to the ischemic air bag 8 as in the prior art becomes unnecessary, so that the cost can be reduced accordingly, and the sub air bag 9 is first inflated at the time of pressurization, Thereafter, the air bag 8 for ischemia is pressurized and inflated.

この結果、サブ空気袋9に対する空気供給量が小さくなる傾向を効果的に防止できることとなり、サブ空気袋9による脈波減衰効果の低下を防止できることとなる。また、サブ空気袋9内の空気量は一定にできるので、ばらつきを防止できることになる。また、従来構成によれば、加圧時の各空気袋の残留空気量の如何でサブ空気袋9中の残留空気量にばらつきが生じることがあったが、上記の構成によればこの傾向を完全に排除できる。   As a result, the tendency that the air supply amount to the sub air bag 9 is reduced can be effectively prevented, and the decrease of the pulse wave attenuation effect by the sub air bag 9 can be prevented. Further, since the amount of air in the sub air bag 9 can be made constant, variations can be prevented. Further, according to the conventional configuration, the residual air amount in the sub air bag 9 may vary depending on the residual air amount of each air bag at the time of pressurization. It can be completely eliminated.

以上のように棒部材11を折り曲げ、各空気袋が重なるように敷設させることで、図5(a)に図示の状態にした後に、第2配管7を接続した脈波検出用空気袋10が配置される。ここで、サブ空気袋9は、軟質材料を用いて図示の長方形の扁平状に形成される第1密閉袋と、この第1密閉袋中にその開口端が連通する第1配管6から一体形成され、阻血用空気袋8は、軟質材料を用いて第1密閉袋より大きな長方形の扁平状に形成される第2密閉袋から形成され、棒部材11の一方端を第1密閉袋に、中継管の他方端を第2密閉袋に位置させて一体成形される。   After the rod member 11 is bent as described above and laid so that the air bags overlap each other, the pulse wave detection air bag 10 to which the second pipe 7 is connected after the state shown in FIG. Be placed. Here, the sub air bag 9 is integrally formed from a first sealing bag formed in a rectangular flat shape using a soft material, and a first pipe 6 whose open end communicates with the first sealing bag. The air bag 8 for ischemia is formed from a second airtight bag formed in a rectangular flat shape larger than the first airtight bag using a soft material, and one end of the bar member 11 is relayed to the first airtight bag. The tube is integrally molded with the other end of the tube positioned in the second sealed bag.

また、脈波検出用空気袋10についても、軟質材料の表裏シート材10a、10bで上下から第2配管7を挟持した後にフランジ部10fを連続的に接合させて一体形成しても良いことは言うまでもない。   Further, the pulse wave detection air bag 10 may be integrally formed by continuously joining the flange portion 10f after the second pipe 7 is sandwiched from above and below by the soft material front and back sheet materials 10a and 10b. Needless to say.

再度、図3において血圧測定部位の動脈の血流が流れ込む心臓左室側になるようにしてカフが装着される。また上記のように遮断装置5が阻血用空気袋8と脈波検出用空気袋10との間で空気層を形成するように設けられているので、阻血用空気袋8のカフ下流側の血管容積変化で生じる振動が脈波検出用空気袋10に伝達することが効果的に防止されることになる。   In FIG. 3 again, the cuff is attached so as to be on the left ventricular side where the blood flow of the artery at the blood pressure measurement site flows. Further, as described above, the blocking device 5 is provided so as to form an air layer between the air bag 8 for ischemia and the air bag 10 for detecting the pulse wave. The vibration generated by the volume change is effectively prevented from being transmitted to the pulse wave detection air bag 10.

従来は、この遮断装置5に替えて剛性を有するプレート材と発泡ウレタンを積層構造にしたダンパーを設けていた。しかし、このダンパーのダンピング特性はカフ圧力により圧縮状態になることもあり、特に心拍振動数に近い振動を吸収するダンピング特性を得ることができなかった。   Conventionally, a damper having a laminated structure of rigid plate material and foamed urethane is provided in place of the blocking device 5. However, the damping characteristic of this damper may be compressed due to the cuff pressure, and in particular, a damping characteristic that absorbs vibrations close to the heartbeat frequency could not be obtained.

