JP5049097B2 - Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same. - Google Patents

Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same. Download PDF

Info

Publication number
JP5049097B2
JP5049097B2 JP2007286815A JP2007286815A JP5049097B2 JP 5049097 B2 JP5049097 B2 JP 5049097B2 JP 2007286815 A JP2007286815 A JP 2007286815A JP 2007286815 A JP2007286815 A JP 2007286815A JP 5049097 B2 JP5049097 B2 JP 5049097B2
Authority
JP
Japan
Prior art keywords
pressure
pulse wave
bag
detection
expansion bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007286815A
Other languages
Japanese (ja)
Other versions
JP2009112428A (en
Inventor
真衛 柴崎
繁廣 石塚
伸彦 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2007286815A priority Critical patent/JP5049097B2/en
Publication of JP2009112428A publication Critical patent/JP2009112428A/en
Application granted granted Critical
Publication of JP5049097B2 publication Critical patent/JP5049097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

本発明は、腕、足首のような生体の肢体である被圧迫部位内の動脈から発生する脈波を検出するためにその被圧迫部位に巻回される圧迫帯、その圧迫帯を備えた自動血圧測定装置、血管柔軟度測定装置、脈波伝播速度測定装置に関するものである。   The present invention relates to a compression band wound around a compression site to detect a pulse wave generated from an artery in the compression site that is a limb of a living body such as an arm or an ankle, and an automatic equipped with the compression zone The present invention relates to a blood pressure measuring device, a blood vessel flexibility measuring device, and a pulse wave velocity measuring device.

生体の血圧値、脈波伝播速度、動脈柔軟度( コンプライアンス) 等の生体の循環器情報は、生体の動脈から発生する脈波を基礎として測定される。この生体の動脈から発生する脈波は、生体の被圧迫部位に巻回された圧迫帯内の圧力振動として簡便に検出される。しかし、この圧迫帯( カフ)に備えられた膨張袋は、被圧迫部位の径に対して十分に大きい圧迫幅寸法を必要として比較的大きな容量のものであることから、動脈の容量変化に応答して発生する圧力振動である脈波は微弱な信号となる傾向にあるとともに、圧迫帯の幅方向の端部の圧迫圧力は被圧迫部位に対して減衰しておりその被圧迫部位に対する圧迫の有効幅はたとえば80%以下となって不均一となっている状態で得られた脈波であるため、測定誤差の要因となっていた。   Biological circulatory information such as the blood pressure value, pulse wave velocity, and arterial flexibility (compliance) of the living body is measured based on the pulse wave generated from the living artery. The pulse wave generated from the artery of the living body is easily detected as pressure vibration in the compression band wound around the pressed portion of the living body. However, the inflatable bag provided in this compression band (cuff) requires a sufficiently large compression width for the diameter of the area to be compressed and has a relatively large capacity, so it responds to changes in arterial volume. The pulse wave, which is the pressure vibration generated in this way, tends to be a weak signal, and the compression pressure at the end in the width direction of the compression band is attenuated with respect to the compression site. For example, the effective width is a pulse wave obtained in a non-uniform state of 80% or less, which causes measurement errors.

これに対して、特許文献1に示されるように、動脈の容量変化を明確に検出するために主膨張袋に対して少容量の検出用膨張袋を上記主膨張袋の内側に設けるとともに、検出用膨張袋と主膨張袋との間に遮蔽板を設けた2層構造の圧迫帯が提案されている。これによれば、主膨張袋による加圧が、被圧迫部位へ直接に且つ検出用膨張袋を通して間接的に行われるとともに、脈波を検出するときはそれら主膨張袋と検出用膨張袋との間のエヤー径を遮断或いは抵抗を与えることにより圧力変動に関しては独立状態とし、動脈の容積変動により上記検出用膨張袋に発生した圧力振動である脈波が検出される。このとき、検出用膨張袋は遮蔽板により主膨張袋との間が遮蔽されており且つ比較的小容積であるため、検出用膨張袋内の圧力振動である脈波をある程度正確に得ることができるようになる。
特開平05−269089号公報
On the other hand, as shown in Patent Document 1, a small-capacity detection inflation bag is provided inside the main inflation bag with respect to the main inflation bag in order to clearly detect a change in arterial volume. A two-layered compression band in which a shielding plate is provided between the expansion bag for main use and the main expansion bag has been proposed. According to this, pressurization by the main inflation bag is performed directly to the pressed portion and indirectly through the detection inflation bag, and when detecting the pulse wave, the main inflation bag and the detection inflation bag By blocking the air diameter between them or applying resistance, the pressure fluctuation is made independent, and a pulse wave, which is pressure vibration generated in the detection inflation bag due to the arterial volume fluctuation, is detected. At this time, since the detection expansion bag is shielded from the main expansion bag by the shielding plate and has a relatively small volume, a pulse wave, which is pressure vibration in the detection expansion bag, can be obtained to some extent accurately. become able to.
Japanese Patent Laid-Open No. 05-269089

しかし、上記特許文献1に示される従来の2層構造の圧迫帯によれば、生体の皮膚側に検出用膨張袋が位置していることにより主膨張袋の圧力が適正に動脈に加えられないので、正確な脈波が得られ難いという不都合があった。   However, according to the conventional two-layer compression band shown in Patent Document 1, the pressure of the main inflation bag is not properly applied to the artery because the detection inflation bag is located on the skin side of the living body. Therefore, there was an inconvenience that it was difficult to obtain an accurate pulse wave.

本発明の目的とするところは、生体の被圧迫部位内の動脈に対して圧迫圧力を適正に加えることができ、正確な脈波が得られる脈波検出用圧迫帯、それを備えた自動血圧測定装置、血管柔軟度測定装置、脈波伝播速度測定装置を提供することである。   An object of the present invention is to provide a pulse wave detection compression band capable of appropriately applying a compression pressure to an artery in a compressed portion of a living body and obtaining an accurate pulse wave, and an automatic blood pressure equipped with the pressure wave detection band. To provide a measuring device, a blood vessel flexibility measuring device, and a pulse wave velocity measuring device.

かかる目的を達成するために、請求項1に係る発明は、(a) 生体の動脈から発生する脈波を検出するために該生体の被圧迫部位に巻き付けられる脈波検出用圧迫帯であって、(b) 前記被圧迫部位の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および下流側膨張袋と、(c) 前記被圧迫部位の長手方向において連なるように前記一対の上流側膨張袋および下流側膨張袋の間に配置され、該一対の上流側膨張袋および下流側膨張袋とは独立した気室を有する検出用膨張袋とを、含み、(d) 前記上流側膨張袋、検出用膨張袋、および下流側膨張袋で前記生体の被圧迫部位を同じ圧力で圧迫した状態で、前記検出用膨張袋内の圧力変動を前記脈波として検出するようにし、(e) 前記被圧迫部位の長手方向における前記検出用膨張袋の両端部には互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝が形成され、(f) 前記上流側膨張袋および下流側膨張袋の前記検出用膨張袋に隣接する側の隣接側端部は、該一対の折込溝内に差し入れられていることを特徴とする。
In order to achieve this object, the invention according to claim 1 is: (a) a pulse wave detection compression band that is wound around a compressed portion of a living body in order to detect a pulse wave generated from an artery of the living body; (B) a pair of upstream inflatable bag and downstream inflatable bag made of a flexible sheet positioned at a predetermined interval in the longitudinal direction of the compressed portion; and (c) in the longitudinal direction of the compressed portion. A detection inflatable bag disposed between the pair of upstream inflatable bags and the downstream inflatable bag so as to be continuous and having an air chamber independent of the pair of upstream inflatable bags and the downstream inflatable bag; (d) Detecting a pressure fluctuation in the detection inflation bag as the pulse wave in a state where the compressed portion of the living body is compressed with the same pressure by the upstream inflation bag, the detection inflation bag, and the downstream inflation bag. to make it in, (e) wherein the detection in the longitudinal direction of the compression site A pair of folding grooves made of flexible sheets folded in directions approaching each other are formed at both ends of the expansion bag, and (f) the detection expansion bag of the upstream expansion bag and the downstream expansion bag The adjacent side end portions on the adjacent sides are inserted into the pair of folding grooves .

また、請求項に係る発明の脈波検出用圧迫帯は請求項に係る発明において、前記検出用膨張袋の一対の折込溝の相対向する溝側面の少なくとも一方と該折込溝内に挿し入れられた前記上流側膨張袋および下流側膨張袋の隣接側端部との間に、前記脈波検出用圧迫帯の長手方向の曲げ剛性よりも該脈波検出用圧迫帯の幅方向の曲げ剛性が高い剛性の異方性を有する長手状遮蔽部材が介在させられていることを特徴とする。
A pulse wave detection compression band according to a second aspect of the present invention is the invention according to the first aspect, wherein at least one of the opposed groove side surfaces of the pair of folding grooves of the detection inflating bag is inserted into the folding groove. Bending in the width direction of the pressure detection band for pulse wave detection rather than the bending rigidity in the longitudinal direction of the compression band for pulse wave detection between the upstream expansion bag and the adjacent side end of the downstream expansion bag A long shielding member having high rigidity and anisotropic rigidity is interposed.

また、請求項に係る発明の脈波検出用圧迫帯は、請求項に係る発明において、前記長手状遮蔽部材は、前記被圧迫部位の長手方向に平行な複数本の可撓性中空管が互いに平行な状態で該被圧迫部位の周方向に連ねて配列されることにより構成されたものであることを特徴とする
According to a third aspect of the present invention, there is provided the compression band for pulse wave detection according to the second aspect of the present invention, wherein the longitudinal shielding member is a plurality of flexible hollows parallel to the longitudinal direction of the pressed portion. The tube is configured by being arranged in a row in the circumferential direction of the pressed portion in a state of being parallel to each other.

また、請求項に係る発明の自動血圧測定装置は、(a) 請求項1乃至のいずれか1の脈波検出用圧迫帯を備えるものであって、(b) 前記検出用膨張袋内の圧力を検出する圧力センサと、(c) 前記一対の上流側膨張袋および下流側膨張袋と検出用膨張袋とを相互に連通させた状態で昇圧することにより前記被圧迫部位内の動脈を圧迫し、該圧迫圧を連続的に変化させる圧力制御手段と、(d) 前記圧力制御手段により圧迫圧が変化させられる過程で前記圧力センサにより検出される圧迫圧の圧力振動成分である脈波を抽出し、該脈波の変化に基づいて前記生体の血圧値を決定するオシロメトリック式血圧測定手段とを、含むことを特徴とする。
An automatic blood pressure measurement device according to a fourth aspect of the present invention comprises: (a) the pulse wave detection compression band according to any one of the first to third aspects, and (b) in the inflatable bag for detection. A pressure sensor for detecting the pressure of the pair of upstream inflatable bags and the downstream inflatable bag and the inflatable bag for detection to pressurize the artery in the compressed site by increasing the pressure in a mutually connected state. Pressure control means for compressing and continuously changing the compression pressure, and (d) a pulse wave which is a pressure vibration component of the compression pressure detected by the pressure sensor in the process of changing the compression pressure by the pressure control means And oscillometric blood pressure measuring means for determining the blood pressure value of the living body based on the change of the pulse wave.

また、請求項に係る発明の血管柔軟度測定装置は、(a) 請求項の自動血圧測定装置を備えるものであって、(b) 前記圧力センサにより検出される圧迫圧の圧力振動成分である脈波の振幅値と前記自動血圧測定装置により測定された血圧値とに基づいて前記動脈の柔軟度を示す動脈コンプライアンスを算出する動脈コンプライアンス算出手段を含むことを特徴とする。
According to a fifth aspect of the present invention, there is provided the blood vessel flexibility measuring device according to the fifth aspect , comprising: (a) the automatic blood pressure measuring device according to the fourth aspect , and (b) a pressure vibration component of the compression pressure detected by the pressure sensor. And an arterial compliance calculating means for calculating arterial compliance indicating the flexibility of the artery based on the amplitude value of the pulse wave and the blood pressure value measured by the automatic blood pressure measuring device.

また、請求項に係る発明の血管柔軟度測定装置は、前記動脈コンプライアンス算出手段が、前記検出用膨張袋の容積変化に対する圧力変化の関係から前記脈波の振幅値を圧力単位から容積単位へ換算するためのカフコンプライアンスを算出するカフコンプライアンス算出手段を含み、該容積単位へ換算された脈波の振幅値と前記自動血圧測定装置により検出された最高血圧値と最低血圧値との圧力差とに基づいて前記動脈の柔軟度を示す動脈コンプライアンスを算出するものであることを特徴とする。
Further, in the blood vessel flexibility measuring device according to the invention of claim 6 , the arterial compliance calculating means changes the amplitude value of the pulse wave from the pressure unit to the volume unit from the relationship of the pressure change with respect to the volume change of the detection inflation bag. A cuff compliance calculating means for calculating a cuff compliance for conversion, and the pressure difference between the amplitude value of the pulse wave converted into the volume unit and the maximum blood pressure value and the minimum blood pressure value detected by the automatic blood pressure measuring device; Based on the above, an arterial compliance indicating the flexibility of the artery is calculated.

また、請求項に係る発明の血管柔軟度測定装置は、(a) 前記動脈の脈動に対応する大きさの予め設定された一定容積の気体を前記検出用膨張袋内に加える定容積脈波発生装置を備え、(b) 前記動脈コンプライアンス算出手段は、該定容積脈波発生装置により前記検出用膨張袋内に加えられる一定容積の気体の容積値と、該一定容積の気体が前記検出用膨張袋内に加えられたときに前記圧力センサにより検出された該検出用膨張袋内の圧力上昇値との関係を予め求めるものであることを特徴とする。
According to a seventh aspect of the present invention, there is provided the blood vessel flexibility measuring device according to the present invention, wherein: (a) a constant volume pulse wave that applies a predetermined volume of gas having a size corresponding to the pulsation of the artery into the detection inflation bag; And (b) the arterial compliance calculating means includes a volume value of a constant volume of gas added to the detection inflation bag by the constant volume pulse wave generator, and the fixed volume of gas is used for the detection. It is characterized in that a relationship with a pressure increase value in the detection expansion bag detected by the pressure sensor when applied to the expansion bag is obtained in advance.

また、請求項に係る発明の脈波伝播速度測定装置は、(a) 請求項1乃至のいずれか1の脈波検出用圧迫帯を備えるものであって、(b) 前記上流側膨張袋内の圧力を検出する第1圧力センサと、(c) 前記下流側膨張袋内の圧力を検出する第3圧力センサと、(d) 前記上流側膨張袋および下流側膨張内に前記生体の最低血圧値よりも低い圧力で気体を充満させた状態で前記第1圧力センサにより検出された脈波から前記第3圧力センサにより検出された脈波までの脈波伝播時間と、該上流側膨張袋と下流側膨張との間の中心間距離とに基づいて、前記動脈内の脈波伝播速度を算出する脈波伝播速度測定手段とを、含むことを特徴とする。
According to an eighth aspect of the present invention, there is provided a pulse wave velocity measuring device according to the invention, comprising: (a) the pulse wave detection compression band according to any one of the first to third aspects; and (b) the upstream expansion. A first pressure sensor for detecting the pressure in the bag; (c) a third pressure sensor for detecting the pressure in the downstream expansion bag; and (d) the living body in the upstream expansion bag and the downstream expansion bag . Pulse wave propagation time from the pulse wave detected by the first pressure sensor to the pulse wave detected by the third pressure sensor in a state where the gas is filled at a pressure lower than the lowest blood pressure value, and the upstream side And a pulse wave velocity measuring means for calculating the pulse wave velocity in the artery based on the center-to-center distance between the inflation bag and the downstream inflation bag .

