WO2014162360A1 - Sphygmomanometer and blood pressure value computation method - Google Patents

Sphygmomanometer and blood pressure value computation method Download PDF

Info

Publication number
WO2014162360A1
WO2014162360A1 PCT/JP2013/002374 JP2013002374W WO2014162360A1 WO 2014162360 A1 WO2014162360 A1 WO 2014162360A1 JP 2013002374 W JP2013002374 W JP 2013002374W WO 2014162360 A1 WO2014162360 A1 WO 2014162360A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
blood pressure
pressure measurement
point
cuff
Prior art date
Application number
PCT/JP2013/002374
Other languages
French (fr)
Japanese (ja)
Inventor
孝博 相馬
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2013/002374 priority Critical patent/WO2014162360A1/en
Publication of WO2014162360A1 publication Critical patent/WO2014162360A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method

Definitions

  • the present invention relates to a blood pressure measurement device and a blood pressure value calculation method.
  • Patent Document 1 a pulse wave detection air bag for selectively detecting the cuff at the peripheral side of the cuff at the central portion of the cuff where the pressure of the air bag for ischemia is most reflected.
  • a so-called double cuff method has been proposed that improves the ability to detect a pulse wave squeezed out to the cuff peripheral side.
  • the maximum gradient point between the peak point of the detected pulse wave and the bottom point appearing preceding the peak point is detected, and the detected maximum gradient point and the maximum gradient point are preceded.
  • the phase difference is extracted by dividing the time difference from the bottom point appearing by one period of the pulse wave.
  • a systolic blood pressure value (maximum blood pressure value) and / or a diastolic blood pressure value (minimum blood pressure value) is calculated by using the extracted time difference or phase difference as a feature amount (for example, the following patents) Reference 2).
  • the amount of air in the pulse wave detection system increases, for example, to increase the amount of air in the pipe by increasing the length of the pipe that feeds air to the cuff body in order to improve user convenience. Can be mentioned.
  • the amount of air in the ischemic bladder increases.
  • the amount of air in the air bag for ischemia increases.
  • the pulse wave detection system It is desirable to use a feature amount that can be extracted regardless of the increase or decrease of the air amount.
  • the present invention has been made in view of the above problems, and an object thereof is to improve measurement accuracy in a blood pressure measurement device.
  • a blood pressure measurement device has the following configuration. That is, An air bag for ischemia that is laid on the side in contact with the blood pressure measurement site and compresses the entire blood pressure measurement site; A sub-air bag that is laid on the side of the blood bag for measuring blood pressure that is in contact with the blood pressure measurement site and compresses the heart side of the blood vessel of the blood pressure measurement site; A pulse wave detection air bag that is laid on the side of the blood bag for blood pressure measurement that is in contact with the blood pressure measurement site and detects a pulse wave at the center of the blood vessel of the blood pressure measurement site; A blood pressure measurement device that detects a cuff pressure in a decompression process, in which a plurality of pulse wave components are superimposed in time series, For each of the plurality of pulse wave components superimposed on the detected cuff pressure, Identify the amplitude peak point and the bottom point that appears before the peak point, Between the bottom point and the peak point, it sequentially extracts a predetermined number of
  • FIG. 1 is a diagram showing a configuration of a blood pressure measurement device 100 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a state in which a pulse wave component is superimposed on the cuff pressure in time series in the process of reducing the cuff pressure.
  • FIG. 3 is a longitudinal sectional view of the cuff body 101 of the blood pressure measurement device 100.
  • FIG. 4 is a diagram schematically showing each component included in the pulse wave component PW.
  • FIG. 1 is a diagram showing a configuration of a blood pressure measurement device 100 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a state in which a pulse wave component is superimposed on the cuff pressure in time series in the process of reducing the cuff pressure.
  • FIG. 3 is a longitudinal sectional view of the cuff body 101 of the blood pressure measurement device 100.
  • FIG. 4 is a diagram schematically showing each component included in the pulse wave component PW.
  • FIG. 5 is a diagram schematically showing how the W1-A component derived from the change in the intravascular volume under the cuff central portion A is generated and changed in the process of reducing the cuff pressure.
  • FIG. 6A is a diagram showing a pulse wave component detected when the cuff pressure is between the systolic blood pressure value and the diastolic blood pressure value.
  • FIG. 6B is a diagram showing a fluctuation (slope fluctuation curve) of the slope of the regression line from the bottom point to the peak point, calculated for each pulse wave component.
  • FIG. 7A is a flowchart showing the flow of blood pressure value calculation processing.
  • FIG. 7B is a flowchart showing the flow of blood pressure value calculation processing.
  • FIG. 7A is a flowchart showing the flow of blood pressure value calculation processing.
  • FIG. 8 is a flowchart showing the flow of the slope fluctuation curve calculation process.
  • FIG. 9 is a flowchart showing the flow of the feature amount extraction process.
  • FIG. 10 is a diagram illustrating the relationship between the phase difference and the cuff pressure.
  • FIG. 11 is a flowchart showing the flow of diastolic blood pressure value determination processing and systolic blood pressure value determination processing.
  • FIG. 12 is a flowchart showing the flow of blood pressure measurement processing.
  • FIG. 1 is a diagram showing a configuration of a blood pressure measurement device 100 according to an embodiment of the present invention.
  • the cuff body 101 includes a cloth cuff member 102 that is detachably provided to a blood pressure measurement site including the upper arm.
  • a male (hook type) hook-and-loop fastener 103 is disposed at the end of the cuff member 102 on the blood pressure measurement site contact side.
  • a female (loop-type) surface fastener 104 is disposed on the surface opposite to the blood pressure measurement site contact side.
  • the cuff body 102 is detachably attached to the upper arm portion of the subject by winding the cuff member 102 around the upper arm portion of the subject as shown in the figure and engaging the hook-and-loop fasteners 103 and 104.
  • the hook-and-loop fastener is merely an example, and other members may be used (for example, the cuff body may be formed in a cylindrical shape and the upper arm portion may be inserted into the cylinder).
  • an air bag 108 for ischemia is laid to press the entire blood pressure measurement site.
  • a sub air bag 107 formed with a width narrower than that of the ischemic air bladder 108 is laid in order to compress the heart side of the blood pressure measurement site.
  • a first buffer member 109 that attenuates vibration of the sub air bag 107 is provided between the sub air bag 107 and the ischemic air bag 108.
  • a pulse wave detection air bag 105 is laid that compresses the blood vessel downstream side of the blood pressure measurement site and detects a downstream pulse wave.
  • the air bag 108 for ischemia of the cuff body 101 is connected to a pump 123 which is a pressure increasing / decreasing means via a second pipe 112, a pipe 115, and a cross-branching portion 120.
  • the pulse wave detection air bag 105 of the cuff body 101 is connected to the first piping 111, the fluid resistor 114 and the piping 115, and the cross-branching portion 120, and the sub air bag 107 is connected to the third piping 113,
  • the on-off valve 116, the pipe 113a, and the cross branch part 120 are connected to the pump 123, respectively.
  • the air bag 108 for ischemia is connected to a pressure sensor 131 capable of detecting a cuff pressure signal from a pressure change via a second pipe 112 and a fluid resistor 114.
  • the pulse wave detection air bladder 105 is connected to the pressure sensor 131 via the first pipe 111.
  • the first piping 111, the second piping 112, and the third piping 113 are made of soft tubes, and are configured to be detachable from the main body 130 via the connector 110.
  • a quick exhaust valve / constant speed exhaust valve 122 is further connected to the cross-branching portion 120, and the quick exhaust valve / constant speed exhaust valve 122 is connected to the control unit 148.
  • an on-off valve 116 is connected to the pipe 113 a, and the on-off valve 116 is connected to the control unit 146.
  • the control unit 148 controls the opening area of the solenoid valve of the quick exhaust valve / constant speed exhaust valve 122 according to a command from the central control unit 135, and the control unit 146 opens / closes the electromagnetic on / off valve of the on / off valve 116. To control.
  • the pump 123 is driven based on power supply from a pump driving unit 149 connected to the motor M, and pressurizes the outside air introduced into the pump through the opening 123a. Pressurized air obtained by pressurizing the outside air is sent to the first pipe 111 to the third pipe 113, whereby each air bag is pressurized.
  • the rapid exhaust valve / constant speed exhaust valve 122 has a structure in which the opening area is varied according to the strength of the electromagnetic force in order to achieve a pressure reduction speed of 2 to 4 mmHg per second. A predetermined decompression speed is realized by being controlled based on the drive signal.
  • the ischemic pressure signal from the ischemic air bag 108 in which the pulse wave component is attenuated and the pulse wave pressure from the pulse wave detecting air bag 105 including the pulse wave component are passed through the fluid resistor 114.
  • a cuff pressure signal including the signal is detected.
  • the pressure sensor 131 is connected to a pressure measuring unit 132 that converts an analog electric signal, and the pressure measuring unit 132 is connected to an A / D converter 133. As a result, the cuff pressure signal is input to the central control unit 135 as a digital signal.
  • the central control unit 135 includes a RAM 138 that reads and writes cuff pressure signals and analysis results, a pulse wave processing unit 139 that detects a pulse wave component superimposed on the cuff pressure signal in time series, and a cuff (ischemic blood pressure). And a cuff pressure control unit 140 that pressurizes and decompresses the air bag, the pulse wave detection air bag, and the sub air bag.
  • a blood pressure calculation unit 141 that calculates a blood pressure value from the detected pulse wave component and the ischemic pressure signal
  • a display control unit 137a that displays the calculated blood pressure value on a liquid crystal display unit 137 that is a blood pressure display unit
  • a central control unit A ROM 136 that stores various control programs that can be read by the computer 135 is disposed.
  • the RAM 138 also functions as a work area when various control programs are executed by the central control unit 135.
  • the central control unit 135 includes a liquid crystal display unit 137 that displays a blood pressure value, and each drive that performs the above-described drive control (pump 123, rapid exhaust valve / constant exhaust valve 122, and open / close valve 116 drive control). Are connected.
  • a power supply unit 143 including a dry battery is connected, and power from the power supply unit 143 is supplied to each unit via the central control unit 135 by operating the measurement start switch 142.
  • the central control unit 135 reads out various control programs stored in the ROM 136, and executes various processes by executing processing and determination of the entire blood pressure measurement device 100. is doing.
  • FIG. 2 is a graph showing how the pulse wave component is superimposed on the cuff pressure signal in time series during the cuff pressure depressurization process.
  • the horizontal axis represents the elapsed time from the start of depressurization, and the vertical axis represents the respective time. It shows the cuff pressure over time.
  • the magnitude and shape of the pulse wave component change as the cuff pressure decreases.
  • FIG. 3 is a cross-sectional view of the cuff body 101 (triple cuff) of the blood pressure measurement device 100 in the longitudinal direction (the direction in which the upper arm extends).
  • the pressurized air bag 108 and the sub air bag 107 block the blood vessel 300 at the portion Q and suppress the blood flow from the upstream side 300a to the downstream side 300b.
  • the force for compressing the upper arm portion by the air bag 108 for ischemia is strongest at the center portion in the width direction of the cuff body 101 (the portion A in FIG. 3, hereinafter simply referred to as the cuff center portion A), and as it approaches the both ends. It becomes weaker and becomes almost zero at both ends.
  • the invasion of blood flow is prevented even in the section indicated by “B” in FIG.
  • the pulse wave detection air bag 105 is provided in the cuff central portion A, and best captures the intravascular pressure change (intravascular volume change) in the cuff central portion A.
  • cuff pressure means the pressure in the air bag 108 for ischemia, but substantially the upper arm portion at the cuff central portion A in the width direction of the cuff body 101. Equal to the pressure of That is, it is also the pressure from the cuff body 101 applied to the blood vessel below the cuff central portion A in the width direction of the cuff body 101.
  • FIG. 4 is a diagram schematically showing each component included in the pulse wave component PW detected under the triple cuff configuration.
  • the pulse wave component PW superimposed in time series on the cuff pressure signal detected by the pulse wave detecting air bag 105 is mainly derived from the blood flow from the upstream side of the cuff body 101.
  • the component W1 (hereinafter referred to as the W1 component) derived from a direct change in cuff pressure due to a change in intravascular volume due to blood flow, and a change in cuff pressure due to a change in intravascular volume due to reflection from a blood vessel on the downstream side of the cuff body 101 It is divided into derived components W2 (hereinafter referred to as W2 components).
  • the W1 component is a component W1-A (hereinafter referred to as a W1-A component) derived from a pressure change (a change in volume in the blood vessel) under the cuff body 101 in the width direction, that is, the cuff center A. 3, the pressure change (intravascular volume change) under the upstream portion in the width direction of the cuff body 101, that is, the portion B in FIG. 3 (hereinafter simply referred to as the cuff upstream portion B) attenuated by the sub air bag 107.
  • the derived component W0 and the downstream portion in the width direction of the cuff body 101, that is, the component W1-C derived from the change in the intravascular volume under the portion C in FIG. 3 hereinafter simply referred to as the cuff downstream portion C
  • it can be considered as a W1-C component).
  • the W1-A component is easier to detect than the W0 component and the W1-C component because the pulse wave detection air bag 105 is attached to the cuff central portion A, and has a great influence on the shape of the W1 component. give.
  • the W0 component is greatly reduced because the cuff edge effect of the air bag 108 for ischemia is compensated by the sub air bag 107. Further, since it originates from a pressure change (intravascular volume change) in the upstream portion of the cuff body 101 in the width direction, it appears before the W1-A component.
  • the W1-C component is smaller than the W1-A component because the cuff downstream portion C is located downstream of the cuff central portion A.
  • the opening and closing of the blood vessel under the cuff downstream portion C is substantially synchronized with the opening and closing of the blood vessel under the cuff central portion A, and there is no substantial time difference with respect to the appearance of the W1-A component.
  • the W2 component is a reflection from the blood vessel on the downstream side of the cuff body 101 with respect to the blood flow from the upstream side, an amplitude peak appears depending on the timing at which the intravascular pressure on the downstream side becomes higher than the cuff pressure. Is delayed from the appearance of the peak of the amplitude of the W1 component.
  • the influence of the shape of the W2 component on the shape of the entire pulse wave component is smaller than the influence of the shape of the W1 component (combination of the W1-A component and the W1-C component).
  • the intravascular pressure on the downstream side of the cuff body 101 has sufficiently recovered to the state before ischemia. Reflection is virtually eliminated. Therefore, in the pulse wave component detected when the cuff pressure is close to the diastolic blood pressure value, the W2 component is substantially eliminated.
  • FIG. 5 is a diagram schematically showing how the W1-A component derived from the change in the intravascular volume under the cuff central portion A is generated and changed during the process of reducing the cuff pressure.
  • the horizontal axis indicates the elapsed time when the cuff pressure is reduced at a constant pressure reduction rate
  • the vertical axis indicates the intravascular external pressure difference (intravascular pressure-cuff pressure).
  • Graph 1 shows the cuff central portion A below the cuff derived from the invasive waveform (intravascular pressure change) at each time point in the elapsed time when the invasive waveform (intravascular pressure change) is simplified by a triangular waveform. It shows the change in the blood pressure difference between the blood vessels inside and outside (the same triangular waveform as the open waveform).
  • Graph 2 represents the change in the intravascular volume at each time point according to the change in the intravascular external pressure difference, with the vertical axis as the intravascular volume.
  • the relationship between the intravascular external pressure difference and the intravascular volume in Graph 3 is simplified by paying attention to the tendency of the intravascular volume to suddenly change (rapid increase or decrease) when the intravascular external pressure difference is near zero.
  • the intravascular volume is between the completely closed state (intravascular volume 0) and the fully open state (intravascular volume Vmax). Bends at two points, V0 and V1. That is, the relationship between the intravascular external pressure difference and the intravascular volume is a line graph composed of a steep straight line between V0 and V1, and straight lines with gentle gradients of V0 or less and V1 or more.
  • Intravascular volume V0 the blood vessel is crushed by its own weight at the position where the intravascular external pressure difference is 0, but when the intravascular external pressure difference changes to a positive value from this position, the intravascular volume suddenly increases. This is because after the blood vessel reaches a sufficiently open state (intravascular volume V1), it gradually increases (towards the maximum intravascular volume Vmax) with respect to the change in the intravascular external pressure difference. Also, when the intravascular external pressure difference changes from a position of 0 to a negative value, the intravascular volume gradually decreases (goes toward the intravascular volume 0).
  • the tendency of the intravascular volume to suddenly change (sudden increase) when the intravascular external pressure difference is close to 0 depends on the degree of extensibility of the subject's blood vessels, but the tendency itself is generalized. It is considered possible.
  • a is the change in the internal / external pressure difference (triangle waveform) at the time when the cuff pressure is equal to the systolic blood pressure value
  • b is the cuff pressure.
  • a change in the intravascular external pressure difference at a time point approximately at the center of the systolic blood pressure value and the diastolic blood pressure value, and c indicates a change in the intravascular external pressure difference when the cuff pressure is equal to the diastole blood pressure value.
  • Intravascular pressure change Changes in the intravascular external pressure difference (triangular waveform) a, b, c at each time point with respect to the elapsed time are the peak (peak points) of the systolic blood pressure value in the open waveform (intravascular pressure change) (i.e., It originates from the early diastole of the heart H, and the downward apex (bottom point) is in the portion of the diastolic blood pressure value (ie, early systole of the heart H) in the blood pressure waveform (intravascular pressure change) It comes from.
  • graph 2 shows how the W1-A component changes at each point in the cuff pressure reduction process (elapsed time).
  • dots black circles indicate the positions where the intravascular external pressure difference becomes 0 preceding the amplitude peak point.
  • the peak point of the amplitude corresponds to the position where the intravascular external pressure difference is 0, and this position is indicated by a dot.
  • the position where the intravascular external pressure difference indicated by the dots a ′, b ′, and c ′ is 0 is actually a portion where the intravascular volume suddenly increases (rapidly increases) (the rapid increase point in the first half of the W1-A component) And the peak point of the slope).
  • the position where the intravascular volume that occurs behind the peak point is minimized is also indicated by dots. It is known that the position where the intravascular volume that occurs after the peak point of the W1-A component is minimized is substantially equal to the position of the actual downward peak point (bottom point) of the pulse wave component. Therefore, hereinafter, the position where the intravascular volume that occurs behind the peak point of the W1-A component is minimized is referred to as the bottom point of the W1-A component.
  • t is the time (time difference) of the delay from the bottom point of the preceding W1-A component of the rapidly increasing portion of the W1-A component of interest (the sharp increase point in the first half and the peak point of the magnitude of the slope), that is, It is considered that the time difference of appearance from the preceding bottom point (of the W1-A component) of the peak point (sudden rising point) of the magnitude of the inclination is shown.