これに対して、上記のような空気層を設け、かつ空気層が潰れない状態を維持できることから心拍振動数に近い振動を吸収するダンピング特性を得ることができた。   On the other hand, since the air layer as described above is provided and the air layer can be maintained in a state where the air layer is not crushed, a damping characteristic that absorbs vibration close to the heartbeat frequency can be obtained.

この結果、阻血用空気袋10の内圧が血圧よりもわずかに低くなったときにカフの血管下流側に発生する脈波Mの検出をS/N比を高い状態で検出することが可能となった。   As a result, when the internal pressure of the air bag 10 for ischemia is slightly lower than the blood pressure, it is possible to detect the pulse wave M generated on the downstream side of the cuff blood vessel with a high S / N ratio. It was.

さらに、後述する音響インピーダンス手段22との協働作用により、カフ圧力が血圧より高いときに生じるカフ上流側で発生している脈波がカフ間で伝達されることが防止され、ノイズとなる脈波成分を減衰され、測定タイミングでのカフ下流側に拍出する血流による動脈の容積変化による脈波変化のみをS/N比を向上させて精度よく検出することができる。   Further, the cooperative action with the acoustic impedance means 22 described later prevents the pulse wave generated on the upstream side of the cuff generated when the cuff pressure is higher than the blood pressure from being transmitted between the cuffs. Only the pulse wave change due to the arterial volume change due to the blood flow that is attenuated and pulsates downstream at the measurement timing at the measurement timing can be accurately detected by improving the S / N ratio.

次に図6は、上記のバイパス流路18に接続される音響インピーダンス手段22の模式図である。本図において、既に説明済みの構成または部品については同様の符号を附して説明を割愛すると、第1配管6の分岐部6aには第1流路長L1と第1内径孔断面積S1とを有するチューブをコイル状に巻き付けた第1コイル体23が接続されており、第1音響抵抗を摩擦r/S12の関係式から得るとともに、第1音響イナータンスをL1*空気密度/S1の関係から得ている。 Next, FIG. 6 is a schematic diagram of the acoustic impedance means 22 connected to the bypass flow path 18 described above. In this figure, the same reference numerals are given to the components or parts that have already been described, and the description thereof is omitted. The branch portion 6a of the first pipe 6 has a first flow path length L1 and a first inner diameter hole cross-sectional area S1. is connected first coil member 23 wound in a coil shape is a tube having a together with obtaining a first acoustic resistance from the relation of friction r / S1 2, the relationship of the first acoustic inertance L1 * air density / S1 Have gained from.

一方、第2配管7の分岐部7aには第2流路長L2と第2内径孔断面積S2とを有するチューブをコイル状に巻き付けた第2コイル体25が接続されており、第2音響抵抗を摩擦r/S22の関係式から得るとともに、第2音響イナータンスをL2*空気密度/S2の関係から得るようにしている。 On the other hand, a second coil body 25 in which a tube having a second flow path length L2 and a second inner diameter hole cross-sectional area S2 is wound in a coil shape is connected to the branch portion 7a of the second pipe 7. with obtaining the resistance from the relation of friction r / S2 2, and a second acoustic inertance to obtain the relation of L2 * air density / S2.