請求項1に係る発明の脈波検出用圧迫帯は、前記被圧迫部位の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および下流側膨張袋と、前記被圧迫部位の長手方向において連なるように前記一対の上流側膨張袋および下流側膨張袋の間に配置され、該一対の上流側膨張袋および下流側膨張袋とは独立した気室を有する検出用膨張袋とを、含み、前記上流側膨張袋、検出用膨張袋、および下流側膨張袋で前記生体の被圧迫部位を同じ圧力で圧迫した状態で、前記検出用膨張袋内の圧力変動を前記脈波として検出するようにしたものである。このため、被圧迫部位の長手方向において連なる上流側膨張袋、検出用膨張袋、下流側膨張袋から生体の被圧迫部位内の動脈に対して圧迫圧力を均等な圧力分布で加えつつ、正確な脈波が得られる。さらに、前記被圧迫部位の長手方向における前記検出用膨張袋の両端部には互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝が形成され、前記上流側膨張袋および下流側膨張袋の前記検出用膨張袋に隣接する側の隣接側端部は、該一対の折込溝内に差し入れられていることから、検出用膨張袋の両端部と上流側膨張袋および下流側膨張袋の隣接側端部とは被圧迫部位の径方向に重ねられた状態となるので、それら検出用膨張袋と上流側膨張袋および下流側膨張袋との境界付近においても被圧迫部位に対して均一な圧迫圧力分布が得られる。
The pulse wave detection compression band of the invention according to claim 1 is a pair of an upstream expansion bag and a downstream expansion bag made of a flexible sheet positioned at a predetermined interval in the longitudinal direction of the pressed portion, Detection that has an air chamber that is arranged between the pair of upstream inflation bags and the downstream inflation bag so as to be continuous in the longitudinal direction of the compressed portion, and is independent of the pair of upstream inflation bags and the downstream inflation bag. Pressure fluctuation in the detection inflation bag in a state where the compressed portion of the living body is compressed with the same pressure by the upstream inflation bag, the detection inflation bag, and the downstream inflation bag. This is detected as the pulse wave. For this reason, while applying compression pressure with an even pressure distribution from the upstream inflation bag, the detection inflation bag, and the downstream inflation bag that are continuous in the longitudinal direction of the compression site to the artery in the compression site of the living body, A pulse wave is obtained. Furthermore, a pair of folding grooves made of a flexible sheet folded in a direction approaching each other are formed at both ends of the detection expansion bag in the longitudinal direction of the pressed portion, and the upstream expansion bag and the downstream Since the adjacent side end of the side expansion bag adjacent to the detection expansion bag is inserted into the pair of folding grooves, both ends of the detection expansion bag, the upstream expansion bag, and the downstream expansion Since the adjacent side end portion of the bag is overlapped in the radial direction of the compressed part, the bag is also against the compressed part in the vicinity of the boundary between the detection expansion bag, the upstream expansion bag, and the downstream expansion bag. A uniform pressure distribution is obtained.

また、請求項に係る発明の脈波検出用圧迫帯によれば、前記検出用膨張袋の一対の折込溝の相対向する溝側面の少なくとも一方と該折込溝内に挿し入れられた前記上流側膨張袋および下流側膨張袋の隣接側端部との間に、前記脈波検出用圧迫帯の長手方向の曲げ剛性よりも該圧迫帯の幅方向の曲げ剛性が高い剛性の異方性を有する長手状遮蔽部材が介在させられていることから、特に、上流側膨張袋および下流側膨張袋から検出用膨張袋への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られる。
According to the pulse wave detection compression band of the invention according to claim 2 , at least one of the opposing groove side surfaces of the pair of folding grooves of the detection inflation bag and the upstream inserted in the folding groove Between the side expansion bag and the adjacent side end portion of the downstream expansion bag, a rigidity anisotropy having a higher bending rigidity in the width direction of the compression band than the bending rigidity in the longitudinal direction of the compression band for pulse wave detection. In particular, the low-frequency pressure vibration noise shielding action from the upstream inflatable bag and the downstream inflatable bag to the detection inflatable bag can be suitably obtained and the relatively low An accurate pulse wave that is hardly affected by pressure vibration noise of the frequency can be obtained.

また、請求項に係る発明の脈波検出用圧迫帯によれば、前記長手状遮蔽部材は、前記被圧迫部位の長手方向に平行な複数本の可撓性中空管が互いに平行な状態で該被圧迫部位の周方向に連ねて配列されることにより構成されたものであることから、上流側膨張袋および下流側膨張袋から検出用膨張袋への低周波数の圧力振動ノイズの遮蔽作用が一層好適に得られ、比較的低周波数の圧力振動ノイズの影響を受け難い一層正確な脈波が得られる。
According to the pulse wave detection compression band of the invention of claim 3 , the longitudinal shielding member is in a state in which a plurality of flexible hollow tubes parallel to the longitudinal direction of the pressed part are parallel to each other. Therefore, the low-frequency pressure vibration noise is shielded from the upstream inflatable bag and the downstream inflatable bag to the detecting inflatable bag. Can be obtained more suitably, and a more accurate pulse wave that is not easily affected by pressure vibration noise of a relatively low frequency can be obtained.

また、請求項に係る発明の自動血圧測定装置によれば、前記検出用膨張袋と、その検出用膨張袋内の圧力を検出する圧力センサと、前記一対の上流側膨張袋および下流側膨張袋と検出用膨張袋とを相互に連通させた状態で昇圧することにより前記被圧迫部位内の動脈を圧迫し、該圧迫圧を連続的に変化させる圧力制御手段と、前記圧力制御手段により圧迫圧が変化させられる過程で前記圧力センサにより検出される圧迫圧の圧力振動成分である脈波を抽出し、それら脈波の変化に基づいて前記生体の血圧値を決定するオシロメトリック式の血圧測定手段とを、含むので、前記検出用膨張袋から得られる正確な脈波に基づいて精度の高い血圧値が得られる。
According to the automatic blood pressure measurement device of the invention of claim 4 , the detection inflation bag, the pressure sensor for detecting the pressure in the detection inflation bag, the pair of upstream inflation bags and the downstream inflation A pressure control unit that pressurizes an artery in the compressed portion by pressurizing the bag and the inflatable bag for detection in a state where they are in communication with each other, and a pressure control unit that continuously changes the compression pressure; An oscillometric blood pressure measurement that extracts a pulse wave, which is a pressure vibration component of the compression pressure detected by the pressure sensor in the process of changing the pressure, and determines a blood pressure value of the living body based on the change of the pulse wave. Therefore, a highly accurate blood pressure value can be obtained based on an accurate pulse wave obtained from the detection inflation bag.

また、請求項に係る発明の血管柔軟度測定装置によれば、前記圧力センサにより検出される圧迫圧の圧力振動成分である脈波の振幅値と前記自動血圧測定装置により測定された血圧値とに基づいて前記動脈の柔軟度を示す動脈コンプライアンスを算出する動脈コンプライアンス測定出手段を含むことから、前記検出用膨張袋から得られる正確な脈波とその脈波の変化から算出される精度の高い血圧値とに基づいて、精度の高い動脈の柔軟度が得られる。
According to the vascular flexibility measuring device of the invention according to claim 5 , the amplitude value of the pulse wave that is the pressure vibration component of the compression pressure detected by the pressure sensor and the blood pressure value measured by the automatic blood pressure measuring device. And an arterial compliance measuring means for calculating arterial compliance indicating the degree of arterial flexibility based on the accuracy of the pulse wave obtained from the detection inflation bag and the accuracy of the calculated pulse wave. Based on the high blood pressure value, a high degree of arterial flexibility can be obtained.

また、請求項に係る発明の血管柔軟度測定装置によれば、前記動脈コンプライアンス算出手段は、前記検出用膨張袋の容積変化に対する圧力変化の関係から前記脈波の振幅値を圧力単位から容積単位へ換算するためのカフコンプライアンスを算出するカフコンプライアンス算出手段を含み、その容積単位へ換算された脈波の振幅値と前記自動血圧測定装置により検出された最高血圧値と最低血圧値との圧力差とに基づいて前記動脈の柔軟度を示す動脈コンプライアンスを算出するものであることから、一層正確な動脈の柔軟度が得られる。
According to the blood vessel flexibility measuring device of the invention according to claim 6 , the arterial compliance calculating means calculates the amplitude value of the pulse wave from the pressure unit to the volume from the relationship of the pressure change with respect to the volume change of the detection inflation bag. A cuff compliance calculating means for calculating a cuff compliance for conversion into a unit, and the pressure between the amplitude value of the pulse wave converted into the volume unit and the maximum blood pressure value and the minimum blood pressure value detected by the automatic blood pressure measurement device Since the arterial compliance indicating the arterial flexibility is calculated based on the difference, more accurate arterial flexibility can be obtained.

また、請求項に係る発明の血管柔軟度測定装置によれば、前記動脈の脈動に対応する大きさの予め設定された一定容積の気体を前記検出用膨張袋内に加える定容積脈波発生装置を備え、前記カフコンプライアンス算出手段は、その定容積脈波発生装置により前記検出用膨張袋内に加えられる一定容積の気体の容積値と、その一定容積の気体が前記検出用膨張袋内に加えられたときに前記圧力センサにより検出された検出用膨張袋内の圧力上昇値との関係を予め求めるものであることから、その関係により検出用膨張袋のカフコンプライアンスが、たとえば予め設定された一定周期、脈拍、或いは圧迫圧変化値に応答して上記定容積脈波発生装置から一定容積の気体が検出用膨張袋内に加えられる毎に逐次得られる。
According to the vascular flexibility measuring device of the invention according to claim 7 , constant volume pulse wave generation for adding a predetermined volume of gas having a size corresponding to the pulsation of the artery into the inflatable bag for detection. The cuff compliance calculating means includes a volume value of a constant volume of gas added to the detection inflation bag by the constant volume pulse wave generator, and the constant volume of gas is contained in the detection inflation bag. Since the relationship with the pressure increase value in the detection inflatable bag detected by the pressure sensor when it is added is obtained in advance, the cuff compliance of the inflatable bag for detection is set in advance by that relationship, for example Each time a constant volume of gas is added from the constant volume pulse wave generator into the detection inflating bag in response to a constant period, pulse, or pressure change value, it is obtained sequentially.

また、請求項に係る発明の脈波伝播速度測定装置によれば、前記脈波検出用圧迫帯と、前記上流側膨張袋内の圧力を検出する第1圧力センサと、前記下流側膨張袋内の圧力を検出する第3圧力センサと、前記上流側膨張袋および下流側膨張内に前記生体の最低血圧値よりも低い圧力で気体を充満させた状態で前記第1圧力センサにより検出された脈波から前記第3圧力センサにより検出された脈波までの脈波伝播時間と、該上流側膨張袋と下流側膨張との間の中心間距離とに基づいて、前記動脈内の脈波伝播速度を算出する脈波伝播速度測定手段とを、含むことから、生体の被圧迫部位における動脈の局部的脈波伝播速度値が容易に得られる。好適には、検出用膨張袋内が排気された状態で上記第2圧力センサにより検出された脈波から前記第3圧力センサにより検出された脈波までの脈波伝播時間が算出される。このようにすれば、上流側膨張袋および下流側膨張の間が十分に遮蔽されるので、検出される脈波が正確となり、精度の高い伝播速度が得られる。
According to the pulse wave velocity measuring device of the invention according to claim 8 , the pulse wave detection compression band, the first pressure sensor for detecting the pressure in the upstream expansion bag, and the downstream expansion bag A third pressure sensor for detecting the internal pressure, and the first pressure sensor in a state where the upstream inflation bag and the downstream inflation bag are filled with gas at a pressure lower than the minimum blood pressure value of the living body. Based on the pulse wave propagation time from the pulse wave detected by the third pressure sensor to the pulse wave detected by the third pressure sensor and the center-to-center distance between the upstream inflation bag and the downstream inflation bag. Since the pulse wave velocity measuring means for calculating the wave wave velocity is included, the local pulse wave velocity value of the artery in the compressed part of the living body can be easily obtained. Preferably, the pulse wave propagation time from the pulse wave detected by the second pressure sensor to the pulse wave detected by the third pressure sensor in a state where the inside of the detection expansion bag is exhausted is calculated. In this way, the space between the upstream expansion bag and the downstream expansion bag is sufficiently shielded, so that the detected pulse wave is accurate, and a highly accurate propagation speed is obtained.

以下、本発明の一実施例について図面を参照しつつ詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、被圧迫部位である生体の肢体たとえば上腕10に巻き付けられる本発明の脈波検出用圧迫帯の一例である上腕用の圧迫帯12を備えた循環器情報測定装置14を示している。この循環器情報測定装置14は、生体の肢体10内の動脈16から発生する圧脈波APW、その生体の血圧値BP、動脈柔軟度(動脈コンプライアンス) K、脈波伝播速度PWVを測定することができるので、圧脈波検出装置、自動血圧測定装置、血管( 動脈) 柔軟度測定装置、および、脈波伝播速度測定装置として機能している。   FIG. 1 shows a circulatory organ information measuring device 14 provided with an upper arm compression band 12 which is an example of a pulse wave detection compression band of the present invention wound around a living body limb such as the upper arm 10 which is a pressed part. . This circulatory organ information measuring device 14 measures a pressure pulse wave APW generated from an artery 16 in a living limb 10, a blood pressure value BP of the living body, an arterial flexibility (arterial compliance) K, and a pulse wave propagation velocity PWV. Therefore, it functions as a pressure pulse wave detection device, an automatic blood pressure measurement device, a blood vessel (arterial) flexibility measurement device, and a pulse wave propagation velocity measurement device.

図2は上記圧迫帯12の外周面を示す一部を切り欠いた図であり、図3はその圧迫帯12の内周面を示す図である。図2および図3に示すように、圧迫帯12は、PVC等の合成樹脂により裏面がラミネートされた合成樹脂繊維製の外周側面不織布20aおよび内周側不織布20bから成る帯状外袋20と、その帯状外袋20内において幅方向に順次収容され、たとえば軟質ポリ塩化ビニルシートなどの可撓性シートから構成された上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26とを備え、外周側面不織布20aの端部に取り付けられた面ファスナ28に内周側不織布20の端部に取り付けられた起毛パイル30が着脱可能に接着されることにより、上腕10に着脱可能に装着されるようになっている。上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26は、それぞれ独立した気室を構成するとともに、管接続用コネクタ32、34、および36を外周面側に備えている。それら管接続用コネクタ32、34、および36は、外周側面不織布20aを通して圧迫帯12の外周面に露出されている。   FIG. 2 is a partially cutaway view showing the outer peripheral surface of the compression band 12, and FIG. 3 is a view showing the inner peripheral surface of the compression band 12. As shown in FIG. 2 and FIG. 3, the compression band 12 includes a belt-shaped outer bag 20 composed of an outer peripheral side nonwoven fabric 20a and an inner peripheral side nonwoven fabric 20b made of synthetic resin fibers, the back surface of which is laminated with a synthetic resin such as PVC, An upstream inflatable bag 22, a detection inflatable bag 24, and a downstream inflatable bag 26, which are sequentially accommodated in the width direction in the belt-like outer bag 20 and are made of a flexible sheet such as a soft polyvinyl chloride sheet, for example, are provided. The raised pile 30 attached to the end of the inner peripheral nonwoven fabric 20 is detachably attached to the hook and loop fastener 28 attached to the end of the outer peripheral side nonwoven fabric 20a, so that the upper arm 10 is detachably attached. It is like that. The upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26 constitute independent air chambers, and include pipe connection connectors 32, 34, and 36 on the outer peripheral surface side. The pipe connecting connectors 32, 34, and 36 are exposed to the outer peripheral surface of the compression band 12 through the outer peripheral side nonwoven fabric 20a.

図4は、上記圧迫帯12内に備えられた上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26を示す平面図であり、図5はそれらを幅方向に切断した断面図であり、図6はそれらを分離して示す斜視図である。上流側膨張袋22、中流側膨張袋24、および下流側膨張袋26は、それぞれ長手状を成し、上流側膨張袋22および下流側膨張袋26は検出用膨張袋24の両側に隣接した状態で配置されている。検出用膨張袋24は、動脈16から発生する脈波PWを検出するためのものであり、上記上流側膨張袋22および下流側膨張袋26の間に挟まれた状態で圧迫帯12の幅方向の中央部に配置されている。   FIG. 4 is a plan view showing the upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26 provided in the compression band 12, and FIG. 5 is a cross-sectional view of them cut in the width direction. FIG. 6 is a perspective view showing them separately. The upstream expansion bag 22, the middle flow expansion bag 24, and the downstream expansion bag 26 each have a longitudinal shape, and the upstream expansion bag 22 and the downstream expansion bag 26 are adjacent to both sides of the detection expansion bag 24. Is arranged in. The detection expansion bag 24 is for detecting the pulse wave PW generated from the artery 16 and is in the width direction of the compression band 12 while being sandwiched between the upstream expansion bag 22 and the downstream expansion bag 26. It is arranged at the center of the.