  • the time difference t decreases as the cuff pressure approaches the systolic blood pressure value from the systolic blood pressure value.
  • one cycle T of the pulse wave component is substantially constant during the period of blood pressure measurement, the phase difference 2 ⁇ of the appearance from the preceding bottom point of the peak point of the slope (the rapidly rising point). Similarly, (t / T) decreases as the cuff pressure approaches the systolic blood pressure value from the systolic blood pressure value.
  • the shape of the W1-A component appears when the cuff pressure becomes smaller than the pressure of the systolic blood pressure value.
  • pulse wave component PW is divided into each component, and the simplified examination content about the W1-A component is shown. However, in actuality, the pulse wave component PW is separated into the W1-A component, the W0 component, and the like. Without being detected, each pulse wave component is detected via the pulse wave detection air bag 105 as a single pulse wave component.
  • the W0 component affects the rising portion
  • the W1-A component greatly affects the shape of the W1 component of the pulse wave component superimposed on the cuff pressure.
  • the W2 component of the pulse wave component is generally smaller than the W1 component, and disappears when the cuff pressure approaches the diastolic blood pressure value.
  • the delay from the bottom point (time difference t or phase difference 2 ⁇ (t / T)) of the portion where the amplitude of the pulse wave component increases rapidly (peak point of the magnitude of the inclination) is as the cuff pressure approaches the diastolic blood pressure value. Get smaller.
  • the portion where the amplitude of the pulse wave component increases rapidly is the overlapping portion of the W0 portion and the W1-A portion of FIG. 4 when the cuff pressure falls below the systolic blood pressure value. Greatly changes to the peak point side of the amplitude of the W0 component.
  • the blood pressure value can be determined as follows.
  • diastolic blood pressure value determination method 1 The diastolic blood pressure value
  • the displacement from the peak point (abrupt increase point) of the magnitude of the slope of the bottom point that occurs before or after the peak point of the amplitude of the pulse wave component (the difference in amplitude value from the bottom point to the sudden increase point) is a predetermined threshold Th
  • the cuff pressure at which the pressure becomes smaller and almost constant is used as the diastolic blood pressure value (“diastolic blood pressure value determination method 2”).
  • systolic blood pressure value determination method 1 The cuff pressure value at the time when a large change having no continuity of values between pulse wave components is taken as the systolic blood pressure value (“systolic blood pressure value determination method 1”).
  • FIG. 6A is a diagram showing a pulse wave component superimposed on a cuff pressure signal detected when the cuff pressure is between the systolic blood pressure value and the diastolic blood pressure value.
  • Pe represents the peak point of the amplitude of the pulse wave component PW
  • B1 represents the bottom point generated prior to the peak point Pe of the amplitude of the pulse wave component.
  • D indicates each pulse wave data constituting the pulse wave component.
  • D 20 is the 20th pulse wave data among the pulse wave data between the bottom point B1 and the peak point Pe. Represents.
  • A indicates a regression line calculated based on a plurality of continuous pulse wave data.
  • a 20 indicates three continuous pulse wave data (D 20 , D including the 20th pulse wave data). 21 , D 22 ).
  • a 50 includes a regression line of three consecutive pulse wave data (D 50 , D 51 , D 52 ) including the 50th pulse wave data
  • a 80 includes the 80th pulse wave data.
  • Regression lines of three continuous pulse wave data (D 80 , D 81 , D 82 ) are respectively shown.
  • FIG. 6B is a diagram showing a fluctuation (slope fluctuation curve) of the slope of the regression line in each pulse wave component when the cuff pressure value is in the vicinity of the systolic blood pressure value or less.
  • the horizontal axis represents each pulse wave data point from the bottom point B1 to the peak point Pe
  • the vertical axis represents the slope Ar of the regression line calculated at each pulse wave data point.
  • slope fluctuation curves 611 to 615 are displayed based on the pulse wave components 601 to 605.
  • the slope fluctuation curves indicate the sampling rate. Thus, it may be a curve obtained from 2 to 10 points, and may be a regression line between 10 ms and several tens of ms).
  • the W0 component appears before the W1-A component as described, and the slope rapidly increases at two points, the time when the W0 component appears and the time when the W1-A component appears. To 604).
  • the second peak point corresponds to the above-mentioned sudden rise point. Therefore, the time difference from the bottom point B1 of the second peak point of the slope fluctuation curve is t.
  • step S701 “0” is substituted for a count value p for counting the number of pulse wave components superimposed in time series on the cuff pressure signal, and the number of data points of pulse wave data constituting each pulse wave component is counted. “1” is assigned to the count value n.
  • step S702 among the pulse wave data constituting the pulse wave component superimposed on the cuff pressure signal detected in the decompression process, pulse wave data D n + 1 to D n + q (q is the pulse wave data to be processed).
  • This is a value indicating the number of data points. For example, when the sampling interval is 4 msec, the value is greater than 50), and is stored in a pulse wave analysis buffer (not shown).
  • step S703 a convex change is detected from the pulse wave data (D n + 1 to D n + q ) stored in the pulse wave analysis buffer, and the peak point Pe is specified.
  • step S704 it is determined whether or not the peak point Pe is specified in step S703 (whether or not the peak point Pe is included in the pulse wave data Dn + 1 to Dn + q ), and the peak point Pe is not specified. If it is determined that, the count value n is incremented in step S708, and the process returns to step S702.
  • step S704 determines whether the peak point Pe has been specified. If it is determined in step S704 that the peak point Pe has been specified, the process proceeds to step S705, and the bottom point B1 is determined from the pulse wave data (D n + 1 to D n + q ) stored in the pulse wave analysis buffer. Identify.
  • step S706 it is determined whether or not the bottom point B1 is specified in step S705 (whether or not the bottom point B1 is included in the pulse wave data Dn + 1 to Dn + q ), and the bottom point B1 is not specified. If it is determined that, the count value n is incremented in step S709, and the process returns to step S702.
  • step S706 determines whether the bottom point B1 has been specified. If it is determined in step S706 that the bottom point B1 has been specified, the process proceeds to step S707, and the count value p indicating the number of pulse wave components is incremented.
  • step S710 an inclination variation curve calculation process is executed for the pulse wave data group (pulse wave component) currently stored in the pulse wave analysis buffer using the specified peak point Pe and bottom point B1. Specifically, m pulse wave data consecutively extracted from pulse wave data included from the bottom point B1 to the peak point Pe, and a regression line is calculated based on the extracted m pulse wave data. Then, the slope value is stored in a slope fluctuation curve buffer (not shown). Details of the slope fluctuation curve calculation process will be described later.
  • step S711 using the slope variation curve calculated in step S710 and the identified bottom point B1, the feature amount is calculated for the pulse wave data group (pulse wave component) currently stored in the pulse wave analysis buffer. Extract. Specifically, the peak point ⁇ is detected in the slope fluctuation curve from the bottom point B1 to the peak point Pe, and the time difference tp from the bottom point B1 to the peak point ⁇ is calculated. Moreover, Pp which is the cuff pressure at that time is read, and (tp, Pp) is stored as one set in a blood pressure value determination buffer (not shown). Details of the feature amount extraction processing will be described later.
  • step S721 of FIG. 7B it is determined whether or not the count value p indicating the number of pulse wave components exceeds N (N is a predetermined integer). If it is determined in step S721 that the count value p does not exceed N, the process proceeds to step S722, and a value obtained by adding the number of data q to the current count value n is substituted. Thereby, the count value n indicating the first pulse wave data of the pulse wave data group (pulse wave component) next to the pulse wave data group (pulse wave component) in which the peak point Pe and the bottom point B1 are specified this time is Will be set.
  • step S721 determines whether or not the count value p has exceeded N. If it is determined in step S723 that the systolic blood pressure value has not yet been calculated, the process proceeds to step S725 to execute systolic blood pressure value determination processing.
  • the process when it is determined that the systolic blood pressure value has been reached from the feature amount extracted from the pulse wave data group (pulse wave component) currently stored in the pulse wave analysis buffer If the systolic blood pressure value is determined and it is determined that the systolic blood pressure value has not been reached, the process directly proceeds to step S727.
  • step S723 if it is determined in step S723 that the systolic blood pressure value has already been calculated, the process proceeds to step S724 to execute a diastolic blood pressure value determination process.
  • the diastolic blood pressure value determination process when it is determined that the diastolic blood pressure value has been reached from the feature amount extracted from the pulse wave data group (pulse wave component) currently stored in the pulse wave analysis buffer If the diastolic blood pressure value is determined and it is determined that the diastolic blood pressure value has not been reached, the process directly proceeds to step S726.
  • step S726 it is determined whether a diastolic blood pressure value has been calculated. If it is determined in step S726 that the diastolic blood pressure value has not yet been calculated, the process proceeds to step S727, and a value obtained by adding the number of data q to the current count value n is substituted. Thereby, the count value n indicating the first pulse wave data of the pulse wave data group (pulse wave component) next to the pulse wave data group (pulse wave component) in which the peak point Pe and the bottom point B1 are specified is set this time. Will be.
  • step S726 if it is determined in step S726 that the diastolic blood pressure value has been calculated, the blood pressure calculation process ends.
  • FIG. 8 is a flowchart showing the flow of the slope fluctuation curve calculation process.
  • step S801 n is substituted into a count value r for counting the number of data points of pulse wave data included between the bottom point B1 and the peak point Pe.
  • step S802 m points of pulse wave data used for calculating the regression line are extracted.
  • the pulse wave data of m points to be extracted are set as (D r , D r + 1 ,... D r + m ).
  • step S803 a regression line is calculated from the m-point pulse wave data (D r , D r + 1 ,... D r + m ) extracted in step S802, and the slope Ar is obtained.
  • step S804 it is determined whether or not the slope Ar has been obtained for all pulse wave data included between the bottom point B1 and the peak point Pe. If it is determined in step S804 that there is pulse wave data for which the slope Ar is not obtained, the process proceeds to step S805, and the count value r is incremented.
  • step S804 determines whether the slope Ar has been obtained for all the pulse wave data. If it is determined in step S804 that the slope Ar has been obtained for all the pulse wave data, the process proceeds to step S806, and each pulse wave data from the bottom point B1 to the peak point Pe is taken on the horizontal axis, An inclination fluctuation curve (see FIG. 6B) having an inclination Ar on the axis is calculated, and the inclination fluctuation curve calculation process is terminated.
  • FIG. 9 is a flowchart showing the flow of the feature amount extraction process.
  • step S901 a time point at which the differential value of the slope fluctuation curve becomes zero is extracted.
  • step S902 it is determined whether there are a plurality of time points extracted in step S901.
  • step S902 If it is determined in step S902 that there is only one point in time at which the differential value of the slope fluctuation curve becomes zero, the process proceeds to step S903.
  • step S903 the time point extracted in step S901 is ⁇ r .
  • step S902 determines that there are a plurality of time points at which the differential value of the slope fluctuation curve becomes zero. If it is determined in step S902 that there are a plurality of time points at which the differential value of the slope fluctuation curve becomes zero, the process proceeds to step S904. At step S904, the one of the plurality of time points extracted in step S901, the a second time and beta r.
  • step S905 the phase difference between the pulse wave component W1 and the pulse wave component W0 is calculated and extracted as the feature amount of the p-th pulse wave component. Specifically, the time difference t between the time point ⁇ r or ⁇ r extracted in step S903 or S904 and the bottom point B1 is calculated, and extracted as the feature amount of the p-th pulse wave component.
  • FIG. 10 is a diagram for explaining the systolic blood pressure value determining process and the diastolic blood pressure value determining process.
  • the horizontal axis indicates the cuff pressure detected in the decompression process, and the vertical axis indicates the cuff pressure at each cuff pressure. It is the graph which took the feature-value (phase difference) calculated from each pulse wave component superimposed on the signal in time series.
  • the systolic blood pressure value can be determined by extracting the cuff pressure at the time point when the temporal change of the feature amount is maximized.
  • the feature quantity that has greatly changed in the systolic blood pressure value then gradually decreases as the cuff pressure is reduced, and is constant (threshold Th ( 3 ms / beat) or less) (see reference numeral 1002). Therefore, after the systolic blood pressure value is calculated, the diastolic blood pressure value can be determined by extracting the cuff pressure at the time when the feature amount first falls below the threshold value.
  • FIG. 11 is a flowchart showing the flow of the systolic blood pressure value determination process and the diastolic blood pressure value determination process.
  • step S1101 it is determined whether or not the amount of change in the feature amount in the process of reducing the cuff pressure is greater than or equal to a predetermined value. In step S1101, it is determined that the amount of change in the feature amount of the current pulse wave component (p-th pulse wave component) with respect to the previous pulse wave component (p-1th pulse wave component) is not greater than or equal to a predetermined value. In this case, the systolic blood pressure value determination process is terminated.
  • step S1101 if the current pulse wave component (p-th pulse wave component) is greater than or equal to a predetermined value, the amount of change in the feature amount with respect to the previous pulse wave component (p-1th pulse wave component) is greater than or equal to a predetermined value. If it is determined, the process proceeds to step S1102.
  • step S1102 the cuff pressure corresponding to the current pulse wave component is read.
  • step S1103 the read cuff pressure is determined as the systolic blood pressure value, and then the systolic blood pressure value determining process is terminated.
  • step S1111 the feature amount of the current pulse wave component (p-th pulse wave component) is equal to or less than a predetermined threshold Th. It is determined whether or not.
  • step S1111 If it is determined in step S1111 that the feature amount of the current pulse wave component is greater than the predetermined threshold Th, the diastolic blood pressure value determination process is terminated.
  • step S1111 determines whether the feature amount of the current pulse wave component is equal to or less than the predetermined threshold Th. If it is determined in step S1111 that the feature amount of the current pulse wave component is equal to or less than the predetermined threshold Th, the process proceeds to step S1112 to read the cuff pressure for the current pulse wave component, and in step S1113 After the read cuff pressure is determined as the diastolic blood pressure value, the diastolic blood pressure value determination process is terminated.
  • FIG. 12 is a flowchart showing the flow of the entire blood pressure measurement process in the blood pressure measurement device 100.
  • a measurement start switch 142 (not shown) is pressed, the blood pressure measurement process shown in FIG. 12 is started.
  • step S1201 cuff pressure initialization processing is executed. Specifically, the opening area of the quick exhaust valve / constant speed exhaust valve 122 is fully opened, the on-off valve 116 is opened, each air bag is exhausted, and residual air in each air bag is exhausted. Furthermore, zero setting (initialization) of the pressure sensor 131 is performed.
  • step S1202 When the quick exhaust valve / constant speed exhaust valve is closed by step S1201 and the preparation for pressurization to the cuff (blood-insufficing air bag, pulse wave detecting air bag, sub air bag) is completed, in step S1202, the pump 123 is turned on. The driving is started, and the driving is continued until the cuff pressure reaches a specified pressure that is about 20 to 30 mmHg higher than the expected systolic blood pressure value.
  • step S1203 it is determined whether or not the cuff pressure P has reached the specified pressure. If it is determined that the cuff pressure P has reached, the process proceeds to step S1204 and the driving of the pump 123 is stopped.
  • step S1205 the rapid exhaust valve / constant speed exhaust valve 122 starts constant speed exhaust.
  • the cuff pressure control unit 140 uses the cuff pressure signal from the pressure sensor 131 to vary the opening area of the rapid exhaust valve / constant speed exhaust valve 122 so that the decompression speed becomes 2 to 3 mmHg / sec. To reduce the pressure at a constant speed.
  • step S1206 input of the cuff pressure signal from the pressure sensor 131 is started at a specified sampling rate, and sequentially stored in the work area for pulse wave analysis.
  • step S1207 it is determined whether or not the number of data points of the pulse wave data is stored more than a predetermined number.
  • step S1207 if the number of data points of the pulse wave data is equal to or less than the predetermined number, the process returns to step S1206. On the other hand, if it is determined in step S1206 that the number of data points of the pulse wave data is stored more than a predetermined number, the process proceeds to step S1208, and blood pressure value calculation processing is performed. Note that the details of the blood pressure value calculation processing have been described with reference to FIGS. 7A and 7B, and thus description thereof is omitted here.
  • step S1208 When the blood pressure value calculation process ends in step S1207 and the diastolic blood pressure value is determined, in step S1208, the opening area of the rapid exhaust valve / constant speed exhaust valve 122 is fully opened and the on-off valve 116 is opened. The cuff body 101 is brought to atmospheric pressure.
  • step S1209 the systolic blood pressure value and the diastolic blood pressure value determined in step S1207 are displayed on the liquid crystal display unit 137, and the blood pressure measurement process is terminated.
  • the bottom point and the peak point of each pulse wave component are specified, and the bottom point The slope of the regression line of a predetermined number of pulse wave data between the peak point and the peak point is calculated.
  • the slope sharply rising point (the peak point of the magnitude of the slope, that is, the time when the slope differential value is zero) is extracted, A time difference between the slope rising point and the bottom point of the pulse wave component preceding the slope rising point is calculated, and this time difference is used as a phase difference between the pulse wave component W0 and the pulse wave component W1 to form a feature amount. did.
  • the amount of air in the pulse wave detection system increases and the cuff pressure is lower than the systolic blood pressure. Even when the pulse wave generated on the cuff peripheral side at that time is attenuated, it is possible to accurately calculate the sudden rise point.
  • systolic blood pressure values and diastolic blood pressure values can be calculated with high accuracy.
  • the time difference tp is extracted as the feature amount.
  • the present invention is not limited to this, and the delay rate obtained by dividing by one period of the pulse wave is calculated to calculate the feature amount. It is good also as a structure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

An objective of the present invention is to effect an improvement in measurement precision in a sphygmomanometer. The present invention is a sphygmomanometer, which is connected to a triple cuff, and which detects a cuff pressure in a depressurization procedure wherein a plurality of pulse wave components is superpositioned in time series, said sphygmomanometer comprising: a computation means for specifying, for each of the plurality of pulse wave components which are superpositioned in the detected cuff pressure, an amplitude peak point and a bottom point which appears in advance of the peak point, sequentially extracting a prescribed number of instances of contiguous pulse wave data between the bottom point and the peak point, computing an incline of a regression line for each instance of the extracted pulse wave data, deriving a fluctuation of the incline between the bottom point and the peak point, and computing a characteristic quantity based on a time difference between a time at which a derivative of the fluctuation is zero and the bottom point; and a determination means for determining that the cuff pressure corresponding to the pulse wave component whereat the change between pulse wave components with respect to the characteristic quantity which is computed for each of the plurality of pulse wave components reaches a maximum is a systolic blood pressure value.