そして第1コイル体23と第2コイル体25との間に接続される容積部を有した容積体により音響コンプライアンスを体積W/空気密度*音速2の関係式から得るようにして全体の音響インピーダンス手段22が構成されており、その遮断周波数を心拍振動と同じまたは近似させることで空気振動として減衰するようにしている。以上のように各コイルを巻きつけることで、従来のバッファタンク容積の約10分の1の容積が実現可能となり装置全体の小型化ができた。 An acoustic compliance is obtained from a relational expression of volume W / air density * sound speed 2 by a volume body having a volume portion connected between the first coil body 23 and the second coil body 25, so that the overall acoustic impedance is obtained. Means 22 is configured, and the cut-off frequency is the same as or approximated to the heartbeat vibration so as to be attenuated as air vibration. By winding each coil as described above, a volume of about 1/10 of the conventional buffer tank volume can be realized, and the entire apparatus can be downsized.

図7は、小型化のための一構成を図示した外観斜視図である。第1コイル体23の第1入口端部23aと第1出口端部23bと、破線図示の第2コイル体25の第2入口端部25aと第2出口端部25bとが上下に揃えられている。この状態から各コイル体を収容するための1組の縦溝部53a、53bを有する円筒体53が設けられており、内部に図示のように第1コイル体23と第2コイル体25とを積層させて収納する。   FIG. 7 is an external perspective view illustrating one configuration for miniaturization. The first inlet end portion 23a and the first outlet end portion 23b of the first coil body 23 and the second inlet end portion 25a and the second outlet end portion 25b of the second coil body 25 shown in broken lines are aligned vertically. Yes. From this state, a cylindrical body 53 having a pair of longitudinal groove portions 53a and 53b for accommodating each coil body is provided, and the first coil body 23 and the second coil body 25 are laminated inside as shown in the figure. Let me store.

一方、本体の取り付けベース52には固定部52が形成されており円筒体53を下方に移動して固定できるようにしている。また第1出口端部23bと第2出口端部25bに接続される位置に接続開口部24a、24bを形成した容積体24が隣接して設けられており図示のように直に接続できるようにしている。この容積体24についても取り付けベース52の固定部51に合致することで固定される。   On the other hand, a fixing portion 52 is formed on the mounting base 52 of the main body so that the cylindrical body 53 can be moved downward and fixed. In addition, a volume body 24 having connection openings 24a and 24b is provided adjacent to the first outlet end portion 23b and the second outlet end portion 25b so that they can be directly connected as shown in the figure. ing. The volume body 24 is also fixed by matching with the fixing portion 51 of the mounting base 52.

以上の構成による音響インピーダンス手段22によればサブ空気袋と阻血空気袋で検出される通常1〜1.5Hz、すなわち60〜70拍/分の脈波成分を減衰することができるので、脈波検出用空気袋10にで、収縮期血圧の測定タイミングでカフ下流側の動脈の容積変化による脈波変化のみをS/N比を向上させて精度よく検出することができる。   According to the acoustic impedance means 22 having the above configuration, the pulse wave component normally detected by the sub-air bag and the ischemic air bag can be attenuated by 1 to 1.5 Hz, that is, 60 to 70 beats / min. Only the change in the pulse wave due to the change in the volume of the artery on the downstream side of the cuff can be accurately detected by improving the S / N ratio at the measurement timing of the systolic blood pressure.

以上のように構成されるカフ本体1によれば各種の血圧測定装置に使用できることになるが、例えば図1に図示の血圧測定装置は、記憶された制御プログラムをコンピュータで読み出すことで、図8の血圧測定ルーチンのフローチャートのように動作させることができる。   The cuff body 1 configured as described above can be used for various blood pressure measuring devices. For example, the blood pressure measuring device shown in FIG. 1 reads the stored control program by a computer, and FIG. The blood pressure measurement routine can be operated as shown in the flowchart of FIG.

まず、血圧測定装置が起動され、カフ本体1が図2のように装着され、不図示の開始スイッチが押圧されるとステップS1においてバルブ駆動部41により開閉弁26への通電が行われてバルブが開かれることで各空気袋内に残留した空気の排気が行われる。残留空気の排気が終了すると、圧力センサのゼロセット(初期化)を行い、この後ステップS2において開閉弁26を閉じることで測定準備が整う。   First, the blood pressure measurement device is activated, the cuff body 1 is mounted as shown in FIG. 2, and when a start switch (not shown) is pressed, the valve drive unit 41 energizes the on-off valve 26 in step S1, and the valve The air remaining in each air bag is exhausted by opening the. When the exhaust of the residual air is completed, the pressure sensor is zero-set (initialized), and then the on-off valve 26 is closed in step S2 to prepare for measurement.