検出用膨張袋24は所謂マチ構造の側縁部を両側に備えている。すなわち、検出用膨張袋24の上腕10の長手方向における両端部には、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝24fおよび24fがそれぞれ形成されている。そして、前記上流側膨張袋22および下流側膨張袋26の検出用膨張袋24に隣接する側の隣接側端部22aおよび26aがそれら一対の折込溝24fおよび24f内に差し入れられて配置されるようになっている。これにより、検出用膨張袋24の両端部と上流側膨張袋22および下流側膨張袋26の検出用膨張袋24に隣接する側の隣接側端部22aおよび26aとが相互に重ねられた構造すなわちオーバラップ構造となるので、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26が等圧で上腕10を圧迫したときにそれらの境界付近においても均等な圧力分布が得られる。この場合、上記上流側膨張袋22および下流側膨張袋26は、専ら上腕10を圧迫するための主膨張袋として機能し、検出用膨張袋24は動脈16から発生する脈波を専ら検出する脈波検出用として機能している。   The detection inflatable bag 24 has side edges of a so-called gusset structure on both sides. That is, at both ends of the upper arm 10 in the longitudinal direction of the upper arm 10 for detection, a pair of folding grooves 24f and 24f made of a flexible sheet folded in a direction approaching each other so as to approach each other are formed. Each is formed. The adjacent end portions 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 adjacent to the detection expansion bag 24 are inserted into the pair of folding grooves 24f and 24f. It has become. Thereby, both ends of the detection expansion bag 24 and the adjacent side end portions 22a and 26a adjacent to the detection expansion bag 24 of the upstream expansion bag 22 and the downstream expansion bag 26 are overlapped with each other, that is, Because of the overlap structure, even when the upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26 press the upper arm 10 with equal pressure, a uniform pressure distribution is obtained even in the vicinity of the boundary. In this case, the upstream inflation bag 22 and the downstream inflation bag 26 function exclusively as a main inflation bag for compressing the upper arm 10, and the detection inflation bag 24 is a pulse that exclusively detects a pulse wave generated from the artery 16. It functions for wave detection.

上記上流側膨張袋22および下流側膨張袋26も、所謂マチ構造の側縁部を検出用膨張袋24とは反対側の端部22bおよび26bを備えている。すなわち、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24とは反対側の端部22bおよび26bには、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る折込溝22fおよび26fがそれぞれ形成されている。それら折込溝22fおよび26fを構成するシートは、幅方向に飛び出ないように、上流側膨張袋22および下流側膨張袋26内に配置された貫通穴を備える接続シート38、40を介してその反対側部分すなわち検出用膨張袋24側の部分に接続されている。これにより、上流側膨張袋22および下流側膨張袋26の端部22bおよび26bにおいても上腕10に対する圧迫圧が他の部分と同様に得られるので、圧迫帯12の幅方向の有効圧迫幅がその幅寸法と同等になる。圧迫帯12の幅方向は12cm程度であり、その幅方向に3つの上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26が配置された構造であるから、それぞれが実質的に4cm程度の幅寸法とならざるを得ない。このような狭い幅寸法であっても圧迫機能を十分に発生させるため、検出用膨張袋24の両端部24aおよび24bと上流側膨張袋22および下流側膨張袋26の隣接側端部22aおよび26aとが相互に重ねられたオーバラップ構造とされるとともに、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24とは反対側の端部22bおよび26bは,所謂マチ構造の側縁部とされている。   The upstream expansion bag 22 and the downstream expansion bag 26 also include end portions 22b and 26b opposite to the detection expansion bag 24 at the side edges of the so-called gusset structure. That is, the end portions 22b and 26b of the upstream side expansion bag 22 and the downstream side expansion bag 26 opposite to the detection expansion bag 24 may be folded in a direction approaching each other so as to become deeper as they approach each other. Folding grooves 22f and 26f made of a flexible sheet are respectively formed. The sheets constituting the folding grooves 22f and 26f are opposite to each other via connection sheets 38 and 40 having through holes arranged in the upstream expansion bag 22 and the downstream expansion bag 26 so as not to protrude in the width direction. It is connected to the side portion, that is, the portion on the detection expansion bag 24 side. As a result, the compression pressure on the upper arm 10 is obtained at the end portions 22b and 26b of the upstream inflatable bag 22 and the downstream inflatable bag 26 in the same manner as other portions, so that the effective compression width in the width direction of the compression band 12 is It is equivalent to the width dimension. The width direction of the compression band 12 is about 12 cm, and since the three upstream expansion bags 22, the detection expansion bag 24, and the downstream expansion bag 26 are arranged in the width direction, each is substantially The width must be about 4 cm. In order to sufficiently generate the compression function even with such a narrow width dimension, both end portions 24a and 24b of the detection inflatable bag 24 and adjacent end portions 22a and 26a of the upstream inflatable bag 22 and the downstream inflatable bag 26 are used. And end portions 22b and 26b of the upstream side expansion bag 22 and the downstream side expansion bag 26 opposite to the detection expansion bag 24 are side edges of a so-called gusset structure. It is considered to be a part.

上記上流側膨張袋22および下流側膨張袋26の検出用膨張袋24側の端部22aおよび26aと、それが差し入れられている一対の折込溝24fおよび24fの内壁面すなわち相対向する溝側面との間には、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有する長手状遮蔽部材42がそれぞれ介在させられている。本実施例では、図4、図5に示すように、上流側膨張袋22の端部22aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間、および、下流側膨張袋26の端部26aとそれが差し入れられている折込溝24fとの間の隙間のうちの外周側の隙間に、長手状遮蔽部材42がそれぞれ介在させられているが、内周側隙間にも介在させられてもよい。内周側隙間に比較して外周側隙間の方が遮蔽効果が大きいので、少なくとも外周側隙間に設けられればよい。   Ends 22a and 26a on the detection expansion bag 24 side of the upstream expansion bag 22 and the downstream expansion bag 26, and inner wall surfaces of the pair of folding grooves 24f and 24f into which they are inserted, that is, opposite groove side surfaces Between them, there are interposed longitudinal shielding members 42 having rigidity anisotropy in which the bending rigidity in the width direction of the compression band 12 is higher than the bending rigidity in the longitudinal direction of the compression band 12. In this embodiment, as shown in FIGS. 4 and 5, the outer peripheral side gap among the gaps between the end portion 22 a of the upstream inflatable bag 22 and the folding groove 24 f into which it is inserted, and the downstream side Longitudinal shielding members 42 are interposed in gaps on the outer peripheral side of the gaps between the end portions 26a of the side expansion bags 26 and the folding grooves 24f into which the side expansion bags 26 are inserted. May also be interposed. Since the outer circumferential side gap has a larger shielding effect than the inner circumferential side gap, it is sufficient to be provided at least in the outer circumferential side gap.

上記長手状遮蔽部材42は、上腕10の長手方向すなわち圧迫帯12の幅方向に平行な樹脂製の複数本の可撓性中空管44が互いに平行な状態で、上腕10の周方向すなわち圧迫帯12の長手方向に連ねて配列されるとともに、それら可撓性中空管44が型成形或いは接着により直接に或いは粘着テープなどの可撓性シート等の他の部材を介して間接的に相互に連結されることにより構成されている。上記長手状遮蔽部材42は、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24側の端部22aおよび26aの外周側の複数箇所に設けられた複数の掛止シート46に掛け止められている。   The longitudinal shielding member 42 is formed in the circumferential direction of the upper arm 10, that is, in the compression state, with a plurality of resin-made flexible hollow tubes 44 parallel to the longitudinal direction of the upper arm 10, that is, the width direction of the compression band 12. The flexible hollow tubes 44 are arranged in a row in the longitudinal direction of the belt 12, and the flexible hollow tubes 44 are directly or indirectly connected to each other by molding or bonding, or indirectly through another member such as a flexible sheet such as an adhesive tape. It is comprised by connecting to. The longitudinal shielding member 42 is hung on a plurality of latching sheets 46 provided at a plurality of locations on the outer peripheral side of the end portions 22a and 26a on the detection expansion bag 24 side of the upstream expansion bag 22 and the downstream expansion bag 26. Stopped.

図7は検出用膨張袋24から上流側膨張袋22および下流側膨張袋26への振動の遮断性能を表す試験結果を示し、図8は、上流側膨張袋22から検出用膨張袋24および下流側膨張袋26への振動の遮断性能を表す試験結果を示している。検出用膨張袋24の検出対象である動脈16から発生する脈波の主周波数成分は6Hz程度であるから、図7および図8の横軸は、0〜25Hz程度のスパンとされている。図7の実験では、円柱状の人工腕に巻回された圧迫帯12において、その上流側膨張袋22および下流側膨張袋26と検出用膨張袋24とにたとえば100mHgの圧力空気をそれぞれ供給した状態で、検出用膨張袋24の内側直下に配置された水バッグに6cc程度の一定容積で2秒程度の幅のパルス入力を行ったときに、それに応答して上流側膨張袋22および下流側膨張袋26に発生する圧力変化の周波数スペクトルを示している。また、図8の実験では、同様の円柱状の人工腕に巻回された圧迫帯12において、その上流側膨張袋22および下流側膨張袋26と検出用膨張袋24とにたとえば100mHgの圧力空気をそれぞれ供給した状態で、上流側膨張袋22の内側直下に配置された水バッグに6cc程度の一定容積で2秒程度の幅のパルス入力を行ったときに、それに応答して検出用膨張袋24および下流側膨張袋26に発生する圧力変化の周波数スペクトルを示している。図7から明らかないように、検出用膨張袋24から上流側膨張袋22および下流側膨張袋26への振動伝達率は−30dB付近以下であり、図8から明らかないように、上流側膨張袋22から検出用膨張袋24および下流側膨張袋26への振動伝達率も−30dB付近以下であるので、それらの間の遮断が好適に成立している。   FIG. 7 shows a test result showing the performance of blocking vibration from the detection expansion bag 24 to the upstream expansion bag 22 and the downstream expansion bag 26. FIG. 8 shows the detection expansion bag 24 and the downstream from the upstream expansion bag 22. The test result showing the isolation | blocking performance of the vibration to the side expansion bag 26 is shown. Since the main frequency component of the pulse wave generated from the artery 16 that is the detection target of the detection inflation bag 24 is about 6 Hz, the horizontal axis of FIGS. 7 and 8 is a span of about 0 to 25 Hz. In the experiment of FIG. 7, in the compression band 12 wound around a cylindrical artificial arm, for example, 100 mHg of pressurized air was supplied to the upstream expansion bag 22, the downstream expansion bag 26, and the detection expansion bag 24, respectively. In this state, when a pulse input having a constant volume of about 6 cc and a width of about 2 seconds is performed on a water bag disposed directly inside the detection expansion bag 24, the upstream expansion bag 22 and the downstream side are responded to the pulse input. The frequency spectrum of the pressure change which generate | occur | produces in the expansion bag 26 is shown. Further, in the experiment of FIG. 8, in the compression band 12 wound around the similar cylindrical artificial arm, the upstream inflation bag 22 and the downstream inflation bag 26 and the detection inflation bag 24 are pressurized air of, for example, 100 mHg. When a pulse input with a constant volume of about 6 cc and a width of about 2 seconds is performed on a water bag disposed directly under the upstream side expansion bag 22 in a state where each is supplied, a detection expansion bag is responded to it. 24 shows the frequency spectrum of the pressure change generated in the 24 and the downstream expansion bag 26. As is not clear from FIG. 7, the vibration transmission rate from the detection inflatable bag 24 to the upstream inflatable bag 22 and the downstream inflatable bag 26 is about −30 dB or less. Since the vibration transmission rate from the detection bag 22 to the detection expansion bag 24 and the downstream expansion bag 26 is also less than or equal to −30 dB, the interruption between them is preferably established.

図1に戻って、循環器情報測定装置14においては、空気ポンプ50、急速排気弁52、および圧力制御手段に対応する排気制御弁54は主配管56を介して接続されている。その主配管56からは、空気ポンプ50と上流側膨張袋22との間を直接開閉するための第1開閉弁E1を直列に備えて上流側膨張袋22に接続された第1分岐管58、容積パルス発生器( EPG:容積脈波発生装置)60を直列に備えて検出用膨張袋24に接続された第2分岐管62、空気ポンプ50と下流側膨張袋26との間を直接開閉するための第3開閉弁E3を直列に備えて下流側膨張袋26に接続された第3分岐管64が分岐させられている。上記第1分岐管58と第2分岐管62との間には、空気ポンプ50と検出用膨張袋24との間を直接開閉するための第2開閉弁E2が接続されている。そして、主配管56またはそれに接続された膨張袋内の圧力を検出するための主圧力センサT0が主配管56に接続され、上流側膨張袋22の圧力を検出するための第1圧力センサT1が上流側膨張袋22に接続され、検出用膨張袋24の圧力を検出するための第2圧力センサT2が検出用膨張袋24に接続され、下流側膨張袋26の圧力を検出するための第3圧力センサT3が下流側膨張袋26に接続されている。   Returning to FIG. 1, in the circulatory information measuring device 14, the air pump 50, the quick exhaust valve 52, and the exhaust control valve 54 corresponding to the pressure control means are connected via a main pipe 56. From the main pipe 56, a first branch pipe 58 provided in series with a first on-off valve E1 for directly opening and closing between the air pump 50 and the upstream expansion bag 22 and connected to the upstream expansion bag 22, A volume pulse generator (EPG: volume pulse wave generator) 60 is provided in series to directly open and close the second branch pipe 62 connected to the detection expansion bag 24, and between the air pump 50 and the downstream expansion bag 26. For this purpose, a third branch pipe 64 provided in series with a third on-off valve E3 connected to the downstream expansion bag 26 is branched. Connected between the first branch pipe 58 and the second branch pipe 62 is a second on-off valve E2 for directly opening and closing the air pump 50 and the detection expansion bag 24. A main pressure sensor T0 for detecting the pressure in the main pipe 56 or an expansion bag connected thereto is connected to the main pipe 56, and a first pressure sensor T1 for detecting the pressure of the upstream side expansion bag 22 is provided. A second pressure sensor T2 connected to the upstream expansion bag 22 for detecting the pressure of the detection expansion bag 24 is connected to the detection expansion bag 24 and a third pressure sensor for detecting the pressure of the downstream expansion bag 26. A pressure sensor T3 is connected to the downstream expansion bag 26.

上記主圧力センサT0、第1圧力センサT1、第2圧力センサT2、第3圧力センサT3の出力信号は電子制御装置70に供給される。電子制御装置70は、CPU72、RAM74、ROM76、および図示しないI/Oポートなどを含む所謂マイクロコンピュータであって、CPU72はRAM74の記憶機能を利用しつつ予めROM76に記憶されたプログラムにしたがって入力信号を処理し、電動式の空気ポンプ50、急速排気弁52、および排気制御弁54、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3、容積パルス発生器60を制御することにより生体の動脈16から発生する測定データを採取するとともに、その測定データに基づいてその生体の血圧値BP、動脈柔軟度(動脈コンプライアンス) K、脈波伝播速度PWVを算出し、表示装置72にその演算結果である測定値を表示させる。   Output signals of the main pressure sensor T0, the first pressure sensor T1, the second pressure sensor T2, and the third pressure sensor T3 are supplied to the electronic control unit 70. The electronic control unit 70 is a so-called microcomputer including a CPU 72, a RAM 74, a ROM 76, an I / O port (not shown), etc., and the CPU 72 uses the storage function of the RAM 74 to input signals according to a program stored in the ROM 76 in advance. By controlling the electric air pump 50, the quick exhaust valve 52, the exhaust control valve 54, the first on-off valve E1, the second on-off valve E2, the third on-off valve E3, and the volume pulse generator 60. The measurement data generated from the living artery 16 is collected, and the blood pressure value BP, the arterial flexibility (arterial compliance) K, and the pulse wave velocity PWV of the living body are calculated based on the measurement data. The measurement value that is the calculation result is displayed.