Description

血圧測定装置及び血圧値算出方法Blood pressure measurement device and blood pressure value calculation method
 本発明は、血圧測定装置及び血圧値算出方法に関するものである。 The present invention relates to a blood pressure measurement device and a blood pressure value calculation method.
 高血圧症の治療において、血圧測定を高精度に行うことは重要であり、例えば、オシロメトリック方式の血圧測定装置では、従来より、脈波に基づく血圧値の算出を高精度に行うための種々の提案がなされてきた。 In the treatment of hypertension, it is important to perform blood pressure measurement with high accuracy. For example, in an oscillometric blood pressure measurement device, conventionally, various blood pressure values based on pulse waves have been calculated with high accuracy. Proposals have been made.
 具体的には、例えば、下記特許文献1では、阻血用空気袋の圧力が最も反映されるカフ中央部に、カフの末梢側の拍出を選択的に検出するための脈波検出用空気袋を設置し、カフ末梢側へ拍出される脈波の検出能力を向上させる、いわゆるダブルカフ法が提案されている。 Specifically, for example, in Patent Document 1 described below, a pulse wave detection air bag for selectively detecting the cuff at the peripheral side of the cuff at the central portion of the cuff where the pressure of the air bag for ischemia is most reflected. A so-called double cuff method has been proposed that improves the ability to detect a pulse wave squeezed out to the cuff peripheral side.
 更に、脈波が小さい場合であっても、カフ末梢側へ拍出される脈波を検出できるよう、いわゆるトリプルカフ法も提案されている。 Furthermore, a so-called triple cuff method has also been proposed so that even when the pulse wave is small, a pulse wave struck to the cuff distal side can be detected.
 トリプルカフ法では、まず、検出した脈波のピーク点と該ピーク点に先行して現れるボトム点との間の最大勾配点を検出し、検出した最大勾配点と、該最大勾配点に先行して現れるボトム点との時間差を脈波の1周期で除算することで位相差を抽出する。そして、各脈波において、抽出した時間差または位相差を特徴量として用いることにより、収縮期血圧値(最高血圧値)及び/または拡張期血圧値(最低血圧値)を算出する(例えば、下記特許文献2参照)。 In the triple cuff method, first, the maximum gradient point between the peak point of the detected pulse wave and the bottom point appearing preceding the peak point is detected, and the detected maximum gradient point and the maximum gradient point are preceded. The phase difference is extracted by dividing the time difference from the bottom point appearing by one period of the pulse wave. Then, in each pulse wave, a systolic blood pressure value (maximum blood pressure value) and / or a diastolic blood pressure value (minimum blood pressure value) is calculated by using the extracted time difference or phase difference as a feature amount (for example, the following patents) Reference 2).
特開2005-185295号公報JP 2005-185295 A 特開2009-101085号公報JP 2009-101085 A
 しかしながら、収縮期血圧値及び/または拡張期血圧値の算出に際して脈波を用いるオシロメトリック方式の血圧測定装置の場合、圧力センサに脈波が伝達されるまでの間の伝達媒体として介在する加圧空気の量(脈波検出系の空気量)が増加すると、測定精度が低下してしまうといった問題がある。 However, in the case of an oscillometric blood pressure measurement device that uses a pulse wave when calculating a systolic blood pressure value and / or a diastolic blood pressure value, pressurization interposed as a transmission medium until the pulse wave is transmitted to the pressure sensor. When the amount of air (the amount of air in the pulse wave detection system) increases, there is a problem that the measurement accuracy decreases.
 具体例を挙げて説明する。脈波検出系の空気量が増加する場合とは、例えば、ユーザの使い勝手を向上させるべく、カフ本体に送気する配管の長さを長くすることで、配管内の空気量が増加する場合が挙げられる。あるいは、被検者の大腿に使用したり、極端に腕が太い被検者用に使用したりするカフを用いる場合も、阻血用空気袋の空気量が増加する。更には、被検者に対するカフの装着がゆるい場合も、阻血用空気袋の空気量は増加する。 This will be explained with specific examples. The amount of air in the pulse wave detection system increases, for example, to increase the amount of air in the pipe by increasing the length of the pipe that feeds air to the cuff body in order to improve user convenience. Can be mentioned. Alternatively, when the cuff used for the subject's thigh or used for the subject having an extremely thick arm is used, the amount of air in the ischemic bladder increases. Furthermore, even when the cuff is loosely attached to the subject, the amount of air in the air bag for ischemia increases.
 このように、諸々の理由により脈波検出系の空気量が増加すると、カフ圧力が収縮期血圧より低くなった際にカフ末梢側に生ずる脈波の急峻な変化が減衰するため、例えば、不要な脈波を減衰可能なトリプルカフ方においても、最大勾配点を検出することが困難になってくる場合がある。この結果、時間差または位相差等の特徴量を正しく抽出することができなくなり、収縮期血圧値、拡張期血圧値の測定精度への影響が不可避となる。 As described above, when the amount of air in the pulse wave detection system increases for various reasons, a sudden change in the pulse wave generated on the cuff distal side when the cuff pressure becomes lower than the systolic blood pressure is attenuated. Even in a triple cuff that can attenuate a simple pulse wave, it may be difficult to detect the maximum gradient point. As a result, feature quantities such as time difference or phase difference cannot be extracted correctly, and the influence on the measurement accuracy of systolic blood pressure values and diastolic blood pressure values becomes inevitable.
 このようなことから、各脈波より抽出される特徴量を用いて収縮期血圧値及び/または拡張期血圧値を算出する血圧測定装置において測定精度の向上を図るためには、脈波検出系の空気量の増減に関わらず抽出可能な特徴量を用いる構成とすることが望ましい。 Therefore, in order to improve the measurement accuracy in the blood pressure measurement device that calculates the systolic blood pressure value and / or the diastolic blood pressure value using the feature amount extracted from each pulse wave, the pulse wave detection system It is desirable to use a feature amount that can be extracted regardless of the increase or decrease of the air amount.
 本発明は上記課題に鑑みなされたものであり、血圧測定装置における測定精度の向上を図ることを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to improve measurement accuracy in a blood pressure measurement device.
 上記の目的を達成するために、本発明に係る血圧測定装置は以下のような構成を備える。即ち、
 血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、
 前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、
 前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部の脈波を検出する脈波検出用空気袋と、
 を備えるカフと接続され、複数の脈波成分が時系列に重畳された、減圧過程におけるカフ圧力を検出する血圧測定装置であって、
 前記検出したカフ圧力に重畳された複数の脈波成分それぞれについて、
  振幅のピーク点と該ピーク点に先行して現れるボトム点とを特定し、
  前記ボトム点から前記ピーク点までの間において、連続する所定数の脈波データを順次抽出していき、それぞれ抽出した脈波データについて回帰直線の傾きを算出し、
  前記ボトム点から前記ピーク点までの間における前記傾きの変動を求め、
  前記変動の微分値がゼロになる時点と、前記ボトム点との時間差に基づく特徴量を算出する算出手段と、
 前記複数の脈波成分それぞれにおいて算出された前記特徴量の、各脈波成分間の変化が最大となる脈波成分に対応する前記カフ圧力を、収縮期血圧値として決定する決定手段とを備える。
In order to achieve the above object, a blood pressure measurement device according to the present invention has the following configuration. That is,
An air bag for ischemia that is laid on the side in contact with the blood pressure measurement site and compresses the entire blood pressure measurement site;
A sub-air bag that is laid on the side of the blood bag for measuring blood pressure that is in contact with the blood pressure measurement site and compresses the heart side of the blood vessel of the blood pressure measurement site;
A pulse wave detection air bag that is laid on the side of the blood bag for blood pressure measurement that is in contact with the blood pressure measurement site and detects a pulse wave at the center of the blood vessel of the blood pressure measurement site;
A blood pressure measurement device that detects a cuff pressure in a decompression process, in which a plurality of pulse wave components are superimposed in time series,
For each of the plurality of pulse wave components superimposed on the detected cuff pressure,
Identify the amplitude peak point and the bottom point that appears before the peak point,
Between the bottom point and the peak point, it sequentially extracts a predetermined number of pulse wave data, calculates the slope of the regression line for each extracted pulse wave data,
Obtain the variation of the slope between the bottom point and the peak point,
A calculating means for calculating a feature amount based on a time difference between the time point when the differential value of the fluctuation becomes zero and the bottom point;
Determining means for determining, as a systolic blood pressure value, the cuff pressure corresponding to the pulse wave component having the maximum change between the pulse wave components of the feature amount calculated for each of the plurality of pulse wave components; .
 本発明によれば、血圧測定装置における測定精度の向上を図ることが可能となる。 According to the present invention, it is possible to improve the measurement accuracy in the blood pressure measurement device.
 本発明のその他の特徴及び利点は、添付図面を参照した以下の説明により明らかになるであろう。なお、添付図面において、同じ若しくは同様の構成には、同じ参照番号を付してある。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、本発明の一実施形態に係る血圧測定装置100の構成を示す図である。 図2は、カフ圧力の減圧過程で、カフ圧力に脈波成分が時系列に重畳している様子を示す図である。 図3は、血圧測定装置100のカフ本体101の長手方向の断面図である。 図4は、脈波成分PWに含まれる各成分を模式的に示した図である。 図5は、カフ中央部Aの下の血管内容積変化に由来するW1-A成分が、カフ圧力の減圧過程で生じて、変化していく様子を模式的に示した図である。 図6Aは、カフ圧力が収縮期血圧値と拡張期血圧値との間の時点で検出される脈波成分を示す図である。 図6Bは、各脈波成分において算出された、ボトム点からピーク点までの回帰直線の傾きの変動(傾き変動曲線)を示す図である。 図7Aは、血圧値算出処理の流れを示すフローチャートである。 図7Bは、血圧値算出処理の流れを示すフローチャートである。 図8は、傾き変動曲線算出処理の流れを示すフローチャートである。 図9は、特徴量抽出処理の流れを示すフローチャートである。 図10は、位相差とカフ圧力との関係を示す図である。 図11は、拡張期血圧値決定処理及び収縮期血圧値決定処理の流れを示すフローチャートである。 図12は、血圧測定処理の流れを示すフローチャートである。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
FIG. 1 is a diagram showing a configuration of a blood pressure measurement device 100 according to an embodiment of the present invention. FIG. 2 is a diagram illustrating a state in which a pulse wave component is superimposed on the cuff pressure in time series in the process of reducing the cuff pressure. FIG. 3 is a longitudinal sectional view of the cuff body 101 of the blood pressure measurement device 100. FIG. 4 is a diagram schematically showing each component included in the pulse wave component PW. FIG. 5 is a diagram schematically showing how the W1-A component derived from the change in the intravascular volume under the cuff central portion A is generated and changed in the process of reducing the cuff pressure. FIG. 6A is a diagram showing a pulse wave component detected when the cuff pressure is between the systolic blood pressure value and the diastolic blood pressure value. FIG. 6B is a diagram showing a fluctuation (slope fluctuation curve) of the slope of the regression line from the bottom point to the peak point, calculated for each pulse wave component. FIG. 7A is a flowchart showing the flow of blood pressure value calculation processing. FIG. 7B is a flowchart showing the flow of blood pressure value calculation processing. FIG. 8 is a flowchart showing the flow of the slope fluctuation curve calculation process. FIG. 9 is a flowchart showing the flow of the feature amount extraction process. FIG. 10 is a diagram illustrating the relationship between the phase difference and the cuff pressure. FIG. 11 is a flowchart showing the flow of diastolic blood pressure value determination processing and systolic blood pressure value determination processing. FIG. 12 is a flowchart showing the flow of blood pressure measurement processing.
 以下、本発明の各実施形態について添付図面を参照しながら詳細に説明する。なお、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiment described below is a preferred specific example of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. Unless otherwise stated, the present invention is not limited to these embodiments.
 <1.血圧測定装置の構成>
 図1は、本発明の一実施形態に係る血圧測定装置100の構成を示す図である。図1に示すように、カフ本体101は、上腕部を含む血圧測定部位に対して着脱自在に設けられる布製のカフ部材102を備える。
<1. Configuration of blood pressure measurement device>
FIG. 1 is a diagram showing a configuration of a blood pressure measurement device 100 according to an embodiment of the present invention. As shown in FIG. 1, the cuff body 101 includes a cloth cuff member 102 that is detachably provided to a blood pressure measurement site including the upper arm.
 カフ部材102の血圧測定部位接触側の端部には、雄(フック型)面ファスナー103が配されている。また、血圧測定部位接触側と反対の面には、雌(ループ型)面ファスナー104が配されている。このカフ部材102を図示のように被検者の上腕部に巻き付け、各面ファスナー103、104を係止させることで、カフ本体101は被検者の上腕部に着脱可能に取り付けられる。なお、面ファスナーは一例に過ぎず、これ以外の部材であってもよい(例えば、カフ本体を筒状に形成し、上腕部を当該筒内に挿入する方式であってもよい)。 A male (hook type) hook-and-loop fastener 103 is disposed at the end of the cuff member 102 on the blood pressure measurement site contact side. A female (loop-type) surface fastener 104 is disposed on the surface opposite to the blood pressure measurement site contact side. The cuff body 102 is detachably attached to the upper arm portion of the subject by winding the cuff member 102 around the upper arm portion of the subject as shown in the figure and engaging the hook-and- loop fasteners 103 and 104. The hook-and-loop fastener is merely an example, and other members may be used (for example, the cuff body may be formed in a cylindrical shape and the upper arm portion may be inserted into the cylinder).
 カフ部材102の内部には、血圧測定部位全体を圧迫するための阻血用空気袋108が敷設されている。阻血用空気袋108の血圧測定部位接触側には、血圧測定部位の心臓側を圧迫すべく、阻血用空気袋108よりも狭い幅で形成されたサブ空気袋107が敷設されている。なお、サブ空気袋107と阻血用空気袋108との間には、サブ空気袋107の振動を減衰する第1緩衝部材109が設けられている。 In the cuff member 102, an air bag 108 for ischemia is laid to press the entire blood pressure measurement site. On the blood pressure measurement site contact side of the ischemic air bladder 108, a sub air bag 107 formed with a width narrower than that of the ischemic air bladder 108 is laid in order to compress the heart side of the blood pressure measurement site. A first buffer member 109 that attenuates vibration of the sub air bag 107 is provided between the sub air bag 107 and the ischemic air bag 108.
 更に、阻血用空気袋108の血圧測定部位接触側には、血圧測定部位の血管下流側を圧迫し、かつ下流側の脈波を検出する脈波検出用空気袋105が敷設されている。 Further, on the blood pressure measurement site contact side of the ischemic air bladder 108, a pulse wave detection air bag 105 is laid that compresses the blood vessel downstream side of the blood pressure measurement site and detects a downstream pulse wave.
 なお、カフ本体101を加圧するために、カフ本体101の阻血用空気袋108は、第2配管112及び配管115、十字分岐部120を介して加減圧手段であるポンプ123に接続されている。同様に、カフ本体101の脈波検出用空気袋105は、第1配管111、流体抵抗器114及び配管115、十字分岐部120を介して、また、サブ空気袋107は、第3配管113、開閉弁116及び配管113a、十字分岐部120を介して、それぞれポンプ123に接続されている。 In addition, in order to pressurize the cuff body 101, the air bag 108 for ischemia of the cuff body 101 is connected to a pump 123 which is a pressure increasing / decreasing means via a second pipe 112, a pipe 115, and a cross-branching portion 120. Similarly, the pulse wave detection air bag 105 of the cuff body 101 is connected to the first piping 111, the fluid resistor 114 and the piping 115, and the cross-branching portion 120, and the sub air bag 107 is connected to the third piping 113, The on-off valve 116, the pipe 113a, and the cross branch part 120 are connected to the pump 123, respectively.
 更に、阻血用空気袋108は、圧力変化からカフ圧力信号を検出可能な圧力センサ131に対して、第2配管112及び流体抵抗器114を介して接続されている。また、脈波検出用空気袋105は、第1配管111を介して圧力センサ131に接続されている。 Furthermore, the air bag 108 for ischemia is connected to a pressure sensor 131 capable of detecting a cuff pressure signal from a pressure change via a second pipe 112 and a fluid resistor 114. The pulse wave detection air bladder 105 is connected to the pressure sensor 131 via the first pipe 111.
 なお、第1配管111、第2配管112、第3配管113は軟質チューブからなり、コネクタ110を介して本体130に対して着脱自在に構成されている。 The first piping 111, the second piping 112, and the third piping 113 are made of soft tubes, and are configured to be detachable from the main body 130 via the connector 110.
 また、カフ本体101を減圧するために、十字分岐部120には、更に、急速排気弁兼定速排気弁122が接続されており、急速排気弁兼定速排気弁122は制御部148に接続されている。また、配管113aには開閉弁116が接続されており、開閉弁116は制御部146に接続されている。 Further, in order to reduce the pressure of the cuff body 101, a quick exhaust valve / constant speed exhaust valve 122 is further connected to the cross-branching portion 120, and the quick exhaust valve / constant speed exhaust valve 122 is connected to the control unit 148. Has been. In addition, an on-off valve 116 is connected to the pipe 113 a, and the on-off valve 116 is connected to the control unit 146.
 なお、中央制御部135からの指令により、制御部148では、急速排気弁兼定速排気弁122の電磁弁の開口面積を制御し、制御部146では、開閉弁116の電磁開閉弁の開閉動作を制御する。 The control unit 148 controls the opening area of the solenoid valve of the quick exhaust valve / constant speed exhaust valve 122 according to a command from the central control unit 135, and the control unit 146 opens / closes the electromagnetic on / off valve of the on / off valve 116. To control.
 ポンプ123はモータMに接続されるポンプ駆動部149からの電力供給に基づいて駆動し、開口部123aからポンプ内に導入された外気を加圧する。外気を加圧することにより得られた加圧空気は、第1配管111乃至第3配管113に送られ、これにより、各空気袋が加圧される。 The pump 123 is driven based on power supply from a pump driving unit 149 connected to the motor M, and pressurizes the outside air introduced into the pump through the opening 123a. Pressurized air obtained by pressurizing the outside air is sent to the first pipe 111 to the third pipe 113, whereby each air bag is pressurized.
 急速排気弁兼定速排気弁122は、毎秒2~4mmHgの減圧速度を達成するために、電磁力の強さに応じて開口面積を可変させる構造を有しており、制御部148からのPWM駆動信号に基づいて制御されることで、所定の減圧速度が実現される。 The rapid exhaust valve / constant speed exhaust valve 122 has a structure in which the opening area is varied according to the strength of the electromagnetic force in order to achieve a pressure reduction speed of 2 to 4 mmHg per second. A predetermined decompression speed is realized by being controlled based on the drive signal.
 圧力センサ131では、流体抵抗器114を介して、脈波成分が減衰された阻血用空気袋108からの阻血圧力信号と、脈波成分が含まれる脈波検出用空気袋105からの脈波圧力信号とを含むカフ圧力信号が検出される。 In the pressure sensor 131, the ischemic pressure signal from the ischemic air bag 108 in which the pulse wave component is attenuated and the pulse wave pressure from the pulse wave detecting air bag 105 including the pulse wave component are passed through the fluid resistor 114. A cuff pressure signal including the signal is detected.
 圧力センサ131にはアナログ電気信号に変換する圧力計測部132が接続され、更に、圧力計測部132にはA/Dコンバータ133が接続されている。これにより、カフ圧力信号はデジタル信号として中央制御部135に入力される。 The pressure sensor 131 is connected to a pressure measuring unit 132 that converts an analog electric signal, and the pressure measuring unit 132 is connected to an A / D converter 133. As a result, the cuff pressure signal is input to the central control unit 135 as a digital signal.
 中央制御部135には、カフ圧力信号及び解析結果の読み出し・書き込み等を行うRAM138と、カフ圧力信号に時系列に重畳している脈波成分を検出する脈波処理部139と、カフ(阻血用空気袋、脈波検出用空気袋、サブ空気袋)を加圧、減圧するカフ圧制御部140とが配されている。また、検出した脈波成分と阻血圧力信号とから血圧値を算出する血圧算出部141と、算出した血圧値を血圧表示手段である液晶表示部137に表示する表示制御部137aと、中央制御部135により読み出し可能な各種制御プログラムを記憶するROM136とが配されている。なお、RAM138は、中央制御部135により各種制御プログラムが実行される際のワークエリアとしても機能する。 The central control unit 135 includes a RAM 138 that reads and writes cuff pressure signals and analysis results, a pulse wave processing unit 139 that detects a pulse wave component superimposed on the cuff pressure signal in time series, and a cuff (ischemic blood pressure). And a cuff pressure control unit 140 that pressurizes and decompresses the air bag, the pulse wave detection air bag, and the sub air bag. In addition, a blood pressure calculation unit 141 that calculates a blood pressure value from the detected pulse wave component and the ischemic pressure signal, a display control unit 137a that displays the calculated blood pressure value on a liquid crystal display unit 137 that is a blood pressure display unit, and a central control unit A ROM 136 that stores various control programs that can be read by the computer 135 is disposed. The RAM 138 also functions as a work area when various control programs are executed by the central control unit 135.
 また、中央制御部135には、血圧値を表示する液晶表示部137と、上記の各駆動制御(ポンプ123、急速排気弁兼定速排気弁122、開閉弁116の駆動制御)を行う各駆動部が接続されている。 Further, the central control unit 135 includes a liquid crystal display unit 137 that displays a blood pressure value, and each drive that performs the above-described drive control (pump 123, rapid exhaust valve / constant exhaust valve 122, and open / close valve 116 drive control). Are connected.
 また、乾電池を含む電源部143が接続されており、電源部143からの電力は、測定開始スイッチ142の操作により、中央制御部135を介して各部に供給される。 Further, a power supply unit 143 including a dry battery is connected, and power from the power supply unit 143 is supplied to each unit via the central control unit 135 by operating the measurement start switch 142.