この後ステップS3では、予想される収縮期血圧より高い20〜30mmHg分以上を設定圧力Pとしてポンプ27の連続駆動を行う。ステップS4で阻血用空気袋8、サブ空気袋9の圧力が設定圧力Pに到った否かをカフ圧力検出部の信号によりチェックし、設定圧力になるまで継続し、設定圧力PになるとステップS5でポンプ駆動を停止する。カフ本体1の圧力が設定圧力PになるとステップS6に進み、減圧制御部によりカフ圧力検出部からの信号を用いて、減圧速度が2〜3mmHg/秒になるように減圧が開始される。   Thereafter, in step S3, the pump 27 is continuously driven with a set pressure P equal to or higher than 20 to 30 mmHg higher than the expected systolic blood pressure. In step S4, whether or not the pressure of the air bag 8 for ischemia and the sub air bag 9 has reached the set pressure P is checked by a signal from the cuff pressure detecting unit, and continues until the set pressure is reached. In S5, the pump drive is stopped. When the pressure of the cuff body 1 reaches the set pressure P, the process proceeds to step S6, and the pressure reduction control unit uses the signal from the cuff pressure detection unit to start the pressure reduction so that the pressure reduction rate becomes 2 to 3 mmHg / sec.

これに続いてステップS7で、カフ圧力検出部からカフ圧力を得る、また次のステップS8では脈波の検出を開始する。次に、ステップS9に進み脈波検出部で検出された脈波信号は血圧検出部内の記憶部に送られカフ圧力と脈波振幅とを一組にして記憶を行う。ステップS10では、脈波振幅が急に大きくなったことを、例えば今までの振幅値の平均値と比較し、2倍になった点を収縮期血圧ポイントとして検出する。以上の収縮期血圧が検出されるまでステップS6〜S10を繰り返し行う。   Following this, in step S7, a cuff pressure is obtained from the cuff pressure detector, and in the next step S8, detection of a pulse wave is started. In step S9, the pulse wave signal detected by the pulse wave detection unit is sent to the storage unit in the blood pressure detection unit, and the cuff pressure and the pulse wave amplitude are stored as a set. In step S10, the fact that the pulse wave amplitude has suddenly increased is compared with, for example, the average value of the amplitude values so far, and a point that has doubled is detected as a systolic blood pressure point. Steps S6 to S10 are repeated until the above systolic blood pressure is detected.

続いて、ステップS11に進み、カフ圧力の減圧を行い、ステップS12で血圧検出部にて、さらに、脈波振幅が心拍ごとに減少する現象が検出されたら今まで脈波最大値の所定比率以下である例えば60%以下になる脈波の検出を行い、その時のカフ圧力を拡張期血圧(最低血圧値)として決定する。この拡張期血圧が決定されると、減圧制御部により急速排気される。そしてステップS13において、このようにして決定された収縮期血圧値と拡張期血圧値を血圧表示部40に表示して一連の血圧計測動作を終了する。 Subsequently, the process proceeds to step S11, the cuff pressure is reduced, and if the phenomenon that the pulse wave amplitude decreases for each heartbeat is further detected by the blood pressure detection unit in step S12, the pulse wave maximum value is equal to or less than the predetermined ratio until now. For example, a pulse wave of 60% or less is detected, and the cuff pressure at that time is determined as the diastolic blood pressure (minimum blood pressure value). When this diastolic blood pressure is determined, the evacuation control unit rapidly evacuates. In step S13, the systolic blood pressure value and the diastolic blood pressure value thus determined are displayed on the blood pressure display unit 40, and the series of blood pressure measurement operations is completed.