図9および図10は、上記電子制御装置70の制御作動の要部を説明するフローチャートおよびタイムチャートである。図示しない電源スイッチが投入されると、図10のt0 に示す初期状態とされる。この状態では、オペレータにより入力された患者データたとえば性別、年齢、姓名、患者ID等が記憶されるとともに、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3、および急速排気弁52は常開弁であるため非作動状態すなわち開( オープン) 状態とされ、排気制御弁54は常閉弁であるため非作動状態すなわち閉状態とされ、容積パルス発生器60および空気ポンプ50は非作動状態とされている。次いで、図示しない起動操作装置が操作されて循環器情報測定装置14の測定動作が開始されると、先ず、図10の時刻t1 乃至t3 に示す図9のステップS1( 以下、ステップを省略する) の第1血圧測定ルーチンが実行される。このS1はオシロメトリック式血圧測定手段すなわち第1血圧測定手段或いは第1血圧測定工程に対応している。   FIGS. 9 and 10 are a flowchart and a time chart for explaining a main part of the control operation of the electronic control unit 70. FIG. When a power switch (not shown) is turned on, the initial state is shown at t0 in FIG. In this state, patient data input by the operator, such as sex, age, surname, patient ID, and the like are stored, and the first on-off valve E1, the second on-off valve E2, the third on-off valve E3, and the quick exhaust valve 52 are stored. Is a normally open valve, so that it is in a non-operating state, that is, an open state, and the exhaust control valve 54 is a normally closed valve, so that it is in a non-operating state, that is, a closed state. It is in an operating state. Next, when a startup operation device (not shown) is operated and the measurement operation of the circulatory information measuring device 14 is started, first, step S1 in FIG. 9 shown at times t1 to t3 in FIG. 10 (hereinafter, steps are omitted). The first blood pressure measurement routine is executed. This S1 corresponds to the oscillometric blood pressure measuring means, that is, the first blood pressure measuring means or the first blood pressure measuring step.

すなわち、先ず、図10の時刻t1 において、空気ポンプ50が起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサT0により検出される圧力すなわち圧迫帯12による圧迫圧Peが生体の最高血圧値よりも十分に高い値に予め設定された昇圧目標圧力Pmax に到達すると、上記空気ポンプ50の作動が停止され、それに応答して、圧迫帯12による圧迫圧が一定の速度で下降するように排気制御弁54が作動させられ、徐速排気が開始される。図10の時刻t2 はこの状態を示す。この徐速排気過程において第2圧力センサT2から出力される圧力信号から、ローパスフィルタ処理が為されることにより圧迫帯12による圧迫圧( 静圧) を示すカフ圧力信号が弁別されるとともに、数Hz乃至数十Hzの波長帯の信号を弁別するバンドパスフィルタ処理されることにより脈波信号が弁別される。次いで、脈波信号の発生毎に実行されるオシロメトリック式血圧値決定アルゴリズムにしたがって、順次発生する脈波信号の振幅或いはその変化に基づいて最高血圧値BPSYS ( mmHg)、平均血圧値BPMEANおよび最低血圧値BPDIA ( mmHg)として決定し、その最低血圧値BPDIA が決定されると同時に急速排気弁52が開放され、それに応答して排気制御弁54がその最大開口となるまで開かれて、図9のS1の第1血圧測定ルーチンが終了させられる。図10の時刻t3 はこの状態を示す。 That is, first, at time t1 in FIG. 10, the air pump 50 is activated, and the upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26 communicated with the compressed air pumped from the air pump 50. Both of the pressures of the upper arm 10 are rapidly increased and compression of the upper arm 10 by the entire compression band 12 is started. When the pressure detected by the main pressure sensor T0, that is, the compression pressure Pe by the compression band 12, reaches a pressure increase target pressure Pmax set in advance to a value sufficiently higher than the maximum blood pressure value of the living body, the operation of the air pump 50 is stopped. In response to this, the exhaust control valve 54 is operated so that the compression pressure by the compression band 12 decreases at a constant speed, and the slow exhaust is started. Time t2 in FIG. 10 shows this state. In this slow exhaust process, the cuff pressure signal indicating the compression pressure (static pressure) by the compression band 12 is discriminated from the pressure signal output from the second pressure sensor T2 by performing low-pass filter processing. A pulse wave signal is discriminated by performing a band pass filter process for discriminating a signal in a wavelength band of Hz to several tens of Hz. Next, in accordance with an oscillometric blood pressure value determination algorithm executed every time the pulse wave signal is generated, the maximum blood pressure value BP SYS (mmHg) and the average blood pressure value BP MEAN based on the amplitude of the pulse wave signal generated sequentially or the change thereof. And the minimum blood pressure value BP DIA (mmHg) is determined. At the same time as the minimum blood pressure value BP DIA is determined, the quick exhaust valve 52 is opened, and in response, the exhaust control valve 54 is opened until it reaches its maximum opening. Thus, the first blood pressure measurement routine of S1 in FIG. 9 is terminated. Time t3 in FIG. 10 shows this state.

上記オシロメトリック式血圧値決定アルゴリズムは、たとえば脈波信号の振幅値を結ぶ包絡線( エンベロープ) が急激に上昇したときすなわちエンベロープの微分波形の極大ピーク点に対応する圧力信号が示す圧力を最高血圧値BPSYS 値( mmHg)として決定し、その脈波信号の振幅値を結ぶ包絡線( エンベロープ) の最大値に対応する圧力信号が示す圧力を平均血圧値BPMEANとして決定し、その脈波信号の振幅値を結ぶ包絡線( エンベロープ) が急激に減少したときすなわちエンベロープの微分波形の極小ピーク点に対応する圧力信号が示す圧力を最低血圧値BPDIA として決定する。図11、図12、図13は、圧迫帯12による圧迫圧が115mmHg、102mmHg、60mmHgであるときに、第1圧力センサT1から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号( 破線) 、第2圧力センサT2から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号( 1点鎖線) 、第3圧力センサT3から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号( 2点鎖線) 、主圧力センサT0から出力される圧力信号がバンドパスフィルタ処理されることにより弁別された脈波信号( 実線) を、対比可能に同位相で正規化してそれぞれ示す図である。それら4種の脈波信号間には、振幅の差が存在し、検出用膨張袋24から得られた脈波信号が動脈16の脈動を最も正確に反映していると考えられる。 For example, the oscillometric blood pressure value determination algorithm uses the pressure indicated by the pressure signal corresponding to the maximum peak point of the differential waveform of the envelope when the envelope connecting the amplitude values of the pulse wave signal (envelope) rises rapidly. The value BP SYS value (mmHg) is determined, the pressure indicated by the pressure signal corresponding to the maximum value of the envelope (envelope) connecting the amplitude values of the pulse wave signal is determined as the average blood pressure value BP MEAN , and the pulse wave signal The pressure indicated by the pressure signal corresponding to the minimum peak point of the differential waveform of the envelope is determined as the diastolic blood pressure value BP DIA . 11, FIG. 12 and FIG. 13 are discriminated by performing a band-pass filter on the pressure signal output from the first pressure sensor T1 when the compression pressure by the compression band 12 is 115 mmHg, 102 mmHg, and 60 mmHg. A pulse wave signal (broken line), a pulse wave signal (one-dot chain line) discriminated by the band-pass filter processing of the pressure signal output from the second pressure sensor T2, and a pressure signal output from the third pressure sensor T3 The pulse wave signal (two-dot chain line) discriminated by the band-pass filter processing and the pulse wave signal (solid line) discriminated by the band-pass filter processing of the pressure signal output from the main pressure sensor T0 FIG. 4 is a diagram showing normalization in the same phase for comparison. There is a difference in amplitude between these four types of pulse wave signals, and it is considered that the pulse wave signal obtained from the detection inflation bag 24 most accurately reflects the pulsation of the artery 16.

図14は、上記4種の脈波信号の圧力値毎に振幅値によってそれぞれ形成されるエンベロープを、65mmHgにおいて相対値「1」となるように振幅を正規化して対比可能に示す図である。各エンベロープによれば、最高血圧値BPSYS においてはそれほどばらつきが存在しないが、最低血圧値BPDIA において極めて大きなばらつきが発生している。 FIG. 14 is a diagram showing the envelopes formed by the amplitude values for each pressure value of the above four types of pulse wave signals, with the amplitudes normalized so that the relative value is “1” at 65 mmHg, so that they can be compared. According to each envelope, there is not much variation in the systolic blood pressure value BP SYS , but extremely large variation occurs in the diastolic blood pressure value BP DIA .

次いで、図9のS2の脈波伝播速度測定ルーチンが図10の時刻t4 乃至t6に示す区間において実行される。このS2は脈波伝播速度測定手段或いは脈波伝播速度測定工程に対応している。先ず、急速排気弁52および排気制御弁54が閉じられるとともに空気ポンプ50が起動される。次いで、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が予め最低血圧値BPDIA よりも低い値たとえば60mmHgに設定された脈波検出圧Ppwv に到達すると、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3が閉じられ、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26は互いに独立して脈波検出圧に維持される。図10のt5 時点はこの状態を示す。この状態において、第1圧力センサT1および第3圧力センサT3から出力される圧力信号がバンドパスフィルタ処理されることにより、上流側膨張袋22および下流側膨張袋26により検出された脈波を示す脈波信号が弁別され、それらの脈波信号の位相差( 脈波伝播時間) Δt( sec)とたとえば90mm程度の上流側膨張袋22および下流側膨張袋26の中心間距離L( m)とに基づいて脈波伝播速度bbPWV(m/sec)が式( 1)から算出される。このような脈波伝播速度bbPWVの算出は、脈波の発生毎に時刻t6に到達するまで繰り返し実行され、到達するとそれまでに求めた脈波伝播速度bbPWVの平均値が算出される。 Next, the pulse wave velocity measurement routine of S2 in FIG. 9 is executed in the section shown at time t4 to t6 in FIG. This S2 corresponds to the pulse wave velocity measuring means or the pulse wave velocity measuring step. First, the quick exhaust valve 52 and the exhaust control valve 54 are closed and the air pump 50 is activated. Next, when the pressures of the upstream inflation bag 22, the detection inflation bag 24, and the downstream inflation bag 26 reach a pulse wave detection pressure Ppwv that is set to a value lower than the minimum blood pressure value BP DIA in advance, for example, 60 mmHg, the first The on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are closed, and the upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26 are maintained at the pulse wave detection pressure independently of each other. . This state is shown at time t5 in FIG. In this state, the pressure signals output from the first pressure sensor T1 and the third pressure sensor T3 are subjected to bandpass filter processing, thereby indicating pulse waves detected by the upstream expansion bag 22 and the downstream expansion bag 26. The pulse wave signals are discriminated, and the phase difference (pulse wave propagation time) Δt (sec) between these pulse wave signals and the center-to-center distance L (m) between the upstream expansion bag 22 and the downstream expansion bag 26 of about 90 mm, for example. Based on the above, the pulse wave velocity bbPWV (m / sec) is calculated from the equation (1). Such calculation of the pulse wave propagation velocity bbPWV is repeatedly executed every time a pulse wave is generated until time t6 is reached, and when it reaches, the average value of the pulse wave propagation velocity bbPWV obtained so far is calculated.

bbPWV=L/Δt ・・・( 1)   bbPWV = L / Δt (1)

図15は、動脈16の管壁の圧力差( =動脈内圧すなわち平均血圧値BPMEAN−動脈外圧すなわち圧迫帯による圧迫圧Pe)であるトランスミューラルプレッシャTP(mmHg)に対する上記脈波伝播速度bbPWVの変化を、同一生体から同時期に測定した従来のECGのR波から上流側膨張袋22までの脈波伝播速度hbPWVと対比して示している。図15から明らかなように、脈波伝播速度hbPWVはトランスミューラルプレッシャTPに拘わらず略一定値を示している。これに対し上記脈波伝播速度bbPWVは、トランスミューラルプレッシャTPが負の値から10乃至20mmHg付近すなわち圧迫帯12による圧迫圧が最低血圧値BPDIA 付近に至るまでは略一定値を示すが、それよりも更に増加するほど比例的に増加する特徴がある。上記脈波伝播速度bbPWVは、所定の圧力値たとえばTP=50mmHg又はその付近における値或いは増加率を測定することにより、個人毎に比較可能な、動脈16の硬化状態を評価する循環器パラメータとして求められる。 FIG. 15 shows the pulse wave propagation velocity bbPWV with respect to the trans- mural pressure TP (mmHg) which is the pressure difference of the artery wall of the artery 16 (= intra-arterial pressure or average blood pressure value BP MEAN -external artery pressure or compression pressure Pe due to the compression band). The change is shown in comparison with the pulse wave velocity hbPWV from the conventional ECG R wave to the upstream inflation bag 22 measured from the same living body at the same time. As is clear from FIG. 15, the pulse wave propagation velocity hbPWV shows a substantially constant value regardless of the trans- mural pressure TP. On the other hand, the pulse wave velocity bbPWV shows a substantially constant value until the pressure of the transmural pressure TP reaches a negative value of 10 to 20 mmHg, that is, until the compression pressure by the compression band 12 reaches the minimum blood pressure value BP DIA. There is a characteristic that it increases proportionally as it increases further. The pulse wave velocity bbPWV is obtained as a circulatory parameter for evaluating the hardening state of the artery 16 that can be compared for each individual by measuring a predetermined pressure value, for example, TP = 50 mmHg or a value near or at an increase rate. It is done.

次に、図9のS3の第2血圧測定/動脈コンプライアンスデータ検出ルーチンが図10の時刻t7 乃至t9 に示す区間において実行される。このS3は第2血圧算出手段および動脈コンプライアンス算出手段、或いは第2血圧算出工程および動脈コンプライアンスデータ検出工程に対応している。このS3では、第1血圧測定ルーチンと同様に、先ず、時刻t7において空気ポンプ50が起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサP0により検出される圧力すなわち圧迫帯12による圧迫圧Peが第1血圧測定ルーチンによる前回の測定値である生体の最高血圧値BPSYS よりも所定値高い値に予め設定された昇圧目標圧力Pmax に到達すると、上記空気ポンプ50の作動が停止され、それに応答して、圧迫帯12による圧迫圧Peが一定の速度で下降するように排気制御弁54が作動させられ、単位時間当たり或いは単位脈波当たりの一定速度の徐速排気が開始される。図10の時刻t8 はこの状態を示す。この徐速排気過程においては、第2圧力センサT2から出力される圧力信号がバンドパスフィルタ処理されることにより、検出用膨張袋24により検出された脈波を示す脈波信号が繰り返し弁別される。次いで、第1血圧測定ルーチンと同様にして、脈波信号の発生毎に実行されるオシロメトリック式血圧値決定アルゴリズムにしたがって、順次発生する脈波信号の振幅或いはその変化に基づいて最高血圧値BPSYS ( mmHg)、平均血圧値BPSYS および最低血圧値BPDIA ( mmHg)として決定し、その最低血圧値BPDIA が決定されると同時に急速排気弁52が開放され、それに応答して排気制御弁54がその最大開口となるまで開かれて、図9のS3の第2血圧測定ルーチンが終了させられる。図10の時刻t9 はこの状態を示す。そして、最高血圧値BPSYS と最低血圧値BPDIA との圧力差である脈圧PP(=最高血圧値BPSYS −最低血圧値BPDIA )が算出される。後述の血管コンプライアンスKの演算には、この第2血圧測定ルーチンから得られた最高血圧値BPSYS および最低血圧値BPDIA に基づく脈圧PP( mmHg)が用いられる。 Next, the second blood pressure measurement / arterial compliance data detection routine of S3 in FIG. 9 is executed in the section shown at time t7 to t9 in FIG. This S3 corresponds to the second blood pressure calculating means and the arterial compliance calculating means, or the second blood pressure calculating step and the arterial compliance data detecting step. In S3, as in the first blood pressure measurement routine, first, the air pump 50 is started at time t7, and the upstream expansion bag 22 and the detection expansion bag 24 that are in communication with the compressed air pumped from the air pump 50 are detected. , And the pressure of the downstream expansion bag 26 is rapidly increased, and the compression of the upper arm 10 by the entire compression band 12 is started. The pressure increase target preset by the pressure detected by the main pressure sensor P0, that is, the compression pressure Pe by the compression band 12, higher than the maximum blood pressure value BP SYS of the living body, which is the previous measurement value by the first blood pressure measurement routine. When the pressure Pmax is reached, the operation of the air pump 50 is stopped, and in response to this, the exhaust control valve 54 is operated so that the compression pressure Pe by the compression band 12 is lowered at a constant speed, and per unit time or Slow exhaust at a constant speed per unit pulse wave is started. Time t8 in FIG. 10 shows this state. In this slow exhaust process, the pressure signal output from the second pressure sensor T2 is subjected to bandpass filter processing, so that the pulse wave signal indicating the pulse wave detected by the detection expansion bag 24 is repeatedly discriminated. . Next, in the same manner as in the first blood pressure measurement routine, the maximum blood pressure value BP is determined based on the amplitude of the pulse wave signal generated sequentially or the change thereof according to the oscillometric blood pressure value determination algorithm executed every time the pulse wave signal is generated. SYS (mmHg), mean blood pressure value BP SYS and diastolic blood pressure value BP DIA (mmHg) are determined, and at the same time as the diastolic blood pressure value BP DIA is determined, the quick exhaust valve 52 is opened, and in response thereto, the exhaust control valve 54 is opened until the maximum opening is reached, and the second blood pressure measurement routine of S3 in FIG. 9 is terminated. Time t9 in FIG. 10 shows this state. The pulse pressure is a pressure difference between systolic blood pressure values BP SYS and diastolic blood pressure BP DIA PP (= systolic blood pressure BP SYS - diastolic blood pressure BP DIA) is computed. For the calculation of the blood vessel compliance K described later, the pulse pressure PP (mmHg) based on the maximum blood pressure value BP SYS and the minimum blood pressure value BP DIA obtained from the second blood pressure measurement routine is used.