 以上のように構成される血圧測定装置100では、ROM136に記憶された各種制御プログラムを中央制御部135が読み出し、血圧測定装置100全体の動作の処理、判断を実行することにより、各種処理を実現している。 In the blood pressure measurement device 100 configured as described above, the central control unit 135 reads out various control programs stored in the ROM 136, and executes various processes by executing processing and determination of the entire blood pressure measurement device 100. is doing.
 <2.脈波成分の説明>
 次に、カフ圧力信号に時系列に重畳される脈波成分について図2を用いて説明する。図2は、カフ圧力の減圧過程で、カフ圧力信号に脈波成分が時系列に重畳している様子を示したグラフであり、横軸は減圧開始からの経過時間を、縦軸はそれぞれの経過時間におけるカフ圧力を示している。図2に示すように、カフ圧力が減少するにつれて、脈波成分の大きさや形は変化していく。
<2. Explanation of pulse wave component>
Next, the pulse wave component superimposed on the cuff pressure signal in time series will be described with reference to FIG. FIG. 2 is a graph showing how the pulse wave component is superimposed on the cuff pressure signal in time series during the cuff pressure depressurization process. The horizontal axis represents the elapsed time from the start of depressurization, and the vertical axis represents the respective time. It shows the cuff pressure over time. As shown in FIG. 2, the magnitude and shape of the pulse wave component change as the cuff pressure decreases.
 <3.トリプルカフの構成>
 次に、カフ圧力信号に時系列に重畳される脈波成分の大きさ及び形と密接に関連するトリプルカフの構成について簡単に説明する。図3は、血圧測定装置100のカフ本体101(トリプルカフ)の長手方向(上腕部の延びる方向)の断面図である。
<3. Configuration of triple cuff>
Next, the configuration of the triple cuff that is closely related to the magnitude and shape of the pulse wave component superimposed in time series on the cuff pressure signal will be briefly described. FIG. 3 is a cross-sectional view of the cuff body 101 (triple cuff) of the blood pressure measurement device 100 in the longitudinal direction (the direction in which the upper arm extends).
 図3に示すように、加圧された阻血用空気袋108およびサブ空気袋107は、血管300をQの部分で阻血し、上流側300aから下流側300bへの血流を抑える。 As shown in FIG. 3, the pressurized air bag 108 and the sub air bag 107 block the blood vessel 300 at the portion Q and suppress the blood flow from the upstream side 300a to the downstream side 300b.
 阻血用空気袋108により上腕部を圧迫する力は、カフ本体101の幅方向の中央部(図3のAの部分、以下、単に、カフ中央部Aという)で最も強く、両端に近くなるに従って弱くなり、両端ではほぼ0となる。ただし、サブ空気袋107を備えていないダブルカフの場合とは異なり、トリプルカフの場合、サブ空気袋107の効果により図3の“B”に示される区間でも血流の侵入が阻止される。 The force for compressing the upper arm portion by the air bag 108 for ischemia is strongest at the center portion in the width direction of the cuff body 101 (the portion A in FIG. 3, hereinafter simply referred to as the cuff center portion A), and as it approaches the both ends. It becomes weaker and becomes almost zero at both ends. However, unlike the case of the double cuff that does not include the sub air bag 107, in the case of the triple cuff, the invasion of blood flow is prevented even in the section indicated by “B” in FIG.
 脈波検出用空気袋105は、カフ中央部Aに設けられており、カフ中央部Aにおける血管内圧力変化(血管内容積変化)を最もよく捉える。尚、本明細書中において、「カフ圧力」とは、阻血用空気袋108内の圧力を意味しているが、実質的には、カフ本体101の幅方向のカフ中央部Aでの上腕部の圧迫力に等しい。つまり、カフ本体101の幅方向のカフ中央部Aの下の血管に対して加えられるカフ本体101からの圧力でもある。 The pulse wave detection air bag 105 is provided in the cuff central portion A, and best captures the intravascular pressure change (intravascular volume change) in the cuff central portion A. In the present specification, “cuff pressure” means the pressure in the air bag 108 for ischemia, but substantially the upper arm portion at the cuff central portion A in the width direction of the cuff body 101. Equal to the pressure of That is, it is also the pressure from the cuff body 101 applied to the blood vessel below the cuff central portion A in the width direction of the cuff body 101.
 <4.脈波成分を構成する各成分の性質>
 次に、上記トリプルカフの構成のもとで脈波検出用空気袋105により検出される、脈波成分の形状について図4を用いて説明する。図4は、トリプルカフの構成のもとで検出される脈波成分PWに含まれる各成分を模式的に示した図である。
<4. Properties of each component constituting the pulse wave component>
Next, the shape of the pulse wave component detected by the pulse wave detecting air bag 105 under the triple cuff configuration will be described with reference to FIG. FIG. 4 is a diagram schematically showing each component included in the pulse wave component PW detected under the triple cuff configuration.
 図4に示すように、脈波検出用空気袋105により検出されるカフ圧力信号に時系列に重畳される脈波成分PWは、主に、カフ本体101の上流側からの血流の拍出による血管内容積変化に伴う直接のカフ圧力の変化に由来する成分W1(以下、W1成分という)と、カフ本体101の下流側の血管からの反射による血管内容積変化に伴うカフ圧力の変化に由来する成分W2(以下、W2成分という)とに分けられる。 As shown in FIG. 4, the pulse wave component PW superimposed in time series on the cuff pressure signal detected by the pulse wave detecting air bag 105 is mainly derived from the blood flow from the upstream side of the cuff body 101. The component W1 (hereinafter referred to as the W1 component) derived from a direct change in cuff pressure due to a change in intravascular volume due to blood flow, and a change in cuff pressure due to a change in intravascular volume due to reflection from a blood vessel on the downstream side of the cuff body 101 It is divided into derived components W2 (hereinafter referred to as W2 components).
 そして、W1成分は、カフ本体101の幅方向の中央部、すなわち、カフ中央部Aの下の圧力変化(血管内容積変化)に由来する成分W1-A(以下、W1-A成分という)と、カフ本体101の幅方向の上流部、すなわち、サブ空気袋107により減衰された図3のBの部分(以下、単に、カフ上流部Bという)の下の圧力変化(血管内容積変化)に由来する成分W0と、カフ本体101の幅方向の下流部、すなわち、図3のCの部分(以下、単に、カフ下流部Cという)の下の血管内容積変化に由来する成分W1-C(以下、W1-C成分という)とに分けて考えることができる。 The W1 component is a component W1-A (hereinafter referred to as a W1-A component) derived from a pressure change (a change in volume in the blood vessel) under the cuff body 101 in the width direction, that is, the cuff center A. 3, the pressure change (intravascular volume change) under the upstream portion in the width direction of the cuff body 101, that is, the portion B in FIG. 3 (hereinafter simply referred to as the cuff upstream portion B) attenuated by the sub air bag 107. The derived component W0 and the downstream portion in the width direction of the cuff body 101, that is, the component W1-C derived from the change in the intravascular volume under the portion C in FIG. 3 (hereinafter simply referred to as the cuff downstream portion C) Hereinafter, it can be considered as a W1-C component).
 一般に、減圧過程において、カフ圧力が収縮期血圧より低くなると血流が流れ込み、カフ本体101内の上流側から下流側への血流を拍出する現象がみられるため、カフ圧力が収縮期血圧より低くなると、W1成分が重畳される。 In general, in the decompression process, when the cuff pressure becomes lower than the systolic blood pressure, a blood flow flows, and a phenomenon in which blood flows from the upstream side to the downstream side in the cuff body 101 is observed. When it becomes lower, the W1 component is superimposed.
 このうち、W1-A成分は、脈波検出用空気袋105がカフ中央部Aに取り付けられているため、W0成分やW1-C成分と比べて感知しやすく、W1成分の形状に大きな影響を与える。 Of these, the W1-A component is easier to detect than the W0 component and the W1-C component because the pulse wave detection air bag 105 is attached to the cuff central portion A, and has a great influence on the shape of the W1 component. give.
 一方、W0成分は、サブ空気袋107により阻血用空気袋108のカフエッジ効果が補償されているため、大きく低減されている。また、カフ本体101の幅方向の上流部の圧力変化(血管内容積変化)に由来するため、W1-A成分よりも前に出現する。 On the other hand, the W0 component is greatly reduced because the cuff edge effect of the air bag 108 for ischemia is compensated by the sub air bag 107. Further, since it originates from a pressure change (intravascular volume change) in the upstream portion of the cuff body 101 in the width direction, it appears before the W1-A component.
 また、W1-C成分は、カフ下流部Cがカフ中央部Aの下流側に位置しているため、W1-A成分よりも小さい。また、カフ下流部C下の血管の開閉はカフ中央部A下の血管の開閉にほぼ同期しており、W1-A成分の出現に対する実質的な時間差はない。 The W1-C component is smaller than the W1-A component because the cuff downstream portion C is located downstream of the cuff central portion A. In addition, the opening and closing of the blood vessel under the cuff downstream portion C is substantially synchronized with the opening and closing of the blood vessel under the cuff central portion A, and there is no substantial time difference with respect to the appearance of the W1-A component.
 一方、W2成分は、上流からの血流の拍出に対するカフ本体101の下流側の血管からの反射であるから、下流側の血管内圧力がカフ圧力より高くなるタイミングによって、振幅のピークの出現はW1成分の振幅のピークの出現よりも遅れる。一般に、W2成分の形状による脈波成分全体の形状への影響は、W1成分(W1-A成分とW1-C成分の合成)の形状の影響よりも小さい。また、減圧過程において、カフ圧力が拡張期血圧値に近づいた状態では、カフ本体101の下流側の血管内圧力が、阻血前の状態まで充分に回復しているので、下流側の血管からの反射は実質的にはなくなる。従って、カフ圧力が拡張期血圧値に近づいた状態で検出される脈波成分においては、W2成分は、実質的に消滅している。 On the other hand, since the W2 component is a reflection from the blood vessel on the downstream side of the cuff body 101 with respect to the blood flow from the upstream side, an amplitude peak appears depending on the timing at which the intravascular pressure on the downstream side becomes higher than the cuff pressure. Is delayed from the appearance of the peak of the amplitude of the W1 component. In general, the influence of the shape of the W2 component on the shape of the entire pulse wave component is smaller than the influence of the shape of the W1 component (combination of the W1-A component and the W1-C component). Further, in the decompression process, when the cuff pressure approaches the diastolic blood pressure value, the intravascular pressure on the downstream side of the cuff body 101 has sufficiently recovered to the state before ischemia. Reflection is virtually eliminated. Therefore, in the pulse wave component detected when the cuff pressure is close to the diastolic blood pressure value, the W2 component is substantially eliminated.
 <5.減圧過程における脈波成分のW1-A成分の変化>
 次に、上記のような各成分により形成される脈波成分のうち、W1-A成分の減圧過程における大きさ及び形状の変化について、図5を用いて説明する。
<5. Change in W1-A component of pulse wave component during decompression process>
Next, changes in the size and shape of the W1-A component during the decompression process among the pulse wave components formed by the above components will be described with reference to FIG.
 図5は、カフ中央部Aの下の血管内容積変化に由来するW1-A成分が、カフ圧力の減圧過程で生じて、変化していく様子を模式的に示す図である。 FIG. 5 is a diagram schematically showing how the W1-A component derived from the change in the intravascular volume under the cuff central portion A is generated and changed during the process of reducing the cuff pressure.
 グラフ1において、横軸は、カフ圧力を一定の減圧速度で減圧していく場合の経過時間を示しており、縦軸は、血管内外圧差(血管内圧力-カフ圧力)を示している。グラフ1は、観血波形(血管内圧力変化)を三角形波形で簡略化して示した場合の、経過時間の各時点での観血波形(血管内圧力変化)に由来するカフ中央部A下の血管内外圧差の変化(観血波形と同じ三角形波形)を表している。 In graph 1, the horizontal axis indicates the elapsed time when the cuff pressure is reduced at a constant pressure reduction rate, and the vertical axis indicates the intravascular external pressure difference (intravascular pressure-cuff pressure). Graph 1 shows the cuff central portion A below the cuff derived from the invasive waveform (intravascular pressure change) at each time point in the elapsed time when the invasive waveform (intravascular pressure change) is simplified by a triangular waveform. It shows the change in the blood pressure difference between the blood vessels inside and outside (the same triangular waveform as the open waveform).
 グラフ2は、縦軸を血管内容積として、血管内外圧差の変化に応じて生じる各時点の血管内容積の変化を表している。 Graph 2 represents the change in the intravascular volume at each time point according to the change in the intravascular external pressure difference, with the vertical axis as the intravascular volume.
 また、血管内外圧差の縦軸の左側には、血管内外圧差の変化(グラフ1)を血管内容積の変化(グラフ2)に変換する血管内外圧差-血管内容積の関係が、横軸を血管内容積としたグラフ3として示されている。 In addition, on the left side of the vertical axis of the intravascular / external pressure difference, the relationship between the intravascular / external pressure difference and the intravascular volume that converts the change in the intravascular external pressure difference (graph 1) into the change in the intravascular volume (graph 2) is shown. It is shown as graph 3 with the internal volume.
 グラフ3の血管内外圧差-血管内容積の関係は、血管内容積が血管内外圧差が0の近傍で急変(急増加もしくは急減少)する傾向に注目して、簡略化して示したものである。グラフ3に示すように、血管内外圧差が増減する過程において、血管が完全に閉じた状態(血管内容積0)と完全に開いた状態(血管内容積Vmax)との間では、血管内容積がV0及びV1の2点で折れ曲がる。つまり、血管内外圧差-血管内容積の関係は、V0とV1との間の急勾配な直線とV0以下及びV1以上の緩やかな勾配の直線とからなる折れ線グラフとなる。 The relationship between the intravascular external pressure difference and the intravascular volume in Graph 3 is simplified by paying attention to the tendency of the intravascular volume to suddenly change (rapid increase or decrease) when the intravascular external pressure difference is near zero. As shown in the graph 3, in the process of increasing or decreasing the intravascular external pressure difference, the intravascular volume is between the completely closed state (intravascular volume 0) and the fully open state (intravascular volume Vmax). Bends at two points, V0 and V1. That is, the relationship between the intravascular external pressure difference and the intravascular volume is a line graph composed of a steep straight line between V0 and V1, and straight lines with gentle gradients of V0 or less and V1 or more.
 これは、血管内外圧差が0の位置では、血管は自重によりつぶれた状態(血管内容積V0)となるが、この位置から血管内外圧差が正の値に変化すると急に血管内容積が増大し、血管が十分に開いた状態(血管内容積V1)に達した後は、血管内外圧差の変化に対して、緩やかに増大していく(最大の血管内容積Vmaxに向かう)からである。また、血管内外圧差が0の位置から負の値に変化すると、血管内容積は緩やかに減少していく(血管内容積0に向かう)からである。 This is because the blood vessel is crushed by its own weight (intravascular volume V0) at the position where the intravascular external pressure difference is 0, but when the intravascular external pressure difference changes to a positive value from this position, the intravascular volume suddenly increases. This is because after the blood vessel reaches a sufficiently open state (intravascular volume V1), it gradually increases (towards the maximum intravascular volume Vmax) with respect to the change in the intravascular external pressure difference. Also, when the intravascular external pressure difference changes from a position of 0 to a negative value, the intravascular volume gradually decreases (goes toward the intravascular volume 0).
 なお、グラフ3では、血管内容積が急勾配で変化するV0とV1との間を直線で近似しているため、血管内容積の変化の割合はこの間では一定となっているが、実際には、血管内外圧差が0の位置(血管内容積V0の位置)での変化の割合が最大となる。 In the graph 3, since a straight line approximates between V0 and V1 where the intravascular volume changes steeply, the rate of change of the intravascular volume is constant during this period. The ratio of the change at the position where the intravascular external pressure difference is 0 (the position of the intravascular volume V0) is maximized.
 このように、血管内外圧差が0の近傍で血管内容積が急変(急増加)する傾向は、被検者の血管の伸展性の大きさに依存するものであるが、傾向自体は、一般化できるものと考えられる。 As described above, the tendency of the intravascular volume to suddenly change (sudden increase) when the intravascular external pressure difference is close to 0 depends on the degree of extensibility of the subject's blood vessels, but the tendency itself is generalized. It is considered possible.
 グラフ1に示す、カフ圧力の減圧過程(経過時間)の各時点のうち、aはカフ圧力が収縮期血圧値に等しい時点での血管内外圧差の変化(三角形波形)を、bはカフ圧力が収縮期血圧値と拡張期血圧値のほぼ中央に位置する時点での血管内外圧差の変化を、cはカフ圧力が拡張期血圧値に等しい時点での血管内外圧差の変化をそれぞれ示している。 Of the time points of the cuff pressure reduction process (elapsed time) shown in graph 1, a is the change in the internal / external pressure difference (triangle waveform) at the time when the cuff pressure is equal to the systolic blood pressure value, and b is the cuff pressure. A change in the intravascular external pressure difference at a time point approximately at the center of the systolic blood pressure value and the diastolic blood pressure value, and c indicates a change in the intravascular external pressure difference when the cuff pressure is equal to the diastole blood pressure value.
 経過時間に対する各時点での血管内外圧差の変化(三角形波形)a、b、cの各頂点(ピーク点)は、観血波形(血管内圧力変化)での収縮期血圧値の部分(すなわち、心臓Hの拡張期初期)に由来するものであり、下向き頂点(ボトム点)は、観血波形(血管内圧力変化)での拡張期血圧値の部分(すなわち、心臓Hの収縮期初期)に由来するものである。 Changes in the intravascular external pressure difference (triangular waveform) a, b, c at each time point with respect to the elapsed time are the peak (peak points) of the systolic blood pressure value in the open waveform (intravascular pressure change) (i.e., It originates from the early diastole of the heart H, and the downward apex (bottom point) is in the portion of the diastolic blood pressure value (ie, early systole of the heart H) in the blood pressure waveform (intravascular pressure change) It comes from.
 これらグラフ1のa、b、cの血管内外圧差の変化をグラフ3の血管内外圧差-血管内容積の関係を用いて、血管内容積の変化に変換すると、それぞれ、グラフ2のa’、b’、c’となる。a’、b’、c’において、心臓Hの収縮期初期の位置(前後2箇所)は白丸で示している。これは、観血波形(血管内圧力変化)の下向き頂点(ボトム点)に対応している。そして、この心臓Hの収縮期初期の位置(前後2箇所)の間に示される成分(太線で表示)が、W1-A成分である。 When the change in the intravascular external pressure difference of the graphs a, b, and c is converted into the change in the intravascular volume using the relationship between the intravascular external pressure difference and the intravascular volume in the graph 3, a ′, b in the graph 2 respectively. ', C'. In a ′, b ′, and c ′, the initial position of the heart H in the systolic period (two places before and after) is indicated by white circles. This corresponds to the downward apex (bottom point) of the open waveform (change in intravascular pressure). A component (indicated by a thick line) shown between the initial positions of the heart H in the systolic period (two locations before and after) is the W1-A component.
 すなわち、グラフ2は、W1-A成分が、カフ圧力の減圧過程(経過時間)の各時点で変化していく様子を示している。 That is, graph 2 shows how the W1-A component changes at each point in the cuff pressure reduction process (elapsed time).
 a’、b’、c’のW1-A成分(血管内容積変化)に対しては、振幅のピーク点に先行して血管内外圧差が0となる位置をドット(黒丸)で示している。a’のW1-A成分(血管内容積変化)では、振幅のピーク点が、血管内外圧差が0の位置に対応しており、この位置をドットで示している。a’、b’、c’のドットで示されている血管内外圧差が0の位置は、実際には、血管内容積が急増加(急上昇)する部分(W1-A成分の前半での急上昇点であり、傾きの大きさのピーク点)となる。 For the W1-A components (a change in intravascular volume) of a ′, b ′, and c ′, dots (black circles) indicate the positions where the intravascular external pressure difference becomes 0 preceding the amplitude peak point. In the W1-A component of a ′ (intravascular volume change), the peak point of the amplitude corresponds to the position where the intravascular external pressure difference is 0, and this position is indicated by a dot. The position where the intravascular external pressure difference indicated by the dots a ′, b ′, and c ′ is 0 is actually a portion where the intravascular volume suddenly increases (rapidly increases) (the rapid increase point in the first half of the W1-A component) And the peak point of the slope).
 更に、a’、b’、c’のW1-A成分に対しては、ピーク点に遅れて生じる血管内容積が最小となる位置もドットで示している。このW1-A成分のピーク点に遅れて生じる血管内容積が最小となる位置は、実際の脈波成分の下向きピーク点(ボトム点)の位置にほぼ等しいことが知られている。従って、以下、W1-A成分のピーク点に遅れて生じる血管内容積が最小となる位置を、W1-A成分のボトム点と呼ぶ。 Furthermore, with respect to the W1-A components of a ′, b ′, and c ′, the position where the intravascular volume that occurs behind the peak point is minimized is also indicated by dots. It is known that the position where the intravascular volume that occurs after the peak point of the W1-A component is minimized is substantially equal to the position of the actual downward peak point (bottom point) of the pulse wave component. Therefore, hereinafter, the position where the intravascular volume that occurs behind the peak point of the W1-A component is minimized is referred to as the bottom point of the W1-A component.
 グラフ2では、W1-A成分で血管内容積が急上昇する部分(W1-A成分の前半での急上昇点であり、傾きの大きさのピーク点)である、[ドットで示した血管内外圧差が0となる位置]が、W1-A成分に先行する心臓収縮期初期の位置から遅れる時間(時間差)をtで示し、脈波成分の一周期をTで示している。ここで、脈波成分の一周期Tは、血圧測定の期間中、実質的に一定である。 In graph 2, it is a portion where the intravascular volume rapidly increases with the W1-A component (the rapid increase point in the first half of the W1-A component and the peak point of the inclination) [intravascular external pressure difference indicated by dots is The position that becomes 0] indicates a time (time difference) delayed from the initial position of the systole preceding the W1-A component by t, and one period of the pulse wave component by T. Here, one period T of the pulse wave component is substantially constant during the period of blood pressure measurement.