以上のように圧力損失の大きな絞りである流体抵抗を用いずに、阻血用空気袋の内圧が血圧より低くなったときに末梢側に発生する脈波の検出を行えるので、測定時間短縮も可能となる。   As described above, it is possible to detect the pulse wave generated on the peripheral side when the internal pressure of the air bag for ischemia is lower than the blood pressure without using the fluid resistance, which is a throttle with a large pressure loss, so the measurement time can be shortened. It becomes.

本発明の一実施形態の血圧測定装置を示すブロック図である。It is a block diagram which shows the blood pressure measuring device of one Embodiment of this invention. (a)はカフ本体1を上腕に装着した後の様子を図示した外観斜視図、(b)は(a)のY-Y線矢視断面図である。(a) is the external appearance perspective view which illustrated the mode after mounting the cuff main body 1 to the upper arm, (b) is the YY arrow directional cross-sectional view of (a). 図2(a)のX-X線矢視断面図である。FIG. 3 is a cross-sectional view taken along line XX in FIG. 遮断装置5の立体分解図である。It is a three-dimensional exploded view of the blocking device 5. (a)は阻血用空気袋8とサブ空気袋9の外観斜視図、(b)は阻血用空気袋8とサブ空気袋9の展開図である。(a) is an external perspective view of the air bag 8 for ischemia and the sub air bag 9, and (b) is a development view of the air bag 8 for ischemia and the sub air bag 9. バイパス流路18に接続される音響インピーダンス手段22の模式図である。3 is a schematic diagram of acoustic impedance means 22 connected to a bypass flow path 18. FIG. 音響インピーダンス手段22の外観斜視図である。2 is an external perspective view of acoustic impedance means 22. FIG. 血圧測定装置の動作説明フローチャートである。It is operation | movement explanatory flowchart of a blood-pressure measurement apparatus.

符号の説明Explanation of symbols

1 血圧測定装置
2 カフ部材
3、4 面ファスナー
5 遮断装置
6 第1配管
7 第2配管
8 阻血用空気袋
9 サブ空気袋
10 脈波検出用空気袋
18 バイパス流路
20 本体
22 音響インピーダンス装置
23 第1コイル
25 第2コイル
24 容積体
H 心臓
K 動脈
M 脈波
DESCRIPTION OF SYMBOLS 1 Blood pressure measuring device 2 Cuff member 3, 4 Surface fastener 5 Shut-off device 6 1st piping 7 2nd piping 8 Blood-blocking air bag 9 Sub air bag 10 Pulse wave detection air bag 18 Bypass flow path 20 Main body 22 Acoustic impedance device 23 First coil 25 Second coil 24 Volume H Heart K Artery M Pulse wave

Claims (3)

