JP4943748B2 - Blood pressure measurement device, measurement method thereof, and storage medium - Google Patents

Blood pressure measurement device, measurement method thereof, and storage medium Download PDF

Info

Publication number
JP4943748B2
JP4943748B2 JP2006177262A JP2006177262A JP4943748B2 JP 4943748 B2 JP4943748 B2 JP 4943748B2 JP 2006177262 A JP2006177262 A JP 2006177262A JP 2006177262 A JP2006177262 A JP 2006177262A JP 4943748 B2 JP4943748 B2 JP 4943748B2
Authority
JP
Japan
Prior art keywords
blood pressure
air bag
cuff
pulse wave
ischemia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006177262A
Other languages
Japanese (ja)
Other versions
JP2008005926A5 (en
JP2008005926A (en
Inventor
孝博 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP2006177262A priority Critical patent/JP4943748B2/en
Publication of JP2008005926A publication Critical patent/JP2008005926A/en
Publication of JP2008005926A5 publication Critical patent/JP2008005926A5/ja
Application granted granted Critical
Publication of JP4943748B2 publication Critical patent/JP4943748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、圧測定装に係り、特に阻血用カフを用いるオシロメトリツク方式を用いて非観血血圧測定を行う血圧測定用カフ用いた血圧測定装置に関する。 The present invention relates to a blood pressure measuring apparatus using a blood pressure cuff which performs non-invasive blood pressure measurements using the oscillometric metric scheme relates to a blood pressure measurement equipment, especially used ischemic cuff.

従来のオシロメトリック方式の血圧計によれば、収縮期血圧以上の高い圧力までカフの圧力を徐々に上昇させるか、または収縮期血圧より高い圧力より下降させながらカフの下に位置した動脈の容積変化に基づいて、カフ圧力の振動を検出し、振動の振幅変化により血圧を決定していた。   According to a conventional oscillometric sphygmomanometer, the volume of the artery located under the cuff while gradually increasing the cuff pressure to a pressure higher than the systolic blood pressure or lowering the pressure higher than the systolic blood pressure. Based on the change, the vibration of the cuff pressure was detected, and the blood pressure was determined by the change in the amplitude of the vibration.

このようなカフを用いた血圧測定法における収縮期血圧の求め方はカフの圧力を動脈内の最高圧力である収縮期血圧以上に上げることで、動脈の血流が止まる一方で、下げることで血流は流れる現象を検出して求めている。   The method of obtaining systolic blood pressure in such a blood pressure measurement method using a cuff is to increase the cuff pressure above the systolic blood pressure, which is the highest pressure in the artery, while lowering the arterial blood flow while stopping it. Blood flow is obtained by detecting the phenomenon of flow.

これに対して、現在広く普及しているコロトコフ方式(聴診法)によれば、収縮期血圧以上にカフの圧力を上げて一度血流を止めた後に、徐々にカフの圧力を降下させ、血流の再開するタイミングで発生するコロトコフ音をカフの下流側で検出することにより収縮期血圧値(最高血圧値)を求めるものである。   On the other hand, according to the Korotkoff method (auscultation method), which is widely used at present, the cuff pressure is raised above the systolic blood pressure to stop the blood flow, and then the cuff pressure is gradually lowered to reduce blood pressure. A systolic blood pressure value (maximum blood pressure value) is obtained by detecting a Korotkoff sound generated at the timing when flow resumes on the downstream side of the cuff.

上記のオシロメトリツク方式は、血流が再開する現象を、カフ下の動脈容積変化に基づくカフの圧力振動として捕らえる方法である。このため、オシロメトリック方式は、コロトコフ方式との比較においてコロトコフ音の検出を行うためのセンサー(含む聴診器)が不要となる。   The oscillometric method is a method of capturing the phenomenon of blood flow resumption as cuff pressure oscillation based on arterial volume change under the cuff. For this reason, the oscillometric method does not require a sensor (including a stethoscope) for detecting the Korotkoff sound in comparison with the Korotkoff method.

聴診法では血圧測定時に発生するノイズ(カフ布、カフチューブの擦過音、振動)は、ノイズの周波数成分がコロトコフ音の周波数成分に近いことから誤検出されやすい欠点を有する。これに対してオシロメトリツク方式の測定時における圧力変動の周波数成分は、コロトコフ音の周波数成分より低く、血圧測定時に発生するノイズ周波数と大きく乖離しているために、ノイズの影響を受けず、また被測定部位となる動脈に対するカフ装着時の位置ずれがあっても測定可能な方法であることから、主に自動血圧計用として用いられている。   In the auscultation method, noise (cuff cloth, cuff tube rubbing sound, vibration) generated during blood pressure measurement has a drawback that the frequency component of noise is likely to be erroneously detected because it is close to the frequency component of Korotkoff sound. On the other hand, the frequency component of the pressure fluctuation at the time of the measurement of the oscillometric method is lower than the frequency component of the Korotkoff sound and greatly deviates from the noise frequency generated at the time of blood pressure measurement. In addition, since it is a method that can be measured even when there is a positional shift when the cuff is attached to the artery to be measured, it is mainly used for an automatic sphygmomanometer.

しかしながら、オシロメトリツク方式にはカフに用いられるリバロッチカフの血管圧迫特性に起因する収縮期血圧(最大血圧値)の検出に問題がある。すなわち、リバロッチカフは幅方向の中央部ではカフ圧力を反映した圧迫力を得ることができるが、中央部よりズレるとカフ圧を反映した圧迫力が得られず、中央部からカフの端部方向に圧迫力が徐々に減少してしまい、端部ではゼロとなる特性を示す。   However, the oscillometric method has a problem in detecting systolic blood pressure (maximum blood pressure value) due to the blood vessel compression characteristics of the Rivaroch cuff used in the cuff. In other words, the Rivaroch cuff can obtain a compression force reflecting the cuff pressure in the central portion in the width direction, but if it deviates from the central portion, a compression force reflecting the cuff pressure cannot be obtained, and from the central portion to the end of the cuff. The compression force gradually decreases, and the end portion exhibits a characteristic that becomes zero.

このような特性により、まさに収縮期血圧を測定しようとするタイミングにてカフ圧力が、収縮期血圧に近くやや高い状態の時に、血流はカフの中央部で止められていることになる。この結果、血流は心臓の拍動に同期して、カフの上流部からカフの中央部まで侵入しては戻される現象が生じる。この現象によって、収縮期血圧の検出ターゲットとなるカフの下流側(前腕側)への血流の再開現象を検出するために用いられる脈波の発生する以前から既に脈波が検出されてしまう。   Due to such characteristics, the blood flow is stopped at the center of the cuff when the cuff pressure is close to and slightly higher than the systolic blood pressure at the timing of measuring the systolic blood pressure. As a result, a phenomenon occurs in which the blood flow enters and returns from the upstream portion of the cuff to the central portion of the cuff in synchronization with the pulsation of the heart. Due to this phenomenon, the pulse wave has already been detected before the generation of the pulse wave used to detect the blood flow resumption phenomenon to the downstream side (forearm side) of the cuff serving as the detection target of the systolic blood pressure.

また、カフのカフ圧力が収縮期血圧以下になり、血流が再開するとこの血流による容積変化が、カフ下の中央部から下流側で発生するが、この容積変化は、カフ圧力が動脈圧よりわずかに低い状態であるため、血管がわずかな時問の間、開いた後にすぐに閉じてしまう。この時の、カフ下の下流側の容積変化は、上流側の容積変化に比較すると非常に小さい。   In addition, when the cuff pressure of the cuff becomes lower than the systolic blood pressure and the blood flow is resumed, a volume change due to the blood flow occurs downstream from the central part under the cuff. Because it is slightly lower, the blood vessel closes immediately after opening for a short time. At this time, the volume change on the downstream side under the cuff is very small compared to the volume change on the upstream side.

オシロメトリック方式で検出される脈波は、上述のカフ下の上流側の容積変化と下流側の容積変化が重なった容積変化に基づいているので、脈波より血流再開に基づく変化のみを選択して検出することは、特に血流量が小さい場合には非常に困難になる。以上が、オシロメトリック方式がコロトコフ方式に較べて、収縮期血圧の測定におけるS/N比の悪化を招く原因となっている。   The pulse wave detected by the oscillometric method is based on the volume change in which the upstream volume change under the cuff and the downstream volume change overlap, so only the change based on the resumption of blood flow is selected from the pulse wave. This is very difficult to detect, particularly when the blood flow is small. As described above, the oscillometric method causes the deterioration of the S / N ratio in the measurement of systolic blood pressure as compared with the Korotkoff method.