 tは、注目するW1-A成分の急上昇する部分(前半での急上昇点であり、傾きの大きさのピーク点)の先行するW1-A成分のボトム点からの遅れの時間(時間差)、すなわち、傾きの大きさのピーク点(急上昇点)の先行する(W1-A成分の)ボトム点からの出現の時間差を示すと考えられる。 t is the time (time difference) of the delay from the bottom point of the preceding W1-A component of the rapidly increasing portion of the W1-A component of interest (the sharp increase point in the first half and the peak point of the magnitude of the slope), that is, It is considered that the time difference of appearance from the preceding bottom point (of the W1-A component) of the peak point (sudden rising point) of the magnitude of the inclination is shown.
 グラフ2のa’、b’、c’に示されるように、時間差tは、カフ圧力が収縮期血圧値から拡張期血圧値に近づくにつれて小さくなっている。 As shown by a ′, b ′, and c ′ in graph 2, the time difference t decreases as the cuff pressure approaches the systolic blood pressure value from the systolic blood pressure value.
 ここで、脈波成分の一周期Tは、血圧測定の期間中、実質的に一定であることから、傾きの大きさのピーク点(急上昇点)の先行するボトム点からの出現の位相差2π(t/T)も、同様に、カフ圧力が収縮期血圧値から拡張期血圧値に近づくにつれて小さくなる。 Here, since one cycle T of the pulse wave component is substantially constant during the period of blood pressure measurement, the phase difference 2π of the appearance from the preceding bottom point of the peak point of the slope (the rapidly rising point). Similarly, (t / T) decreases as the cuff pressure approaches the systolic blood pressure value from the systolic blood pressure value.
 そして、グラフ2のc’に示すように、カフ圧力が拡張期血圧値に等しくなる時点においては、この簡略化したグラフのもとでは、W1-A成分の先行するボトム点と傾きの大きさのピーク点(急上昇点)と心臓収縮期初期とが同時に生じ、t=0となる。 Then, as indicated by c ′ in the graph 2, at the time when the cuff pressure becomes equal to the diastolic blood pressure value, the preceding bottom point of the W1-A component and the magnitude of the inclination are obtained under this simplified graph. The peak point (a sudden rise point) and the early systolic period occur simultaneously, and t = 0.
 これらのことから、実際のW1-A成分については、以下の2つの特徴を見出すことができる。 From these facts, the following two features can be found for the actual W1-A component.
   ・W1-A成分の振幅が急上昇する部分(傾きの大きさのピーク点)のボトム点からの遅延(時間差tもしくは位相差2π(t/T))は、カフ圧力が拡張期血圧値に近づくにつれて小さくなる。 ・ The delay from the bottom point (time difference t or phase difference 2π (t / T)) of the portion where the amplitude of the W1-A component suddenly increases (peak point of the magnitude of the inclination) causes the cuff pressure to approach the diastolic blood pressure value As it gets smaller.
   ・W1-A成分の形状は、カフ圧力が収縮期血圧値の圧力より小さくなった時点で出現する。 The shape of the W1-A component appears when the cuff pressure becomes smaller than the pressure of the systolic blood pressure value.
 <6.脈波成分の特徴>
 以上、脈波成分PWを各成分に分けて、W1-A成分についての簡略化した検討内容を示したが、実際には、脈波成分PWは、W1-A成分やW0成分などに分離されることなくそれぞれが重畳された1つの脈波成分として、脈波検出用空気袋105を介して検出される。
<6. Characteristics of pulse wave component>
As mentioned above, the pulse wave component PW is divided into each component, and the simplified examination content about the W1-A component is shown. However, in actuality, the pulse wave component PW is separated into the W1-A component, the W0 component, and the like. Without being detected, each pulse wave component is detected via the pulse wave detection air bag 105 as a single pulse wave component.
 しかし、既に述べたとおり、W0成分は、立ち上がり部分に影響を与え、W1-A成分は、カフ圧力に重畳される脈波成分のW1成分の形状に大きく影響を与える。更に、脈波成分のW2成分は、一般にW1成分より小さく、カフ圧力が拡張期血圧値に近づくと消滅する。 However, as already described, the W0 component affects the rising portion, and the W1-A component greatly affects the shape of the W1 component of the pulse wave component superimposed on the cuff pressure. Further, the W2 component of the pulse wave component is generally smaller than the W1 component, and disappears when the cuff pressure approaches the diastolic blood pressure value.
 このようなことから、検出される脈波成分の特徴としては、以下の3つの特徴を見出すことができる。 Therefore, the following three characteristics can be found as the characteristics of the detected pulse wave component.
   ・脈波成分の振幅が急上昇する部分(傾きの大きさのピーク点)のボトム点からの遅延(時間差tもしくは位相差2π(t/T))は、カフ圧力が拡張期血圧値に近づくにつれて小さくなる。 The delay from the bottom point (time difference t or phase difference 2π (t / T)) of the portion where the amplitude of the pulse wave component increases rapidly (peak point of the magnitude of the inclination) is as the cuff pressure approaches the diastolic blood pressure value. Get smaller.
   ・脈波成分の振幅が急上昇する部分(傾きの大きさのピーク点)とボトム点との間の形状は、図4のW0成分の振幅のピーク点付近からボトム点までの形状に従っている。 ・ The shape between the portion where the amplitude of the pulse wave component suddenly increases (peak point of the magnitude of the inclination) and the bottom point follows the shape from the vicinity of the peak point of the amplitude of the W0 component in FIG. 4 to the bottom point.
   ・脈波成分の振幅が急上昇する部分(傾きの大きさのピーク点)は、カフ圧力が収縮期血圧値の圧力を下回った時点で、図4のW0部分とW1-A部分との重なり部分から、W0成分の振幅のピーク点側へと大きく変化する。 The portion where the amplitude of the pulse wave component increases rapidly (the peak point of the slope) is the overlapping portion of the W0 portion and the W1-A portion of FIG. 4 when the cuff pressure falls below the systolic blood pressure value. Greatly changes to the peak point side of the amplitude of the W0 component.
 <7.血圧値の決定方法>
 そこで、カフ圧力を収縮期血圧値より十分に高い値まで上げ、その後、拡張期血圧値以下まで一定速度で徐々に減圧していく減圧過程において、上述した脈波成分の特徴を利用することで、以下のような血圧値決定を行うことが可能となる。
<7. Determination method of blood pressure value>
Therefore, by raising the cuff pressure to a value sufficiently higher than the systolic blood pressure value and then gradually reducing the cuff pressure to a value not more than the diastolic blood pressure value at a constant speed, the above-mentioned characteristics of the pulse wave component are used. The blood pressure value can be determined as follows.
   ・脈波成分の振幅のピーク点に先行して生じるボトム点と傾きの大きさのピーク点(急上昇点)との時間差が所定の閾値Thより小さくなり、ほぼ一定になる時点のカフ圧力を拡張期血圧値とする(“拡張期血圧値決定方法1”)。 -The cuff pressure at the time when the time difference between the bottom point that occurs prior to the peak point of the amplitude of the pulse wave component and the peak point (abrupt rise point) of the magnitude of the inclination becomes smaller than the predetermined threshold Th and becomes almost constant is expanded. The diastolic blood pressure value (“diastolic blood pressure value determination method 1”).
   ・脈波成分の振幅のピーク点に先行もしくは遅れて生じるボトム点の傾きの大きさのピーク点(急上昇点)からの変位(ボトム点から急上昇点までの振幅値の差)が所定の閾値Thより小さくなりほぼ一定となる時点のカフ圧力を拡張期血圧値とする(“拡張期血圧値決定方法2”)。 The displacement from the peak point (abrupt increase point) of the magnitude of the slope of the bottom point that occurs before or after the peak point of the amplitude of the pulse wave component (the difference in amplitude value from the bottom point to the sudden increase point) is a predetermined threshold Th The cuff pressure at which the pressure becomes smaller and almost constant is used as the diastolic blood pressure value (“diastolic blood pressure value determination method 2”).
   ・脈波成分の振幅のピーク点に先行して生じるボトム点と傾きの大きさのピーク点(急上昇点)との時間差の値を、カフ圧力が収縮期血圧値より高い点から順に確認し、脈波成分間において値の連続性のない大きな変化を示した時点でのカフ圧力値を収縮期血圧値とする(“収縮期血圧値決定方法1”)。 -Check the value of the time difference between the bottom point that occurs prior to the peak point of the amplitude of the pulse wave component and the peak point of the magnitude of the slope (the sudden rise point) from the point where the cuff pressure is higher than the systolic blood pressure value, The cuff pressure value at the time when a large change having no continuity of values between pulse wave components is taken as the systolic blood pressure value (“systolic blood pressure value determination method 1”).
 <8.傾きの大きさのピーク点(急上昇点)の算出方法>
 次に、上記血圧値の決定方法に従って、収縮期血圧値及び拡張期血圧値を決定するにあたり算出すべき傾きの大きさのピーク点(急上昇点)の算出方法について説明する。図6Aは、カフ圧力が収縮期血圧値と拡張期血圧値との間の時点で検出されるカフ圧力信号に重畳された脈波成分を示す図である。
<8. Calculation method of peak point of sharpness (seep rise point)>
Next, a method for calculating the peak point (sudden rise point) of the magnitude of the slope to be calculated when determining the systolic blood pressure value and the diastolic blood pressure value according to the blood pressure value determining method will be described. FIG. 6A is a diagram showing a pulse wave component superimposed on a cuff pressure signal detected when the cuff pressure is between the systolic blood pressure value and the diastolic blood pressure value.
 図6Aにおいて、Peは、脈波成分PWの振幅のピーク点を、B1は、脈波成分の振幅のピーク点Peに先行して生じるボトム点をそれぞれ示している。 6A, Pe represents the peak point of the amplitude of the pulse wave component PW, and B1 represents the bottom point generated prior to the peak point Pe of the amplitude of the pulse wave component.
 また、Dは、脈波成分を構成する各脈波データを示しており、例えば、D20は、ボトム点B1~ピーク点Pe間の脈波データのうち、20番目の脈波データであることを表している。 D indicates each pulse wave data constituting the pulse wave component. For example, D 20 is the 20th pulse wave data among the pulse wave data between the bottom point B1 and the peak point Pe. Represents.
 Aは、連続する複数の脈波データに基づいて算出された回帰直線を示しており、例えば、A20は、20番目の脈波データを含む、連続する3つの脈波データ(D20、D21、D22)の回帰直線を示している。 A indicates a regression line calculated based on a plurality of continuous pulse wave data. For example, A 20 indicates three continuous pulse wave data (D 20 , D including the 20th pulse wave data). 21 , D 22 ).
 同様に、A50は、50番目の脈波データを含む、連続する3つの脈波データ(D50、D51、D52)の回帰直線を、A80は、80番目の脈波データを含む、連続する3つの脈波データ(D80、D81、D82)の回帰直線をそれぞれ示している。 Similarly, A 50 includes a regression line of three consecutive pulse wave data (D 50 , D 51 , D 52 ) including the 50th pulse wave data, and A 80 includes the 80th pulse wave data. , Regression lines of three continuous pulse wave data (D 80 , D 81 , D 82 ) are respectively shown.
 このように、ボトム点B1~ピーク点Pe間のm個(図6Aの例では、m=3)の脈波データを順次抽出し、それぞれ回帰直線を算出し、その傾きを求めることで、ボトム点B1~ピーク点Pe間における傾きの大きさを正確に算出することが可能となる。 In this way, m pieces of pulse wave data between the bottom point B1 and the peak point Pe (m = 3 in the example of FIG. 6A) are sequentially extracted, the regression line is calculated, and the slope is obtained. It is possible to accurately calculate the magnitude of the inclination between the point B1 and the peak point Pe.
 図6Bは、カフ圧力値が収縮期血圧値以下の近傍の場合、各脈波成分における回帰直線の傾きの変動(傾き変動曲線)を示す図である。図6Bにおいて、横軸は、ボトム点B1からピーク点Peまでの各脈波データ点を表わしており、縦軸は、各脈波データ点において算出された回帰直線の傾きArを示している。減圧過程においてカフ圧力信号に重畳される脈波成分は複数あり、主にW0をW1それぞれの脈波成分においての傾き変動曲線が算出されるため、傾き変動曲線は、2つの脈波の傾き最大点により2峰性を有する(図6Bの例では、好ましい例として、脈波成分601~605に基づいて5つの傾き変動曲線611~615を表示している。なお、傾き変動曲線は、サンプリングレートにより、2~10点から得られた曲線であってもよく、10msから数十msの間の回帰直線であればよい)。 FIG. 6B is a diagram showing a fluctuation (slope fluctuation curve) of the slope of the regression line in each pulse wave component when the cuff pressure value is in the vicinity of the systolic blood pressure value or less. In FIG. 6B, the horizontal axis represents each pulse wave data point from the bottom point B1 to the peak point Pe, and the vertical axis represents the slope Ar of the regression line calculated at each pulse wave data point. There are a plurality of pulse wave components superimposed on the cuff pressure signal in the decompression process, and since the inclination fluctuation curves are calculated mainly for the pulse wave components of W0 and W1, the inclination fluctuation curve is the maximum inclination of the two pulse waves. (In the example of FIG. 6B, as a preferable example, five slope fluctuation curves 611 to 615 are displayed based on the pulse wave components 601 to 605. Note that the slope fluctuation curves indicate the sampling rate. Thus, it may be a curve obtained from 2 to 10 points, and may be a regression line between 10 ms and several tens of ms).
 図6Bに示すように、カフ圧力が収縮期血圧値と拡張期血圧値との間であって、収縮期血圧値に近い場合、傾き変動曲線のピーク点は2つ存在する(612~614参照)。カフ圧力が収縮期血圧より高い場合には、脈波成分PWには、W1成分が重畳されていないため、ボトム点B1~ピーク点Pe間において傾きが急上昇する部分は1つのみであるが(601参照)、カフ圧力が収縮期血圧より低くなり、W1成分が重畳されると、ボトム点B1~ピーク点Pe間において傾きが急上昇する部分は2つになるからである(図4を用いて説明したとおり、W0成分は、W1-A成分よりも前に出現するため、傾きは、W0成分が出現した時点と、W1-A成分が出現した時点の2点で急上昇するからである。602~604参照)。このうち、上述した急上昇点に対応するのは、2番目のピーク点である。したがって、傾き変動曲線の2番目のピーク点のボトム点B1からの時間差がtとなる。 As shown in FIG. 6B, when the cuff pressure is between the systolic blood pressure value and the diastolic blood pressure value and is close to the systolic blood pressure value, there are two peak points of the slope variation curve (see 612 to 614). ). When the cuff pressure is higher than the systolic blood pressure, since the W1 component is not superimposed on the pulse wave component PW, there is only one portion where the slope rapidly increases between the bottom point B1 and the peak point Pe ( This is because when the cuff pressure becomes lower than the systolic blood pressure and the W1 component is superimposed, there are two portions where the slope rapidly increases between the bottom point B1 and the peak point Pe (see FIG. 4). This is because the W0 component appears before the W1-A component as described, and the slope rapidly increases at two points, the time when the W0 component appears and the time when the W1-A component appears. To 604). Among these points, the second peak point corresponds to the above-mentioned sudden rise point. Therefore, the time difference from the bottom point B1 of the second peak point of the slope fluctuation curve is t.
 <9.血圧値算出処理>
 次に、上述した血圧値の決定方法に従って実行される血圧値算出処理の流れについて図7A及び図7Bを用いて説明する。
<9. Blood pressure value calculation process>
Next, the flow of blood pressure value calculation processing executed according to the blood pressure value determination method described above will be described with reference to FIGS. 7A and 7B.
 ステップS701では、カフ圧力信号に時系列に重畳された脈波成分の数をカウントするカウント値pに“0”を代入するとともに、各脈波成分を構成する脈波データのデータ点数をカウントするカウント値nに“1”を代入する。 In step S701, “0” is substituted for a count value p for counting the number of pulse wave components superimposed in time series on the cuff pressure signal, and the number of data points of pulse wave data constituting each pulse wave component is counted. “1” is assigned to the count value n.
 ステップS702では、減圧過程において検出されるカフ圧力信号に重畳している脈波成分を構成する脈波データのうち、脈波データDn+1~Dn+q(qは、処理対象となる脈波データのデータ点数を示す値であり、例えば、サンプリング間隔を4msecとした場合、50より大きい値となる)を読み出し、不図示の脈波解析用バッファに格納する。 In step S702, among the pulse wave data constituting the pulse wave component superimposed on the cuff pressure signal detected in the decompression process, pulse wave data D n + 1 to D n + q (q is the pulse wave data to be processed). This is a value indicating the number of data points. For example, when the sampling interval is 4 msec, the value is greater than 50), and is stored in a pulse wave analysis buffer (not shown).
 ステップS703では、脈波解析用バッファに格納された脈波データ(Dn+1~Dn+q)より、凸の変化を検出し、ピーク点Peを特定する。 In step S703, a convex change is detected from the pulse wave data (D n + 1 to D n + q ) stored in the pulse wave analysis buffer, and the peak point Pe is specified.
 ステップS704では、ステップS703においてピーク点Peが特定されたか否か(脈波データDn+1~Dn+qの中にピーク点Peが含まれているか否か)を判定し、ピーク点Peが特定されなかったと判定された場合には、ステップS708において、カウント値nをインクリメントしたうえで、ステップS702に戻る。 In step S704, it is determined whether or not the peak point Pe is specified in step S703 (whether or not the peak point Pe is included in the pulse wave data Dn + 1 to Dn + q ), and the peak point Pe is not specified. If it is determined that, the count value n is incremented in step S708, and the process returns to step S702.
 一方、ステップS704において、ピーク点Peが特定されたと判定された場合には、ステップS705に進み、脈波解析用バッファに格納された脈波データ(Dn+1~Dn+q)より、ボトム点B1を特定する。 On the other hand, if it is determined in step S704 that the peak point Pe has been specified, the process proceeds to step S705, and the bottom point B1 is determined from the pulse wave data (D n + 1 to D n + q ) stored in the pulse wave analysis buffer. Identify.
 ステップS706では、ステップS705においてボトム点B1が特定されたか否か(脈波データDn+1~Dn+qの中にボトム点B1が含まれているか否か)を判定し、ボトム点B1が特定されなかったと判定された場合には、ステップS709において、カウント値nをインクリメントしたうえで、ステップS702に戻る。 In step S706, it is determined whether or not the bottom point B1 is specified in step S705 (whether or not the bottom point B1 is included in the pulse wave data Dn + 1 to Dn + q ), and the bottom point B1 is not specified. If it is determined that, the count value n is incremented in step S709, and the process returns to step S702.
 一方、ステップS706において、ボトム点B1が特定されたと判定された場合には、ステップS707に進み、脈波成分の数を示すカウント値pをインクリメントする。 On the other hand, if it is determined in step S706 that the bottom point B1 has been specified, the process proceeds to step S707, and the count value p indicating the number of pulse wave components is incremented.
 ステップS710では、現在、脈波解析用バッファに格納されている脈波データ群(脈波成分)について、特定したピーク点Pe及びボトム点B1を用いて傾き変動曲線算出処理を実行する。具体的には、ボトム点B1からピーク点Peに含まれる脈波データの中から、連続するm個の脈波データを順次抽出し、抽出したm個の脈波データに基づいて回帰直線を算出し、その傾きの値を不図示の傾き変動曲線バッファに格納していく。なお、傾き変動曲線算出処理の詳細は後述する。 In step S710, an inclination variation curve calculation process is executed for the pulse wave data group (pulse wave component) currently stored in the pulse wave analysis buffer using the specified peak point Pe and bottom point B1. Specifically, m pulse wave data consecutively extracted from pulse wave data included from the bottom point B1 to the peak point Pe, and a regression line is calculated based on the extracted m pulse wave data. Then, the slope value is stored in a slope fluctuation curve buffer (not shown). Details of the slope fluctuation curve calculation process will be described later.
 ステップS711では、ステップS710において算出された傾き変動曲線と、特定したボトム点B1を用いて、現在、脈波解析用バッファに格納されている脈波データ群(脈波成分)について、特徴量を抽出する。具体的には、ボトム点B1からピーク点Peまでの傾き変動曲線において、ピーク点βを検出し、ボトム点B1からピーク点βまでの時間差であるtpを算出する。また、そのときのカフ圧力であるPpを読み出し、(tp、Pp)を1組として不図示の血圧値決定バッファに格納する。なお、特徴量抽出処理の詳細は後述する。 In step S711, using the slope variation curve calculated in step S710 and the identified bottom point B1, the feature amount is calculated for the pulse wave data group (pulse wave component) currently stored in the pulse wave analysis buffer. Extract. Specifically, the peak point β is detected in the slope fluctuation curve from the bottom point B1 to the peak point Pe, and the time difference tp from the bottom point B1 to the peak point β is calculated. Moreover, Pp which is the cuff pressure at that time is read, and (tp, Pp) is stored as one set in a blood pressure value determination buffer (not shown). Details of the feature amount extraction processing will be described later.
 図7BのステップS721では、脈波成分の数を示すカウント値pがN(Nは所定の整数)を超えたか否かを判定する。ステップS721においてカウント値pがNを超えていないと判定された場合には、ステップS722に進み、現在のカウント値nにデータ数qを和算した値を代入する。これにより、今回、ピーク点Peとボトム点B1とが特定された脈波データ群(脈波成分)の次の脈波データ群(脈波成分)の最初の脈波データを示すカウント値nが設定されることとなる。 In step S721 of FIG. 7B, it is determined whether or not the count value p indicating the number of pulse wave components exceeds N (N is a predetermined integer). If it is determined in step S721 that the count value p does not exceed N, the process proceeds to step S722, and a value obtained by adding the number of data q to the current count value n is substituted. Thereby, the count value n indicating the first pulse wave data of the pulse wave data group (pulse wave component) next to the pulse wave data group (pulse wave component) in which the peak point Pe and the bottom point B1 are specified this time is Will be set.
 一方、ステップS721においてカウント値pがNを超えたと判定された場合には、ステップS723に進み、収縮期血圧値を算出したか否かを判定する。ステップS723において、未だ、収縮期血圧値を算出していないと判定された場合には、ステップS725に進み、収縮期血圧値決定処理を実行する。 On the other hand, if it is determined in step S721 that the count value p has exceeded N, the process proceeds to step S723 to determine whether or not a systolic blood pressure value has been calculated. If it is determined in step S723 that the systolic blood pressure value has not yet been calculated, the process proceeds to step S725 to execute systolic blood pressure value determination processing.