血圧測定部位に対して着脱自在に設けられるカフ部材と、前記カフ部材の血圧測定部位に接する側に敷設され血圧測定部位の全体を圧迫する阻血用空気袋と、前記阻血用空気袋に敷設され血圧測定部位の心臓側を圧迫するサブ空気袋と、前記阻血用空気袋に敷設され血圧測定部位の動脈下流側を圧迫する脈波検出用空気袋と、から構成されるカフ本体と、前記カフ本体を加圧および減圧するために配管を介して接続される加減圧手段と、を備えた血圧測定装置であって、
前記配管は、
前記阻血用空気袋および前記サブ空気袋に接続される第1配管と、
前記脈波検出用空気袋と前記脈波検出用空気袋の圧力変化からカフ圧信号を得るカフ圧力検出手段との間に接続される第2配管と、
前記第1配管と前記第2配管との間で分岐接続されるバイパス流路とからなり、
前記カフ圧信号に重畳する脈波を検出して脈波信号を得る脈波検出手段と、
前記カフ圧信号と前記脈波信号とに基づき血圧値を決定する血圧検出手段と、
前記血圧値を表示する血圧表示手段と、を備え、
第1音響抵抗と第2音響抵抗と音響イナータンスと音響コンプライアンスとを含む音響インピーダンス手段を、前記バイパス流路に接続することにより、前記減圧時において前記カフ圧信号に含まれる心拍振動周波数の圧力変動分を減衰させることを特徴とする血圧測定装置。
A cuff member provided detachably with respect to the blood pressure measurement site, an air bag for ischemia laid on the side of the cuff member in contact with the blood pressure measurement site, and compresses the entire blood pressure measurement site, and laid on the air bag for ischemia A cuff body comprising: a sub-air bag that compresses the heart side of the blood pressure measurement site; and a pulse wave detection air bag that is laid in the air bag for ischemia and compresses the downstream side of the artery of the blood pressure measurement site; A blood pressure measuring device comprising pressure increasing / decreasing means connected via a pipe to pressurize and depressurize the main body,
The piping is
A first pipe connected to the air bag for ischemia and the sub air bag;
A second pipe connected between the pulse wave detecting air bag and a cuff pressure detecting means for obtaining a cuff pressure signal from a pressure change of the pulse wave detecting air bag;
A bypass flow path that is branched and connected between the first pipe and the second pipe;
Pulse wave detection means for detecting a pulse wave superimposed on the cuff pressure signal to obtain a pulse wave signal;
Blood pressure detection means for determining a blood pressure value based on the cuff pressure signal and the pulse wave signal;
Blood pressure display means for displaying the blood pressure value,
By connecting the acoustic impedance means including the first acoustic resistance, the second acoustic resistance, the acoustic inertance, and the acoustic compliance to the bypass flow path, the pressure fluctuation of the heartbeat vibration frequency included in the cuff pressure signal at the time of the decompression A blood pressure measuring device characterized by attenuating minutes.
前記第1配管側から接続され、かつ第1流路長と第1内径孔とを有する管体をコイル状に巻き付けた第1コイル体により前記第1音響抵抗と第1音響イナータンスを得るとともに、
前記第2配管側から接続され、かつ第2流路長と第2内径孔とを有する管体をコイル状に巻き付けた第2コイル体により前記第2音響抵抗と第2音響イナータンスを得るとともに、
前記第1コイル体と前記第2コイル体との間に接続される容積部を有した容積体により前記音響コンプライアンスを得るように前記音響インピーダンス手段が構成されることを特徴とする請求項1に記載の血圧測定装置。
The first acoustic resistance and the first acoustic inertance are obtained by a first coil body that is connected from the first pipe side and wound in a coil shape with a tube body having a first flow path length and a first inner diameter hole,
The second acoustic resistance and the second acoustic inertance are obtained by a second coil body that is connected from the second pipe side and wound in a coil shape with a tube body having a second flow path length and a second inner diameter hole,
2. The acoustic impedance means is configured to obtain the acoustic compliance by a volume body having a volume portion connected between the first coil body and the second coil body. The blood pressure measurement device described.
前記第1コイル体の第1入口端部と第1出口端部と、前記第2コイル体の第2入口端部と第2出口端部とを揃えて収容するための1組の縦溝部を有する円筒体に対して前記第1コイル体と前記第2コイル体とを積層させて収納し、
前記第1出口端部と前記第2出口端部とに接続される接続開口部を有する前記容積体に対して直に接続したことを特徴とする請求項2に記載の血圧測定装置。
A set of longitudinal groove portions for accommodating the first inlet end portion and the first outlet end portion of the first coil body and the second inlet end portion and the second outlet end portion of the second coil body in alignment. The first coil body and the second coil body are stacked and stored in a cylindrical body having
The blood pressure measurement device according to claim 2, wherein the blood pressure measuring device is directly connected to the volume body having a connection opening connected to the first outlet end and the second outlet end.
JP2007014090A 2007-01-24 2007-01-24 Blood pressure measurement device Active JP4943869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014090A JP4943869B2 (en) 2007-01-24 2007-01-24 Blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014090A JP4943869B2 (en) 2007-01-24 2007-01-24 Blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2008178540A JP2008178540A (en) 2008-08-07
JP4943869B2 true JP4943869B2 (en) 2012-05-30