次に、図9のS4のカフコンプライアンス算出ルーチンが図10の時刻t10乃至t18において実行される。このS4はカフコンプライアンス算出手段、或いはカフコンプライアンス算出工程に対応している。このS4では、先ず、時刻t10において空気ポンプ50が起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサP0により検出される圧力すなわち圧迫帯12による圧迫圧Peが予め設定された第1圧力P1 に到達すると( 時刻t11)、上記空気ポンプ50の作動が停止され、それに応答して、第1開閉弁E1、第2開閉弁E2および第3開閉弁E3が閉じられて上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が上記第1 圧力P1 に時刻t12まで維持される。この時刻t11乃至t12の間の第1圧力維持区間では、脈波の発生に同期してその脈波の裾に相当するタイミングで容積パルス発生器60からたとえば0.2cc程度の一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることによりたとえば図16に示すような上記容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。この場合、上記圧力維持区間内において10個程度の複数の図16に示す脈波信号が複数採取され、それらの脈波信号が記憶されてもよいし、それらの平均値の脈波信号が記憶されてもよい。そして、時刻t12に到達して上記第1圧力維持区間が終了する。   Next, the cuff compliance calculation routine of S4 in FIG. 9 is executed from time t10 to t18 in FIG. This S4 corresponds to the cuff compliance calculating means or the cuff compliance calculating step. In S4, first, the air pump 50 is activated at time t10, and the pressures of the upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26 that are in communication with the compressed air pumped from the air pump 50 are detected. Both are rapidly raised and the compression of the upper arm 10 by the entire compression belt 12 is started. When the pressure detected by the main pressure sensor P0, that is, the compression pressure Pe by the compression band 12 reaches the first pressure P1 set in advance (time t11), the operation of the air pump 50 is stopped, and in response to this, The first on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are closed, and the pressures of the upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26 remain at the first pressure P1 until time t12. Maintained. In the first pressure maintaining section between times t11 and t12, air having a constant volume C of, for example, about 0.2 cc is delivered from the volume pulse generator 60 at a timing corresponding to the bottom of the pulse wave in synchronization with the generation of the pulse wave. Is pulsed into the detection inflatable bag 24 in a width of 50 ms to 100 ms, and the signal output from the second pressure sensor T2 is subjected to band-pass filter processing, for example, the volume as shown in FIG. A pulse wave signal in which the pressure pulse Pp corresponding to the volume pulse applied from the pulse generator 60 is superimposed is obtained and stored. In this case, a plurality of about 10 pulse wave signals shown in FIG. 16 may be collected and stored in the pressure maintaining section, and those pulse wave signals may be stored, or the average value of the pulse wave signals may be stored. May be. Then, the time t12 is reached and the first pressure maintaining section ends.

上記の容積パルス発生器60から検出用膨張袋24内に注入される容積パルスは、そのときの検出用膨張袋24の圧力変化に拘わらず予め設定された一定容積Cの空気であり、動脈16が心拍に同期して膨張して検出用膨張袋24に繰り返し与える容積増加分に対応する値に予め設定されたものである。また、図16に示す脈波信号は圧力値であり、S1で求められた最高血圧値BPSYS ( mmHg)を脈波信号の上ピーク値に対応させ、最低血圧値BPDIA ( mmHg)を脈波信号の下ピーク値に対応させることにより、図16の縦軸は生体の最高血圧値圧力値に変換されている。 The volume pulse injected from the volume pulse generator 60 into the detection inflation bag 24 is air of a constant volume C set in advance regardless of the pressure change of the detection inflation bag 24 at that time. Is set in advance to a value corresponding to the volume increase that is inflated in synchronization with the heartbeat and repeatedly applied to the detection inflatable bag 24. Further, the pulse wave signal shown in FIG. 16 is a pressure value, the systolic blood pressure value BP SYS (mmHg) obtained in S1 is made to correspond to the upper peak value of the pulse wave signal, and the diastolic blood pressure value BP DIA (mmHg) is changed to the pulse value. By making it correspond to the lower peak value of the wave signal, the vertical axis in FIG. 16 is converted into the maximum blood pressure value of the living body.

上記第1圧力維持区間が終了する時刻t12では、第1開閉弁E1、第2開閉弁E2および第3開閉弁E3が再び開かれると同時に、空気ポンプ50が再度起動され、その空気ポンプ50から圧送される圧縮空気により連通状態の上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が共に急速に上昇されて圧迫帯12全体による上腕10の圧迫が開始される。主圧力センサP0により検出される圧力すなわち圧迫帯12による圧迫圧Peが予め設定された第2圧力P2に到達すると( 時刻t13)、上記空気ポンプ50の作動が停止され、それに応答して、第1開閉弁E1、第2開閉弁E2および第3開閉弁E3が閉じられて上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が上記第2 圧力P2に時刻t14まで維持される。この第2圧力維持区間でも、上記第1維持区間と同様に、脈波の発生に同期して容積パルス発生器60からの一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることによりたとえば図16に示すような上記容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。   At the time t12 when the first pressure maintaining section ends, the first on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are opened again, and at the same time, the air pump 50 is started again. The pressures of the upstream inflation bag 22, the detection inflation bag 24, and the downstream inflation bag 26 in communication with each other are rapidly increased by the compressed air being compressed, and the compression of the upper arm 10 by the entire compression belt 12 is started. When the pressure detected by the main pressure sensor P0, that is, the compression pressure Pe by the compression band 12 reaches the second pressure P2 set in advance (time t13), the operation of the air pump 50 is stopped, and in response to this, The first on-off valve E1, the second on-off valve E2, and the third on-off valve E3 are closed, and the pressure in the upstream inflating bag 22, the detecting inflating bag 24, and the downstream inflating bag 26 reaches the second pressure P2 until time t14. Maintained. In the second pressure maintaining section, similarly to the first maintaining section, the constant volume C air from the volume pulse generator 60 is expanded in a pulsed manner with a width of 50 ms to 100 ms in synchronization with the generation of the pulse wave. The signal injected into the bag 24 and subjected to the band-pass filter process on the signal output from the second pressure sensor T2 corresponds to the volume pulse applied from the volume pulse generator 60 as shown in FIG. A pulse wave signal on which the pressure pulse Pp is superimposed is obtained and stored.

次いで、同様にして、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が、主圧力センサT0により検出される圧力が予め設定された第3圧力P3に昇圧されるとともに、第3圧力維持区間t15乃至t16において第3圧力P3が維持され、その第3圧力維持区間t15乃至t16において、脈波の発生に同期して容積パルス発生器60からの一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることにより得られた図16に示すような容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。また、同様にして、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26の圧力が、主圧力センサP0により検出される圧力が予め設定された第4圧力P4に昇圧されるとともに、第4圧力維持区間t17乃至t18において第4圧力P4が維持され、その第4圧力維持区間t17乃至t18において、脈波の発生に同期して容積パルス発生器60からの一定容積Cの空気が50ms乃至100msの幅でパルス的に検出用膨張袋24内に注入され、第2圧力センサT2から出力された信号にバンドパスフィルタ処理が施されることにより得られた図16に示すような容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp が重畳した脈波信号が得られ、それが記憶される。   Next, similarly, the pressures of the upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26 are increased to the preset third pressure P3 by the pressure detected by the main pressure sensor T0. At the same time, the third pressure P3 is maintained in the third pressure maintaining section t15 to t16, and in the third pressure maintaining section t15 to t16, air of a constant volume C from the volume pulse generator 60 is synchronized with the generation of the pulse wave. As shown in FIG. 16, which is obtained by injecting into the detection inflatable bag 24 in a pulse manner with a width of 50 ms to 100 ms, and subjecting the signal output from the second pressure sensor T2 to band-pass filtering. A pulse wave signal in which a pressure pulse Pp corresponding to the volume pulse applied from the volume pulse generator 60 is superimposed is obtained and stored. Similarly, the pressures of the upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26 are increased to the preset fourth pressure P4 by the pressure detected by the main pressure sensor P0. At the same time, the fourth pressure P4 is maintained in the fourth pressure maintaining section t17 to t18. In the fourth pressure maintaining section t17 to t18, air of a constant volume C from the volume pulse generator 60 is synchronized with the generation of the pulse wave. As shown in FIG. 16, which is obtained by injecting into the detection inflatable bag 24 in a pulse manner with a width of 50 ms to 100 ms, and subjecting the signal output from the second pressure sensor T2 to band-pass filtering. A pulse wave signal in which a pressure pulse Pp corresponding to the volume pulse applied from the volume pulse generator 60 is superimposed is obtained and stored.

そして、上記第1圧力P1、第2圧力P2、第3圧力P3、第4圧力P4毎に第2圧力センサT2により検出され且つ記憶された各脈波信号について、動脈16の脈動に由来して発生する検出用膨張袋24内の圧力変化幅すなわち脈波の振幅値ΔP(mmHg)すなわちΔP1 、ΔP2 、ΔP3 、ΔP4 がそれぞれ算出され記憶される。また、上記各脈波信号において容積パルス発生器60から加えられた容積パルスに対応する圧力パルスPp すなわちPp1、Pp2、Pp3、Pp4がそれぞれ算出されて、検出用膨張袋24のカフコンプライアンスSe (mmHg/cc)すなわちSe1、Se2、Se3、Se4が次式( 2) からそれぞれ算出され、記憶される。次式( 2) において、ΔPc は、検出用膨張袋24による圧迫圧力下すなわち各第1圧力P1、第2圧力P2、第3圧力P3、第4圧力P4下において図16に示すような容積パルス発生器60から加えられた容積パルスに応答して発生する圧力パルスPp が重畳した脈波信号において、その圧力パルスPp の圧力上昇値( mmHg) である。また、Cは容積パルス発生器60から加えられた一定容積のパルスの容積値( cc)である。したがって、カフコンプライアンスSe は、検出用膨張袋24の容積変化に対する圧力変化の割合を示す感度を表している。このようにしてカフコンプライアンスSe が求められると、検出用膨張袋24から第2圧力センサT2により検出された脈波の縦軸すなわち振幅を容積に変換することができる。すなわち、図11の縦軸を容積軸に変換することができる。   The pulse wave signals detected and stored by the second pressure sensor T2 for each of the first pressure P1, the second pressure P2, the third pressure P3, and the fourth pressure P4 are derived from the pulsation of the artery 16. The generated pressure change width in the detection inflation bag 24, that is, the amplitude value ΔP (mmHg) of the pulse wave, that is, ΔP1, ΔP2, ΔP3, ΔP4 is calculated and stored. In addition, pressure pulses Pp corresponding to the volume pulses applied from the volume pulse generator 60 in each pulse wave signal, that is, Pp1, Pp2, Pp3, and Pp4, are calculated, respectively, and the cuff compliance Se (mmHg) of the detection expansion bag 24 is calculated. / Cc), that is, Se1, Se2, Se3, Se4 are calculated from the following equation (2) and stored. In the following equation (2), ΔPc is a volume pulse as shown in FIG. 16 under the compression pressure by the detection expansion bag 24, that is, under the first pressure P1, the second pressure P2, the third pressure P3, and the fourth pressure P4. In the pulse wave signal on which the pressure pulse Pp generated in response to the volume pulse applied from the generator 60 is superimposed, the pressure rise value (mmHg) of the pressure pulse Pp. C is a volume value (cc) of a pulse having a constant volume applied from the volume pulse generator 60. Therefore, the cuff compliance Se represents the sensitivity indicating the ratio of the pressure change to the volume change of the detection expansion bag 24. When the cuff compliance Se is obtained in this manner, the vertical axis, that is, the amplitude of the pulse wave detected by the second pressure sensor T2 from the detection expansion bag 24 can be converted into a volume. That is, the vertical axis in FIG. 11 can be converted into a volume axis.

Se =ΔPc /C ・・・ (2)   Se = ΔPc / C (2)

上記予め設定された第1圧力P1は最低血圧値BPDIA よりも低い圧たとえば50mmHg、第2圧力P2は第1圧力P1よりも高い圧たとえば最低血圧値BPDIA 、第3圧力P3は第2圧力P2よりも高い圧たとえば平均血圧値BPMEAN、第4圧力P4は第3圧力P3よりも高い圧たとえば平均血圧値BPMEANよりも15mmHg高い圧に、それぞれ設定されており、各圧力下においての、カフコンプライアンスSe1、Se2、Se3、Se4が求められる。これらの設定圧は、圧迫帯12による圧迫圧Pe毎に異なる検出用膨張袋24のカフコンプライアンスSe を求めるために任意に設定された値である。 The preset first pressure P1 is a pressure lower than the minimum blood pressure value BP DIA , for example, 50 mmHg, the second pressure P2 is a pressure higher than the first pressure P1, for example, the minimum blood pressure value BP DIA , and the third pressure P3 is the second pressure. The pressure higher than P2, for example, the average blood pressure value BP MEAN , and the fourth pressure P4 are set to a pressure higher than the third pressure P3, for example, a pressure 15 mmHg higher than the average blood pressure value BP MEAN , respectively. Cuff compliance Se1, Se2, Se3, Se4 is required. These set pressures are values arbitrarily set in order to obtain the cuff compliance Se of the detection inflatable bag 24 that is different for each compression pressure Pe by the compression band 12.

次いで図9のS5では、動脈コンプライアンス算出ルーチンが実行される。このS5は、S3およびS4と共に、動脈コンプライアンス算出手段或いは動脈コンプライアンス測定工程を構成している。この図9のS5では、先ず、S3において記憶された生体の最高血圧値BPSYS および最低血圧値BPDIA に基づいて次式( 3)からその生体の脈圧PP( mmHg)が算出される。次いで、動脈16の拍動に由来して発生する検出用膨張袋24内の圧力変化幅すなわち脈波の振幅ΔPとカフコンプライアンスSeとに基づいて次式( 4)から動脈16の一拍当たりの血管容積変化(容積単位に換算された振幅値) ΔV( cc即ちcm3 )が算出され、そして、上記脈圧PPと血管容積変化ΔVとに基づいて( 5)式から血管コンプライアンスKが検出用膨張袋24内の圧迫圧力に応じてそれぞれ算出される。たとえば、第1圧力P1における血管コンプライアンスK1 は、第1圧力P1下で検出用膨張袋24から検出された脈波の振幅ΔP1 とカフコンプライアンスSe とに基づいて次式( 4)から算出された動脈16の一拍当たりの血管容積変化ΔV1 と、脈圧PPとに基づいて( 5)式から求められる。同様にして、第2圧力P2に対応する血管コンプライアンスK2 が算出され、第3圧力P3に対応する血管コンプライアンスK3 が算出され、第4圧力P4第4圧力に対応する血管コンプライアンスK4 が算出される。 Next, in S5 of FIG. 9, an arterial compliance calculation routine is executed. This S5, together with S3 and S4, constitutes an arterial compliance calculating means or an arterial compliance measuring step. In S5 of FIG. 9, first, based on the maximum blood pressure value BP SYS and the minimum blood pressure value BP DIA stored in S3, the pulse pressure PP (mmHg) of the living body is calculated from the following equation (3). Next, based on the pressure change width in the inflatable bag 24 for detection generated due to the pulsation of the artery 16, that is, the amplitude ΔP of the pulse wave and the cuff compliance Se, the following equation (4) Vessel volume change (amplitude value converted into volume unit) ΔV (cc or cm 3 ) is calculated, and vessel compliance K is detected from equation (5) based on the pulse pressure PP and vessel volume change ΔV. Each is calculated according to the compression pressure in the expansion bag 24. For example, the vascular compliance K1 at the first pressure P1 is calculated from the following equation (4) based on the amplitude ΔP1 of the pulse wave detected from the detection inflation bag 24 and the cuff compliance Se under the first pressure P1. 16 is obtained from the equation (5) based on the change in blood vessel volume ΔV1 per beat and the pulse pressure PP. Similarly, the blood vessel compliance K2 corresponding to the second pressure P2 is calculated, the blood vessel compliance K3 corresponding to the third pressure P3 is calculated, and the blood vessel compliance K4 corresponding to the fourth pressure P4 and the fourth pressure is calculated.

PP=BPSYS −BPDIA ・・・ (3)
ΔV=ΔP/Se ・・・ (4)
K=ΔV/PP ・・・ (5)
PP = BP SYS −BP DIA (3)
ΔV = ΔP / Se (4)
K = ΔV / PP (5)

次いで図9のS6では、表示制御ルーチンが実行される。このS6は、S2において測定された上腕の動脈16内の脈波伝播速度bbPWVまたはその変化率、S3において測定された生体の最高血圧値BPSYS および最低血圧値BPDIA 、S4において測定されたカフコンプライアンスSe1、Se2、Se3、Se4、S5において算出された動脈コンプライアンスK1 、K2 、K3 、K4 が、患者の性別、年齢、姓名、患者ID等の患者データと共に表示装置72に表示される。これにより、表示装置72に表示された上記脈波伝播速度bbPWV、最高血圧値BPSYS および最低血圧値BPDIA 、動脈コンプライアンスK1 、K2 、K3 、K4 に基づいて患者の循環器の健康状態が客観的に示される。 Next, in S6 of FIG. 9, a display control routine is executed. This S6 is the pulse wave propagation velocity bbPWV in the brachial artery 16 measured in S2 or the rate of change thereof, the maximum blood pressure value BP SYS and the minimum blood pressure value BP DIA of the living body measured in S3, and the cuff measured in S4. The arterial compliances K1, K2, K3, K4 calculated in the compliances Se1, Se2, Se3, Se4, S5 are displayed on the display device 72 together with patient data such as the patient's sex, age, first name, and patient ID. Accordingly, the health status of the patient's circulatory system is objectively determined based on the pulse wave velocity bbPWV, the systolic blood pressure value BP SYS, and the systolic blood pressure value BP DIA , arterial compliances K1, K2, K3, and K4 displayed on the display device 72. Indicated.

上述のように、本実施例によれば、圧迫帯12は、被圧迫部位である上腕10の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋22および下流側膨張袋26と、被圧迫部位である上腕10の長手方向において連なるようにそれら一対の上流側膨張袋22および下流側膨張袋26の間に配置され、それら一対の上流側膨張袋22および下流側膨張袋26とは独立した気室を有する検出用膨張袋24とを、含み、上流側膨張袋22、検出用膨張袋24、および下流側膨張袋26で生体の上腕10を同じ圧力で圧迫した状態で、その検出用膨張袋24内の圧力変動を前記脈波として検出するようにしたものであるため、上腕10の長手方向において連なる上流側膨張袋22、検出用膨張袋24、下流側膨張袋26から生体の被圧迫部位である上腕10内の動脈16に対して圧迫圧力を均等な圧力分布で加えつつ、正確な脈波が得られる。   As described above, according to the present embodiment, the compression band 12 includes the pair of upstream inflatable bags 22 made of a flexible sheet that is positioned at a predetermined interval in the longitudinal direction of the upper arm 10 that is the compressed portion. The downstream inflatable bag 26 is disposed between the pair of upstream inflatable bags 22 and the downstream inflatable bag 26 so as to be continuous in the longitudinal direction of the upper arm 10 that is the pressed portion, and the pair of upstream inflatable bags 22 and And a detection expansion bag 24 having an air chamber independent of the downstream expansion bag 26, and the upper arm 10 of the living body is maintained at the same pressure by the upstream expansion bag 22, the detection expansion bag 24, and the downstream expansion bag 26. Since the pressure fluctuation in the detection inflation bag 24 is detected as the pulse wave in the compressed state, the upstream inflation bag 22, the detection inflation bag 24, which is continuous in the longitudinal direction of the upper arm 10, and the downstream Side expansion bag 26 While applying compressive pressure at a uniform pressure distribution with respect to the artery 16 in the upper arm 10 which is an object to be compression sites of Luo biological, accurate pulse wave is obtained.

また、本実施例の圧迫帯12によれば、被圧迫部位である上腕10の長手方向における検出用膨張袋24の両端部24a、24bには互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝24f、24fが形成され、上流側膨張袋22および下流側膨張袋26の検出用膨張袋24に隣接する側の隣接側端部22aおよび26aは、それら一対の折込溝24f、24f内に差し入れられていることから、検出用膨張袋24の両端部24a、24bと上流側膨張袋22および下流側膨張袋26の隣接側端部22aおよび26aとは被圧迫部位である上腕10の径方向に重ねられた状態となるので、それら検出用膨張袋24と上流側膨張袋22および下流側膨張袋26との間の境界付近においても上腕10に対して均一な圧迫圧力分布が得られる。   Further, according to the compression band 12 of the present embodiment, the flexible sheet is folded in the direction approaching each other at both end portions 24a and 24b of the detection inflatable bag 24 in the longitudinal direction of the upper arm 10 which is a pressed portion. A pair of folding grooves 24f and 24f are formed, and adjacent end portions 22a and 26a on the side adjacent to the detection inflation bag 24 of the upstream inflation bag 22 and the downstream inflation bag 26 are formed in the pair of folding grooves 24f. 24f, both end portions 24a, 24b of the detection inflatable bag 24 and the adjacent end portions 22a and 26a of the upstream inflatable bag 22 and the downstream inflatable bag 26 are the upper arms that are compressed parts. 10 are overlapped in the radial direction, so that even in the vicinity of the boundary between the detection inflating bag 24 and the upstream inflating bag 22 and the downstream inflating bag 26, a uniform compression pressure is applied to the upper arm 10. Cloth can be obtained.

また、本実施例の圧迫帯12によれば、検出用膨張袋24の一対の折込溝24f、24fの相対向する溝側面の少なくとも一方とその折込溝24f、24f内に挿し入れられた上流側膨張袋22および下流側膨張袋26の隣接側端部22aおよび26aとの間に、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有する長手状遮蔽部材42が介在させられていることから、特に、上流側膨張袋22および下流側膨張袋26から検出用膨張袋24への低周波数の圧力振動ノイズの遮蔽作用が好適に得られ、比較的低周波数の圧力振動ノイズの影響を受け難い正確な脈波が得られる。   Further, according to the compression band 12 of the present embodiment, at least one of the opposed groove side surfaces of the pair of folding grooves 24f, 24f of the detection expansion bag 24 and the upstream side inserted into the folding grooves 24f, 24f. Rigid anisotropy between the expansion bag 22 and the adjacent side end portions 22a and 26a of the downstream expansion bag 26 having higher bending rigidity in the width direction of the compression band 12 than in the longitudinal direction of the compression band 12 In particular, a low frequency pressure vibration noise shielding action from the upstream inflatable bag 22 and the downstream inflatable bag 26 to the detection inflatable bag 24 is suitably obtained. Therefore, it is possible to obtain an accurate pulse wave that is hardly affected by pressure vibration noise of a relatively low frequency.

また、本実施例の圧迫帯12によれば、長手状遮蔽部材42は、上腕10の長手方向に平行な複数本の可撓性中空管44が互いに平行な状態で上腕10の周方向に連ねて配列されることにより構成されたものであることから、上流側膨張袋22および下流側膨張袋26から検出用膨張袋24への低周波数の圧力振動ノイズの遮蔽作用が一層好適に得られ、比較的低周波数の圧力振動ノイズの影響を受け難い一層正確な脈波が得られる。   Further, according to the compression band 12 of the present embodiment, the longitudinal shielding member 42 is arranged in the circumferential direction of the upper arm 10 in a state where a plurality of flexible hollow tubes 44 parallel to the longitudinal direction of the upper arm 10 are parallel to each other. Since they are configured by being arranged in series, a low frequency pressure vibration noise shielding action from the upstream expansion bag 22 and the downstream expansion bag 26 to the detection expansion bag 24 can be more suitably obtained. Thus, a more accurate pulse wave that is not easily affected by pressure vibration noise of a relatively low frequency can be obtained.

また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血圧測定装置によれば、検出用膨張袋24と、その検出用膨張袋24内の圧力を検出する第2圧力センサT2と、一対の上流側膨張袋22および下流側膨張袋26と検出用膨張袋24とを相互に連通させた状態で昇圧することにより被圧迫部位である上腕10内の動脈16を圧迫し、その圧迫圧Peを連続的に変化させる排気制御弁( 圧力制御手段) 54と、その排気制御弁54により圧迫圧Peが変化させられる過程で第2圧力センサT2により検出される圧迫圧Peの圧力振動成分である脈波をバンドパスフィルタ処理により抽出し、その脈波の変化に基づいて生体の血圧値を決定するオシロメトリック式の血圧測定手段とを、含むので、前記検出用膨張袋24から得られる正確な脈波に基づいて精度の高い血圧値が得られる。   Further, according to the circulatory organ information measuring device 14 provided with the compression band 12 of this embodiment, that is, the blood pressure measuring device, the detection inflating bag 24 and the second pressure sensor T2 for detecting the pressure in the detecting inflating bag 24. And pressurizing the artery 16 in the upper arm 10 which is a compressed part by pressurizing the pair of upstream inflatable bag 22 and downstream inflatable bag 26 and the detecting inflatable bag 24 in communication with each other, Exhaust control valve (pressure control means) 54 for continuously changing the compression pressure Pe, and pressure oscillation of the compression pressure Pe detected by the second pressure sensor T2 in the process in which the compression pressure Pe is changed by the exhaust control valve 54 Since the pulse wave which is a component is extracted by the band pass filter process, and an oscillometric blood pressure measuring means for determining the blood pressure value of the living body based on the change of the pulse wave, the pulse wave is obtained from the detection expansion bag 24. A highly accurate blood pressure value is obtained based on the accurate pulse wave.

また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血管柔軟度測定装置によれば、前記脈波検出手段により検出された脈波の振幅値ΔPと前記自動血圧測定装置により測定された最高血圧値BPSYS および最低血圧値BPDIA とに基づいて動脈16の柔軟度を示す動脈コンプライアンスKを算出する動脈コンプライアンス算出手段S3〜S5を含むことから、検出用膨張袋24から得られる正確な脈波とその脈波の変化から算出される精度の高い上記最高血圧値BPSYS および最低血圧値BPDIA とに基づいて、動脈16の柔軟度を示す精度の高い動脈コンプライアンスKが得られる。 Further, according to the circulatory organ information measuring device 14 provided with the compression band 12 of this embodiment, that is, the blood vessel flexibility measuring device, the pulse wave amplitude value ΔP detected by the pulse wave detecting means and the automatic blood pressure measuring device Since it includes arterial compliance calculating means S3 to S5 for calculating arterial compliance K indicating the flexibility of the artery 16 based on the measured maximum blood pressure value BP SYS and minimum blood pressure value BP DIA, it is obtained from the detection inflation bag 24. Based on the accurate high blood pressure value BP SYS and minimum blood pressure value BP DIA calculated from the accurate pulse wave and the change of the pulse wave, a high-precision arterial compliance K indicating the flexibility of the artery 16 is obtained. It is done.

また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血管柔軟度測定装置によれば、前記動脈コンプライアンス算出手段は、検出用膨張袋24の容積変化に対する圧力変化の関係から前記脈波の振幅値ΔPを圧力単位から容積単位へ換算するためのカフコンプライアンスSe を算出するカフコンプライアンス算出手段S4を含み、その容積単位へ換算された脈波の振幅値である血管容積変化ΔVと前記自動血圧測定装置により検出された最高血圧値BPSYS および最低血圧値BPDIA の圧力差すなわち脈圧PPとに基づいて前記動脈の柔軟度を示す動脈コンプライアンスKを算出するものであることから、一層正確な動脈の柔軟度が得られる。 Further, according to the circulatory organ information measuring device 14 provided with the compression band 12 of the present embodiment, that is, the vascular flexibility measuring device, the arterial compliance calculating means is based on the relationship between the pressure change and the volume change of the detection inflation bag 24. A cuff compliance calculating means S4 for calculating a cuff compliance Se for converting the pulse wave amplitude value ΔP from a pressure unit to a volume unit, and a blood vessel volume change ΔV which is an amplitude value of the pulse wave converted to the volume unit; Since the arterial compliance K indicating the flexibility of the artery is calculated based on the pressure difference between the systolic blood pressure value BP SYS and the systolic blood pressure value BP DIA detected by the automatic blood pressure measuring device, that is, the pulse pressure PP, More accurate arterial flexibility is obtained.

また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血管柔軟度測定装置によれば、動脈16の脈動に対応する大きさの予め設定された一定容積の気体を前記検出用膨張袋内に加える容積パルス発生器( 定容積脈波発生装置) 60を備え、カフコンプライアンス算出手段S4は、その容積パルス発生器60により検出用膨張袋24内に加えられる一定容積の気体の容積値Cと、その一定容積Cの気体が検出用膨張袋24内に加えられたときに第2圧力センサT2により検出された検出用膨張袋24内の圧力上昇値ΔPc との関係を予め求めるものであることから、その関係により検出用膨張袋24のカフコンプライアンスSe が、たとえば予め設定された一定周期、脈拍、或いは圧迫圧変化値に応答して上記容積パルス発生器60から一定容積の気体が検出用膨張袋24内に加えられる毎に逐次得られ、複数得られた場合にはその平均値が求められる。   Further, according to the circulatory organ information measuring device 14 provided with the compression band 12 of this embodiment, that is, the vascular flexibility measuring device, a predetermined volume of gas having a predetermined size corresponding to the pulsation of the artery 16 is used for the detection. A volume pulse generator (constant volume pulse wave generator) 60 to be added into the expansion bag is provided, and the cuff compliance calculation means S4 has a volume of a certain volume of gas added to the detection expansion bag 24 by the volume pulse generator 60. The relationship between the value C and the pressure increase value ΔPc in the detection expansion bag 24 detected by the second pressure sensor T2 when the gas of the fixed volume C is added into the detection expansion bag 24 is obtained in advance. Therefore, the cuff compliance Se of the inflatable bag 24 for detection is, for example, in response to a preset constant cycle, pulse, or pressure change value, for example. Each time a constant volume of gas is added from 0 to the inflatable bag 24 for detection, the average value is obtained when a plurality of gases are obtained.

また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち脈波伝播速度測定装置によれば、脈波検出用の圧迫帯12と、上流側膨張袋22内の圧力を検出する第1圧力センサT1と、下流側膨張袋26内の圧力を検出する第3圧力センサT3と、上流側膨張袋22および下流側膨張26内に生体の最低血圧値BPDIA よりも低い圧力で気体を充満させた状態で第1圧力センサT1により検出された脈波から第3圧力センサT3により検出された脈波までの脈波伝播時間Δtと、上流側膨張袋22と下流側膨張26との間の中心間距離Lとに基づいて、動脈16内の脈波伝播速度bbPWVを算出する脈波伝播速度測定手段S2とを、含むことから、生体の上腕10における動脈16の局部的な脈波伝播速度値bbPWVが容易に得られる。好適には、検出用膨張袋24内が排気された状態で第1圧力センサT1により検出された脈波から第3圧力センサT3により検出された脈波までの脈波伝播時間Δtが算出される。このようにすれば、上流側膨張袋22および下流側膨張26の間が十分に遮蔽されるので、検出される脈波が正確となり、一層精度の高い脈波伝播速度bbPWVが得られる。

Further, according to the circulatory organ information measuring device 14 provided with the compression band 12 of this embodiment, that is, the pulse wave velocity measuring device, the pressure in the compression band 12 for detecting the pulse wave and the pressure in the upstream expansion bag 22 are detected. The first pressure sensor T1, the third pressure sensor T3 for detecting the pressure in the downstream expansion bag 26, and the gas in the upstream expansion bag 22 and the downstream expansion bag 26 at a pressure lower than the minimum blood pressure value BPDIA of the living body. , The pulse wave propagation time Δt from the pulse wave detected by the first pressure sensor T1 to the pulse wave detected by the third pressure sensor T3 in the state of being filled with the upstream expansion bag 22 and the downstream expansion bag 26 And a pulse wave velocity measuring means S2 for calculating the pulse wave velocity bbPWV in the artery 16 based on the center-to-center distance L between the two, so that the local pulse of the artery 16 in the upper arm 10 of the living body is included. Wave propagation velocity value bbPWV is easily obtained It is. Preferably, the pulse wave propagation time Δt from the pulse wave detected by the first pressure sensor T1 to the pulse wave detected by the third pressure sensor T3 in a state where the inside of the detection expansion bag 24 is exhausted is calculated. . In this way, the space between the upstream expansion bag 22 and the downstream expansion bag 26 is sufficiently shielded, so that the detected pulse wave is accurate, and the pulse wave propagation velocity bbPWV with higher accuracy is obtained.

また一般に、生体の血管系のエイジング或いは圧迫帯12のなじみが起因していると考えられる、血圧測定を繰り返すと2回目の血圧測定値が低下してその後に安定する現象がある。本実施例によれば、S1の第1血圧測定ルーチンが実行された後にS3で実行される第2血圧測定ルーチンにより得られた最高血圧値BPSYS ( mmHg)、平均血圧値BPSYS および最低血圧値BPDIA ( mmHg)が血管コンプライアンスKの演算に用いられることから、一旦圧迫帯12による最高血圧値以上への圧迫を行うことによって上記現象による血圧測定値の精度低下を回避した、比較定高精度の最高血圧値BPSYS ( mmHg)、平均血圧値BPMEANおよび最低血圧値BPDIA ( mmHg)を得ることができ、それを血管コンプライアンスKの演算に用いることにより、その血管コンプライアンスKの精度を高めることができる。 In general, there is a phenomenon in which the second blood pressure measurement value decreases and then stabilizes when blood pressure measurement is repeated, which is considered to be caused by the aging of the vascular system of the living body or the familiarity of the compression band 12. According to the present embodiment, the maximum blood pressure value BP SYS (mmHg), the average blood pressure value BP SYS, and the minimum blood pressure obtained by the second blood pressure measurement routine executed in S3 after the first blood pressure measurement routine in S1 is executed. Since the value BP DIA (mmHg) is used for the calculation of the blood vessel compliance K, a comparatively constant height that avoids a decrease in the accuracy of the blood pressure measurement value due to the above phenomenon by temporarily pressing the pressure band 12 above the maximum blood pressure value. The maximum blood pressure value BP SYS (mmHg), the average blood pressure value BP MEAN, and the minimum blood pressure value BP DIA (mmHg) can be obtained and used for the calculation of the blood vessel compliance K. Can be increased.

また、本実施例では、図10に示すように、上腕10を圧迫する工程の中では最後の工程として、各第1圧力P1、第2圧力P2、第3圧力P3、第4圧力P4に段階的に維持するS4のカフコンプライアンス測定が実行されるようになっているので、最も生体に圧迫負担が大きい工程が最後に実行されることにより、生体の生理的変動が発生しない状態で脈波を採取できる利点がある。   Further, in the present embodiment, as shown in FIG. 10, as the last step in the step of compressing the upper arm 10, the first pressure P1, the second pressure P2, the third pressure P3, and the fourth pressure P4 are stepped. Since the cuff compliance measurement of S4 to be maintained is executed, the pulse wave is generated in a state where the physiological fluctuation of the living body does not occur by executing the process with the greatest burden on the living body last. There is an advantage that can be collected.

また、本実施例の圧迫帯12を備えた循環器情報測定装置14すなわち血管柔軟度測定装置によれば、S4に対応するカフコンプライアンス算出手段において、各第1圧力P1、第2圧力P2、第3圧力P3、第4圧力P4に一定に維持されている期間内において、検出用膨張袋24から脈波が採取されることから、歪みのない脈波が得られるので、一層正確な血管コンプライアンスKが得られる利点がある。   In addition, according to the circulatory organ information measuring device 14 provided with the compression band 12 of this embodiment, that is, the vascular flexibility measuring device, the cuff compliance calculating means corresponding to S4 has the first pressure P1, the second pressure P2, the first Since a pulse wave is collected from the detection expansion bag 24 within a period in which the pressures P3 and P4 are maintained constant, a pulse wave without distortion can be obtained, so that a more accurate blood vessel compliance K can be obtained. There is an advantage that can be obtained.

以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様においても実施され得る。   As mentioned above, although one Example of this invention was described based on drawing, this invention can be implemented also in another aspect.

たとえば、前述の実施例の圧迫帯12は上腕用であったが、前腕用、或いは下肢用の圧迫帯であってもよい。   For example, the compression band 12 of the above-described embodiment is for the upper arm, but may be a compression band for the forearm or the lower limb.

また、前述の図2乃至図6の実施例において、上流側膨張袋22および下流側遮蔽袋26と検出用遮蔽袋24との間に介在させられている長手状遮蔽部材42は、上腕10の周方向に配置され且つその長手方向すなわち幅方向に多数の溝が一定間隔で形成された比較的硬質の長手状樹脂シートから構成されてもよい。要するに、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有するものであればよい。また、長手状遮蔽部材42は、上流側膨張袋22および下流側遮蔽袋26或いは検出用遮蔽袋24と同様の長さを有していてもよいが、それよりも短いものであっても一応の効果が得られる。たとえば、上腕10の周方向において一定間隔で複数個たとえば2或いは3個配置されていてもよい。   2 to 6 described above, the longitudinal shielding member 42 interposed between the upstream inflating bag 22 and the downstream shielding bag 26 and the detection shielding bag 24 is provided on the upper arm 10. You may be comprised from the comparatively hard longitudinal-shaped resin sheet which is arrange | positioned in the circumferential direction and in which the many groove | channels were formed in the longitudinal direction, ie, the width direction, at fixed intervals. In short, what is necessary is just to have anisotropy of rigidity in which the bending rigidity in the width direction of the compression band 12 is higher than the bending rigidity in the longitudinal direction of the compression band 12. The longitudinal shielding member 42 may have a length similar to that of the upstream inflating bag 22 and the downstream shielding bag 26 or the detection shielding bag 24, but may be shorter than that. The effect is obtained. For example, a plurality of, for example, two or three may be arranged at regular intervals in the circumferential direction of the upper arm 10.

また、前述の実施例において、図9のS3の第2血圧測定ルーチンにより決定された最高血圧値BPSYS ( mmHg)、平均血圧値BPMEANおよび最低血圧値BPDIA ( mmHg)が血管コンプライアンスの演算に用いられていたが、図9のS1の第1血圧測定ルーチンにより決定された最高血圧値BPSYS ( mmHg)、平均血圧値BPMEANおよび最低血圧値BPDIA ( mmHg)が血管コンプライアンスの演算に用いられてもよい。この場合には、第2血圧測定ルーチンは設けられなくてもよい。 In the above-described embodiment, the maximum blood pressure value BP SYS (mmHg), the average blood pressure value BP MEAN and the minimum blood pressure value BP DIA (mmHg) determined by the second blood pressure measurement routine of S3 in FIG. The maximum blood pressure value BP SYS (mmHg), the average blood pressure value BP MEAN, and the minimum blood pressure value BP DIA (mmHg) determined by the first blood pressure measurement routine of S1 in FIG. May be used. In this case, the second blood pressure measurement routine may not be provided.

また、前述の実施例において、検出用膨張袋24内の圧力が徐速降下する過程で脈波を採取することが可能であるので、S4に対応するカフコンプライアンス算出手段は、S3に対応する第2血圧測定手段と同じ区間において実行されてもよい。また、S4に対応するカフコンプライアンス算出手段は、S3に対応する第2血圧測定手段よりも前に実行されてもよい。   Further, in the above-described embodiment, since the pulse wave can be collected in the process in which the pressure in the detection inflating bag 24 gradually drops, the cuff compliance calculating means corresponding to S4 is the first corresponding to S3. It may be executed in the same section as the two blood pressure measurement means. Further, the cuff compliance calculating unit corresponding to S4 may be executed before the second blood pressure measuring unit corresponding to S3.

また、前述の実施例において、カフコンプライアンスSeを求める圧として4段階の第1圧力P1、第2圧力P2、第3圧力P3、第4圧力P4が用いられているが、それらの設定圧は、圧迫帯12による圧迫圧Pe毎に異なる検出用膨張袋24のカフコンプライアンスSeを求めるための値であるため、動脈コンプライアンスKを求める前提とする圧迫帯12の圧迫圧Peに任意に設定され得る。たとえば、動脈コンプライアンスKを算出する前提とする圧迫帯12の圧迫圧が所定圧の1段階であれば上記カフコンプレイアンスSeを測定する圧力維持区間の圧力は1段階となり、3段階であれば上記カフコンプレイアンスSeを測定する圧力維持区間の圧力は3段階となり、5段階であれば上記カフコンプレイアンスSeを測定する圧力維持区間の圧力は5段階となる。   In the above-described embodiment, four stages of the first pressure P1, the second pressure P2, the third pressure P3, and the fourth pressure P4 are used as pressures for obtaining the cuff compliance Se. Since it is a value for determining the cuff compliance Se of the detection inflatable bag 24 that is different for each compression pressure Pe by the compression band 12, it can be arbitrarily set to the compression pressure Pe of the compression band 12 on which the arterial compliance K is determined. For example, if the compression pressure of the compression band 12 on which the arterial compliance K is calculated is one stage of a predetermined pressure, the pressure in the pressure maintaining section for measuring the cuff compliance Se is one stage, and if the three stages are the above, The pressure in the pressure maintaining section for measuring the cuff compliance Se is three stages, and if it is five stages, the pressure in the pressure maintaining section for measuring the cuff compliance Se is five stages.

前述の実施例において、図9のS1の第1血圧測定ルーチン、S3の第2血圧測定ルーチンでは、脈波の振幅の変化に基づきオシロメトリック法を用いて、最高血圧値BPSYS および最低血圧値BPDIA を決定していたが、脈波の積分値の変化、すなわち脈波のグラフが時間軸上に形成する面の面積変化に基づきオシロメトリック法を用いて、最低血圧値BPDIA 、最高血圧値BPSYS を決定してもよいし、マイクロホンにより検知されるコロトコフ音の発生および消滅に基づいて最低血圧値BPDIA 、最高血圧値BPSYS を決定してもよい。 In the above-described embodiment, in the first blood pressure measurement routine of S1 and the second blood pressure measurement routine of S3 in FIG. 9, the maximal blood pressure value BP SYS and the minimum blood pressure value are determined using the oscillometric method based on the change in the amplitude of the pulse wave. The BP DIA has been determined. The oscillometric method is used to determine the minimum blood pressure value BP DIA and the maximum blood pressure based on the change in the integrated value of the pulse wave, that is, the change in the area of the surface formed by the pulse wave graph on the time axis. The value BP SYS may be determined, or the minimum blood pressure value BP DIA and the maximum blood pressure value BP SYS may be determined based on the occurrence and disappearance of Korotkoff sounds detected by a microphone.

なお、上述したのはあくまでも本発明の一実施例であり、本発明はその趣旨を逸脱しない範囲において種々の変更が加えられ得る。   The above description is merely an example of the present invention, and various modifications can be made without departing from the spirit of the present invention.

本発明が適用された圧迫帯を備える循環器情報測定装置の構成を説明するブロック図である。It is a block diagram explaining the structure of the circulatory organ information measuring device provided with the compression band to which this invention was applied. 図1の循環器情報測定装置に備えられた圧迫帯の外側を一部を切り欠いて示す図である。It is a figure which cuts off the outer side of the compression belt with which the circulatory organ information measuring apparatus of FIG. 図1の循環器情報測定装置に備えられた圧迫帯の内側を示す図である。It is a figure which shows the inner side of the compression band with which the circulatory organ information measuring apparatus of FIG. 1 was equipped. 図1および図2に示す圧迫帯内に収容された上流側膨張袋、検出用膨張袋、下流側膨張袋を、一部を切り欠いて示す図である。FIG. 3 is a diagram showing a part of an upstream inflatable bag, a detection inflatable bag, and a downstream inflatable bag accommodated in the compression band shown in FIGS. 1 and 2. 図4の上流側膨張袋、検出用膨張袋、下流側膨張袋の構成を説明する断面図であって、図4のV−V視図である。FIG. 5 is a cross-sectional view illustrating the configuration of the upstream expansion bag, the detection expansion bag, and the downstream expansion bag in FIG. 4, and is a view taken along the line VV in FIG. 4. 図1および図2に示す圧迫帯内に収容された上流側膨張袋、検出用膨張袋、下流側膨張袋を、それぞれ示す斜視図である。It is a perspective view which shows the upstream expansion bag, the detection expansion bag, and the downstream expansion bag which were accommodated in the compression belt | band | zone shown in FIG. 1 and FIG. 2, respectively. 図1および図2に示す圧迫帯において、検出用膨張袋から上流側膨張袋または下流用膨張袋へのノイズの伝達率を示す図である。FIG. 3 is a diagram illustrating a transmission rate of noise from a detection expansion bag to an upstream expansion bag or a downstream expansion bag in the compression band illustrated in FIGS. 1 and 2. 図1および図2に示す圧迫帯において、上流側膨張袋から検出用膨張袋または下流用膨張袋へのノイズの伝達率を示す図である。FIG. 3 is a diagram illustrating a transmission rate of noise from an upstream expansion bag to a detection expansion bag or a downstream expansion bag in the compression band illustrated in FIGS. 1 and 2. 図1の電子制御装置の制御作動の要部を説明するフローチャートである。It is a flowchart explaining the principal part of the control action of the electronic controller of FIG. 図1の電子制御装置の制御作動の要部を説明するタイムチャートである。It is a time chart explaining the principal part of the control action of the electronic controller of FIG. 図1の循環器情報測定装置において、上腕への圧迫圧が115mmHgであるときに各主圧力センサ、第1圧力センサ、第2圧力センサ、第3圧力センサの出力信号から弁別された脈波を共通の時間軸上に示す図である。In the circulatory organ information measurement apparatus of FIG. 1, when the pressure applied to the upper arm is 115 mmHg, pulse waves discriminated from the output signals of the main pressure sensor, the first pressure sensor, the second pressure sensor, and the third pressure sensor are detected. It is a figure shown on a common time-axis. 図1の循環器情報測定装置において、上腕への圧迫圧が102mmHgであるときに各主圧力センサ、第1圧力センサ、第2圧力センサ、第3圧力センサの出力信号から弁別された脈波を共通の時間軸上に示す図である。In the circulatory information measuring apparatus of FIG. 1, when the pressure applied to the upper arm is 102 mmHg, pulse waves discriminated from the output signals of the main pressure sensor, the first pressure sensor, the second pressure sensor, and the third pressure sensor are detected. It is a figure shown on a common time-axis. 図1の循環器情報測定装置において、上腕への圧迫圧が60mmHgであるときに各主圧力センサ、第1圧力センサ、第2圧力センサ、第3圧力センサの出力信号から弁別された脈波を共通の時間軸上に示す図である。In the circulatory organ information measuring apparatus of FIG. 1, when the pressure applied to the upper arm is 60 mmHg, the pulse wave discriminated from the output signals of the main pressure sensor, the first pressure sensor, the second pressure sensor, and the third pressure sensor is detected. It is a figure shown on a common time-axis. 図9のS1およびS3に対応する血圧測定手段において、徐速降圧流に各主圧力センサ、第1圧力センサ、第2圧力センサ、第3圧力センサの出力信号から弁別された脈波の振幅の包絡線を、共通の圧迫圧力軸上に示す図である。In the blood pressure measuring means corresponding to S1 and S3 in FIG. 9, the amplitude of the pulse wave discriminated from the output signals of the main pressure sensor, the first pressure sensor, the second pressure sensor, and the third pressure sensor in the slow-down pressure flow. It is a figure which shows an envelope on a common compression pressure axis. 図9のS2に対応する脈波伝播速度測定手段において得られる脈波伝播速度bbPWVとトランスミューラルプレッシャTPとの関係を、ECGのR波から上流側膨張袋までの脈波伝播速度hbPWVと対比して示す図である。The relationship between the pulse wave velocity bbPWV obtained by the pulse wave velocity measuring means corresponding to S2 in FIG. 9 and the transmural pressure TP is compared with the pulse wave velocity hbPWV from the R wave of the ECG to the upstream inflation bag. FIG. 図9のS4においてカフコンプライアンス測定のために、検出用膨張袋に一定容積のパルスが入力されたときに第2圧力センサによって検出される脈波の波形を例示する図である。It is a figure which illustrates the waveform of the pulse wave detected by the 2nd pressure sensor when the pulse of a fixed volume is inputted into the expansion bag for detection for cuff compliance measurement in S4 of FIG.