 なお、拡張期血圧値決定処理では、現在、脈波解析用バッファに格納されている脈波データ群(脈波成分)より抽出した特徴量より、収縮期血圧値に達したと判定された場合に、収縮期血圧値の決定を行い、収縮期血圧値に達していないと判定された場合には、そのままステップS727に進む。 In the diastolic blood pressure value determination process, when it is determined that the systolic blood pressure value has been reached from the feature amount extracted from the pulse wave data group (pulse wave component) currently stored in the pulse wave analysis buffer If the systolic blood pressure value is determined and it is determined that the systolic blood pressure value has not been reached, the process directly proceeds to step S727.
 一方、ステップS723において、既に収縮期血圧値を算出したと判定された場合には、ステップS724に進み、拡張期血圧値決定処理を実行する。なお、拡張期血圧値決定処理では、現在、脈波解析用バッファに格納されている脈波データ群(脈波成分)より抽出した特徴量より、拡張期血圧値に達したと判定された場合に、拡張期血圧値の決定を行い、拡張期血圧値に達していないと判定した場合には、そのままステップS726に進む。 On the other hand, if it is determined in step S723 that the systolic blood pressure value has already been calculated, the process proceeds to step S724 to execute a diastolic blood pressure value determination process. In the diastolic blood pressure value determination process, when it is determined that the diastolic blood pressure value has been reached from the feature amount extracted from the pulse wave data group (pulse wave component) currently stored in the pulse wave analysis buffer If the diastolic blood pressure value is determined and it is determined that the diastolic blood pressure value has not been reached, the process directly proceeds to step S726.
 ステップS726では、拡張期血圧値を算出したか否かを判定する。ステップS726において、未だ、拡張期血圧値を算出していないと判定された場合には、ステップS727に進み、現在のカウント値nにデータ数qを和算した値を代入する。これにより、今回、ピーク点Peとボトム点B1が特定された脈波データ群(脈波成分)の次の脈波データ群(脈波成分)の最初の脈波データを示すカウント値nが設定されることとなる。 In step S726, it is determined whether a diastolic blood pressure value has been calculated. If it is determined in step S726 that the diastolic blood pressure value has not yet been calculated, the process proceeds to step S727, and a value obtained by adding the number of data q to the current count value n is substituted. Thereby, the count value n indicating the first pulse wave data of the pulse wave data group (pulse wave component) next to the pulse wave data group (pulse wave component) in which the peak point Pe and the bottom point B1 are specified is set this time. Will be.
 一方、ステップS726において、拡張期血圧値を算出したと判定された場合には、血圧算出処理を終了する。 On the other hand, if it is determined in step S726 that the diastolic blood pressure value has been calculated, the blood pressure calculation process ends.
 <10.傾き変動曲線算出処理>
 次に、傾き変動曲線算出処理(図7AのステップS710)の詳細について説明する。図8は、傾き変動曲線算出処理の流れを示すフローチャートである。
<10. Inclination fluctuation curve calculation process>
Next, details of the inclination fluctuation curve calculation process (step S710 in FIG. 7A) will be described. FIG. 8 is a flowchart showing the flow of the slope fluctuation curve calculation process.
 ステップS801では、ボトム点B1~ピーク点Peまでの間に含まれる脈波データのデータ点数をカウントするカウント値rにnを代入する。 In step S801, n is substituted into a count value r for counting the number of data points of pulse wave data included between the bottom point B1 and the peak point Pe.
 ステップS802では、回帰直線の算出に用いる脈波データをm点抽出する。ここでは、抽出するm点の脈波データを、(D、Dr+1、・・・Dr+m)とおく。 In step S802, m points of pulse wave data used for calculating the regression line are extracted. Here, the pulse wave data of m points to be extracted are set as (D r , D r + 1 ,... D r + m ).
 ステップS803では、ステップS802において抽出したm点の脈波データ(D、Dr+1、・・・Dr+m)について、回帰直線を算出し、傾きArを求める。 In step S803, a regression line is calculated from the m-point pulse wave data (D r , D r + 1 ,... D r + m ) extracted in step S802, and the slope Ar is obtained.
 ステップS804では、ボトム点B1~ピーク点Peまでの間に含まれる全ての脈波データについて、傾きArを求めたか否かを判定する。ステップS804において、傾きArを求めていない脈波データが存在すると判定した場合には、ステップS805に進み、カウント値rをインクリメントする。 In step S804, it is determined whether or not the slope Ar has been obtained for all pulse wave data included between the bottom point B1 and the peak point Pe. If it is determined in step S804 that there is pulse wave data for which the slope Ar is not obtained, the process proceeds to step S805, and the count value r is incremented.
 一方、ステップS804において、全ての脈波データについて傾きArを求めたと判定した場合には、ステップS806に進み、横軸にボトム点B1~ピーク点Peまでの間の各脈波データをとり、縦軸に傾きArをとった傾き変動曲線(図6B参照)を算出し、傾き変動曲線算出処理を終了する。 On the other hand, if it is determined in step S804 that the slope Ar has been obtained for all the pulse wave data, the process proceeds to step S806, and each pulse wave data from the bottom point B1 to the peak point Pe is taken on the horizontal axis, An inclination fluctuation curve (see FIG. 6B) having an inclination Ar on the axis is calculated, and the inclination fluctuation curve calculation process is terminated.
 <11.特徴量抽出処理>
 次に、特徴量抽出処理(図7AのステップS711)の詳細について図9を用いて説明する。図9は、特徴量抽出処理の流れを示すフローチャートである。
<11. Feature extraction process>
Next, details of the feature amount extraction processing (step S711 in FIG. 7A) will be described with reference to FIG. FIG. 9 is a flowchart showing the flow of the feature amount extraction process.
 ステップS901では、傾き変動曲線の微分値がゼロとなる時点を抽出する。ステップS902では、ステップS901において抽出された時点が複数存在するか否かを判定する。 In step S901, a time point at which the differential value of the slope fluctuation curve becomes zero is extracted. In step S902, it is determined whether there are a plurality of time points extracted in step S901.
 ステップS902において、傾き変動曲線の微分値がゼロとなる時点が1つのみ存在すると判定された場合には、ステップS903に進む。ステップS903では、ステップS901において抽出された時点をαとする。 If it is determined in step S902 that there is only one point in time at which the differential value of the slope fluctuation curve becomes zero, the process proceeds to step S903. In step S903, the time point extracted in step S901 is α r .
 一方、ステップS902において、傾き変動曲線の微分値がゼロとなる時点が複数存在すると判定された場合には、ステップS904に進む。ステップS904では、ステップS901において抽出された複数の時点のうち、2番目の時点をβとする。 On the other hand, if it is determined in step S902 that there are a plurality of time points at which the differential value of the slope fluctuation curve becomes zero, the process proceeds to step S904. At step S904, the one of the plurality of time points extracted in step S901, the a second time and beta r.
 ステップS905では、脈波成分W1と脈波成分W0との位相差を算出し、p番目の脈波成分の特徴量として抽出する。具体的には、ステップS903またはS904において抽出した時点αまたはβとボトム点B1との時間差tを算出し、p番目の脈波成分の特徴量として抽出する。 In step S905, the phase difference between the pulse wave component W1 and the pulse wave component W0 is calculated and extracted as the feature amount of the p-th pulse wave component. Specifically, the time difference t between the time point α r or β r extracted in step S903 or S904 and the bottom point B1 is calculated, and extracted as the feature amount of the p-th pulse wave component.
 <12.収縮期血圧値決定処理及び拡張期血圧値決定処理>
 次に、収縮期血圧値決定処理(図7BのステップS725)及び拡張期血圧値決定処理(図7BのステップS724)の詳細について、図10及び図11を用いて説明する。
<12. Systolic blood pressure value determination process and diastolic blood pressure value determination process>
Next, details of the systolic blood pressure value determination process (step S725 in FIG. 7B) and the diastolic blood pressure value determination process (step S724 in FIG. 7B) will be described with reference to FIGS.
 図10は、収縮期血圧値決定処理及び拡張期血圧値決定処理を説明するための図であり、横軸に減圧過程において検出されたカフ圧力を、縦軸に、各カフ圧力において、カフ圧力信号に時系列に重畳された各脈波成分より算出された特徴量(位相差)をとったグラフである。 FIG. 10 is a diagram for explaining the systolic blood pressure value determining process and the diastolic blood pressure value determining process. The horizontal axis indicates the cuff pressure detected in the decompression process, and the vertical axis indicates the cuff pressure at each cuff pressure. It is the graph which took the feature-value (phase difference) calculated from each pulse wave component superimposed on the signal in time series.
 上述したように、減圧過程においてカフ圧力は定速減圧されるため、一定の減圧速度で減圧されるのに対して、各脈波成分間の特徴量(位相差)は、収縮期血圧値近傍において、大きく変化している(参照番号1001参照)。したがって、特徴量の時間変化が最大となる時点でのカフ圧力を抽出することで、収縮期血圧値を決定することができる。 As described above, the cuff pressure is depressurized at a constant rate during the depressurization process, and thus the depressurization is performed at a constant depressurization rate. In FIG. 1, there is a significant change (see reference numeral 1001). Therefore, the systolic blood pressure value can be determined by extracting the cuff pressure at the time point when the temporal change of the feature amount is maximized.
 また、図10に示すように、収縮期血圧値において大きく変化した特徴量は、その後、カフ圧力の減圧に伴って、徐々に小さくなっていき、拡張期血圧値近傍において、一定(閾値Th(3ms/拍)以下)となる(参照番号1002参照)。したがって、収縮期血圧値が算出された後で、特徴量が最初に閾値以下になった時点でのカフ圧力を抽出することで、拡張期血圧値を決定することができる。 Also, as shown in FIG. 10, the feature quantity that has greatly changed in the systolic blood pressure value then gradually decreases as the cuff pressure is reduced, and is constant (threshold Th ( 3 ms / beat) or less) (see reference numeral 1002). Therefore, after the systolic blood pressure value is calculated, the diastolic blood pressure value can be determined by extracting the cuff pressure at the time when the feature amount first falls below the threshold value.
 図11は、収縮期血圧値決定処理及び拡張期血圧値決定処理の流れを示すフローチャートである。 FIG. 11 is a flowchart showing the flow of the systolic blood pressure value determination process and the diastolic blood pressure value determination process.
 図11の11Aに示すように、収縮期血圧値決定処理が開始されると、ステップS1101では、カフ圧力の減圧過程における特徴量の変化量が所定値以上であるか否かを判定する。ステップS1101において、今回の脈波成分(p番目の脈波成分)における、前回の脈波成分(p-1番目の脈波成分)に対する特徴量の変化量が、所定値以上でないと判定された場合には、収縮期血圧値決定処理を終了する。 As shown in 11A of FIG. 11, when the systolic blood pressure value determination process is started, in step S1101, it is determined whether or not the amount of change in the feature amount in the process of reducing the cuff pressure is greater than or equal to a predetermined value. In step S1101, it is determined that the amount of change in the feature amount of the current pulse wave component (p-th pulse wave component) with respect to the previous pulse wave component (p-1th pulse wave component) is not greater than or equal to a predetermined value. In this case, the systolic blood pressure value determination process is terminated.
 一方、ステップS1101において、今回の脈波成分(p番目の脈波成分)における、前回の脈波成分(p-1番目の脈波成分)に対する特徴量の変化量が、所定値以上であると判定された場合には、ステップS1102に進む。 On the other hand, in step S1101, if the current pulse wave component (p-th pulse wave component) is greater than or equal to a predetermined value, the amount of change in the feature amount with respect to the previous pulse wave component (p-1th pulse wave component) is greater than or equal to a predetermined value. If it is determined, the process proceeds to step S1102.
 ステップS1102では、今回の脈波成分に対応するカフ圧力を読み出し、ステップS1103では、当該読み出したカフ圧力を収縮期血圧値として決定した後、収縮期血圧値決定処理を終了する。 In step S1102, the cuff pressure corresponding to the current pulse wave component is read. In step S1103, the read cuff pressure is determined as the systolic blood pressure value, and then the systolic blood pressure value determining process is terminated.
 また、図11の11Bに示すように、拡張期血圧値決定処理が開始されると、ステップS1111では、今回の脈波成分(p番目の脈波成分)の特徴量が、所定の閾値Th以下であるか否かを判定する。 As illustrated in 11B of FIG. 11, when the diastolic blood pressure value determination process is started, in step S1111, the feature amount of the current pulse wave component (p-th pulse wave component) is equal to or less than a predetermined threshold Th. It is determined whether or not.
 ステップS1111において、今回の脈波成分の特徴量が、所定の閾値Thより大きいと判定された場合には、拡張期血圧値決定処理を終了する。 If it is determined in step S1111 that the feature amount of the current pulse wave component is greater than the predetermined threshold Th, the diastolic blood pressure value determination process is terminated.
 一方、ステップS1111において、今回の脈波成分の特徴量が、所定の閾値Th以下であると判定された場合には、ステップS1112に進み、今回の脈波成分に対するカフ圧力を読み出し、ステップS1113では、当該読み出したカフ圧力を拡張期血圧値として決定した後、拡張期血圧値決定処理を終了する。 On the other hand, if it is determined in step S1111 that the feature amount of the current pulse wave component is equal to or less than the predetermined threshold Th, the process proceeds to step S1112 to read the cuff pressure for the current pulse wave component, and in step S1113 After the read cuff pressure is determined as the diastolic blood pressure value, the diastolic blood pressure value determination process is terminated.
 <13.血圧測定装置における血圧測定処理>
 次に、上記血圧値算出処理(図7A、図7B)を含む、血圧測定装置100における血圧測定処理全体の流れについて図12を用いて説明する。
<13. Blood pressure measurement process in blood pressure measurement device>
Next, the flow of the entire blood pressure measurement process in the blood pressure measurement device 100 including the blood pressure value calculation process (FIGS. 7A and 7B) will be described with reference to FIG.
 図12は、血圧測定装置100における血圧測定処理全体の流れを示すフローチャートである。カフ本体101が被検者の上腕部に対して取り付けられ、不図示の測定開始スイッチ142が押圧されると、図12に示す血圧測定処理が開始される。 FIG. 12 is a flowchart showing the flow of the entire blood pressure measurement process in the blood pressure measurement device 100. When the cuff body 101 is attached to the subject's upper arm and a measurement start switch 142 (not shown) is pressed, the blood pressure measurement process shown in FIG. 12 is started.
 ステップS1201では、カフ圧初期化処理が実行される。具体的には、急速排気弁兼定速排気弁122の開口面積を全開にし、開閉弁116を開き、各空気袋の排気を行い、各空気袋内の残留空気の排気を行う。更に、圧力センサ131のゼロセット(初期化)を行う。 In step S1201, cuff pressure initialization processing is executed. Specifically, the opening area of the quick exhaust valve / constant speed exhaust valve 122 is fully opened, the on-off valve 116 is opened, each air bag is exhausted, and residual air in each air bag is exhausted. Furthermore, zero setting (initialization) of the pressure sensor 131 is performed.
 ステップS1201により、急速排気弁兼定速排気弁を閉じてカフ(阻血用空気袋,脈波検出用空気袋、サブ空気袋)への加圧の準備が完了すると、ステップS1202では、ポンプ123の駆動を開始し、カフ圧力が、予想される収縮期血圧値より20~30mmHg程度高い規定圧力になるまで駆動を継続する。 When the quick exhaust valve / constant speed exhaust valve is closed by step S1201 and the preparation for pressurization to the cuff (blood-insufficing air bag, pulse wave detecting air bag, sub air bag) is completed, in step S1202, the pump 123 is turned on. The driving is started, and the driving is continued until the cuff pressure reaches a specified pressure that is about 20 to 30 mmHg higher than the expected systolic blood pressure value.
 ステップS1203では、カフ圧力Pが規定圧力に到達したか否かを判定し、到達したと判定した場合には、ステップS1204に進み、ポンプ123の駆動を停止する。 In step S1203, it is determined whether or not the cuff pressure P has reached the specified pressure. If it is determined that the cuff pressure P has reached, the process proceeds to step S1204 and the driving of the pump 123 is stopped.
 ステップS1205では、急速排気弁兼定速排気弁122が定速排気を開始する。具体的には、カフ圧制御部140が圧力センサ131からのカフ圧力信号を用いて、減圧速度が2~3mmHg/秒になるように急速排気弁兼定速排気弁122の開口面積を可変して定速減圧を行う。 In step S1205, the rapid exhaust valve / constant speed exhaust valve 122 starts constant speed exhaust. Specifically, the cuff pressure control unit 140 uses the cuff pressure signal from the pressure sensor 131 to vary the opening area of the rapid exhaust valve / constant speed exhaust valve 122 so that the decompression speed becomes 2 to 3 mmHg / sec. To reduce the pressure at a constant speed.
 ステップS1206では、圧力センサ131からの規定のサンプリングレートにてカフ圧力信号の入力を開始し、順次、脈波解析用ワークエリアに格納していく。ステップS1207では、脈波データのデータ点数が所定数より多く格納されたか否かを判定する。ステップS1207において、脈波データのデータ点数が所定数以下であった場合には、ステップS1206に戻る。一方、ステップS1206において脈波データのデータ点数が所定数より多く格納されたと判定された場合には、ステップS1208に進み、血圧値算出処理を行う。なお、血圧値算出処理の詳細は、図7A及び図7Bを用いて説明済みであるため、ここでは説明を省略する。 In step S1206, input of the cuff pressure signal from the pressure sensor 131 is started at a specified sampling rate, and sequentially stored in the work area for pulse wave analysis. In step S1207, it is determined whether or not the number of data points of the pulse wave data is stored more than a predetermined number. In step S1207, if the number of data points of the pulse wave data is equal to or less than the predetermined number, the process returns to step S1206. On the other hand, if it is determined in step S1206 that the number of data points of the pulse wave data is stored more than a predetermined number, the process proceeds to step S1208, and blood pressure value calculation processing is performed. Note that the details of the blood pressure value calculation processing have been described with reference to FIGS. 7A and 7B, and thus description thereof is omitted here.
 ステップS1207において血圧値算出処理が終了し、拡張期血圧値が決定されると、ステップS1208では、急速排気弁兼定速排気弁122の開口面積を全開にし、かつ、開閉弁116を開くことでカフ本体101を大気圧にする。 When the blood pressure value calculation process ends in step S1207 and the diastolic blood pressure value is determined, in step S1208, the opening area of the rapid exhaust valve / constant speed exhaust valve 122 is fully opened and the on-off valve 116 is opened. The cuff body 101 is brought to atmospheric pressure.
 ステップS1209では、ステップS1207において決定された、収縮期血圧値及び拡張期血圧値を液晶表示部137に表示し、血圧測定処理を終了する。 In step S1209, the systolic blood pressure value and the diastolic blood pressure value determined in step S1207 are displayed on the liquid crystal display unit 137, and the blood pressure measurement process is terminated.
 以上の説明から明らかなように、本実施形態に係る血圧測定装置100では、収縮期血圧値及び拡張期血圧値を算出するにあたり、各脈波成分のボトム点とピーク点を特定し、ボトム点とピーク点との間における所定数の脈波データの回帰直線の傾きを算出する構成とした。更に、ボトム点からピーク点までの間の回帰直線の傾きの変動に基づいて、傾きの急上昇点(傾きの大きさのピーク点、即ち、傾きの微分値がゼロの時点)を抽出し、当該傾きの急上昇点と、当該傾きの急上昇点に先行する脈波成分のボトム点との時間差を算出し、この時間差を脈波成分W0と脈波成分W1の位相差とし、特徴量とする構成とした。 As is clear from the above description, in the blood pressure measurement device 100 according to the present embodiment, when calculating the systolic blood pressure value and the diastolic blood pressure value, the bottom point and the peak point of each pulse wave component are specified, and the bottom point The slope of the regression line of a predetermined number of pulse wave data between the peak point and the peak point is calculated. Furthermore, based on the fluctuation of the slope of the regression line from the bottom point to the peak point, the slope sharply rising point (the peak point of the magnitude of the slope, that is, the time when the slope differential value is zero) is extracted, A time difference between the slope rising point and the bottom point of the pulse wave component preceding the slope rising point is calculated, and this time difference is used as a phase difference between the pulse wave component W0 and the pulse wave component W1 to form a feature amount. did.
 このように、回帰直線を算出し、その傾きを求めることで傾きの急上昇点を算出する構成とすることで、例えば、脈波検出系の空気量が増加し、カフ圧力が収縮期血圧より低くなった際のカフ末梢側に生ずる脈波が減衰した場合であっても、正確に急上昇点を算出することが可能となった。 In this way, by calculating the regression line and calculating the slope of the regression line, the amount of air in the pulse wave detection system increases and the cuff pressure is lower than the systolic blood pressure. Even when the pulse wave generated on the cuff peripheral side at that time is attenuated, it is possible to accurately calculate the sudden rise point.
 この結果、収縮期血圧値、拡張期血圧値を高精度に算出することが可能となった。 As a result, systolic blood pressure values and diastolic blood pressure values can be calculated with high accuracy.
 [第2の実施形態]
 上記第1の実施形態では、時間差tpを特徴量として抽出する構成としたが、本発明はこれに限定されず、脈波の1周期で除算することで得られる遅れ率を算出し、特徴量とする構成としてもよい。
[Second Embodiment]
In the first embodiment, the time difference tp is extracted as the feature amount. However, the present invention is not limited to this, and the delay rate obtained by dividing by one period of the pulse wave is calculated to calculate the feature amount. It is good also as a structure.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.