Family

ID=39722895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014090A Active JP4943869B2 (en) 2007-01-24 2007-01-24 Blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP4943869B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111820882B (en) * 2020-07-22 2021-09-21 歌尔科技有限公司 Blood pressure measuring equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2732286C3 (en) * 1976-10-18 1979-06-13 Filac Corp., Sunnyvale, Calif. (V.St.A.) Blood pressure and heartbeat meters
JPS63150051A (en) * 1986-12-15 1988-06-22 松下電工株式会社 Cuff band of electronic hemomanometer
JPH0638790B2 (en) * 1989-05-19 1994-05-25 松田 正義 Arterial extensibility measuring device
JPH039726A (en) * 1989-06-07 1991-01-17 Terumo Corp Automatic blood pressure meter
JPH07210167A (en) * 1994-01-19 1995-08-11 Omron Corp Acoustic filter
JPH11285476A (en) * 1998-04-01 1999-10-19 Advance Co Ltd Method of measuring blood flow and rheometer
JP4020344B2 (en) * 1998-09-04 2007-12-12 修 栃久保 Sphygmomanometer
JP4648510B2 (en) * 2000-01-19 2011-03-09 テルモ株式会社 Electronic blood pressure monitor
JP2004195056A (en) * 2002-12-20 2004-07-15 Terumo Corp Cuff for hemadynamometer
JP4304429B2 (en) * 2003-02-24 2009-07-29 パナソニック電工株式会社 Cuff band of blood pressure monitor and blood pressure monitor using the same
JP3667326B2 (en) * 2003-04-21 2005-07-06 コーリンメディカルテクノロジー株式会社 Double cuff for blood pressure measurement
JP2006334153A (en) * 2005-06-02 2006-12-14 Shibuya Kogyo Co Ltd Sphygmomanometer

Also Published As

Publication number Publication date
JP2008178540A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5101897B2 (en) Blood pressure measuring device, cuff and cuff manufacturing method
KR101099235B1 (en) Sphygmomanometry apparatus
JP4795777B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
JP5418302B2 (en) Blood pressure information measuring device
JP4943870B2 (en) Blood pressure measuring device and cuff
JP5565164B2 (en) Electronic blood pressure monitor
WO2009096263A1 (en) Blood pressure measuring instrument
JP4020344B2 (en) Sphygmomanometer
JP4943748B2 (en) Blood pressure measurement device, measurement method thereof, and storage medium
WO2011105195A1 (en) Blood pressure information measurement device, and method for determining attachment state of cuff for blood pressure information measurement device
JP6852446B2 (en) Blood pressure information measuring device
US6224558B1 (en) Signal enhancing and artifact reducing blood pressure cuff
JP5112756B2 (en) Blood pressure measurement device
JP5111053B2 (en) Blood pressure measurement device
JP4943869B2 (en) Blood pressure measurement device
JP5493932B2 (en) Blood pressure information measuring device
JP4819594B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
JP5049097B2 (en) Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same.
JP2011200607A (en) Electronic sphygmomanometer
JP5112767B2 (en) Blood pressure measurement device
JP3686710B2 (en) Sphygmomanometer having optimum pressurization and fine exhaust control function and control method thereof
JP5107535B2 (en) Blood pressure measurement device
JP2615858B2 (en) Electronic sphygmomanometer
WO2000013583A1 (en) Hemodynamometer and its cuff band
JPWO2004069049A1 (en) Blood pressure pulse wave measuring device and blood pressure pulse wave measuring wearing tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4943869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250