符号の説明Explanation of symbols

10:上腕( 生体の被圧迫部位)
12:圧迫帯( 脈波検出用圧迫帯)
14:循環器情報測定装置( 自動血圧測定装置、血管柔軟度測定装置、脈波伝播速度測定装置)
22:上流側膨張袋
22a、26a:隣接側端部
24:検出用膨張袋
24a、24:両端部
24f:折込溝
26:下流側膨張袋
42:長手状遮蔽部材
44:可撓性中空管
54:排気制御弁( 圧力制御手段)
60:容積パルス発生器( 定容積脈波発生装置)
82:主膨張袋
84:検出用膨張袋
T1:第1圧力センサ
T2:第2圧力センサ( 圧力センサ)
T3:第3圧力センサ
S1,S3:オシロメトリック式血圧測定手段
S3、S4、S5:動脈コンプライアンス算出手段
S4:カフコンプライアンス算出手段
S2:脈波伝播速度測定手段
10: Upper arm (stressed part of living body)
12: Compression band (Pulse wave detection compression band)
14: Cardiovascular information measuring device (automatic blood pressure measuring device, vascular flexibility measuring device, pulse wave velocity measuring device)
22: upstream side expansion bags 22a, 26a: adjacent side end 24: detection expansion bag 24a, 24: both ends 24f: folding groove 26: downstream side expansion bag 42: longitudinal shielding member 44: flexible hollow tube 54: Exhaust control valve (pressure control means)
60: Volume pulse generator (constant volume pulse wave generator)
82: Main expansion bag 84: Detection expansion bag T1: First pressure sensor T2: Second pressure sensor (pressure sensor)
T3: third pressure sensor S1, S3: oscillometric blood pressure measuring means S3, S4, S5: arterial compliance calculating means S4: cuff compliance calculating means S2: pulse wave velocity measuring means

Claims (8)

生体の動脈から発生する脈波を検出するために該生体の被圧迫部位に巻き付けられる脈波検出用圧迫帯であって、
前記被圧迫部位の長手方向に所定の間隔を隔てて位置する可撓性シートから成る一対の上流側膨張袋および下流側膨張袋と、
前記被圧迫部位の長手方向において連なるように前記一対の上流側膨張袋および下流側膨張袋の間に配置され、該一対の上流側膨張袋および下流側膨張袋とは独立した気室を有する検出用膨張袋と
を、含み、
前記上流側膨張袋、検出用膨張袋、および下流側膨張袋で前記生体の被圧迫部位を同じ圧力で圧迫した状態で、前記検出用膨張袋内の圧力変動を前記脈波として検出するようにし
前記被圧迫部位の長手方向における前記検出用膨張袋の両端部には互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝が形成され、
前記上流側膨張袋および下流側膨張袋の前記検出用膨張袋に隣接する側の隣接側端部は、該一対の折込溝内に差し入れられていることを特徴とする脈波検出用圧迫帯。
A pulse wave detection compression band wound around a compressed portion of the living body in order to detect a pulse wave generated from an artery of the living body,
A pair of upstream inflation bag and downstream inflation bag made of a flexible sheet positioned at a predetermined interval in the longitudinal direction of the pressed portion;
Detection that has an air chamber that is arranged between the pair of upstream inflation bags and the downstream inflation bag so as to be continuous in the longitudinal direction of the compressed portion, and is independent of the pair of upstream inflation bags and the downstream inflation bag. Including inflatable bags,
The pressure fluctuation in the detection expansion bag is detected as the pulse wave in a state where the compressed portion of the living body is compressed with the same pressure by the upstream expansion bag, the detection expansion bag, and the downstream expansion bag. ,
A pair of folding grooves formed of flexible sheets folded in directions approaching each other are formed at both ends of the detection inflation bag in the longitudinal direction of the pressed portion,
The pulse wave detection compression band , wherein adjacent end portions of the upstream expansion bag and the downstream expansion bag adjacent to the detection expansion bag are inserted into the pair of folding grooves .
前記検出用膨張袋の一対の折込溝の相対向する溝側面の少なくとも一方と該折込溝内に挿し入れられた前記上流側膨張袋および下流側膨張袋の隣接側端部との間に、前記脈波検出用圧迫帯の長手方向の曲げ剛性よりも該圧迫帯の幅の曲げ剛性が高い剛性の異方性を有する長手状遮蔽部材が介在させられていることを特徴とする請求項に記載の脈波検出用圧迫帯。 Between at least one of the opposing groove side surfaces of the pair of folding grooves of the detection expansion bag and the adjacent side ends of the upstream expansion bag and the downstream expansion bag inserted into the folding groove, to claim 1, elongated shielding member having a longitudinal bending stiffness is high stiffness anisotropy of the width of the cuff than the rigidity of the pulse wave detection cuff is characterized by being interposed The compression band for pulse wave detection as described. 前記長手状遮蔽部材は、前記被圧迫部位の長手方向に平行な複数本の可撓性中空管が互いに平行な状態で該被圧迫部位の周方向に連ねて配列されることにより構成されたものであることを特徴とする請求項に記載の脈波検出用圧迫帯。 The longitudinal shielding member is configured by arranging a plurality of flexible hollow tubes parallel to the longitudinal direction of the compressed part and being arranged in a row in the circumferential direction of the compressed part in a state parallel to each other. The pulse wave detection compression band according to claim 2 , wherein the compression band is one. 請求項1乃至のいずれか1の脈波検出用圧迫帯を備えた自動血圧測定装置であって、
前記検出用膨張袋内の圧力を検出する圧力センサと、
前記一対の上流側膨張袋および下流側膨張袋と検出用膨張袋とを相互に連通させた状態で昇圧することにより前記被圧迫部位内の動脈を圧迫し、該圧迫圧を連続的に変化させる圧力制御手段と、
前記圧力制御手段により圧迫圧が変化させられる過程で前記圧力センサにより検出される圧迫圧の圧力振動成分である脈波を抽出し、該脈波の変化に基づいて前記生体の血圧値を決定するオシロメトリック式血圧測定手段と
を、含むことを特徴とする自動血圧測定装置。
An automatic blood pressure measurement apparatus comprising the pulse wave detection compression band according to any one of claims 1 to 3 ,
A pressure sensor for detecting the pressure in the detection inflation bag;
The pressure in the compressed portion is compressed by increasing the pressure in a state where the pair of the upstream inflation bag and the downstream inflation bag are in communication with each other, and the compression pressure is continuously changed. Pressure control means;
A pulse wave that is a pressure oscillation component of the compression pressure detected by the pressure sensor in the process of changing the compression pressure by the pressure control means is extracted, and the blood pressure value of the living body is determined based on the change of the pulse wave. And an oscillometric blood pressure measuring means.
請求項の自動血圧測定装置を備えた血管柔軟度測定装置であって、
前記圧力センサにより検出される圧迫圧の圧力振動成分である脈波の振幅値と前記自動血圧測定装置により測定された血圧値とに基づいて前記動脈の柔軟度を示す動脈コンプライアンスを算出する動脈コンプライアンス算出手段を含むことを特徴とする血管柔軟度測定装置。
A blood vessel flexibility measuring device comprising the automatic blood pressure measuring device according to claim 4 ,
Arterial compliance for calculating arterial compliance indicating flexibility of the artery based on an amplitude value of a pulse wave that is a pressure vibration component of compression pressure detected by the pressure sensor and a blood pressure value measured by the automatic blood pressure measurement device A blood vessel flexibility measuring device including a calculating means.
前記動脈コンプライアンス算出手段は、前記検出用膨張袋の容積変化に対する圧力変化の関係から前記脈波の振幅値を圧力単位から容積単位へ換算するカフコンプライアンスを算出するカフコンプライアンス算出手段を含み、該容積単位へ換算された脈波の振幅値と前記自動血圧測定装置により検出された最高血圧値と最低血圧値との圧力差である脈圧とに基づいて前記動脈の柔軟度を示す動脈コンプライアンスを算出するものであることを特徴とする請求項に記載の血管柔軟度測定装置。 The arterial compliance calculating means includes cuff compliance calculating means for calculating a cuff compliance for converting the amplitude value of the pulse wave from a pressure unit to a volume unit from the relationship of the pressure change with respect to the volume change of the detection inflation bag, Based on the amplitude value of the pulse wave converted into a unit and the pulse pressure that is the pressure difference between the maximum blood pressure value and the minimum blood pressure value detected by the automatic blood pressure measurement device, the arterial compliance indicating the flexibility of the artery is calculated. The vascular flexibility measuring device according to claim 5 , wherein 前記動脈の脈動に対応する大きさの予め設定された一定容積の気体を前記検出用膨張袋内に加える定容積脈波発生装置を備え、
前記カフコンプライアンス算出手段は、該定容積脈波発生装置により前記検出用膨張袋内に加えられる一定容積の気体の容積値と、該一定容積の気体が前記検出用膨張袋内に加えられたときに前記圧力センサにより検出された該検出用膨張袋内の圧力上昇値との関係を予め求めるものであることを特徴とする請求項に記載の血管柔軟度測定装置。
A constant volume pulsation generator for adding a predetermined volume of gas of a size corresponding to the pulsation of the artery into the detection inflation bag;
The cuff compliance calculating means includes a volume value of a fixed volume of gas added to the detection inflatable bag by the constant volume pulse wave generator, and when the constant volume of gas is added to the inflatable bag for detection. The blood vessel flexibility measuring device according to claim 6 , wherein a relationship with a pressure increase value in the detection inflation bag detected by the pressure sensor is obtained in advance.
請求項1乃至のいずれか1の脈波検出用圧迫帯を備えた脈波伝播速度測定装置であって、
前記上流側膨張袋内の圧力を検出する第1圧力センサと、
前記下流側膨張袋内の圧力を検出する第3圧力センサと、
前記上流側膨張袋および下流側膨張内に前記生体の最低血圧値よりも低い圧力で気体を充満させた状態で前記第1圧力センサにより検出された脈波から前記第3圧力センサにより検出された脈波までの脈波伝播時間と、該上流側膨張袋と下流側膨張との間の中心間距離とに基づいて、前記動脈内の脈波伝播速度を算出する脈波伝播速度測定手段と
を、含むことを特徴とする脈波伝播速度測定装置。
A pulse wave velocity measuring device comprising the pulse wave detection compression band according to any one of claims 1 to 3 ,
A first pressure sensor for detecting a pressure in the upstream expansion bag;
A third pressure sensor for detecting the pressure in the downstream expansion bag;
Detected by the third pressure sensor from the pulse wave detected by the first pressure sensor in a state in which the upstream inflation bag and the downstream inflation bag are filled with gas at a pressure lower than the minimum blood pressure value of the living body. Pulse wave velocity measuring means for calculating the pulse wave velocity in the artery based on the pulse wave propagation time until the pulse wave and the center-to-center distance between the upstream inflation bag and the downstream inflation bag And a pulse wave velocity measuring device comprising:
JP2007286815A 2007-11-02 2007-11-02 Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same. Active JP5049097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286815A JP5049097B2 (en) 2007-11-02 2007-11-02 Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286815A JP5049097B2 (en) 2007-11-02 2007-11-02 Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same.

Publications (2)

Publication Number Publication Date
JP2009112428A JP2009112428A (en) 2009-05-28
JP5049097B2 true JP5049097B2 (en) 2012-10-17

Family

ID=40780264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286815A Active JP5049097B2 (en) 2007-11-02 2007-11-02 Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same.

Country Status (1)

Country Link
JP (1) JP5049097B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584076B2 (en) * 2010-09-29 2014-09-03 株式会社エー・アンド・デイ Automatic blood pressure measurement device
JP5584077B2 (en) * 2010-09-29 2014-09-03 株式会社エー・アンド・デイ Automatic blood pressure measurement device
JP5842539B2 (en) 2011-10-28 2016-01-13 オムロンヘルスケア株式会社 Measuring device, method of operating measuring device, and measuring program
JP6027767B2 (en) * 2012-05-16 2016-11-16 株式会社エー・アンド・デイ Automatic blood pressure measurement device.
CN110236635A (en) * 2019-05-31 2019-09-17 中国科学院深圳先进技术研究院 Tourniquet and Hemostasis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638790B2 (en) * 1989-05-19 1994-05-25 松田 正義 Arterial extensibility measuring device
JP3815385B2 (en) * 2002-06-18 2006-08-30 オムロンヘルスケア株式会社 Sphygmomanometer cuff
JP2006334153A (en) * 2005-06-02 2006-12-14 Shibuya Kogyo Co Ltd Sphygmomanometer
JP4764673B2 (en) * 2005-08-11 2011-09-07 株式会社エー・アンド・デイ Blood pressure pulse wave cuff

Also Published As

Publication number Publication date
JP2009112428A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP6086647B2 (en) Automatic blood pressure measurement device
JP5619593B2 (en) Arterial blood vessel inspection device
JP5352298B2 (en) Arterial vascular flexibility measuring device
JP5584077B2 (en) Automatic blood pressure measurement device
JP2010522610A (en) Arterial pressure measuring machine with liquid-filled cuff
KR20160129113A (en) System and method of measuring changes in arterial volume of a limb segment
JP5049097B2 (en) Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same.
JP3213296B2 (en) Pulse wave velocity information measurement device
KR100804454B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
JP5584076B2 (en) Automatic blood pressure measurement device
TW200303738A (en) Arteriosclerosis inspecting apparatus
JP6027767B2 (en) Automatic blood pressure measurement device.
US20040171940A1 (en) Arteriostenosis diagnosing apparatus
JP4764674B2 (en) Blood pressure pulse wave inspection device
CN110840429A (en) Korotkoff sound-based blood pressure measurement method and blood pressure measurement and cardiovascular system evaluation system
JP6340152B2 (en) Automatic blood pressure measurement device
JP4705821B2 (en) Blood pressure pulse wave inspection device
JP2009112429A (en) Cuff for pulse wave detection
CN112203583B (en) Auxiliary device and area of driving blood
JP5801660B2 (en) Automatic blood pressure measurement device
JP2002136489A (en) Blood pressure measuring instrument and pulse wave propagation velocity information measuring instrument
JP7527837B2 (en) Automatic blood pressure measuring device
JP5907638B2 (en) Arterial vascular stiffness measuring device
WO2023199990A1 (en) Blood pressure measurement device
WO2022080329A1 (en) Blood pressure monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5049097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250