JP5112767B2 - Blood pressure measurement device - Google Patents

Blood pressure measurement device Download PDF

Info

Publication number
JP5112767B2
JP5112767B2 JP2007187550A JP2007187550A JP5112767B2 JP 5112767 B2 JP5112767 B2 JP 5112767B2 JP 2007187550 A JP2007187550 A JP 2007187550A JP 2007187550 A JP2007187550 A JP 2007187550A JP 5112767 B2 JP5112767 B2 JP 5112767B2
Authority
JP
Japan
Prior art keywords
air bag
blood pressure
cuff
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007187550A
Other languages
Japanese (ja)
Other versions
JP2009022477A (en
Inventor
孝博 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP2007187550A priority Critical patent/JP5112767B2/en
Priority to PCT/JP2008/059447 priority patent/WO2008152894A1/en
Priority to CN2008800198104A priority patent/CN101711122B/en
Priority to KR1020107000513A priority patent/KR101099235B1/en
Priority to TW97119795A priority patent/TWI400061B/en
Publication of JP2009022477A publication Critical patent/JP2009022477A/en
Application granted granted Critical
Publication of JP5112767B2 publication Critical patent/JP5112767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、血圧測定装置に係り、特に阻血用のカフを用いた血圧測定を行う技術に関する。   The present invention relates to a blood pressure measurement device, and more particularly to a technique for measuring blood pressure using a cuff for ischemia.

オシロメトリック方式の血圧測定法によれば、収縮期血圧よりも高い圧までカフ圧を上昇させ、測定部位の血管を一旦圧閉し、除々にカフ圧を減圧させながら測定部位の動脈の容積変化に基づいて発生するカフ圧信号に重畳している脈波の振幅変化を検出することで血圧を測定している。血圧測定に用いられるカフは、中央部で最も血管を押えるが強く、カフの両端に向けてこの血管を押えるは徐々に減少して、カフ両端では略ゼロになるカフエッジ効果を有している。 According to the blood pressure measurement of oscillometric method, systolic raise the cuff pressure to a higher pressure than the blood pressure once pressure closing the vessel of the measurement site, the artery of the measurement site while depressurizing the cuff pressure gradually It measures the blood pressure by detecting a change in amplitude of the pulse wave in the cuff pressure signal generated on the basis of the volume change of the superimposed. Cuff used in blood pressure measurement has a strong force to press the most vessels in the central portion, a force for pressing the vessel toward the opposite ends of the cuff gradually decreases, a Kafuejji effect becomes substantially zero in the cuff ends Yes.

この特性により血圧測定時のこの脈波の振幅変化は、カフ圧が収縮期血圧より十分に高いときには測定部位の心臓側よりの心臓の拍動に同期して、血流がカフの上流(心臓側)端まで至り、そして戻される現象によって略一定となる。 Amplitude change of the pulse wave at the time of blood pressure measurement by this characteristic, when the cuff pressure is sufficiently higher than the systolic blood pressure in synchronization with the beating of the heart than the heart side of the measurement site, blood flow cuff upstream ( It becomes almost constant due to the phenomenon that reaches the end of the heart and is returned.

また、カフの減圧が進むと測定部位の心臓側からの血流が徐々にカフの中央部に向けて侵入の程度を強めながら侵入しては押し戻される状態となる。そして、さらにカフの減圧が進むと、カフの中央では血管が圧閉されているが、血流の侵入がカフ中央部付近に至るようになる。これに伴い、カフ圧力に重畳している脈波振幅も徐々に大きくなる変化を示す。   Further, when the cuff pressure is reduced, the blood flow from the heart side of the measurement site gradually enters the cuff central portion and invades while increasing the degree of invasion, and is pushed back. When the cuff is further depressurized, the blood vessel is closed in the center of the cuff, but the blood intrusion reaches the vicinity of the center of the cuff. Along with this, the pulse wave amplitude superimposed on the cuff pressure also changes gradually.

この現象とは別に、さらにカフの減圧が進み、カフ圧が収縮期血圧よりも低くなると、カフの末梢側(測定部位が上腕の場合では前腕側)に血流の拍出が生じることになる。カフ圧に重畳する脈波振幅は、末梢側に拍出する容積変化分その振幅が大きくなる。 Apart from this phenomenon, the flow proceeds further decompression of the cuff, the cuff pressure is lower than the systolic blood pressure, that beats and out of the blood flow occurs (forearm side when the measurement site is the upper arm) distal of the cuff Become. Pulse wave amplitude to be superimposed on the cuff pressure, the volume variation in amplitude of output peripheral side beats increases.

さらにカフの減圧が進むと末梢側への拍出の増加により、脈波振幅は大きくなる。またさらに減圧が進むと、末梢への拍出の増加に伴いカフより末梢に位置する前腕の静脈はカフにより圧閉されているので静脈、動脈全体の血管内圧が上昇し、一心周期の中で末梢側の血管内圧がカフ圧力より大きくなるタイミングが発生する。   As the cuff is further depressurized, the pulse wave amplitude increases due to an increase in the output to the peripheral side. Furthermore, as the pressure decreases further, the forearm vein located more distal than the cuff is closed by the cuff with the increase in the output to the periphery, so that the intravascular pressure of the vein and the whole artery rises, and in one cardiac cycle Timing occurs when the intravascular pressure on the distal side becomes larger than the cuff pressure.

この血管内圧の上昇により、末梢部位側からの圧反射が発生し、この反射により脈波振幅は益々大きくなる。さらにカフの減圧が進むと、収縮期のときの血管容積は大きくなるが、上記のカフエッジ特性により、カフの縁の圧迫力が弱くなるので、拡張期の時に血管が圧閉されている容積が減少することにより、脈波振幅がピークを迎えて徐々に減少し始める。さらにカフの減圧が進み、拡張期血圧以下にカフ圧がなると、一心周期中で血管が圧閉することがなくなり、脈波振幅は益々減少することになる。そしてカフ減圧が進むと、カフ全体のコンプライアンスが大きくなり、カフの容積−圧変換効率の低下により、さらに脈波振幅は減少する一連の脈波振幅変化が生じる。 Due to the increase in the intravascular pressure, a baroreflex is generated from the peripheral site side, and the pulse wave amplitude is further increased by this reflection. As the cuff is further depressurized, the volume of the blood vessel during the systole increases, but due to the cuff edge characteristics, the cuff edge compression force is weakened, so the volume of the blood vessel that is capped during the diastole is increased. By decreasing, the pulse wave amplitude reaches a peak and gradually decreases. Further pressure reduction of cuff proceeds and the cuff pressure falls below diastolic pressure, prevents blood vessel in one cardiac cycle is pressure closed, the pulse wave amplitude will decrease more and more. When the cuff pressure reduction proceeds, the overall compliance cuff increases, the volume of cuff - a decrease in the pressure conversion efficiency, further pulse wave amplitude is a series of pulse wave amplitude variation which decreases occurs.

この一連の脈波振幅変化から収縮期血圧と拡張期血圧とを予測して測定するのがオシロメトリック法である。   The oscillometric method measures and predicts systolic blood pressure and diastolic blood pressure from this series of pulse wave amplitude changes.

収縮期血圧の測定においては、カフ末梢側への拍出現象の検出が重要となるが、カフ圧が収縮期血圧以上である時、カフ上流側では血流のカフ下への流入と戻りによる脈波の発生が起こる。また、この脈波は、徐々に大きくなる変化を示すこと、また下流側への拍出量は最初は少なく、拍出による容積変化はカフ上流側での血管容積変化に較べて小さいので拍出現象の検出が難しい。 In the measurement of the systolic blood pressure, but the detection of phenomena cardiac output to the cuff peripheral side is important, when the cuff pressure is systolic blood pressure above, the cuff upstream return flow of the cuff of a blood flow Occurrence of pulse waves due to. In addition, this pulse wave shows a gradually increasing change, and the amount of stroke to the downstream side is initially small, and the volume change due to the stroke is small compared to the blood vessel volume change on the cuff upstream side. It is difficult to detect the phenomenon.

このカフ末梢側への拍出の発生時のタイミングでのカフ下血管の容積変化は、カフ下の血管の容積の約半分が開いたり閉じたりしている状態である。そこで、カフ下の血管容積の略全体が開いたり閉じたりしているタイミング、すなわち、脈波振幅が最も大きくなるタイミングの略50%であるので、減圧を開始してから、出現する脈波振幅と、その時のカフ圧とをペアで記録しておき、脈波振幅が最大になった時点から記録を遡り、最大脈波振幅の50%になった時のカフ圧を、収縮期血圧値として決定する方法を採用している。 The volume change of the subcuff blood vessel at the timing when the cuffing toward the peripheral side of the cuff is a state in which about half of the volume of the blood vessel under the cuff is open or closed. Therefore, since the timing at which substantially the entire blood vessel volume under the cuff is opened or closed, that is, approximately 50% of the timing at which the pulse wave amplitude becomes the largest, the pulse wave amplitude that appears after the decompression is started. If, record the cuff pressure at that time in pairs, the pulse wave amplitude is back in the recording from the point in which the maximum cuff pressure of when it is 50% of the maximum pulse wave amplitude, the systolic blood pressure The method of determining the value is adopted.

しかし、最大脈波振幅は測定部位の血管弾性及びカフ末梢部位からの圧反射に影響される。また、この圧反射はカフ末梢部位である前腕部の血管の圧上昇により発生し、この圧上昇はカフ末梢部位に流れ込む血液量、前腕部の血管容積、血管弾性の影響を受ける。この前腕部の血液が心臓に戻れず充満した状態を鬱血という。この鬱血は、血管の特性以外にも、測定時に末梢へ流れる血液量が多い場合、例えば、測定時のカフ減圧速度が遅い場合や脈拍数が多い場合に起こりやすく、また、血圧測定を繰り返し行なう時に、前腕の血流が心臓に戻るために必要な時間以上の測定間隔を空けないとこの鬱血を起こしやすい。このため、脈波の最大振幅は、被測定者個人個人の測定部位の血管弾性、鬱血の起きやすさや測定間隔による影響を受けるため、一律に、最大脈波振幅の50%が収縮期圧力にならないという問題点がある。   However, the maximum pulse wave amplitude is affected by the vascular elasticity of the measurement site and the baroreflex from the cuff peripheral site. This baroreflex is caused by an increase in blood pressure in the forearm, which is the cuff peripheral region, and this increase in pressure is affected by the amount of blood flowing into the cuff peripheral region, the blood volume of the forearm, and vascular elasticity. This forearm blood is filled without being returned to the heart is called congestion. In addition to the characteristics of blood vessels, this congestion is likely to occur when the amount of blood flowing to the periphery during measurement is large, for example, when the cuff decompression rate during measurement is slow or when the pulse rate is high, and blood pressure measurement is repeated. Occasionally, this congestion is likely to occur unless the measurement interval is longer than the time required for the forearm blood flow to return to the heart. For this reason, since the maximum amplitude of the pulse wave is affected by the vascular elasticity of the individual measurement site of the individual to be measured, the likelihood of congestion, and the measurement interval, 50% of the maximum pulse wave amplitude is uniformly the systolic pressure. There is a problem of not becoming.

これに対して、収縮期血圧測定の目標となるカフ圧力が収縮期血圧より僅かに低くなった時に発生するカフ抹消への拍出に伴う小さな変化をS/N比よく検出するため、阻血用カフ以外に末梢側の血管の容積変化を選択的に検出するための脈波検出用の小さなカフを阻血用カフの中央やや末梢側に設け、かつ、阻血用カフを介して脈波検出用カフに伝わり、末梢側脈波検出の障害となるカフの上流側の脈波信号を阻止するため、阻血用カフと脈波検出用カフとの間に緩衝材を設けたり、また、阻血用カフと脈波検出用カフとの連結配管に阻血用カフの脈波を減衰する音響フィルタ(例えば流体抵抗と容積バッファタンクで構成)を設けたダブルカフ法が提案されている(特許文献1)。
特開2005−185295号公報
On the other hand, since the cuff pressure which is the target of the systolic blood pressure measurement is slightly lower than the systolic blood pressure, a small change accompanying the ejection to the cuff erasing is detected with a high S / N ratio. In addition to the cuff, a small cuff for pulse wave detection for selectively detecting the change in the volume of the blood vessel on the peripheral side is provided in the middle and the peripheral side of the cuff for ischemia, and the cuff for pulse wave detection via the cuff for cough In order to block the pulse wave signal upstream of the cuff that interferes with peripheral pulse wave detection, a cushioning material is provided between the cuff for ischemia and the cuff for pulse wave detection. There has been proposed a double cuff method in which an acoustic filter (for example, composed of a fluid resistance and a volume buffer tank) for attenuating the pulse wave of the ischemic cuff is provided in a connecting pipe with the pulse wave detection cuff (Patent Document 1).
JP 2005-185295 A

上記のダブルカフ法においても、カフ圧が収縮期血圧よりも大きい時には、血流による血管容積変化は存在している。この存在により、上記のように上流側脈波の圧検出部への進入を阻止するために音響フィルタで上流側脈波の減衰や、阻血用空気袋と脈波検出用空気袋間の脈波振動の伝播を阻止を緩衝材を用いて行っている。しかしながら、音響フィルタにおいてはカフ減圧に伴う阻血用空気袋と脈波検出用空気袋との圧差発生の問題により、流体抵抗の大きさの制限、血圧測定装置の小型化による容積バッファタンクの大きさの制限があり、緩衝材においては阻血機能の低下の問題により振動脈波特性が制限されるため、完全に上流側脈波の影響を排除することはできず、収縮期血圧の測定に支障の発生する場合があった。 Also in Daburukafu method described above, when the cuff pressure is greater than the systolic blood pressure, arterial volume change due to the blood flow is present. The presence, attenuation and upstream pulse wave in an acoustic filter in order to prevent entry into pressure detecting portion of the upstream pulse wave as described above, the pulse between the air bag and the pulse wave detection air bag avascularization The propagation of wave vibration is blocked using a buffer material. However, in the acoustic filter, due to the problem of the pressure difference between the air bag for ischemia and the air bag for pulse wave detection due to the cuff decompression, the size of the volume buffer tank is limited by the limitation of the fluid resistance and the downsizing of the blood pressure measuring device In the buffer material, the arterial wave characteristics are limited due to the problem of reduced ischemic function, so the influence of the upstream pulse wave cannot be completely eliminated, which hinders measurement of systolic blood pressure. May occur.