Claims (8)

  1.  血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、
     前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、
     前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部の脈波を検出する脈波検出用空気袋と、
     を備えるカフと接続され、複数の脈波成分が時系列に重畳された、減圧過程におけるカフ圧力を検出する血圧測定装置であって、
     前記検出したカフ圧力に重畳された複数の脈波成分それぞれについて、
      振幅のピーク点と該ピーク点に先行して現れるボトム点とを特定し、
      前記ボトム点から前記ピーク点までの間において、連続する所定数の脈波データを順次抽出していき、それぞれ抽出した脈波データについて回帰直線の傾きを算出し、
      前記ボトム点から前記ピーク点までの間における前記傾きの変動を求め、
      前記変動の微分値がゼロになる時点と、前記ボトム点との時間差に基づく特徴量を算出する算出手段と、
     前記複数の脈波成分それぞれにおいて算出された前記特徴量の、各脈波成分間の変化が最大となる脈波成分に対応する前記カフ圧力を、収縮期血圧値として決定する決定手段と
     を備えることを特徴とする血圧測定装置。
    An air bag for ischemia that is laid on the side in contact with the blood pressure measurement site and compresses the entire blood pressure measurement site;
    A sub-air bag that is laid on the side of the blood bag for measuring blood pressure that is in contact with the blood pressure measurement site and compresses the heart side of the blood vessel of the blood pressure measurement site;
    A pulse wave detection air bag that is laid on the side of the blood bag for blood pressure measurement that is in contact with the blood pressure measurement site and detects a pulse wave at the center of the blood vessel of the blood pressure measurement site;
    A blood pressure measurement device that detects a cuff pressure in a decompression process, in which a plurality of pulse wave components are superimposed in time series,
    For each of the plurality of pulse wave components superimposed on the detected cuff pressure,
    Identify the amplitude peak point and the bottom point that appears before the peak point,
    Between the bottom point and the peak point, it sequentially extracts a predetermined number of pulse wave data, calculates the slope of the regression line for each extracted pulse wave data,
    Obtain the variation of the slope between the bottom point and the peak point,
    A calculating means for calculating a feature amount based on a time difference between the time point when the differential value of the fluctuation becomes zero and the bottom point;
    Determining means for determining, as a systolic blood pressure value, the cuff pressure corresponding to the pulse wave component that maximizes the change between the pulse wave components of the feature amount calculated for each of the plurality of pulse wave components. A blood pressure measurement device characterized by that.
  2.  前記算出手段は、
     前記変動の微分値がゼロになる時点が1つの場合には、該時点と、前記ボトム点との時間差に基づいて前記特徴量を算出し、
     前記変動の微分値がゼロとなる時点が複数の場合には、2番目の時点と、前記ボトム点との時間差に基づいて前記特徴量を算出することを特徴とする請求項1に記載の血圧測定装置。
    The calculating means includes
    If there is one time point at which the differential value of the variation becomes zero, the feature amount is calculated based on the time difference between the time point and the bottom point,
    2. The blood pressure according to claim 1, wherein when there are a plurality of time points at which the differential value of the fluctuation becomes zero, the feature amount is calculated based on a time difference between a second time point and the bottom point. measuring device.
  3.  前記特徴量は、前記時間差の値、または、前記時間差を前記脈波成分の1周期の時間で除算した値であることを特徴とする請求項1または2に記載の血圧測定装置。 3. The blood pressure measurement device according to claim 1, wherein the feature amount is a value of the time difference or a value obtained by dividing the time difference by a time of one cycle of the pulse wave component.
  4.  前記決定手段は、前記収縮期血圧値が決定された後の脈波成分のうち、算出される特徴量が最初に所定の閾値以下となる脈波成分に対応する前記カフ圧力を、拡張期血圧値として決定することを特徴とする請求項1に記載の血圧測定装置。 The determining means calculates the cuff pressure corresponding to the pulse wave component for which the calculated feature amount is initially equal to or less than a predetermined threshold among the pulse wave components after the systolic blood pressure value is determined, The blood pressure measuring device according to claim 1, wherein the blood pressure measuring device is determined as a value.
  5.  前記決定手段は、前記収縮期血圧値が決定された後の脈波成分のうち、算出される特徴量の減衰変化が所定の閾値以下となる脈波成分に対応する前記カフ圧力を、拡張期血圧値として決定することを特徴とする請求項1に記載の血圧測定装置。 The determining means determines the cuff pressure corresponding to the pulse wave component for which the attenuation change of the calculated feature value is equal to or less than a predetermined threshold among the pulse wave components after the systolic blood pressure value is determined, The blood pressure measuring device according to claim 1, wherein the blood pressure measuring device is determined as a blood pressure value.
  6.  血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、
     前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、
     前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部の脈波を検出する脈波検出用空気袋と、
     を備えるカフと接続され、複数の脈波成分が時系列に重畳された、減圧過程におけるカフ圧力を検出する血圧測定装置であって、
     前記検出したカフ圧力に重畳された複数の脈波成分それぞれについて、
      振幅のピーク点と該ピーク点に先行して現れるボトム点とを特定し、
      前記ボトム点から前記ピーク点までの間において、連続する所定数の脈波データを順次抽出していき、それぞれ抽出した脈波データについて回帰直線の傾きを算出し、
      前記ボトム点から前記ピーク点までの間における前記傾きの変動を求め、
      前記変動の微分値がゼロになる時点における脈波成分の、前記ボトム点からの振幅の変位に基づく特徴量を算出する算出手段と、
     前記複数の脈波成分それぞれにおいて算出された前記特徴量の、各脈波成分間の変化が最大となる脈波成分に対応する前記カフ圧力を、収縮期血圧値として決定する決定手段と
     を備えることを特徴とする血圧測定装置。
    An air bag for ischemia that is laid on the side in contact with the blood pressure measurement site and compresses the entire blood pressure measurement site;
    A sub-air bag that is laid on the side of the blood bag for measuring blood pressure that is in contact with the blood pressure measurement site and compresses the heart side of the blood vessel of the blood pressure measurement site;
    A pulse wave detection air bag that is laid on the side of the blood bag for blood pressure measurement that is in contact with the blood pressure measurement site and detects a pulse wave at the center of the blood vessel of the blood pressure measurement site;
    A blood pressure measurement device that detects a cuff pressure in a decompression process, in which a plurality of pulse wave components are superimposed in time series,
    For each of the plurality of pulse wave components superimposed on the detected cuff pressure,
    Identify the amplitude peak point and the bottom point that appears before the peak point,
    Between the bottom point and the peak point, it sequentially extracts a predetermined number of pulse wave data, calculates the slope of the regression line for each extracted pulse wave data,
    Obtain the variation of the slope between the bottom point and the peak point,
    A calculation means for calculating a feature quantity based on a displacement of an amplitude from the bottom point of the pulse wave component at the time when the differential value of the fluctuation becomes zero;
    Determining means for determining, as a systolic blood pressure value, the cuff pressure corresponding to the pulse wave component that maximizes the change between the pulse wave components of the feature amount calculated for each of the plurality of pulse wave components. A blood pressure measurement device characterized by that.
  7.  血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、
     前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、
     前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部の脈波を検出する脈波検出用空気袋と、
     を備えるカフと接続され、複数の脈波成分が時系列に重畳された、減圧過程におけるカフ圧力を検出する血圧測定装置における血圧値算出方法であって、
     前記検出したカフ圧力に重畳された複数の脈波成分それぞれについて、
      振幅のピーク点と該ピーク点に先行して現れるボトム点とを特定し、
      前記ボトム点から前記ピーク点までの間において、連続する所定数の脈波データを順次抽出していき、それぞれ抽出した脈波データについて回帰直線の傾きを算出し、
      前記ボトム点から前記ピーク点までの間における前記傾きの変動を求め、
      前記変動の微分値がゼロになる時点と、前記ボトム点との時間差に基づく特徴量を算出する算出工程と、
     前記複数の脈波成分それぞれにおいて算出された前記特徴量の、各脈波成分間の変化が最大となる脈波成分に対応する前記カフ圧力を、収縮期血圧値として決定する決定工程と
     を備えることを特徴とする血圧値算出方法。
    An air bag for ischemia that is laid on the side in contact with the blood pressure measurement site and compresses the entire blood pressure measurement site;
    A sub-air bag that is laid on the side of the blood bag for measuring blood pressure that is in contact with the blood pressure measurement site and compresses the heart side of the blood vessel of the blood pressure measurement site;
    A pulse wave detection air bag that is laid on the side of the blood bag for blood pressure measurement that is in contact with the blood pressure measurement site and detects a pulse wave at the center of the blood vessel of the blood pressure measurement site;
    A blood pressure value calculation method in a blood pressure measurement device for detecting a cuff pressure in a decompression process, in which a plurality of pulse wave components are superimposed in time series,
    For each of the plurality of pulse wave components superimposed on the detected cuff pressure,
    Identify the amplitude peak point and the bottom point that appears before the peak point,
    Between the bottom point and the peak point, it sequentially extracts a predetermined number of pulse wave data, calculates the slope of the regression line for each extracted pulse wave data,
    Obtain the variation of the slope between the bottom point and the peak point,
    A calculation step of calculating a feature amount based on a time difference between the time when the differential value of the variation becomes zero and the bottom point;
    Determining the cuff pressure corresponding to the pulse wave component that maximizes the change between the pulse wave components of the feature amount calculated for each of the plurality of pulse wave components as a systolic blood pressure value. The blood pressure value calculation method characterized by this.
  8.  血圧測定部位に接する側に敷設され血圧測定部位全体を圧迫する阻血用空気袋と、
     前記阻血用空気袋の血圧測定部位に接する側に敷設されて血圧測定部位の血管の心臓側を圧迫するサブ空気袋と、
     前記阻血用空気袋の血圧測定部位に接する側に敷設され血圧測定部位の血管の中央部の脈波を検出する脈波検出用空気袋と、
     を備えるカフと接続され、複数の脈波成分が時系列に重畳された、減圧過程におけるカフ圧力を検出する血圧測定装置における血圧値算出方法であって、
     前記検出したカフ圧力に重畳された複数の脈波成分それぞれについて、
      振幅のピーク点と該ピーク点に先行して現れるボトム点とを特定し、
      前記ボトム点から前記ピーク点までの間において、連続する所定数の脈波データを順次抽出していき、それぞれ抽出した脈波データについて回帰直線の傾きを算出し、
      前記ボトム点から前記ピーク点までの間における前記傾きの変動を求め、
      前記変動の微分値がゼロになる時点における脈波成分の、前記ボトム点からの振幅の変位に基づく特徴量を算出する算出工程と、
     前記複数の脈波成分それぞれにおいて算出された前記特徴量の、各脈波成分間の変化が最大となる脈波成分に対応する前記カフ圧力を、収縮期血圧値として決定する決定工程と
     を備えることを特徴とする血圧値算出方法。
    An air bag for ischemia that is laid on the side in contact with the blood pressure measurement site and compresses the entire blood pressure measurement site;
    A sub-air bag that is laid on the side of the blood bag for measuring blood pressure that is in contact with the blood pressure measurement site and compresses the heart side of the blood vessel of the blood pressure measurement site;
    A pulse wave detection air bag that is laid on the side of the blood bag for blood pressure measurement that is in contact with the blood pressure measurement site and detects a pulse wave at the center of the blood vessel of the blood pressure measurement site;
    A blood pressure value calculation method in a blood pressure measurement device for detecting a cuff pressure in a decompression process, in which a plurality of pulse wave components are superimposed in time series,
    For each of the plurality of pulse wave components superimposed on the detected cuff pressure,
    Identify the amplitude peak point and the bottom point that appears before the peak point,
    Between the bottom point and the peak point, it sequentially extracts a predetermined number of pulse wave data, calculates the slope of the regression line for each extracted pulse wave data,
    Obtain the variation of the slope between the bottom point and the peak point,
    A calculation step of calculating a feature amount based on a displacement of an amplitude from the bottom point of the pulse wave component at the time when the differential value of the variation becomes zero;
    Determining the cuff pressure corresponding to the pulse wave component that maximizes the change between the pulse wave components of the feature amount calculated for each of the plurality of pulse wave components as a systolic blood pressure value. The blood pressure value calculation method characterized by this.
PCT/JP2013/002374 2013-04-05 2013-04-05 Sphygmomanometer and blood pressure value computation method WO2014162360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002374 WO2014162360A1 (en) 2013-04-05 2013-04-05 Sphygmomanometer and blood pressure value computation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/002374 WO2014162360A1 (en) 2013-04-05 2013-04-05 Sphygmomanometer and blood pressure value computation method