これらの血流の再開現象の検出における問題点を解決するため、従来より、以下の対策を図っている。カフの圧力を収縮期血圧からさらに下降させていくと心臓の拍動周期の内、動脈圧がカフの圧力より高くなる時問が長くなることによるカフ下の下流側の容積変化の増加により、徐々に脈波の振幅が大きくなる。   In order to solve these problems in detecting the blood flow resumption phenomenon, conventionally, the following measures have been taken. When the pressure of the cuff is further lowered from the systolic blood pressure, the increase in the volume change on the downstream side under the cuff due to the increase in the time when the arterial pressure becomes higher than the pressure of the cuff in the heart pulsation cycle, The amplitude of the pulse wave gradually increases.

また、鬱血の度合いにもよるが、カフより末梢部位の血管内圧がカフ圧より大きくなると、末梢からの圧反射が発生し、この反射によりあるカフ圧から脈波が急に大きくなる。さらにカフ圧の減圧が進むと、カフの内圧よりも末梢部位の血管内圧が大きくなる時間が長くなり、血管が閉じている時間が無くなる寸前では、カフの上流部位と末梢部の血管が同時に全開となり脈波の振幅が最大となる。   Also, depending on the degree of congestion, when the intravascular pressure at the peripheral portion is higher than the cuff pressure, the pressure reflection from the periphery occurs, and the pulse wave suddenly increases from the cuff pressure due to this reflection. As the cuff pressure is further reduced, the time during which the blood pressure in the peripheral region becomes larger than the internal pressure in the cuff becomes longer, and immediately before the time when the blood vessel is closed, the upstream region of the cuff and the blood vessel in the peripheral region are fully opened simultaneously. And the amplitude of the pulse wave is maximized.

このときの容積変化は、収縮期血圧測定時のタイミングにおけるカフ下の容積変化は主にカフ下の血管容積の50%に相当するカフ中心部より上流側の変化であるので、収縮期血圧測定時脈波振幅の約2倍になる。これを利用して、最大脈波振幅の約50%の脈波振幅になるタイミングを収縮期血圧とする方法を採用している。   The volume change at this time is a change in the systolic blood pressure because the volume change under the cuff at the timing of measuring the systolic blood pressure is mainly a change upstream of the cuff center corresponding to 50% of the blood vessel volume under the cuff. It is about twice the time pulse wave amplitude. Utilizing this, a method is adopted in which the systolic blood pressure is set at a timing at which the pulse wave amplitude is about 50% of the maximum pulse wave amplitude.

しかしながら、この割合は、カフの巻き方によるカフ下の脈波形成に寄与する上流部、下流部の容積のアンバランス、カフのコンプライアンスの差、末梢部位の血管内圧の上昇の程度、タイミングの影響を受ける。また、この末梢部位の血管内圧の上昇には、血圧測定の繰り返し時問の短さによる鬱血の程度が影響するが、主として生体の個体差である血圧値、末梢循環の程度、末梢側の血管コンプライアンスが影響している。   However, this ratio is influenced by the upstream and downstream volume imbalance, cuff compliance differences, the degree of increase in intravascular pressure at the peripheral site, and timing effects, which contribute to the formation of the pulse wave under the cuff due to how the cuff is wound. Receive. In addition, the increase in intravascular pressure at the peripheral site is affected by the degree of congestion due to the short time required for repeated blood pressure measurements. However, the blood pressure value, the degree of peripheral circulation, the peripheral blood vessels, Compliance has an impact.

これらの問題解決を図るためにダブルカフ方式が考案されている。このダブルカフ方式は、血管の圧迫に用いる阻血用空気袋と、阻血用空気袋下の中央部において脈波のみを検出する検出用空気袋を阻血機能とは分離して設けた方式である。このダブルカフ方式によれば、オシロメトリック方式で問題となる上記の収縮期血圧測定時の阻血用空気袋下の上流側の容積変化に基づく脈波の影響を軽減でき、収縮期血圧の決定の目安になる阻血用空気袋下の下流側の容積変化をS/N比良く検出することができる。(特許文献1)
しかし、収縮期血圧の検出タイミングでは、阻血用空気袋下の上流側に侵入する血流は脈波検出用空気袋のすぐそばまで侵入する場合があり、これを脈波検出用空気袋が検出し、また、脈波検出用空気袋を阻血用空気袋下に設けているので、阻血用空気袋で検出された阻血用空気袋下の上流側の容積変化に基づくカフの振動が接している脈波検出用空気袋に顕著に伝わる現象が見られる場合もあり、収縮期血圧の測定のS/N比を悪化させることがあった。
A double cuff system has been devised to solve these problems. This double cuff method is a method in which an air bag for ischemia used for compressing a blood vessel and a detection air bag for detecting only a pulse wave at a central portion below the air bag for ischemia are provided separately from the ischemic function. According to this double cuff method, the influence of the pulse wave based on the volume change on the upstream side under the air bag for ischemia at the time of measuring the systolic blood pressure, which is a problem in the oscillometric method, can be reduced. It is possible to detect a change in volume on the downstream side under the air bag for ischemia with a high S / N ratio. (Patent Document 1)
However, at the detection timing of systolic blood pressure, blood flow that enters the upstream side under the air bag for ischemia may invade to the immediate vicinity of the air bag for pulse wave detection, which is detected by the air bag for pulse wave detection. In addition, since the pulse wave detection air bag is provided under the ischemic air bag, the cuff vibration based on the upstream volume change detected by the ischemic air bag is in contact with the cuff vibration. In some cases, a phenomenon that is noticeably transmitted to the pulse wave detection air bag may be seen, and the S / N ratio of the measurement of systolic blood pressure may be deteriorated.

そこで、阻血用空気袋にて血管が圧閉されている時に脈波検出用空気袋ヘの上流側から侵入してくる血流を近づけないように、脈波検出用空気袋の圧迫性能を上げるためのバッキングを設置し、脈波検出用空気袋と阻血用空気袋の間に阻血用空気袋からの伝達脈波をダンピングするための緩衝材を設置し、さらに阻血用空気袋下の上流側に脈波をダンピングするための緩衝材を設ける提案もなされている。(特許文献2)
しかしながら、この提案によれば、脈波検出用空気袋の圧迫力の向上をできるが、阻血ポイントを脈波検出用空気袋から離す程度にも限界がある。また、使用部材のダンピング特性にも限界があるので、脈波の比較的高い周波数成分の減衰は行うことができるが低い成分までは十分に減衰することができない場合もあった。このため、収縮期血圧をS/N比良く検出することができない場合があった。
特開2004−195056号公報 特開2004−321251号公報
Therefore, the pressure performance of the air bag for detecting the pulse wave is improved so that the blood flow entering from the upstream side of the air bag for detecting the pulse wave is not approached when the blood vessel is closed with the air bag for ischemia. A backing material is installed between the air bag for pulse wave detection and the air bag for ischemia, and a buffer material for damping the transmitted pulse wave from the air bag for ischemia is installed. There has also been proposed a buffer material for damping the pulse wave. (Patent Document 2)
However, according to this proposal, the compression force of the pulse wave detection air bag can be improved, but there is a limit to the extent to which the ischemic point is separated from the pulse wave detection air bag. In addition, since there is a limit to the damping characteristics of the members used, the relatively high frequency components of the pulse wave can be attenuated, but there are cases where the low components cannot be sufficiently attenuated. For this reason, the systolic blood pressure may not be detected with a good S / N ratio.
JP 2004-195056 A Japanese Patent Laid-Open No. 2004-321251

したがって、本発明はこのような状況に鑑みてなされたものであり、オシロメトリック方式の改良型であるダブルカフ法の脈波検出用空気袋に対する阻血用空気袋の上流部の容積変化の影響をより効果的に排除することで、収縮期血圧の検出のためのS/N比を向上することを目的としている。   Therefore, the present invention has been made in view of such a situation, and the influence of the volume change at the upstream portion of the blood-blocking air bag on the pulse wave detection air bag of the double cuff method, which is an improved version of the oscillometric method, is further improved. It aims at improving the S / N ratio for the detection of systolic blood pressure by eliminating effectively.

上述した課題を解決するために、本発明の血圧測定装置によれば、血圧測定部位の動脈を圧迫する阻血用空気袋と、血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部よりも心臓側に配置されるサブ空気袋と、血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部配置される脈波検出用空気袋と、前記阻血用空気袋と前記サブ空気袋との間に接続される第1流体抵抗器と、前記第1流体抵抗器と並行に、その入力側を前記阻血用空気袋側に、その出力側を前記サブ空気袋側に接続した逆止弁と、前記阻血用空気袋と接続される第1配管と、前記脈波検出用空気袋に第2流体抵抗器を介して接続される第2配管と、血圧測定部位に装着されるカフ本体と、前記カフ本体と前記第2配管にて接続されるカフ圧力検出部と、前記カフ本体と前記第1配管にて接続され、前記カフ本体を加圧する加圧手段と、前記加圧手段を制御する加圧制御部と、前記カフ本体と前記第1配管にて接続され、前記カフ本体を減圧する減圧制御部と、前記カフ圧力検出部に電気的に接続され、脈波を検出脈波信号に変換し、検出脈波信号に重畳する脈波を検出する脈波検出部と、前記脈波検出部からの出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定する血圧検出部と、前記血圧検出部の血圧値を表示する血圧表示部とを備えた本体と、を備えることを特徴としている。 In order to solve the above-described problem, according to the blood pressure measurement device of the present invention, a blood-filling air bag that compresses an artery at a blood pressure measurement site, and the blood-pressure measurement site between the blood bag for blood pressure measurement and the living body when the blood pressure measurement device is mounted. A sub-air bag disposed closer to the heart than the substantially central portion of the ischemic air bag, and a substantially central portion of the ischemic air bag between the ischemic air bag and the living body when attached to a blood pressure measurement site. and air bag for detecting pulse waves that is arranged in a first fluid resistor connected between the sub air bag and air bag the ischemia, in parallel with the first fluid resistor, the input side A check valve having an output side connected to the sub-air bag side, a first pipe connected to the blood-stopping air bag, and a second fluid to the pulse-wave detecting air bag. A second pipe connected via a resistor, a cuff body attached to a blood pressure measurement site, and the cuff body A cuff pressure detection unit connected by the second pipe, a pressurization unit connected by the cuff body and the first pipe and pressurizing the cuff body, and a pressurization control unit for controlling the pressurization unit And connected to the cuff main body by the first pipe, and electrically connected to a decompression control unit for depressurizing the cuff main body and the cuff pressure detection unit, and converts a pulse wave into a detected pulse wave signal to detect A pulse wave detector that detects a pulse wave that is superimposed on the pulse wave signal; an output from the pulse wave detector; and a blood pressure detector that determines a blood pressure value based on a detected cuff pressure signal of the cuff pressure detector; A main body including a blood pressure display unit that displays a blood pressure value of the blood pressure detection unit.

また、前記阻血用空気袋と前記サブ空気袋との間にパッキング材を含む第1裏打部材を、また前記阻血用空気袋と前記脈波検出用空気袋との間にパッキング材を含む第2裏打部材を配置したことを特徴としている。   A second backing member including a packing material between the ischemic air bladder and the sub-air bag; and a second backing member including a packing material between the ischemic air bag and the pulse wave detecting air bag. It is characterized by arranging a backing member.

また、前記阻血用空気袋と前記カフ本体との間にパッキング材を含む第3裏打部材を配置したことを特徴としている。   A third backing member including a packing material is disposed between the air bag for ischemia and the cuff body.

また、前記第1流体抵抗器と前記第2流体抵抗器は、略等しい流体抵抗を有することを特徴としている。   The first fluid resistor and the second fluid resistor have substantially the same fluid resistance.

血圧測定部位の動脈を圧迫する阻血用空気袋と、血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部よりも心臓側に配置されるサブ空気袋と、血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部配置される脈波検出用空気袋と、前記阻血用空気袋と前記サブ空気袋との間に接続される第1流体抵抗器と、前記第1流体抵抗器と並行に、その入力側を前記阻血用空気袋側に、その出力側を前記サブ空気袋側に接続した逆止弁と、前記阻血用空気袋と接続される第1配管と、前記脈波検出用空気袋に第2流体抵抗器を介して接続される第2配管と、血圧測定部位に装着されるカフ本体と、前記カフ本体と前記第2配管にて接続されるカフ圧力検出部と、前記カフ本体と前記第1配管にて接続され、前記カフ本体を加圧する加圧手段と、前記加圧手段を制御する加圧制御部と、前記カフ本体と前記第1配管にて接続され、前記カフ本体を減圧する減圧制御部と、前記カフ圧力検出部に電気的に接続され、脈波を検出脈波信号に変換し、検出脈波信号に重畳する脈波を検出する脈波検出部と、前記脈波検出部からの出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定する血圧検出部と、前記血圧検出部の血圧値を表示する血圧表示部と、を備えた血圧測定装置の測定方法であって、前記加圧制御部を介して前記動脈を圧迫する工程と、前記圧力検出部により、前記脈波を検出脈波信号に変換する工程と、前記減圧制御部を介して前記カフ組立体を減圧する工程と、前記脈波検出部において、前記検出脈波信号に重畳する脈波を検出する工程と、前記血圧検出部において、前記脈波検出部の出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定する工程と、前記血圧表示部において、前記血圧検出部からの血圧値を表示する工程と、を有することを特徴としている。 A blood-filling air bag that compresses the artery at the blood pressure measurement site, and a sub that is disposed closer to the heart than the substantially central portion of the blood bag for blood pressure between the blood bag for blood pressure prevention and the living body when attached to the blood pressure measurement site the air bag, the air bag for detecting pulse waves that is arranged at a substantially central portion of the air bag the ischemia in between the ischemia air bag and the living when worn on a blood pressure measurement site, and the air bag the avascularization A first fluid resistor connected between the sub-air bladder, and in parallel with the first fluid resistor, its input side is connected to the blood-insufficing air bag side, and its output side is connected to the sub-air bag side A check valve, a first pipe connected to the air bag for ischemia, a second pipe connected to the pulse wave detection air bag via a second fluid resistor, and a blood pressure measurement site. A cuff body, a cuff pressure detector connected to the cuff body by the second pipe, and the cuff body, Connected by the first pipe, pressurizing means for pressurizing the cuff body, a pressurizing control unit for controlling the pressurizing means, and connected by the cuff body and the first pipe, A pressure reduction control unit configured to reduce pressure, a pulse wave detection unit that is electrically connected to the cuff pressure detection unit, converts a pulse wave into a detection pulse wave signal, and detects a pulse wave superimposed on the detection pulse wave signal; A blood pressure comprising: a blood pressure detection unit that determines a blood pressure value based on an output from the wave detection unit and a detection cuff pressure signal of the cuff pressure detection unit; and a blood pressure display unit that displays the blood pressure value of the blood pressure detection unit A measuring method of a measuring device, the step of compressing the artery via the pressurization control unit, the step of converting the pulse wave into a detected pulse wave signal by the pressure detection unit, and the decompression control unit The step of depressurizing the cuff assembly through the pulse wave detector, A step of detecting a pulse wave superimposed on the detected pulse wave signal; and a step of determining a blood pressure value in the blood pressure detection unit based on an output of the pulse wave detection unit and a detection cuff pressure signal of the cuff pressure detection unit. The blood pressure display unit includes a step of displaying a blood pressure value from the blood pressure detection unit.

また、血圧測定部位の動脈を圧迫する阻血用空気袋と、血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部よりも心臓側に配置されるサブ空気袋と、血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部配置される脈波検出用空気袋と、前記阻血用空気袋と前記サブ空気袋との間に接続される第1流体抵抗器と、前記第1流体抵抗器と並行に、その入力側を前記阻血用空気袋側に、その出力側を前記サブ空気袋側に接続した逆止弁と、前記阻血用空気袋と接続される第1配管と、前記脈波検出用空気袋に第2流体抵抗器を介して接続される第2配管と、血圧測定部位に装着されるカフ本体と、前記カフ本体と前記第2配管にて接続されるカフ圧力検出部と、前記カフ本体と前記第1配管にて接続され、前記カフ本体を加圧する加圧手段と、前記加圧手段を制御する加圧制御部と、前記カフ本体と前記第1配管にて接続され、前記カフ本体を減圧する減圧制御部と、前記カフ圧力検出部に電気的に接続され、脈波を検出脈波信号に変換し、検出脈波信号に重畳する脈波を検出する脈波検出部と、前記脈波検出部からの出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定する血圧検出部と、前記血圧検出部の血圧値を表示する血圧表示部と、を備えた血圧測定装置の制御プログラムが記憶されたコンピュータ読取り可能な記憶媒体であって、前記制御プログラムが、前記加圧制御部を介して前記動脈を圧迫するプログラムと、前記圧力検出部により、前記脈波を検出脈波信号に変換するプログラムと、前記減圧制御部により、前記カフ組立体を減圧するプログラムと、前記脈波検出部で、前記検出脈波信号に重畳する脈波を検出するプログラムと、前記血圧検出部において、前記脈波検出部の出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定するプログラムと、前記血圧表示部において、前記血圧検出部からの血圧値を表示するプログラムと、を有することを特徴としている。 Further, the air bag for ischemia for compressing the artery at the blood pressure measurement site and the air bag between the blood bag for ischemia and the living body when attached to the blood pressure measurement site are disposed closer to the heart than the substantially central portion of the air bag for ischemia. A sub-air bag, a pulse wave detection air bag disposed in a substantially central portion of the ischemic air bag between the ischemic air bag and the living body when mounted on a blood pressure measurement site, and the ischemic air bag A first fluid resistor connected between the sub-air bladder and the first fluid resistor in parallel with the first fluid resistor, the input side being the ischemic bladder side and the output side being the sub-air bladder side A check valve connected to the air bag, a first pipe connected to the air bag for ischemia, a second pipe connected to the air bag for pulse wave detection via a second fluid resistor, and a blood pressure measurement site A cuff body to be mounted; a cuff pressure detector connected to the cuff body by the second pipe; and the cuff. Connected to the body by the first pipe, pressurizing means for pressurizing the cuff body, a pressurizing control unit for controlling the pressurizing means, and connected by the cuff body and the first pipe, A decompression control unit that decompresses the main body, a pulse wave detection unit that is electrically connected to the cuff pressure detection unit, converts a pulse wave into a detection pulse wave signal, and detects a pulse wave superimposed on the detection pulse wave signal; A blood pressure detection unit that determines a blood pressure value based on an output from the pulse wave detection unit and a detection cuff pressure signal of the cuff pressure detection unit; and a blood pressure display unit that displays a blood pressure value of the blood pressure detection unit. A computer-readable storage medium storing a control program for the blood pressure measurement device, wherein the control program uses the program for compressing the artery via the pressurization control unit, and the pressure detection unit. Pro to convert waves into detected pulse wave signals A program for depressurizing the cuff assembly by the ram, the depressurization control unit, a program for detecting a pulse wave superimposed on the detected pulse wave signal by the pulse wave detection unit, and the blood pressure detection unit. A program for determining a blood pressure value based on an output of the wave detection unit and a detected cuff pressure signal of the cuff pressure detection unit, and a program for displaying the blood pressure value from the blood pressure detection unit in the blood pressure display unit. It is characterized by that.

ここで、さらなる本発明の特徴は、以下本発明を実施するための最良の形態および添付図面によって明らかになるものである。   Further features of the present invention will become apparent from the best mode for carrying out the present invention and the accompanying drawings.

本発明によれば、カフに用いられるリバロッチカフの欠点である圧迫圧のカフ中央部よりカフ端に向けて生じる圧迫圧力の減少変化を無くすことができる。具体的には、カフと同じ圧力を加えたサブ空気袋の圧迫力で補強し、収縮期血圧測定のタイミングにおいて、カフ下の上流部に血液が流入することを阻止し、また、カフの上流側から阻血用空気袋の中央部に向けて流入する血液により発生される容積変化をサブ空気袋でガードし、さらにサブ空気袋に接続された流体抵抗器により適度に減衰させて、阻血用空気袋に容積変化が伝わることを防止し、血流再開に基づいたカフ下の下流側の容積変化による脈波変化のみをS/N比を向上させて精度よく検出することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the reduction | decrease change of the compression pressure which arises toward the cuff end from the cuff center part of the compression pressure which is the fault of the Rivaroch cuff used for a cuff can be eliminated. Specifically, it is reinforced by the compression force of the sub-air bladder to which the same pressure as the cuff is applied, and at the timing of systolic blood pressure measurement, blood is prevented from flowing into the upstream part under the cuff, and the upstream of the cuff The volume change generated by the blood flowing in from the side toward the center of the air bag for ischemia is guarded by the sub air bag, and further attenuated appropriately by the fluid resistor connected to the sub air bag, It is possible to prevent the change in volume from being transmitted to the bag and to accurately detect only the pulse wave change due to the change in volume downstream of the cuff based on the resumption of blood flow with an improved S / N ratio.

以下に、本発明の実施形態について添付の図面を参照して説明すると、図1は本発明の一実施形態の血圧測定装置を示すブロック図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram showing a blood pressure measurement device according to an embodiment of the present invention.

本図の実施形態によれば、カフ本体100は、血圧測定部位となる腕上に装着されるカフ本体となるカフ布5と、血圧測定部位の動脈Kを圧迫する阻血用空気袋1と、この阻血用空気袋1の下方の略中央部よりも心臓H側に配置されるサブ空気袋3と、阻血用空気袋1の下方の略中央部に配置されるとともに、脈波を検出する脈波検出用空気袋2を備えている。   According to the embodiment of the figure, the cuff body 100 includes a cuff cloth 5 serving as a cuff body mounted on an arm serving as a blood pressure measurement site, an air bag 1 for ischemia that compresses the artery K of the blood pressure measurement site, A sub-air bag 3 disposed closer to the heart H than a substantially central portion below the air bag 1 for ischemia, and a pulse for detecting a pulse wave while being disposed at a substantially central portion below the air bag 1 for ischemia. A wave detection air bag 2 is provided.

阻血用空気袋1とサブ空気袋3は分岐部6a、6b、6c、6dを介して第1配管6に接続されるとともに、分岐部6b、6dの間にオリフィス等の流体抵抗部を備えた第1流体抵抗器21が図示のように接続されている。   The hemostasis air bag 1 and the sub air bag 3 are connected to the first pipe 6 via branch portions 6a, 6b, 6c, and 6d, and a fluid resistance portion such as an orifice is provided between the branch portions 6b and 6d. A first fluid resistor 21 is connected as shown.

一方、第2流体抵抗器11が第2配管7に図示のように接続されている。また、この第2配管7の分岐部7aから分岐してカフ圧検出部13が接続される一方で、第2流体抵抗器11は、第1配管から分岐部6kされてその加圧流体入口側11aが接続されるとともに、その減圧流体入口側11bが第2配管7の分岐部7aに対して図示のように接続されている。ここで、この第2流体抵抗器11の流体抵抗は適宜設定されことになるが、上記の第1流体抵抗器21と同じ流体抵抗を有するオリフィス等の流体抵抗部を備えていても良い。   On the other hand, the second fluid resistor 11 is connected to the second pipe 7 as illustrated. Further, the cuff pressure detector 13 is branched from the branch portion 7a of the second pipe 7 and connected thereto, while the second fluid resistor 11 is branched from the first pipe 6k to the pressurized fluid inlet side. 11 a is connected, and the reduced pressure fluid inlet side 11 b is connected to the branch portion 7 a of the second pipe 7 as shown in the figure. Here, the fluid resistance of the second fluid resistor 11 is appropriately set, but a fluid resistance unit such as an orifice having the same fluid resistance as the first fluid resistor 21 may be provided.

サブ空気袋3は、阻血用空気袋1の上流側の血圧測定部位と中央部位との間に位置できるように、生体に接する側のカフ組立体100の心臓に近い方に配置されている。このサブ空気袋3は、図示の大きさに限定されず、図中の左側に阻血用空気袋1から一部がはみ出るようにしても良く、さらに阻血用カフの中央部位から心臓側に配置されるのであれば阻血用空気袋1と同じ上下方向の全長を備えていても良い。   The sub-air bag 3 is disposed closer to the heart of the cuff assembly 100 on the side in contact with the living body so that the sub-air bag 3 can be positioned between the blood pressure measurement site and the central site on the upstream side of the air bag 1 for ischemia. The sub-air bag 3 is not limited to the size shown in the drawing, and a part of the sub-air bag 3 may protrude from the ischemic air bag 1 on the left side in the drawing, and is further arranged on the heart side from the central portion of the ischemic cuff. If it is, it may have the same vertical length as the air bag 1 for ischemia.

図1に図示される血圧測定装置は、装置本体10と血圧測定部位に装着されるカフ本体100(以下、カフと言う)とから別構成されている。   The blood pressure measurement device illustrated in FIG. 1 is configured separately from a device main body 10 and a cuff main body 100 (hereinafter referred to as a cuff) attached to a blood pressure measurement site.

このカフ本体100は、図示のようにカフ上流部を血圧測定部位の動脈の血流が流れ込む心臓左室側になるようにして装着される。このカフ本体100は、阻血用空気袋1と脈波検出用空気袋2と上記の第1流体抵抗器11を介して接続されたサブ空気袋3とをカフ全体を包むカフ布5に設けて構成されており、カフ本体100を血圧測定部に巻き付けたあとに固定するための雌雄の面ファスナー(不図示)を有している。また、このカフ本体100は、阻血用空気袋1の生体に接する面と反対の側のカフ布5とカフの間に後述するようにパッキング材からなる裏打部材を設置する場合もある。   As shown in the figure, the cuff body 100 is mounted so that the upstream portion of the cuff is on the left ventricle side where the blood flow of the artery at the blood pressure measurement site flows. This cuff body 100 is provided with a cuff cloth 5 that wraps the entire cuff with a blood bag 1 for ischemia, an air bag 2 for detecting a pulse wave, and a sub air bag 3 connected via the first fluid resistor 11. It has a male and female hook-and-loop fastener (not shown) for fixing the cuff body 100 after it is wound around the blood pressure measurement unit. Further, the cuff body 100 may be provided with a backing member made of a packing material between the cuff cloth 5 and the cuff on the side opposite to the surface of the air bag 1 that contacts the living body, as will be described later.

一方、配管6の分岐部6b、6dからは第3配管60がさらに接続される場合があり、この第3配管60に対して第1流体抵抗器11と並列に接続される逆止弁22を接続することで、カフ本体100の加圧時において逆止弁22により第1流体抵抗器11をバイパスしてサブ空気袋3を短時間内に加圧することを可能にしている。すなわち、図1において、その流体入口側22aが第1配管6に、またその流体出口側22bをサブ空気袋3に接続するように、第1流体抵抗器21と並列に逆止弁22を接続することで、加圧時間の短縮化を図ることができる。   On the other hand, the third pipe 60 may be further connected from the branch portions 6 b and 6 d of the pipe 6, and the check valve 22 connected in parallel with the first fluid resistor 11 is connected to the third pipe 60. By connecting, when the cuff body 100 is pressurized, the check valve 22 can bypass the first fluid resistor 11 to pressurize the sub air bag 3 within a short time. That is, in FIG. 1, the check valve 22 is connected in parallel with the first fluid resistor 21 so that the fluid inlet side 22a is connected to the first pipe 6 and the fluid outlet side 22b is connected to the sub air bag 3. By doing so, the pressurization time can be shortened.

このように加圧可能にすることで、例えば被血圧測定者の腕のサイズが大きくなり、サブカフの容積を大きく設定しなければならない場合に、第1流体抵抗器11を介して加圧するとサブ空気袋3が十分に膨らまなくなる現象を防止できることとなる。   By enabling the pressurization in this way, for example, when the size of the arm of the blood pressure measurement person increases and the volume of the sub-cuff has to be set large, if the pressurization is performed via the first fluid resistor 11, the sub-cuff The phenomenon that the air bag 3 is not sufficiently inflated can be prevented.

カフ本体100と本体10との間はコネクタ38で着脱可能に接続されているが、一体配管としてもよい。   The cuff main body 100 and the main body 10 are detachably connected by a connector 38, but may be integrated piping.

サブ空気袋3で検出される脈波を消去するために、阻血用空気袋1とサブ空気袋3の間には第1流体抵抗器21が、また脈波検出用空気袋2には第2流体抵抗器11が上記のように夫々分岐して接続されている。なお、サブ空気袋3の容量Bは、阻血用空気袋1の容量をAmlとして最大(A/2)mlとすることで収縮期血圧の測定時のS/N比が向上することが確認された。   In order to eliminate the pulse wave detected by the sub air bag 3, a first fluid resistor 21 is provided between the ischemic air bag 1 and the sub air bag 3, and a second wave resistor 2 is provided in the pulse wave detecting air bag 2. The fluid resistors 11 are branched and connected as described above. It is confirmed that the S / N ratio at the time of measurement of the systolic blood pressure is improved by setting the capacity B of the sub-air bag 3 to a maximum (A / 2) ml, where the capacity of the air bag 1 for ischemia is Aml. It was.

一方、カフ本体100の第1配管6にはポンプ18からの空気圧を制御する加圧制御部19と、減圧の排気制御を行う減圧制御部20とが図示のように配管されている。   On the other hand, a pressurization control unit 19 that controls the air pressure from the pump 18 and a decompression control unit 20 that performs decompression exhaust control are connected to the first pipe 6 of the cuff body 100 as shown in the figure.

また配管7は、圧力センサを備えたカフ圧検出部13に接続されており、このカフ圧検出部13の出力から、この出力に重畳している脈波を検出する脈波検出部14に対して電気信号を送り、カフ圧力検出部13からの検出カフ圧信号と脈波検出部14からの検出脈波信号に基づき血圧検出部15で血圧値が決定され、決定された血圧値を液晶表示装置などを備えた血圧表示部16で表示するように構成されている。   The pipe 7 is connected to a cuff pressure detection unit 13 including a pressure sensor. From the output of the cuff pressure detection unit 13, a pulse wave detection unit 14 that detects a pulse wave superimposed on the output is connected. The blood pressure value is determined by the blood pressure detecting unit 15 based on the detected cuff pressure signal from the cuff pressure detecting unit 13 and the detected pulse wave signal from the pulse wave detecting unit 14, and the determined blood pressure value is displayed on the liquid crystal display. The blood pressure display unit 16 provided with a device or the like is configured to display.

また、本体10は、バッテリーなどの電源部17を備えており、上記のポンプおよび各制御部の制御を司るとともに、コンピュータにより読取り可能な各種制御プログラムを記憶したROM,RAM等を含むCPUへの電源供給を行うようにしている。   Further, the main body 10 includes a power source unit 17 such as a battery. The main unit 10 controls the above-described pump and each control unit, and controls a CPU including a ROM, a RAM, and the like that store various control programs readable by a computer. Power is supplied.

ここで、流体抵抗器11、逆止弁21は双方またはいずれか一方を本体10内に配設して、サブ空気袋3と別配管を介して接続することで、カフ本体100の小型軽量化を図るようにしても良い。なお、上記の各検出部13、14、15と表示部16と、制御部19、20は不図示のCPU70に内蔵されて、所定プログラムを実行可能にしている。   Here, both or one of the fluid resistor 11 and the check valve 21 is disposed in the main body 10 and connected to the sub air bag 3 via a separate pipe, thereby reducing the size and weight of the cuff main body 100. You may make it plan. Each of the detection units 13, 14, 15 and the display unit 16 and the control units 19 and 20 are built in a CPU 70 (not shown) so that a predetermined program can be executed.

続いて、図2(a)は、カフ本体100を幅方向に破断し測定部位に装着した後の断面図である。また、図2(b)は動作説明のための拡大配管図である。   2A is a cross-sectional view after the cuff body 100 is broken in the width direction and attached to the measurement site. FIG. 2B is an enlarged piping diagram for explaining the operation.

図2(a)において、サブ空気袋3の圧迫特性を高めるために、阻血用空気袋1とサブ空気袋3との間にパッキング材を含む第1の裏打部材30が配置されている。また、阻血用空気袋1とカフ布5との間に は、パッキング材を含む第3の裏打部材40が配置されている。   In FIG. 2A, a first backing member 30 including a packing material is disposed between the ischemic air bag 1 and the sub air bag 3 in order to enhance the compression characteristics of the sub air bag 3. Further, a third backing member 40 including a packing material is disposed between the ischemic air bag 1 and the cuff cloth 5.

さらに、阻血用空気袋1と脈波検出用空気袋2との間には、パッキング材を含む第2裏打部材25が配設されている。   Further, a second backing member 25 including a packing material is disposed between the ischemic air bag 1 and the pulse wave detecting air bag 2.

図2(a)において、阻血カフ1と同じ圧力でサブ空気袋3が補強され、収縮期血圧測定のタイミングにおいて、阻血カフ1下の上流部に血液K1が流入することを阻止し、また、阻血用カフの上流側から阻血用カフの中央部に向けて流入する血液K1により発生される容積変化をサブ空気袋3でガードし、さらにサブ空気袋3に接続された第1流体抵抗器21により適度に減衰させることで、脈波検出用空気袋2に容積変化が伝わることを防止できるので、血流再開に基づいた阻血カフ1下の下流側の脈波検出用空気袋2の容積変化による脈波変化のみをS/N比を向上させて精度よく検出することが可能になる。   In FIG. 2 (a), the sub air bag 3 is reinforced with the same pressure as the ischemic cuff 1, and at the timing of the systolic blood pressure measurement, the blood K1 is prevented from flowing into the upstream portion under the ischemic cuff 1, The volume change generated by the blood K1 flowing from the upstream side of the ischemic cuff toward the central portion of the ischemic cuff is guarded by the sub air bag 3, and the first fluid resistor 21 connected to the sub air bag 3 is further protected. Since the volume change can be prevented from being transmitted to the pulse wave detection air bag 2 by appropriately attenuating the air flow, the volume change of the pulse wave detection air bag 2 on the downstream side under the blood cuff 1 based on the resumption of blood flow. Only the pulse wave change due to can be detected with high accuracy by improving the S / N ratio.

以上のように構成されるカフ本体100は各種の血圧測定装置に使用できるが、例えば図1に図示の血圧測定装置によれば、記憶された制御プログラムをコンピュータで読み出し、図3の血圧測定ルーチンのフローチャートのように動作することができる。   The cuff body 100 configured as described above can be used for various blood pressure measurement devices. For example, according to the blood pressure measurement device shown in FIG. 1, the stored control program is read by a computer, and the blood pressure measurement routine of FIG. It can operate | move like the flowchart of this.

まず、血圧装置が起動されるとステップS1において加圧制御部により加圧が開始されて、図2(b)において破線図示の矢印方向に加圧が行われて、ステップS2に進む。このステップS2では、予想される収縮期血圧より高い20〜30mmHg分以上を設定圧として、阻血用空気袋1の圧力が設定圧力に到ったかをカフ圧力検出部の信号によりチェックし、設定圧力になるまで実行する。阻血用のカフ1の圧力が設定圧になったら加圧制御部は、ステップS3において加圧を停止する。ここで、上記の逆止弁22として電磁弁を用いる場合には、ステップS1で開放動作を行い、ステップS3で停止動作に同期した閉動作が行われる。   First, when the blood pressure apparatus is activated, pressurization is started by the pressurization control unit in step S1, and pressurization is performed in the direction of the arrow shown by the broken line in FIG. 2B, and the process proceeds to step S2. In this step S2, whether or not the pressure of the air bag for ischemia 1 has reached the set pressure is checked by a signal from the cuff pressure detection unit with a set pressure equal to or higher than 20-30 mmHg higher than the expected systolic blood pressure. Run until When the pressure of the cuff 1 for ischemia reaches the set pressure, the pressurization control unit stops pressurization in step S3. Here, when an electromagnetic valve is used as the check valve 22, the opening operation is performed in step S1, and the closing operation synchronized with the stop operation is performed in step S3.

続いてステップS4に進み、減圧制御部によりカフ圧力検出部からの信号を用いて、減圧速度が2〜3mmHg/秒になるように、図2(b)において実線図示の矢印方向の減圧が開始される。これに続いてステップS5において、カフ圧力検出部からの信号より脈波の検出を開始する。脈波検出部で検出された脈波信号は血圧検出部内の記憶部に送られカフ圧と脈波振幅を一組にして記憶を行う。ステップS6において、血圧検出部では、脈波振幅の最大値の検出を行い、脈波振幅が連続して減少することを検出し減少を開始する一つ前の脈波を脈波最大値として検出する。   Subsequently, the process proceeds to step S4, and the pressure reduction control unit uses the signal from the cuff pressure detection unit to start the pressure reduction in the arrow direction indicated by the solid line in FIG. 2B so that the pressure reduction rate becomes 2 to 3 mmHg / sec. Is done. Subsequently, in step S5, the detection of the pulse wave is started from the signal from the cuff pressure detector. The pulse wave signal detected by the pulse wave detection unit is sent to a storage unit in the blood pressure detection unit, and the cuff pressure and the pulse wave amplitude are stored as a set. In step S6, the blood pressure detection unit detects the maximum value of the pulse wave amplitude, detects that the pulse wave amplitude continuously decreases, and detects the previous pulse wave that starts decreasing as the pulse wave maximum value. To do.

続いて、ステップS7に進み、血圧検出部にて脈波最大値の所定比率以下である、例えば60%以下になる脈波の検出を行い、その時のカフ圧力を拡張期血圧(最小血圧値)として決定する。拡張期血圧が決定されるとステップS8に進み、減圧制御部により急速排気される。そしてステップS9において、血圧検出部で記億されたカフ圧力と脈波振幅が一組になっているデータから、減圧開始してから最初に脈波振幅が所定値以上の例えば50%以上急に大きくなる変化を検出して、振幅が急に大きくなった脈波の圧力値を収縮期血圧として決定する。このようにして決定されるとステップS10で、収縮期血圧値と拡張期血圧値の血圧表示部に表示して、一連の血圧計測動作を終了する。   Subsequently, the process proceeds to step S7, where the blood pressure detection unit detects a pulse wave that is equal to or less than a predetermined ratio of the pulse wave maximum value, for example, 60% or less, and sets the cuff pressure at that time to the diastolic blood pressure (minimum blood pressure value). Determine as. When the diastolic blood pressure is determined, the process proceeds to step S8, where rapid exhaust is performed by the decompression control unit. Then, in step S9, from the data in which the cuff pressure and the pulse wave amplitude recorded in the blood pressure detection unit are a set, the pulse wave amplitude is first abruptly greater than a predetermined value, for example, 50% or more suddenly after starting decompression. By detecting a change that increases, the pressure value of the pulse wave whose amplitude suddenly increases is determined as the systolic blood pressure. When determined in this way, in step S10, the systolic blood pressure value and the diastolic blood pressure value are displayed on the blood pressure display unit, and the series of blood pressure measurement operations is terminated.

図4は、血圧決定部に記憶された脈波振幅とカフ圧を時系列に表示したものである。(a)は、サブ空気袋を用いない場合の検出脈波振幅変化を示し、(b)は本発明のサブ空気袋を用いた場合の検出脈波振幅変化を示す。   FIG. 4 shows the pulse wave amplitude and cuff pressure stored in the blood pressure determination unit in time series. (A) shows the detected pulse wave amplitude change when the sub air bag is not used, and (b) shows the detected pulse wave amplitude change when the sub air bag of the present invention is used.

図示のように図4(a)の波形と比較して、図4(b)の波形は、収縮期血圧検出タイミングの脈波振幅変化が明瞭である。   As shown in the figure, compared with the waveform of FIG. 4A, the waveform of FIG. 4B has a clear pulse wave amplitude change at the systolic blood pressure detection timing.

以上のように、カフ圧力が収縮期血圧より高い圧力の時でも、阻血用カフのカフ下上流部に侵入する血流をサブ空気袋により阻止できるので、血流再開により発生する脈波変化をS/N比の良い状態で検出することが可能となり、収縮期血圧値の決定精度を向上することができた。   As described above, even when the cuff pressure is higher than the systolic blood pressure, the blood flow that enters the lower cuff upstream of the ischemic cuff can be blocked by the sub-air bag. Detection was possible with a good S / N ratio, and the determination accuracy of the systolic blood pressure value could be improved.

本発明の一実施形態の血圧測定装置を示すブロック図である。It is a block diagram which shows the blood pressure measuring device of one Embodiment of this invention. (a)は、図1のカフ本体100の断面図、(b)は拡大配管図である。(A) is sectional drawing of the cuff main body 100 of FIG. 1, (b) is an enlarged piping figure. 図1の血圧測定装置の動作説明フローチャートである。2 is an operation explanatory flowchart of the blood pressure measurement device in FIG. 1. (a)は、サブ空気袋を用いない場合の検出脈波振幅変化、(b)は本発明のサブ空気袋を用いた場合の検出脈波振幅変化について、血圧決定部に記憶された脈波振幅とカフ圧を時系列に表示した図表である。(A) is a detected pulse wave amplitude change when the sub air bag is not used, and (b) is a pulse wave stored in the blood pressure determining unit for the detected pulse wave amplitude change when the sub air bag of the present invention is used. It is the chart which displayed amplitude and cuff pressure in time series.

符号の説明Explanation of symbols

1 阻血用空気袋
2 脈波検出用空気袋
3 サブ空気袋
5 カフ布
6 第1配管
7 第2配管
11 第2流体抵抗器
21 第1流体抵抗器
22 逆止弁
10 本体
100 カフ本体
DESCRIPTION OF SYMBOLS 1 Air bag for ischemia 2 Air bag for pulse wave detection 3 Sub air bag 5 Cuff cloth 6 1st piping 7 2nd piping 11 2nd fluid resistor 21 1st fluid resistor 22 Check valve 10 Main body 100 Cuff main body

Claims (6)

血圧測定部位の動脈を圧迫する阻血用空気袋と、
血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部よりも心臓側に配置されるサブ空気袋と、
血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部配置される脈波検出用空気袋と、
前記阻血用空気袋と前記サブ空気袋との間に接続される第1流体抵抗器と、
前記第1流体抵抗器と並行に、その入力側を前記阻血用空気袋側に、その出力側を前記サブ空気袋側に接続した逆止弁と、
前記阻血用空気袋と接続される第1配管と、
前記脈波検出用空気袋に第2流体抵抗器を介して接続される第2配管と、
血圧測定部位に装着されるカフ本体と、
前記カフ本体と前記第2配管にて接続されるカフ圧力検出部と、
前記カフ本体と前記第1配管にて接続され、前記カフ本体を加圧する加圧手段と、
前記加圧手段を制御する加圧制御部と、
前記カフ本体と前記第1配管にて接続され、前記カフ本体を減圧する減圧制御部と、
前記カフ圧力検出部に電気的に接続され、脈波を検出脈波信号に変換し、検出脈波信号に重畳する脈波を検出する脈波検出部と、
前記脈波検出部からの出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定する血圧検出部と、
前記血圧検出部の血圧値を表示する血圧表示部とを備えた本体と、
を備えることを特徴とする血圧測定装置。
An air bag for ischemia that compresses the artery of the blood pressure measurement site;
A sub-air bag disposed on the heart side from the substantially central part of the air bag for ischemia between the air bag for ischemia and a living body when mounted on a blood pressure measurement site;
And air bag for detecting pulse waves that is arranged at a substantially central portion of the air bag the ischemia in between the ischemia air bag and the living when worn on a blood pressure measurement site,
A first fluid resistor connected between the hemostasis bladder and the sub-air bladder;
In parallel with the first fluid resistor, a check valve whose input side is connected to the air bag side for ischemia and whose output side is connected to the sub air bag side;
A first pipe connected to the air bag for ischemia;
A second pipe connected to the pulse wave detection air bag via a second fluid resistor;
A cuff body attached to the blood pressure measurement site;
A cuff pressure detector connected by the cuff body and the second pipe;
A pressurizing means connected to the cuff body by the first pipe and pressurizing the cuff body;
A pressurizing control unit for controlling the pressurizing means;
A decompression control unit connected to the cuff body by the first pipe and decompressing the cuff body;
A pulse wave detection unit that is electrically connected to the cuff pressure detection unit, converts a pulse wave into a detection pulse wave signal, and detects a pulse wave superimposed on the detection pulse wave signal;
A blood pressure detector that determines a blood pressure value based on an output from the pulse wave detector and a detected cuff pressure signal of the cuff pressure detector;
A main body including a blood pressure display unit for displaying a blood pressure value of the blood pressure detection unit;
A blood pressure measurement apparatus comprising:
前記阻血用空気袋と前記サブ空気袋との間にパッキング材を含む第1裏打部材を、また前記阻血用空気袋と前記脈波検出用空気袋との間にパッキング材を含む第2裏打部材を配置したことを特徴とする請求項1に記載の血圧測定装置。   A first backing member including a packing material between the ischemic air bag and the sub-air bag, and a second backing member including a packing material between the ischemic air bag and the pulse wave detecting air bag. The blood pressure measurement device according to claim 1, wherein: 前記阻血用空気袋と前記カフ本体との間にパッキング材を含む第3裏打部材を配置したことを特徴とする請求項1または2に記載の血圧測定装置。   The blood pressure measurement device according to claim 1 or 2, wherein a third backing member including a packing material is disposed between the air bag for ischemia and the cuff body. 前記第1流体抵抗器と前記第2流体抵抗器は、略等しい流体抵抗を有することを特徴とする請求項1乃至3のいずれか1項に記載の血圧測定装置。   The blood pressure measuring device according to any one of claims 1 to 3, wherein the first fluid resistor and the second fluid resistor have substantially equal fluid resistance. 血圧測定部位の動脈を圧迫する阻血用空気袋と、
血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部よりも心臓側に配置されるサブ空気袋と、
血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部配置される脈波検出用空気袋と、
前記阻血用空気袋と前記サブ空気袋との間に接続される第1流体抵抗器と、
前記第1流体抵抗器と並行に、その入力側を前記阻血用空気袋側に、その出力側を前記サブ空気袋側に接続した逆止弁と、
前記阻血用空気袋と接続される第1配管と、
前記脈波検出用空気袋に第2流体抵抗器を介して接続される第2配管と、
血圧測定部位に装着されるカフ本体と、
前記カフ本体と前記第2配管にて接続されるカフ圧力検出部と、
前記カフ本体と前記第1配管にて接続され、前記カフ本体を加圧する加圧手段と、
前記加圧手段を制御する加圧制御部と、
前記カフ本体と前記第1配管にて接続され、前記カフ本体を減圧する減圧制御部と、
前記カフ圧力検出部に電気的に接続され、脈波を検出脈波信号に変換し、検出脈波信号に重畳する脈波を検出する脈波検出部と、
前記脈波検出部からの出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定する血圧検出部と、
前記血圧検出部の血圧値を表示する血圧表示部と、
を備えた血圧測定装置の測定方法であって、
前記加圧制御部を介して前記動脈を圧迫する工程と、
前記圧力検出部により、前記脈波を検出脈波信号に変換する工程と、
前記減圧制御部を介して前記カフ組立体を減圧する工程と、
前記脈波検出部において、前記検出脈波信号に重畳する脈波を検出する工程と、
前記血圧検出部において、前記脈波検出部の出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定する工程と、
前記血圧表示部において、前記血圧検出部からの血圧値を表示する工程と、
を有することを特徴とする測定方法。
An air bag for ischemia that compresses the artery of the blood pressure measurement site;
A sub-air bag disposed on the heart side from the substantially central part of the air bag for ischemia between the air bag for ischemia and a living body when mounted on a blood pressure measurement site;
And air bag for detecting pulse waves that is arranged at a substantially central portion of the air bag the ischemia in between the ischemia air bag and the living when worn on a blood pressure measurement site,
A first fluid resistor connected between the hemostasis bladder and the sub-air bladder;
In parallel with the first fluid resistor, a check valve whose input side is connected to the air bag side for ischemia and whose output side is connected to the sub air bag side;
A first pipe connected to the air bag for ischemia;
A second pipe connected to the pulse wave detection air bag via a second fluid resistor;
A cuff body attached to the blood pressure measurement site;
A cuff pressure detector connected by the cuff body and the second pipe;
A pressurizing means connected to the cuff body by the first pipe and pressurizing the cuff body;
A pressurizing control unit for controlling the pressurizing means;
A decompression control unit connected to the cuff body by the first pipe and decompressing the cuff body;
A pulse wave detection unit that is electrically connected to the cuff pressure detection unit, converts a pulse wave into a detection pulse wave signal, and detects a pulse wave superimposed on the detection pulse wave signal;
A blood pressure detector that determines a blood pressure value based on an output from the pulse wave detector and a detected cuff pressure signal of the cuff pressure detector;
A blood pressure display unit for displaying a blood pressure value of the blood pressure detection unit;
A blood pressure measurement device comprising:
Compressing the artery via the pressure control unit;
Converting the pulse wave into a detected pulse wave signal by the pressure detector;
Depressurizing the cuff assembly via the depressurization controller;
A step of detecting a pulse wave superimposed on the detected pulse wave signal in the pulse wave detection unit;
In the blood pressure detection unit, determining a blood pressure value based on an output of the pulse wave detection unit and a detection cuff pressure signal of the cuff pressure detection unit;
In the blood pressure display unit, displaying the blood pressure value from the blood pressure detection unit;
A measuring method characterized by comprising:
血圧測定部位の動脈を圧迫する阻血用空気袋と、
血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部よりも心臓側に配置されるサブ空気袋と、
血圧測定部位に装着時に前記阻血用空気袋と生体との間にて前記阻血用空気袋の略中央部配置される脈波検出用空気袋と、
前記阻血用空気袋と前記サブ空気袋との間に接続される第1流体抵抗器と、
前記第1流体抵抗器と並行に、その入力側を前記阻血用空気袋側に、その出力側を前記サブ空気袋側に接続した逆止弁と、
前記阻血用空気袋と接続される第1配管と、
前記脈波検出用空気袋に第2流体抵抗器を介して接続される第2配管と、
血圧測定部位に装着されるカフ本体と、
前記カフ本体と前記第2配管にて接続されるカフ圧力検出部と、
前記カフ本体と前記第1配管にて接続され、前記カフ本体を加圧する加圧手段と、
前記加圧手段を制御する加圧制御部と、
前記カフ本体と前記第1配管にて接続され、前記カフ本体を減圧する減圧制御部と、
前記カフ圧力検出部に電気的に接続され、脈波を検出脈波信号に変換し、検出脈波信号に重畳する脈波を検出する脈波検出部と、
前記脈波検出部からの出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定する血圧検出部と、
前記血圧検出部の血圧値を表示する血圧表示部と、
を備えた血圧測定装置の制御プログラムが記憶されたコンピュータ読取り可能な記憶媒体であって、
前記制御プログラムが、
前記加圧制御部を介して前記動脈を圧迫するプログラムと、
前記圧力検出部により、前記脈波を検出脈波信号に変換するプログラムと、
前記減圧制御部により、前記カフ組立体を減圧するプログラムと、
前記脈波検出部で、前記検出脈波信号に重畳する脈波を検出するプログラムと、
前記血圧検出部において、前記脈波検出部の出力と、前記カフ圧力検出部の検出カフ圧信号とに基づき血圧値を決定するプログラムと、
前記血圧表示部において、前記血圧検出部からの血圧値を表示するプログラムと、
を有することを特徴とする記憶媒体。
An air bag for ischemia that compresses the artery of the blood pressure measurement site;
A sub-air bag disposed on the heart side from the substantially central part of the air bag for ischemia between the air bag for ischemia and a living body when mounted on a blood pressure measurement site;
And air bag for detecting pulse waves that is arranged at a substantially central portion of the air bag the ischemia in between the ischemia air bag and the living when worn on a blood pressure measurement site,
A first fluid resistor connected between the hemostasis bladder and the sub-air bladder;
In parallel with the first fluid resistor, a check valve whose input side is connected to the air bag side for ischemia and whose output side is connected to the sub air bag side;
A first pipe connected to the air bag for ischemia;
A second pipe connected to the pulse wave detection air bag via a second fluid resistor;
A cuff body attached to the blood pressure measurement site;
A cuff pressure detector connected by the cuff body and the second pipe;
A pressurizing means connected to the cuff body by the first pipe and pressurizing the cuff body;
A pressurizing control unit for controlling the pressurizing means;
A decompression control unit connected to the cuff body by the first pipe and decompressing the cuff body;
A pulse wave detection unit that is electrically connected to the cuff pressure detection unit, converts a pulse wave into a detection pulse wave signal, and detects a pulse wave superimposed on the detection pulse wave signal;
A blood pressure detector that determines a blood pressure value based on an output from the pulse wave detector and a detected cuff pressure signal of the cuff pressure detector;
A blood pressure display unit for displaying a blood pressure value of the blood pressure detection unit;
A computer-readable storage medium storing a control program for a blood pressure measurement device comprising:
The control program is
A program for compressing the artery via the pressurization control unit;
A program for converting the pulse wave into a detected pulse wave signal by the pressure detection unit;
A program for decompressing the cuff assembly by the decompression control unit;
A program for detecting a pulse wave superimposed on the detected pulse wave signal in the pulse wave detection unit;
In the blood pressure detection unit, a program for determining a blood pressure value based on an output of the pulse wave detection unit and a detection cuff pressure signal of the cuff pressure detection unit;
In the blood pressure display unit, a program for displaying a blood pressure value from the blood pressure detection unit;
A storage medium comprising:
JP2006177262A 2006-06-27 2006-06-27 Blood pressure measurement device, measurement method thereof, and storage medium Active JP4943748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177262A JP4943748B2 (en) 2006-06-27 2006-06-27 Blood pressure measurement device, measurement method thereof, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177262A JP4943748B2 (en) 2006-06-27 2006-06-27 Blood pressure measurement device, measurement method thereof, and storage medium

Publications (3)

Publication Number Publication Date
JP2008005926A JP2008005926A (en) 2008-01-17
JP2008005926A5 JP2008005926A5 (en) 2009-08-06
JP4943748B2 true JP4943748B2 (en) 2012-05-30

Family

ID=39064680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177262A Active JP4943748B2 (en) 2006-06-27 2006-06-27 Blood pressure measurement device, measurement method thereof, and storage medium

Country Status (1)

Country Link
JP (1) JP4943748B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107535B2 (en) * 2006-06-27 2012-12-26 テルモ株式会社 Blood pressure measurement device
JP5043698B2 (en) 2008-01-29 2012-10-10 テルモ株式会社 Blood pressure measurement device
JP5043707B2 (en) * 2008-02-12 2012-10-10 テルモ株式会社 Blood pressure measurement device and control method thereof
CN101589946A (en) * 2008-05-27 2009-12-02 普立思胜医疗技术(北京)有限公司 Digital blood pressure meter and method
WO2016021078A1 (en) * 2014-08-07 2016-02-11 Nec Corporation Low volume blood pressure meter and cuff thereof
JP6989405B2 (en) * 2018-02-13 2022-01-05 オムロンヘルスケア株式会社 Solenoid valves, sphygmomanometers and equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2732286C3 (en) * 1976-10-18 1979-06-13 Filac Corp., Sunnyvale, Calif. (V.St.A.) Blood pressure and heartbeat meters
JPS63150051A (en) * 1986-12-15 1988-06-22 松下電工株式会社 Cuff band of electronic hemomanometer
JPH0638790B2 (en) * 1989-05-19 1994-05-25 松田 正義 Arterial extensibility measuring device
JPH11285476A (en) * 1998-04-01 1999-10-19 Advance Co Ltd Method of measuring blood flow and rheometer
JP4020344B2 (en) * 1998-09-04 2007-12-12 修 栃久保 Sphygmomanometer
JP4648510B2 (en) * 2000-01-19 2011-03-09 テルモ株式会社 Electronic blood pressure monitor
JP2004195056A (en) * 2002-12-20 2004-07-15 Terumo Corp Cuff for hemadynamometer
JP4304429B2 (en) * 2003-02-24 2009-07-29 パナソニック電工株式会社 Cuff band of blood pressure monitor and blood pressure monitor using the same
JP3667326B2 (en) * 2003-04-21 2005-07-06 コーリンメディカルテクノロジー株式会社 Double cuff for blood pressure measurement

Also Published As

Publication number Publication date
JP2008005926A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4795777B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
JP5101897B2 (en) Blood pressure measuring device, cuff and cuff manufacturing method
JP3587837B2 (en) Arterial stiffness evaluation device
TWI400061B (en) Blood pressure measuring apparatus
JP5043707B2 (en) Blood pressure measurement device and control method thereof
JP4943748B2 (en) Blood pressure measurement device, measurement method thereof, and storage medium
US9119538B2 (en) Electronic sphygmomanometer
JPH05288869A (en) Multifunctional watch
JP5043698B2 (en) Blood pressure measurement device
JP4819594B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
JP5111053B2 (en) Blood pressure measurement device
JP5112756B2 (en) Blood pressure measurement device
JP5107535B2 (en) Blood pressure measurement device
JP4943870B2 (en) Blood pressure measuring device and cuff
JP3818853B2 (en) Electronic blood pressure monitor
JP5112767B2 (en) Blood pressure measurement device
JPH10137204A (en) Blood noninvasive sphygmomanometer
JP4437196B2 (en) Sphygmomanometer
JP5146997B2 (en) Electronic blood pressure monitor and signal processing method thereof
CN112203583B (en) Auxiliary device and area of driving blood
JP4352952B2 (en) Blood pressure measuring device
JP4943869B2 (en) Blood pressure measurement device
WO2000013583A1 (en) Hemodynamometer and its cuff band
JP2009101088A (en) Blood pressure measuring apparatus and its control method
JPH0755217B2 (en) Pulse wave detector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4943748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250