上述した課題を解決するために、本発明の血圧測定装置によれば、血圧測定部位に対して脱着自在に設けられるカフ部材と、前記カフ部材に内包され血圧測定部位を圧迫する阻血用空気袋(阻血用カフ)と、前記阻血用空気袋の血圧測定部位の接する側とは反対側に敷設され血圧測定部位の心臓側の前記阻血用空気袋の圧迫を補助するサブ空気(サブカフ)袋と、前記阻血用空気袋の血圧測定部位の接する側に敷設され血圧測定部位の血管下流側を圧迫し、かつ、下流側で生じる脈波を検出する脈波検出用空気袋(脈波検出用カフ)とから構成されるカフ本体と、前記カフ本体を加減圧するために配管及び開閉バルブを介して接続される加減圧手段と、前記脈波検出用空気袋と前記阻血用空気袋の圧変化からカフ圧信号を得るカフ圧検出手段と、前記カフ圧力信号に重畳する脈波を検出して脈波信号を得る脈波検出手段と、前記カフ圧力信号と前記脈波信号とに基づき血圧値を決定する血圧決定手段と、前記血圧値を表示する表示手段と、を備え、前記配管は、前記阻血用空気袋と前記加減圧手段の間で第1開閉バルブを介して接続される第1配管と、前記サブ空気袋と前記加減圧手段の間で第2開閉バルブを介して接続される第2配管と、前記脈波検出用空気袋と前記カフ圧検出手段とを第3開閉バルブを介して接続する第3配管を備え、前記阻血用空気袋に接続される前記第1配管と前記脈波検出用空気袋に接続される前記第3配管との間は、第1流体抵抗からなるバイバス流路を備え、前記阻血用空気袋及び前記脈波検出用空気袋を加圧する前に、前記第1開閉バルブと前記第3開閉バルブとを閉じ、前記第2開閉バルブを開けて前記サブ空気袋が規定圧になるまで加圧した後に、前記第2開閉バルブを閉じて、前記サブ空気袋の空気量を調整し、かつ、血圧を測定している間は、前記第2開閉バルブを閉じていることを特徴としている。 In order to solve the above-described problems, according to the blood pressure measurement device of the present invention, a cuff member that is detachably attached to a blood pressure measurement site, and an air bag for ischemia that is contained in the cuff member and compresses the blood pressure measurement site. (A cuff for ischemia) and a sub-air (sub-cuff) bag that is laid on the opposite side of the blood bag for measuring blood pressure of the blood bag for ischemia and assists the compression of the air bag for blood pressure of the blood pressure measuring site A pulse wave detection air bag (pulse wave detection cuff) that lays on the blood pressure measurement site of the ischemic air bag and contacts the blood pressure downstream side of the blood pressure measurement site and detects a pulse wave generated on the downstream side. ) and the cuff body configured from a pressurization means connected via a pipe and a switching valve for applying moderate the cuff body, pressure of the air bag the said air bag for detecting pulse waves avascularization cuff pressure test to obtain the cuff pressure signal from the change Means, and pulse wave detecting means for obtaining a pulse wave signal by detecting a pulse wave superposed on the cuff pressure signal, and blood pressure determining means for determining a blood pressure value based on the cuff pressure signal and the pulse wave signal, wherein Display means for displaying a blood pressure value, and the pipe includes a first pipe connected via a first opening / closing valve between the blood- blocking air bag and the pressure- increasing / decreasing means, the sub-air bag, and the a second pipe connected through a second on-off valve between the pressure regulating means, a third pipe that connects the cuff pressure detecting means and said air bag for detecting pulse waves via the third on-off valve the provided, between the third pipe connected to the air bag for detecting pulse waves from the first pipe connected to the air bag wherein the ischemia is provided with a bypass flow path comprising a first fluid resistance, the Before pressurizing the air bag for ischemia and the air bag for detecting the pulse wave, the first opening / closing bar And the third open / close valve are closed, the second open / close valve is opened and the sub air bag is pressurized to a specified pressure, then the second open / close valve is closed, and the air amount of the sub air bag is The second on-off valve is closed while adjusting the pressure and measuring the blood pressure.

また、前記第2開閉バルブは、血圧測定終了時、又は血圧測定開始前に、開かれることで前記サブ空気袋内の空気を外部に排気することを特徴としている。   The second open / close valve is opened at the end of blood pressure measurement or before the start of blood pressure measurement to exhaust the air in the sub air bag to the outside.

また、前記第1開閉バルブ、前記第2開閉バルブ、前記第3開閉バルブは電磁バルブであることを特徴としている。   Further, the first on-off valve, the second on-off valve, and the third on-off valve are electromagnetic valves.

また、前記第3配管に空気タンクを接続したことを特徴としている。   Further, an air tank is connected to the third pipe.

また、血圧測定部位に対して脱着自在に設けられるカフ部材と、前記カフ部材に内包され血圧測定部位を圧迫する阻血用空気袋(阻血用カフ)と、前記阻血用空気袋の血圧測定部位の接する側とは反対側に敷設され血圧測定部位の心臓側の前記阻血用空気袋の圧迫を補助するサブ空気袋(サブカフ)と、前記カフ部材を加減圧するために配管及び開閉バルブを介して接統される加減圧手段と、前記阻血用空気袋の圧変化からカフ圧力信号を得るカフ圧検出手段と、前記カフ圧信号に重畳する脈波を検出して脈波信号を得る脈波検出手段と、前記カフ圧力信号と前記脈波信号に基づき血圧値を決定する血圧決定手段と、前記血圧値を表示する表示手段と、を備え、前記配管は、前記阻血用空気袋と前記加減圧手段の間で第1開閉バルブを介して接続される第1配管と、前記サブ空気袋と前記加減圧手段の間で第2開閉バルブを介して接続される第2配管と、脈波検出用空気袋と前記カフ圧力検出手段とを第3開閉バルブを介して接続する第3配管と、を備えた血圧測定装置であって、前記阻血用空気袋を加圧する前に、前記第1開閉バルブと前記第開閉バルブとを閉じ、前記第開閉バルブを開け前記サブ空気袋が規定圧になるまで加圧した後に前記第2閉閉バルブを閉じて、前記サブ空気袋の空気量を調整し、かつ血圧を測定している間は、前記第2開閉バルブを閉じていることを特徴としている。 A cuff member that is detachably attached to the blood pressure measurement site; an air bag for ischemia that is included in the cuff member and compresses the blood pressure measurement site; and a blood pressure measurement site of the air bag for ischemia A sub-air bag (sub-cuff) that is laid on the opposite side to the side in contact with the heart side of the blood pressure measurement site and assists the compression of the air bag for ischemia, and a pipe and an open / close valve for increasing and decreasing the pressure of the cuff member obtaining a pressurizing and depressurizing means is SeMMitsuru, the cuff pressure detecting means for obtaining a cuff pressure signal from the pressure change of the air bag the ischemia, the pulse wave signal by detecting a pulse wave superposed on the cuff pressure signal And a blood pressure determining means for determining a blood pressure value based on the cuff pressure signal and the pulse wave signal, and a display means for displaying the blood pressure value, and the piping includes the air bag for ischemia And a first on-off valve between the pressure increasing / decreasing means A first pipe connected via the second air bag, a second pipe connected between the sub air bag and the pressure increasing / decreasing means via a second on-off valve, a pulse wave detecting air bag, and the cuff pressure detecting means. A third pipe that connects the first and second open / close valves with the third open / close valve, and before closing the air bag for pressurization, the first open / close valve and the third open / close valve are closed. , after the sub air bag is opened the second on-off valve is pressurized to a specified pressure, closing the second閉閉valve to adjust the air volume of the sub air bag, and measuring blood pressure During this time, the second open / close valve is closed.

本発明によれば、ダブルカフ法においても存在していた、カフ圧が収縮期血圧よりも高い時にカフ上流部(阻血用空気袋の測定部の動脈走行方向の中央部よりも心臓側)に心臓の収縮、拡張に同期して出入りする血流により発生する脈波を、サブ空気袋により阻血用空気袋の上流端部を、阻血用空気袋の外側からの押さえを補強することにより阻血用空気袋の縁に近いところまで空気袋の中央部と同じ圧で血管を圧迫できるので上流側カフエッジ効果が軽減される。 According to the present invention, even in Daburukafu method was present, the cuff upstream portion (heart side than the central portion of the artery running direction of the measuring portion of ischemia air bag) when the cuff pressure is higher than the systolic blood pressure Pulse waves generated by blood flow entering and exiting in synchrony with the contraction and expansion of the heart are used for ischemia by reinforcing the upstream end of the air bag for ischemia with a sub-air bag and pressing from the outside of the air bag for ischemia upstream Kafuejji effect is reduced because down to near the edge of the air bag can compress the blood vessels at the same pressure as the central portion of the air bag.

以下に、本発明の実施形態について添付の図面を参照して説明するが、本発明は実施形態に限られるものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited to the embodiments.

図1は本発明の1実施形態の血圧測定装置を示すブロック図及びエア配管を示す図である。本図において、カフ本体1は、上腕部、前腕部、大腿部、下肢部を含む血圧測定部位に対して脱着自在に設けられる布製のカフ部材2を備えており、カフ部材2の測定部位接触側の端部に破線図示の雄(フック型)面ファスナ3を設け、また端部の測定部位と接触する側とは反対側に雌(ループ型)面ファスナ4を設けている。このカフ部材2を、図示のように測定部位に対して巻きつけて各面ファスナを係止状態にすることで、カフ本体1を装着し、また係止状態を解除することで取り外すことできるように構成されている。   FIG. 1 is a block diagram showing a blood pressure measurement device according to one embodiment of the present invention and a diagram showing air piping. In this figure, the cuff body 1 includes a cloth cuff member 2 that is detachably provided to a blood pressure measurement site including the upper arm, forearm, thigh, and lower limbs. A male (hook type) surface fastener 3 shown by a broken line is provided at the end portion on the contact side, and a female (loop type) surface fastener 4 is provided on the opposite side of the end portion from the side in contact with the measurement site. As shown in the figure, the cuff member 2 is wound around the measurement site so that the hook-and-loop fasteners are locked, so that the cuff body 1 can be mounted and removed by releasing the locking state. It is configured.

このファスナの大きさは、面ファスナ4が阻血用空気袋(阻血用カフ)8よりやや長く、かつ面ファスナ4は測定可能な腕周囲長さの最大値の腕に巻いた時に面ファスナ3が面ファスナ4を十分に覆う長さに設定されている。ここで、面ファスナは一例に過ぎず、これ以外の部材でも良く、また筒状に形成しておき腕を挿入する方式でも良い。   The size of the fastener is such that the hook-and-loop fastener 4 is slightly longer than the air bag 8 for blocking blood (the cuff for blood blocking), and the hook-and-loop fastener 3 is wound around the arm having the maximum measurable arm circumference length. The length is set to sufficiently cover the surface fastener 4. Here, the hook-and-loop fastener is merely an example, and other members may be used, or a method of forming a cylinder and inserting an arm may be used.

このカフ部材2の内部には、血圧測定部位の全体を圧迫するための破線図示の阻血用空気袋8が敷設(内包)されている。この阻血用空気袋8は加減圧手段であるポンプ23、電磁オリフィス径制御バルブ22に、第1開閉バルブ15−2を介して軟質チューブからなる第1配管12にて接続されている。外気をポンプ23の開口部23aから導入して加圧を行い、電磁オリフィス径制御バルブ22のオリフィス径の開度を制御することにより、開口部22から空気の排気を行い、一定の減圧速度で減圧可能に構成されている。   Inside the cuff member 2, a hemostatic air bag 8 shown by a broken line for squeezing the entire blood pressure measurement site is laid (included). The blood-insufficiency air bag 8 is connected to a pump 23 and an electromagnetic orifice diameter control valve 22 which are pressure-increasing / decreasing means via a first pipe 12 made of a soft tube via a first on-off valve 15-2. External air is introduced through the opening 23a of the pump 23 to pressurize it, and the opening of the orifice diameter of the electromagnetic orifice diameter control valve 22 is controlled to exhaust air from the opening 22 at a constant pressure reduction rate. It can be decompressed.

また、阻血用空気袋8の血圧測定部位に接する側には、血圧測定部位の動脈血管のカフ下流側を圧迫して、脈波検出するための脈波検出用空気袋(脈波検出用カフ)5がバッキング部材6を介在させて敷設されている。この脈波検出用空気袋5には第3開閉バルブ15−1を介して軟質チューブからなる第3配管11が接続されている。第1配管12aと第3配管11aとの間には細管よりなる流体抵抗14が接続されている。また、阻血用空気袋8の上流側(心臓側)には血圧測定部位の心臓側のカフエッジ効果を軽減するために幅がより狭く形成された破線図示のサブ空気袋(サブカフ)7が阻血用空気袋8とサブ空気袋7との間にバッキング部材9を挟んで、測定部位に接触する側とは反対側に敷設されている。このサブ空気袋7には軟質チューブからなる第2配管13が接続されており、配管経路を開閉する第2開閉バルブ16、第2配管13aを介して第1配管12aと前記加減圧手段とが図示のように接続されている。   In addition, on the side of the blood bladder 8 that contacts the blood pressure measurement site, the cuff downstream side of the arterial blood vessel of the blood pressure measurement site is pressed to detect a pulse wave (pulse wave detection cuff). ) 5 is laid with a backing member 6 interposed. A third pipe 11 made of a soft tube is connected to the pulse wave detection air bag 5 via a third opening / closing valve 15-1. A fluid resistance 14 made of a thin tube is connected between the first pipe 12a and the third pipe 11a. In addition, a sub-air bag (sub-cuff) 7 shown in a broken line is formed on the upstream side (heart side) of the ischemic air bag 8 to narrow the width in order to reduce the cuff edge effect on the heart side of the blood pressure measurement site. A backing member 9 is sandwiched between the air bag 8 and the sub air bag 7 and is laid on the side opposite to the side in contact with the measurement site. A second pipe 13 made of a soft tube is connected to the sub air bag 7, and the first pipe 12a and the pressure increasing / decreasing means are connected via a second opening / closing valve 16 and a second pipe 13a for opening and closing the pipe path. They are connected as shown.

第1配管12、12a、第2配管13、13a、第3配管11、11aはコネクタ10で本体30から脱着自在に設けられている。図示では、このコネクタ10で脱着可能に構成されているが、一体配管でも良い。なお、流体抵抗14は、脈波検出用空気袋5への空気の出入りを制限する機能を備えている。また、阻血用空気袋8のカフ圧力値信号と脈波検出用空気袋5の脈波信号を得ることができるように、阻血用空気袋8は第1配管12、12a、流体抵抗14、第3配管11aにより、カフ圧検出手段である圧センサ31に接続されており、一方、脈波検出用空気袋5は第3配管11、11aによりカフ圧検出手段である圧センサ31に接続されている。
この圧センサ31にて電気信号に変換された信号を増幅及び周波数帯域を制限する圧計測部32が接続されている。さらに、アナログ電気信号をデジタル信号に変換するA/Dコンバータ33が接続されており、デジタル信号を中央制御部35に出力するように構成されている。
The first pipes 12, 12 a, the second pipes 13, 13 a, and the third pipes 11, 11 a are provided by the connector 10 so as to be detachable from the main body 30. In the drawing, the connector 10 is configured to be detachable, but an integrated pipe may be used. The fluid resistance 14 has a function of restricting the entry and exit of air into and from the pulse wave detection air bladder 5. Further, in order to obtain the cuff pressure value signal of the air bag 8 for ischemia and the pulse wave signal of the air bag 5 for detecting the pulse wave, the air bag 8 for ischemia has the first pipes 12 and 12a, the fluid resistance 14, the third pipe 11a, is connected to the pressure sensor 31 is a cuff pressure detecting means, while the pressure sensor 31 is the air bag 5 for pulse wave detection cuff pressure detecting means by the third pipe 11,11a It is connected to the.
Pressure measuring unit 32 to limit the amplification and frequency band converted signal into an electric signal is connected with the pressure sensor 31. Further, an A / D converter 33 that converts an analog electric signal into a digital signal is connected, and the digital signal is output to the central control unit 35.

この中央制御部35は、データの書き込み及び読み取りが可能なRAM36を含んでおり、カフ圧力信号に重畳している脈波信号を得るための脈波検出手段を含む脈波処理部38、前記加減圧手段を含むカフ圧処理部39、阻血空気袋の圧値と脈波信号変化から血圧値を決定する血圧検出手段を含む血圧測定部40、測定結果を表示する表示制御部41とが図示のように構成されている。また、中央制御部35の制御プログラムはROMに内蔵されている。さらに、中央制御部35には、血圧値を表示する血圧表示手段である表示部37と、上述のポンプ23の駆動制御を行うポンプ駆動部48と,第2開閉バルブ16を開閉制御するバルブ制御部46と、電磁オリフィス径制御バルブ22を制御する電磁オリフィス径制御バルブ制御部48と、第1開閉バルブ15−2と第3開閉バルブ15−1を開閉制御するバルブ制御部47と、乾電池を含む電源部43及び電源スイッチ42とが接続されている。 The central control unit 35 includes a RAM 36 capable of writing and reading data, and includes a pulse wave processing unit 38 including a pulse wave detection means for obtaining a pulse wave signal superimposed on the cuff pressure signal, cuff pressure processing unit 39 includes a pressure reducing means, the blood pressure measuring unit 40 including a blood pressure detecting means for determining a blood pressure value from the pressure values and the pulse wave signal change ischemia air bag, and a display control unit 41 for displaying the measurement result It is configured as shown. The control program of the central control unit 35 is built in the ROM. Furthermore, the central control unit 35 includes a display unit 37 that is a blood pressure display unit that displays a blood pressure value, a pump drive unit 48 that controls the drive of the pump 23, and a valve control that controls the opening and closing of the second open / close valve 16. A part 46, an electromagnetic orifice diameter control valve control part 48 for controlling the electromagnetic orifice diameter control valve 22, a valve control part 47 for opening / closing the first opening / closing valve 15-2 and the third opening / closing valve 15-1, and a dry battery. The power supply unit 43 including the power supply switch 42 is connected.

上記の構成において、電源スイッチ42がオンされると、電源部43から電力供給が行われて上記のROMに記憶されていたプログラムの内容が読み出されて、血圧測定に必要な各制御が行えるように構成されている。   In the above configuration, when the power switch 42 is turned on, power is supplied from the power supply unit 43, the contents of the program stored in the ROM are read, and each control necessary for blood pressure measurement can be performed. It is configured as follows.

以上の様に構成されるカフ本体1によれば、各種の血圧測定装置に使用できることになる。例えば、図1に図示の血圧測定装置は、予め記憶された制御ブログラムを中央制御装置で読み出すことで図2の血圧測定ルーチンのフローチャートのように動作させることができる。   The cuff body 1 configured as described above can be used for various blood pressure measuring devices. For example, the blood pressure measurement device shown in FIG. 1 can be operated as shown in the flowchart of the blood pressure measurement routine in FIG. 2 by reading out a control program stored in advance by the central control device.

まず、電源スイッチ42をオンすることにより血圧測定装置が起動される。ステップST1で第1開閉バルブ15−2、第2開閉バルブ16、第3開閉バルブ15−1を開状態にする。また、ステップST2では電磁オリフィス径制御バルブ22を開状態にすることで、全カフ内の残圧、残留空気が排気され、残圧の無い状態での圧センサ31のゼロセットを行う(ステップST3)。次に、ステップST4で第1開閉バルブ、第3開閉バルブを閉じ、かつ電磁オリフィス制御バルブ22を全閉状態にする。 First, the blood pressure measurement device is activated by turning on the power switch 42. In step ST1, the first on-off valve 15-2, the second on-off valve 16, and the third on-off valve 15-1 are opened. Also, by the electromagnetic orifice diameter control valve 22 at step ST2 in the open state, residual pressure in all the cuff, the residual air is exhausted, performing zero setting of the pressure sensor 31 in the absence of residual pressure (step ST3). Next, in step ST4, the first opening / closing valve and the third opening / closing valve are closed, and the electromagnetic orifice control valve 22 is fully closed.

次のステップST5では、ポンブ23を起動する。そして、ステップST6でサブ空気袋が阻血用空気袋8のカフエッジ効果が軽滅される適当な圧力である規定圧になったか否かが判断される。規定圧になったと判断されるとステップST7に進み第2開閉バルブを閉じる。そして、ステップST8において第1開閉バルブ及び第2開閉バルブを開状態にすることで阻血用空気袋8及び脈波検出用空気袋5の加圧を開始する。 In the next step ST5, the pump 23 is activated. Then, whether the sub air bag Kafuejji effect of ischemia air bag 8 becomes the specified pressure force is suitable pressures are Keimetsu in step ST6 it is determined. If it is determined that becomes the specified pressure force to close the second on-off valve proceeds to step ST7. Then, in step ST8, the pressurization of the air bag 8 for the ischemia and the air bag 5 for detecting the pulse wave is started by opening the first open / close valve and the second open / close valve.

また、ステップST9では予め設定してある予想される収縮期血圧より約40mmHg程度高い圧になるまで阻血用空気袋8と脈波検出用空気袋5に対して、空気流量をおさえる流体抵抗16を介して空気を吹き込む。ステップST9で、設定圧が検出されたらステップST10で加圧ポンプ23への通電をオフする。ステップST11にて電磁オリフィス径制御バルブ22にて2〜3mmHg/秒の減圧速度で減圧を開始する。これに続いてステップST12でカフ圧検出部からカフ圧を得る。ステップST13にて脈波検出を開始する。ステップST14にて検出した脈波の振幅と検出されたときのカフ圧力をペアにしてRAM36に時系列に記憶する。ステップST15にて脈波振幅の最大値を検出した後、たとえば、規定値以上振幅が急に小さくなるポイントを検出して、そのときのカフ圧値を拡張期血圧として検出し、RAM36に記憶する。ステップST16にて電磁オリフィス径制御バルブ、および、第2開閉バルブを全開にして大気圧まで排気する。また、ステップST17にてRAM36内に時系列に記憶した脈波振幅とカフ圧値とのペアを一番時間の古い測定開始時期から検索し、脈波振幅が50%以上ステップ状に急に大きくなったポイントを検出し、そのときのカフ圧値を収縮期血圧としてRAM36に記憶する。ステップST18で記憶した収縮期血圧値と拡張期血圧値を表示部37に表示して一連の血圧測定助作を終了する。 Further, with respect to ischemia bladder 8 and the pulse wave detection air bag 5 to approximately 40mmHg higher by about pressure than systolic blood pressure that is expected is set in advance in step ST9, the flow resistance suppress airflow 16 Blow air through. When the set pressure is detected in step ST9, the energization to the pressurizing pump 23 is turned off in step ST10. In step ST11, the electromagnetic orifice diameter control valve 22 starts depressurization at a depressurization speed of 2 to 3 mmHg / sec. Obtaining a cuff pressure from the cuff pressure detecting unit in step ST12 subsequent to this. In step ST13 to start the detection of the pulse wave. The amplitude of the pulse wave detected in step ST14 and the cuff pressure when detected are paired and stored in the RAM 36 in time series. After detecting the maximum value of the pulse wave amplitude in step ST15, for example, the amplitude specified value or more is detected a sudden small point, detects the cuff pressure value at that time as the diastolic pressure, stored in the RAM36 To do. In step ST16, the electromagnetic orifice diameter control valve and the second opening / closing valve are fully opened to exhaust to atmospheric pressure. Also, retrieves the oldest measurement start time of the time pairs of pulse wave amplitude and the cuff pressure value stored in the time series at step ST17 in the RAM 36, the pulse wave amplitude suddenly to more than 50% stepwise detecting a point at which increased, it is stored in the RAM36 the cuff pressure value at that time as systolic blood pressure. The systolic blood pressure value and the diastolic blood pressure value stored in step ST18 are displayed on the display unit 37, and the series of blood pressure measurement assistance is completed.

以上の制御方法は、本発明の血圧測定装置の好適な実施例を説明したが、本発明はこれらに限定されるものではない。   Although the above control method demonstrated the suitable Example of the blood-pressure measuring apparatus of this invention, this invention is not limited to these.

以上のように、カフ圧が収縮期血圧より高いときに発生する脈波振幅を小さくでき、カフ圧が収縮期血圧より低くなったときに発生するカフ末梢側の拍出脈波をS/N比を向上させて検出できるので、収縮期血圧の測定精度が大きく改善された。またカフエッジ効果は、サブ空気袋の空気量如何で大きく左右されるが、サブ空気袋を加圧しすぎると血管圧迫が強すぎて拍出脈波が弱くなり、また極端に強くなると収縮期血圧が低く測定されてしまう。しかし、逆に加圧が不足していると、十分なカフエッジ効果の軽減にならない。よって、第1開閉バルブ、第3開閉バルブ、第2開閉バルブを上記のように開閉制御することでサブ空気袋の最適な圧制御が可能となる結果、最適な加圧値にサブ空気袋を加圧できるようになった。このためカフ圧が収縮期血圧よりも高いときの収縮期血圧測定の障害になるカフ上流側脈波を、ダブルカフ法よりも小さくできるようになった。また、第1開閉バルブ、第2開閉バルブ、第3開閉バルブとして電磁バイバスバルブを使うことにより配管をコンパクトに構成でき、かつ駆動制御が簡単に行えるようになったので小型の血圧測定装置が実現可能となった。さらに、脈波検出用空気袋に空気バッファタンク(不図示)を接続することにより、さらに、カフ上流側の脈波が阻血用空気袋を介して脈波検出部に検出される現象が軽減され、収縮期血圧測定のS/N比が改善された。 As described above, the pulse wave amplitude cuff pressure occurs when higher than systolic blood pressure can be reduced, the pulse wave output of beats cuff distal generated when the cuff pressure is lower than the systolic blood pressure S Since the / N ratio can be detected for detection, the measurement accuracy of systolic blood pressure is greatly improved. The cuff edge effect is greatly affected by the amount of air in the sub-air bag. However, if the sub-air bag is pressurized too much, the vascular pressure is too strong and the pulsed pulse wave becomes weak. It will be measured low. However, if the pressure is insufficient, the cuff edge effect cannot be sufficiently reduced. Accordingly, the first on-off valve, the third opening and closing valve, the second on-off valve allows optimum pressure control of the sub air bladder by opening and closing control as described above results, the sub air bag optimal pressurization value Can be pressurized. For this reason cuff upstream pulse wave cuff pressure becomes impaired systolic blood pressure measurement is higher than the systolic blood pressure, can now be smaller than Daburukafu method. In addition, by using electromagnetic bypass valves as the first open / close valve, second open / close valve, and third open / close valve, the piping can be made compact and the drive control can be easily performed, so a small blood pressure measuring device is realized. It has become possible. In addition, by connecting an air buffer tank (not shown) to the pulse wave detection air bag, the phenomenon that the pulse wave upstream of the cuff is detected by the pulse wave detection unit via the air bag is reduced. The S / N ratio of the systolic blood pressure measurement was improved.

本発明の一実施形態の血圧測定装置を示すブロック図である。It is a block diagram which shows the blood pressure measuring device of one Embodiment of this invention. , 図1の血圧測定装置の動作説明フローチャートである。2 is an operation explanatory flowchart of the blood pressure measurement device in FIG. 1.

符号の説明Explanation of symbols

1 カフ本体
2 カフ部材
8 阻血用空気袋
7 サブ空気袋
5 脈波検出用空気袋
15−2 第1開閉バルブ
16 第2開閉バルブ
15−1 第3開閉バルブ
23 ポンプ(加減圧手段)
31 圧力センサ(カフ圧力検出手段)
11、11a 第1配管
12、12a 第2配管
13、13a 第3配管
14 流体抵抗器
22 オリフィス径可変電磁バルブ
DESCRIPTION OF SYMBOLS 1 Cuff body 2 Cuff member 8 Air bag 7 for ischemia Sub air bag 5 Air bag 15 for pulse wave detection First open / close valve 16 Second open / close valve 15-1 Third open / close valve 23 Pump (pressurizing / depressurizing means)
31 Pressure sensor (cuff pressure detection means)
11, 11a First piping 12, 12a Second piping 13, 13a Third piping 14 Fluid resistor 22 Orifice diameter variable solenoid valve

Claims (5)

血圧測定部位に対して脱着自在に設けられるカフ部材と、
前記カフ部材に内包され血圧測定部位を圧迫する阻血用空気袋と、
前記阻血用空気袋の血圧測定部位の接する側とは反対側に敷設され血圧測定部位の心臓側の前記阻血用空気袋の圧迫を補助するサブ空気袋と、
前記阻血用空気袋の血圧測定部位の接する側に敷設され血圧測定部位の血管下流側を圧迫し、かつ、下流側で生じる脈波を検出する脈波検出用空気袋とから構成されるカフ本体と、
前記カフ本体を加減圧するために配管及び開閉バルブを介して接続される加減圧手段と、
前記脈波検出用空気袋と前記阻血用空気袋の圧変化からカフ圧信号を得るカフ圧検出手段と、
前記カフ圧力信号に重畳する脈波を検出して脈波信号を得る脈波検出手段と、
前記カフ圧力信号と前記脈波信号とに基づき血圧値を決定する血圧決定手段と、
前記血圧値を表示する表示手段と、を備え、
前記配管は、
前記阻血用空気袋と前記加減圧手段の間で第1開閉バルブを介して接続される第1配管と、
前記サブ空気袋と前記加減圧手段の間で第2開閉バルブを介して接続される第2配管と、
前記脈波検出用空気袋と前記カフ圧検出手段とを第3開閉バルブを介して接続する第3配管と、を備え、
前記阻血用空気袋に接続される前記第1配管と前記脈波検出用空気袋に接続される前記第3配管との間は、第1流体抵抗からなるバイバス流路を備え、
前記阻血用空気袋及び前記脈波検出用空気袋を加圧する前に、前記第1開閉バルブと前記第3開閉バルブとを閉じ、前記第2開閉バルブを開けて前記サブ空気袋が規定圧になるまで加圧した後に、前記第2開閉バルブを閉じて、前記サブ空気袋の空気量を調整し、かつ、血圧を測定している間は、前記第2開閉バルブを閉じていることを特徴とする血圧測定装置。
A cuff member provided detachably with respect to the blood pressure measurement site;
An air bag for ischemia that is contained in the cuff member and compresses the blood pressure measurement site;
A sub-air bag that is laid on the opposite side of the blood pressure measurement site of the blood bag for blood pressure measurement and that assists the compression of the air bag for blood pressure measurement on the heart side of the blood pressure measurement site;
The ischemia for laid on the side in contact with a blood pressure measurement site of the air bag pressure on the blood vessel downstream of the blood pressure measurement portion, and the air bag for detecting pulse waves for detecting a pulse wave generated in the downstream side consists of a cuff The body,
Pressurizing and depressurizing means connected via a pipe and an open / close valve to pressurize and depressurize the cuff body;
A cuff pressure detecting means for obtaining a cuff pressure signal from the pressure change of the air bag the said air bag for detecting pulse waves ischemia,
Pulse wave detection means for detecting a pulse wave superimposed on the cuff pressure signal to obtain a pulse wave signal;
Blood pressure determining means for determining a blood pressure value based on the cuff pressure signal and the pulse wave signal;
Display means for displaying the blood pressure value ,
The piping is
A first pipe connected via a first on-off valve between the blood-insufficating air bag and the pressure-increasing / decreasing means;
A second pipe connected via a second on-off valve between the sub air bag and the pressure-increasing / decreasing means;
A third and pipe, which connects the said air bag for detecting pulse waves cuff pressure detecting means via a third on-off valve,
Between the first pipe connected to the air bag for ischemia and the third pipe connected to the air bag for pulse wave detection is provided with a bypass flow path consisting of a first fluid resistance,
Before pressurizing the air bag and the air bag for detecting pulse waves for the ischemia, the first on-off valve is closed and said third on-off valve, the sub air bag specified pressure by opening the second on-off valve The second open / close valve is closed while the second open / close valve is closed, the amount of air in the sub air bag is adjusted, and the second open / close valve is closed while blood pressure is measured. Blood pressure measuring device.
前記第2開閉バルブは、血圧測定終了時、又は血圧測定開始前に、開かれることで前記サブ空気袋内の空気を排気することを特徴とする請求項1に記載の血圧測定装置。   2. The blood pressure measurement device according to claim 1, wherein the second open / close valve is opened at the end of blood pressure measurement or before the blood pressure measurement is started to exhaust air in the sub-air bag. 前記第1開閉バルブ、前記第2開閉バルブ、前記第3開閉バルブは電磁バルブであることを特徴とする請求項1に記載の血圧測定装置。   The blood pressure measuring device according to claim 1, wherein the first on-off valve, the second on-off valve, and the third on-off valve are electromagnetic valves. 前記第3配管に空気タンクを接続したことを特徴とする請求項1記載の血圧測定装置。   The blood pressure measuring device according to claim 1, wherein an air tank is connected to the third pipe. 血圧測定部位に対して脱着自在に設けられるカフ部材と、
前記カフ部材に内包され血圧測定部位を圧迫する阻血用空気袋と、
前記阻血用空気袋の血圧測定部位の接する側とは反対側に敷設され血圧測定部位の心臓側の前記阻血用空気袋の圧迫を補助するサブ空気袋と、
前記カフ部材を加減圧するために配管及び開閉バルブを介して接統される加減圧手段と、
前記阻血用空気袋の圧変化からカフ圧力信号を得るカフ圧検出手段と、
前記カフ圧信号に重畳する脈波を検出して脈波信号を得る脈波検出手段と、
前記カフ圧力信号と前記脈波信号に基づき血圧値を決定する血圧決定手段と、
前記血圧値を表示する表示手段と、を備え
前記配管は、
前記阻血用空気袋と前記加減圧手段の間で第1開閉バルブを介して接続される第1配管と、
前記サブ空気袋と前記加減圧手段の間で第2開閉バルブを介して接続される第2配管と、
脈波検出用空気袋と前記カフ圧力検出手段とを第3開閉バルブを介して接続する第3配管と、を備えた血圧測定装置であって、
前記阻血用空気袋を加圧する前に、前記第1開閉バルブと前記第開閉バルブとを閉じ、前記第開閉バルブを開け前記サブ空気袋が規定圧になるまで加圧した後に前記第2閉閉バルブを閉じて、前記サブ空気袋の空気量を調整し、かつ血圧を測定している間は、前記第2開閉バルブを閉じていることを特徴とする血圧測定装置。
A cuff member provided detachably with respect to the blood pressure measurement site;
An air bag for ischemia that is contained in the cuff member and compresses the blood pressure measurement site;
A sub-air bag that is laid on the opposite side of the blood pressure measurement site of the blood bag for blood pressure measurement and that assists the compression of the air bag for blood pressure measurement on the heart side of the blood pressure measurement site;
Pressurizing and depressurizing means connected via a pipe and an open / close valve to pressurize and depressurize the cuff member;
A cuff pressure detecting means for obtaining a cuff pressure signal from the pressure change of the air bag the ischemia,
A pulse wave detecting means for obtaining a pulse wave signal by detecting a pulse wave superposed on the cuff pressure signal,
And blood pressure determining means for determining a blood pressure value based on the cuff pressure signal and the pulse wave signal,
Display means for displaying the blood pressure value ,
The piping is
A first pipe connected via a first on-off valve between the blood-insufficating air bag and the pressure-increasing / decreasing means;
A second pipe connected via a second on-off valve between the sub air bag and the pressure-increasing / decreasing means;
A blood pressure measuring device comprising: a third piping for connecting a pulse wave detecting air bag and the cuff pressure detecting means via a third on-off valve ;
Wherein the ischemic air bag before pressurizing, closed and said third on-off valve and the first on-off valve, after the sub air bag is opened the second on-off valve is pressurized to a specified pressure, wherein The blood pressure measuring device, wherein the second on-off valve is closed while the second closing valve is closed, the amount of air in the sub air bag is adjusted, and the blood pressure is measured.
JP2007187550A 2007-06-13 2007-07-18 Blood pressure measurement device Active JP5112767B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007187550A JP5112767B2 (en) 2007-07-18 2007-07-18 Blood pressure measurement device
PCT/JP2008/059447 WO2008152894A1 (en) 2007-06-13 2008-05-22 Sphygmomanometry apparatus
CN2008800198104A CN101711122B (en) 2007-06-13 2008-05-22 Sphygmomanometry apparatus
KR1020107000513A KR101099235B1 (en) 2007-06-13 2008-05-22 Sphygmomanometry apparatus
TW97119795A TWI400061B (en) 2007-06-13 2008-05-29 Blood pressure measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187550A JP5112767B2 (en) 2007-07-18 2007-07-18 Blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2009022477A JP2009022477A (en) 2009-02-05
JP5112767B2 true JP5112767B2 (en) 2013-01-09

Family

ID=40394891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187550A Active JP5112767B2 (en) 2007-06-13 2007-07-18 Blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP5112767B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237575B2 (en) * 2018-12-27 2023-03-13 オムロンヘルスケア株式会社 Blood pressure measuring device
JP7456214B2 (en) 2020-03-16 2024-03-27 オムロンヘルスケア株式会社 Fluid circuit and blood pressure measurement device
DE112021000519T5 (en) 2020-03-16 2022-11-17 Omron Healthcare Co., Ltd. FLUID CIRCUIT AND BLOOD PRESSURE MEASUREMENT DEVICE

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230352A (en) * 1992-03-04 1993-07-27 American Cyanamid Company Medical suturing device, a single-strike die mechanism, and a method of using said die mechanism for forming the medical suturing device
JP4020344B2 (en) * 1998-09-04 2007-12-12 修 栃久保 Sphygmomanometer
JP3675796B2 (en) * 2002-08-05 2005-07-27 コーリンメディカルテクノロジー株式会社 Blood pressure measurement device
JP2006334153A (en) * 2005-06-02 2006-12-14 Shibuya Kogyo Co Ltd Sphygmomanometer
JP4764673B2 (en) * 2005-08-11 2011-09-07 株式会社エー・アンド・デイ Blood pressure pulse wave cuff

Also Published As

Publication number Publication date
JP2009022477A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5043707B2 (en) Blood pressure measurement device and control method thereof
KR101099235B1 (en) Sphygmomanometry apparatus
TWI374020B (en)
JP5151690B2 (en) Blood pressure information measuring device and index acquisition method
JP4795777B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
JP5043698B2 (en) Blood pressure measurement device
JP5112767B2 (en) Blood pressure measurement device
JP4943748B2 (en) Blood pressure measurement device, measurement method thereof, and storage medium
JP5233967B2 (en) Blood pressure measurement device
JP5111053B2 (en) Blood pressure measurement device
JP5112756B2 (en) Blood pressure measurement device
JP4819594B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
JP3818853B2 (en) Electronic blood pressure monitor
CN112203583B (en) Auxiliary device and area of driving blood
JP5146997B2 (en) Electronic blood pressure monitor and signal processing method thereof
JP5143529B2 (en) Blood pressure measurement device and control method thereof
JP4352952B2 (en) Blood pressure measuring device
WO2014162360A1 (en) Sphygmomanometer and blood pressure value computation method
JP2008005925A (en) Cuff for sphygmomanometry, sphygmomanometer apparatus, and sphygmomanometry method
JP2615858B2 (en) Electronic sphygmomanometer
JP3429359B2 (en) Blood pressure measurement device
JP5158786B2 (en) Blood pressure measurement device and control method thereof
JPH07275216A (en) Blood pressure measuring device
CN111317459A (en) Blood pressure measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250