Publications (1)

Publication Number Publication Date
WO2014162360A1 true WO2014162360A1 (en) 2014-10-09

Family

ID=51657695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002374 WO2014162360A1 (en) 2013-04-05 2013-04-05 Sphygmomanometer and blood pressure value computation method

Country Status (1)

Country Link
WO (1) WO2014162360A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110664386A (en) * 2019-09-04 2020-01-10 深圳先进技术研究院 Acquisition device and method for pulse wave signals
CN110833403A (en) * 2018-08-16 2020-02-25 佳纶生技股份有限公司 Blood pressure measuring system, method and device
US12059273B2 (en) 2019-09-19 2024-08-13 Samsung Electronics Co., Ltd. Apparatus and method for estimating bio-information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282948A (en) * 1988-09-20 1990-03-23 Michinobu Ninomiya Apparatus for detecting specific state of brain
JP2009050936A (en) * 2007-08-24 2009-03-12 Nsk Ltd Interference determination device and leg wheel type robot
JP2009101087A (en) * 2007-10-25 2009-05-14 Terumo Corp Blood pressure measuring apparatus and its control method
JP2009101085A (en) * 2007-10-25 2009-05-14 Terumo Corp Blood pressure measuring apparatus and its control method
JP2012205642A (en) * 2011-03-29 2012-10-25 Seiko Epson Corp Sphygmograph, and signal processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282948A (en) * 1988-09-20 1990-03-23 Michinobu Ninomiya Apparatus for detecting specific state of brain
JP2009050936A (en) * 2007-08-24 2009-03-12 Nsk Ltd Interference determination device and leg wheel type robot
JP2009101087A (en) * 2007-10-25 2009-05-14 Terumo Corp Blood pressure measuring apparatus and its control method
JP2009101085A (en) * 2007-10-25 2009-05-14 Terumo Corp Blood pressure measuring apparatus and its control method
JP2012205642A (en) * 2011-03-29 2012-10-25 Seiko Epson Corp Sphygmograph, and signal processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110833403A (en) * 2018-08-16 2020-02-25 佳纶生技股份有限公司 Blood pressure measuring system, method and device
CN110664386A (en) * 2019-09-04 2020-01-10 深圳先进技术研究院 Acquisition device and method for pulse wave signals
US12059273B2 (en) 2019-09-19 2024-08-13 Samsung Electronics Co., Ltd. Apparatus and method for estimating bio-information

Similar Documents

Publication Publication Date Title
JP5043707B2 (en) Blood pressure measurement device and control method thereof
JP3858812B2 (en) Blood pressure measurement device
JP5151690B2 (en) Blood pressure information measuring device and index acquisition method
TW491697B (en) Blood-pressure measuring apparatus
US9119535B2 (en) Blood pressure manometer and a method of calculating indices of atherosclerosis using the blood pressure manometer
WO2016031196A1 (en) Blood pressure determination device, blood pressure determination method, recording medium for recording blood pressure determination program, and blood pressure measurement device
WO1991019451A1 (en) Device for measuring blood flow velocity and quantity in aorta
CN114652351B (en) Continuous blood pressure measuring method and device based on ultrasonic Doppler and electronic equipment
JP5741087B2 (en) Blood pressure information measuring device
US20130211268A1 (en) Blood pressure information measurement device and blood pressure information measurement method
WO2014162360A1 (en) Sphygmomanometer and blood pressure value computation method
KR101264018B1 (en) Arterial wall hardness evaluation system
JP6027767B2 (en) Automatic blood pressure measurement device.
US9232899B2 (en) Blood pressure information measurement device and control method of blood pressure information measurement device
JP5143529B2 (en) Blood pressure measurement device and control method thereof
JP5111053B2 (en) Blood pressure measurement device
JP5112767B2 (en) Blood pressure measurement device
JP5112756B2 (en) Blood pressure measurement device
JP5146997B2 (en) Electronic blood pressure monitor and signal processing method thereof
TWI358280B (en) Blood pressure measuring apparatus and control met
Shimizu Blood flow in a brachial artery compressed externally by a pneumatic cuff
JP2009101087A (en) Blood pressure measuring apparatus and its control method
JP5146995B2 (en) Blood pressure measurement device and control method thereof
RU2574119C2 (en) Method for determining arterial blood pressure
JPH0349732A (en) Pulse wave fluctuation detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP