JP6340152B2 - Automatic blood pressure measurement device - Google Patents

Automatic blood pressure measurement device Download PDF

Info

Publication number
JP6340152B2
JP6340152B2 JP2014078982A JP2014078982A JP6340152B2 JP 6340152 B2 JP6340152 B2 JP 6340152B2 JP 2014078982 A JP2014078982 A JP 2014078982A JP 2014078982 A JP2014078982 A JP 2014078982A JP 6340152 B2 JP6340152 B2 JP 6340152B2
Authority
JP
Japan
Prior art keywords
wave
pressure
cuff
systolic
pulse wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014078982A
Other languages
Japanese (ja)
Other versions
JP2015198740A (en
Inventor
繁廣 石塚
繁廣 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2014078982A priority Critical patent/JP6340152B2/en
Publication of JP2015198740A publication Critical patent/JP2015198740A/en
Application granted granted Critical
Publication of JP6340152B2 publication Critical patent/JP6340152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、腕、足首のような生体の一部である被圧迫部位内の抹消動脈から発生する脈波を検出するためにその被圧迫部位に巻回される圧迫帯を備えた自動血圧測定装置に関するものである。   The present invention relates to an automatic blood pressure measurement provided with a compression band wound around a compression site in order to detect a pulse wave generated from a peripheral artery in the compression site that is a part of a living body such as an arm or an ankle. It relates to the device.

生体の血圧値等の生体の循環器情報は、生体の動脈からその拍動に同期して発生する脈波をその生体の被圧迫部位に巻回された圧迫帯内の圧力振動として検出し、その脈波の大きさの予め設定された変化状態となったときのその圧迫帯の圧迫圧力に基づいて測定される。このような間接血圧測定は、オシロメトリック法或いはカフ振動法として知られている。このようなオシロメトリック法では、圧迫帯の圧迫圧力の連続的変化に伴ってカフに発生する圧力振動であるカフ容積脈波の大きさが増減し、そのカフ脈波の振幅値を結ぶエンベロープ(包絡線)の変曲点付近、或いはカフ脈波振幅をその最大脈振幅値で正規化した振幅比と聴診法による血圧測定値との対比により統計的に血圧値を決定している。たとえば、特許文献1に示す血圧測定装置がそれである。   The living body circulatory system information such as the blood pressure value of the living body detects the pulse wave generated in synchronization with the pulsation from the artery of the living body as the pressure vibration in the compression band wound around the pressed portion of the living body, It is measured based on the compression pressure of the compression band when the magnitude of the pulse wave becomes a preset change state. Such indirect blood pressure measurement is known as an oscillometric method or a cuff vibration method. In such an oscillometric method, the magnitude of the cuff volume pulse wave, which is a pressure vibration generated in the cuff, is increased and decreased with a continuous change in the compression pressure of the compression band, and an envelope that connects the amplitude values of the cuff pulse wave ( The blood pressure value is statistically determined by comparing the amplitude ratio obtained by normalizing the cuff pulse wave amplitude with the maximum pulse amplitude value and the blood pressure measurement value obtained by the auscultation method. For example, this is the blood pressure measurement device shown in Patent Document 1.

また、従来では、動脈圧とカフ圧が平衡したときに最大に脈が振れると判断され、管法則と呼ばれる動脈血管の内腔断面積とその血管の貫壁圧力の関係において、管法則に現れるコンプライアンスが最大値を示す圧力が動脈圧の平均血圧に相当するとみなされてきた。その結果、オシロメトリック法の基本原理ではこの管法則を基に上記エンベロープの最大振幅を示すカフ圧力が平均血圧に相当するとされてきた。   Also, conventionally, it is judged that the pulse oscillates maximum when the arterial pressure and the cuff pressure are balanced, and it appears in the pipe law in the relationship between the lumen cross-sectional area of the arterial blood vessel called the pipe law and the transmural pressure of the blood vessel. It has been considered that the pressure at which the compliance is maximum corresponds to the mean blood pressure of the arterial pressure. As a result, in the basic principle of the oscillometric method, it has been assumed that the cuff pressure indicating the maximum amplitude of the envelope corresponds to the average blood pressure based on this tube law.

特開平07−236617号公報Japanese Patent Application Laid-Open No. 07-236617

しかしながら、上記従来のオシロメトリック法で得られる血圧測定値は、予め求めた統計的関係から推定(算出)されるものであり、カフ血圧測定方法の影響を受ける脈波エンベロープの最大値を基礎としており、その精度が十分に得られないという問題があった。   However, the blood pressure measurement value obtained by the conventional oscillometric method is estimated (calculated) from the statistical relationship obtained in advance, and is based on the maximum value of the pulse wave envelope that is affected by the cuff blood pressure measurement method. There is a problem that the accuracy cannot be obtained sufficiently.

本発明の目的とするところは、血圧値について高い測定精度が得られる自動血圧測定装置を提供することである。   An object of the present invention is to provide an automatic blood pressure measurement device that can obtain high measurement accuracy for blood pressure values.

本発明者は、カフ圧が動脈圧の最低血圧値を越えると動脈は容易に圧平し始め、図21に示すように上記管法則のコンプライアンスが最大となるカフ圧力は動脈圧の最低血圧値付近であることを発見した。従来では、大動脈系にみられる血管壁の上記管法則の非線形特性、及び血管内圧が減少し貫壁圧力が負となったときにも円管を維持する弾性繊維に富んだ弾性管特性を、末梢の上腕動脈にも適用して、管法則のコンプライアンスの最大である圧力が平均血圧に相当すると考えられてきた。そのように考えられた原因は腕帯を用いた上腕血圧の測定方法が腕帯の装着部位より下流側の末梢血流循環状態に影響を与える事にあった。即ち、カフ法による血圧測定の過程でカフより末梢側の動脈系に流れ込む血流量に対応して末梢側の動脈圧が上昇し、カフ圧力を越える事によりカフ下の血管が常時開口するため上記カフ容積脈波の振幅が減少した結果、平均血圧値と想定された圧力付近で上記エンベロープの最大値が形成される。図21に示される血管コンプライアンスの最大点より高い貫壁圧力では血管壁弾性の増加により血管コンプライアンスの低下する特性を示し、血管コンプライアンスの最大点より低い貫壁圧力では上記血圧測定条件に影響を受けながら血管コンプライアンスが減少しカフ圧が最低血圧より高くなるにつれて血管が圧平した状態になると判断される。上記のようにカフ容積脈波が最大振幅を示すカフ圧力は血圧測定方法と、測定時の生体の循環状態に依存しており一定では無い。また、前記のようにカフ法による血圧測定では測定時のカフより末梢側の動脈の血流状態に応じて動脈圧(静水圧)が上昇するので、この上昇状態に依存して、カフ圧力が最高血圧値以下から最低血圧値付近にかけて、反射波がカフ容積脈波の心収縮期の頂上付近に重畳する。この過渡的な反射波はカフ容積脈波の振幅を増加させる。従って、従来のオシロメトリック法の、カフ脈波の振幅値を結ぶエンベロープ(包絡線)の変曲点付近、或いはカフ脈波振幅をその最大脈振幅値で正規化した振幅比を用い、統計的に聴診法による血圧値に一致するように推定(測定)された血圧値は、カフ血圧測定方法の影響を受ける脈波エンベロープを基礎としており、それが血圧値の測定精度が十分に得られない原因であると考えられた。   When the cuff pressure exceeds the minimum blood pressure value of the arterial pressure, the inventor starts to applanate easily. As shown in FIG. 21, the cuff pressure at which the compliance with the above-mentioned pipe rule is maximum is the minimum blood pressure value of the arterial pressure. I found it nearby. Conventionally, the nonlinear characteristics of the above-mentioned tube law of the blood vessel wall seen in the aortic system, and the elastic tube properties rich in elastic fibers that maintain the circular tube even when the intravascular pressure decreases and the transmural pressure becomes negative, When applied to the peripheral brachial artery, it has been considered that the pressure that is the maximum compliance of the tube law corresponds to the mean blood pressure. The reason for this was that the brachial blood pressure measurement method using the armband affected the peripheral blood circulation state downstream of the armband attachment site. That is, in the process of blood pressure measurement by the cuff method, the peripheral arterial pressure rises corresponding to the blood flow flowing into the peripheral arterial system from the cuff, and the blood vessel under the cuff always opens when the cuff pressure is exceeded. As a result of the decrease in the amplitude of the cuff volume pulse wave, the maximum value of the envelope is formed in the vicinity of the pressure assumed to be the average blood pressure value. A transmural pressure higher than the maximum point of vascular compliance shown in FIG. 21 shows a characteristic that the vascular compliance decreases due to an increase in vascular wall elasticity. A transmural pressure lower than the maximum point of vascular compliance is affected by the blood pressure measurement conditions. However, as the blood vessel compliance decreases and the cuff pressure becomes higher than the minimum blood pressure, it is determined that the blood vessel becomes inflated. As described above, the cuff pressure at which the cuff volume pulse wave has the maximum amplitude depends on the blood pressure measurement method and the circulation state of the living body at the time of measurement, and is not constant. In addition, in the blood pressure measurement by the cuff method as described above, the arterial pressure (hydrostatic pressure) increases according to the blood flow state of the artery on the peripheral side from the cuff at the time of measurement. The reflected wave is superimposed near the top of the systole of the cuff volume pulse wave from the maximum blood pressure value to the vicinity of the minimum blood pressure value. This transient reflected wave increases the amplitude of the cuff volume pulse wave. Therefore, using the conventional oscillometric method, the vicinity of the inflection point of the envelope (envelope) connecting the amplitude values of the cuff pulse wave, or the amplitude ratio obtained by normalizing the cuff pulse wave amplitude with the maximum pulse amplitude value, The blood pressure value estimated (measured) to match the blood pressure value obtained by the auscultation method is based on the pulse wave envelope that is affected by the cuff blood pressure measurement method, which does not provide sufficient blood pressure measurement accuracy. It was thought to be the cause.

そして、本発明者は、以上の事情を背景として、種々の研究を進めた結果、動脈血管についてその貫壁圧力Pt(=最低血圧値DBP−圧迫帯の圧迫圧Pcuff)[mmHg]と断面積A[cm]との間の関係を表わす、たとえば図21に示すP−A曲線において、動脈血管への入力である圧脈波とその動脈血管からの出力である容積脈波振幅(カフ脈波振幅)との関係を求めて考察すると、P−A曲線のうちの断面積Aが零に近接する部分は貫壁圧力Ptが負となり、カフによる圧迫部位より抹消側で血液が滞留して末梢側の動脈圧(静水圧)が増加するためであることが推定される点、上記P−A曲線上において貫壁圧力Ptの零付近がP−A曲線の最大傾斜であって、動脈血管の最大コンプライアンス部分すなわち動脈血管の最も変形し易い部分であるため、図22に示すように、同じ大きさの入力(圧力波)に対して最大振幅の容積脈波が出力される点、および、図23に示すように、脈圧PP(1拍の管内圧力振幅=1拍の最高血圧値−最低血圧値)[mmHg]をパラメ−タ(媒介変数)として、圧迫帯の圧迫圧Pcuffの変化に伴って変化する容積脈波振幅の各エンベローブの形状は、脈圧PPが小さくなるほど、コンプライアンス曲線に漸近し、エンベロープの最大振幅点が精度良く決定できるので、予め測定された最低血圧値(拡張期血圧)DBPに接近する点に着目した。本発明者は、カフ圧が低下していく過程でカフ容積脈波の振幅が最大振幅から減少する理由は、P−A曲線の最低血圧値付近の急傾斜部を挟んで形成される伝播速度の遅い成分(脈波のうちの緩やかな形状部分)と早い成分(脈波のうちの先鋭化した形状部分)とを含む圧脈波がコロトコフ音を発生するという学説を前提とすると、P−A曲線の最低血圧値付近の急傾斜部すなわち血管コンプライアンスの最大部を低圧側へ過ぎたところで発生する圧脈波が遅い成分が主体的となってコロトコフ音の消失波(最低血圧に対応するコロトコフ音のスワン第5点)に対応すると考えられること、このため、専ら早い成分で振幅が決まるカフ容積脈波の振幅減少に基づいて統計的に最低血圧値を決定するオシロメトリック法による最低血圧値が観血法を用いて測定された最低血圧値から乖離すると推測した。そして、本発明者は、血管コンプライアンスの非線形さは脈波振幅が小さいほど精度良く検出される点、圧脈波は心臓の収縮期に拍出される血液量に依存して形成される収縮期脈波と大動脈系のコンプライアンスにより収縮期に蓄えられた血液を末梢へ循環させる大動脈系に起因した拡張期脈波から形成された複合波として伝導動脈系を伝播するので、カフ圧により前記圧脈波振幅の主成分である収縮期脈波と二次的な成分である拡張期脈波を分離する方法を考案し、脈波のノッチ圧以下の拡張期に発生する相対的に小さな拡張期時相で発生する拡張期時相波を圧脈波から分離して用いて生体の最低血圧値を測定することにより、生体の最低血圧値の精度が高められるのではないかと推定した。カフ圧力が圧脈波の収縮期末期圧より高い場合には、カフ脈波には生体の脈波の収縮期脈波とその収縮期脈波の減衰成分から成る収縮期時相波のみが現れる。上記減衰成分の減衰時定数は平均的な脈波周期の定常時の拡張期血圧のレベルに減衰し、脈波振幅に依存しないと近似できる。カフ圧力が収縮期末期圧より低い場合には、拡張期波及び、血圧測定時のカフとカフ圧力の存在でカフ下流域に滞留(充血)する血液量に依存して静水圧が上昇し過渡現象として反射波が脈波の心収縮期時相に重畳する事がある。上記一過性のカフより末梢側からの反射波の主成分は心収縮期に現れ、カフ圧力が収縮期末期圧直後では心収縮期半ばの波形に重畳しカフ圧力の低下とともに心収縮期前半に重畳開始点が移行し、カフ圧力が最低血圧以下に減圧されると次第に消失して定常状態に復帰する。上記拡張期波と一過性の反射波はカフ圧力の低下とともに現れるが、一般的には拡張期波が先に現れる。若年者のような末梢血管抵抗の小さい場合では収縮期末期圧が低下しており反射波が先に現れることがある。この場合には反射波は遅れており、反射波の容積脈波振幅への影響が少ない。
そこで、本発明者は、上記収縮期時相波を検出し、収縮期末期圧よりも低いカフ圧力で現れる拡張期波を含んだカフ容積脈波から収縮期時相波を差し引き、心拡張期区間で拡張期波を抽出することで、そのカフ容積脈波の数分の1の振幅の拡張期容積脈波の振幅に基づいて生体の最低血圧値を決定すると、観血法による拡張期血圧に近い、カフオシロメトリック法による最低血圧値が高精度で得られた。本発明は、このような知見に基づいて為されたものである。
The present inventor has conducted various studies against the background described above, and as a result, the transmural pressure Pt (= minimum blood pressure value DBP−compression pressure Pcuff of the compression band) [mmHg] and the cross-sectional area of the arterial blood vessel. For example, in the PA curve shown in FIG. 21 representing the relationship between A [cm 2 ], the pressure pulse wave that is an input to the arterial blood vessel and the volume pulse wave amplitude that is the output from the arterial blood vessel (cuff pulse) When the relationship with the wave amplitude is determined and considered, in the portion of the PA curve where the cross-sectional area A is close to zero, the transmural pressure Pt is negative, and blood stays on the peripheral side from the cuff compression site. It is presumed that the peripheral arterial pressure (hydrostatic pressure) is increased. On the PA curve, the vicinity of zero of the transmural pressure Pt is the maximum slope of the PA curve, and the arterial blood vessel The maximum compliance part of the arteries Since it is a part that is easily deformed, as shown in FIG. 22, the point that the volume pulse wave with the maximum amplitude is output with respect to the input (pressure wave) of the same magnitude, and the pulse pressure as shown in FIG. Volume pulse wave amplitude that changes with changes in compression pressure Pcuff in the compression zone, with PP (intraductal pressure amplitude of 1 beat = maximum blood pressure value of 1 beat−minimum blood pressure value) [mmHg] as a parameter (parameter) As the pulse pressure PP becomes smaller, the shape of each envelope becomes closer to the compliance curve, and the maximum amplitude point of the envelope can be determined with high accuracy, so that it approaches the previously measured minimum blood pressure value (diastolic blood pressure) DBP. Pay attention. The present inventor has found that the reason why the amplitude of the cuff volume pulse wave decreases from the maximum amplitude in the process of decreasing the cuff pressure is that the propagation velocity formed across the steeply inclined portion near the minimum blood pressure value of the PA curve. Assuming the theory that a pressure pulse wave including a slow component (a gentle shape portion of a pulse wave) and a fast component (a sharp shape portion of a pulse wave) generates Korotkoff sounds, P- A steep slope in the vicinity of the minimum blood pressure value on the A curve, that is, a component of a slow pressure pulse wave that has passed the maximum portion of the vascular compliance toward the low-pressure side is the main component, and the disappearance wave of the Korotkoff sound (Korotkoff corresponding to the minimum blood pressure) Swan fifth point of sound), therefore, the minimum blood pressure value by the oscillometric method that statistically determines the minimum blood pressure value based on the amplitude decrease of the cuff volume pulse wave whose amplitude is determined solely by the fast component Blood It was presumed to deviate from the measured diastolic blood pressure value using. The inventor has found that the non-linearity of vascular compliance is detected more accurately as the pulse wave amplitude is smaller, and the pressure pulse wave is a systole formed depending on the amount of blood pumped out during the systole of the heart. Propagated arterial system as a composite wave formed from diastolic pulse wave caused by aortic system that circulates blood stored in systole to peripheral due to pulse wave and aortic system compliance. A method of separating the systolic pulse wave, which is the main component of the wave amplitude, from the diastolic pulse wave, which is the secondary component, was devised, and the relatively small diastole that occurs in the diastole below the notch pressure of the pulse wave It was estimated that the accuracy of the minimum blood pressure value of the living body could be improved by measuring the minimum blood pressure value of the living body using the diastolic time phase wave generated in the phase separated from the pressure pulse wave. When the cuff pressure is higher than the end-systolic pressure of the pressure pulse wave, only the systolic time phase wave consisting of the systolic pulse wave of the living body and the attenuation component of the systolic pulse wave appears in the cuff pulse wave . The attenuation time constant of the attenuation component is attenuated to the level of the diastolic blood pressure at the steady state of the average pulse wave cycle, and can be approximated without depending on the pulse wave amplitude. When the cuff pressure is lower than the end-systolic pressure, the hydrostatic pressure rises transiently depending on the diastolic wave and the amount of blood staying (congested) in the cuff downstream due to the presence of the cuff and cuff pressure during blood pressure measurement. As a phenomenon, the reflected wave may be superimposed on the systole time phase of the pulse wave. The main component of the reflected wave from the peripheral side of the transient cuff appears in the systole, and the cuff pressure is superimposed on the mid-systolic waveform immediately after the end systolic pressure, and the first half of the systole with a decrease in the cuff pressure. When the superimposition start point shifts to and the cuff pressure is reduced below the minimum blood pressure, it gradually disappears and returns to a steady state. The diastolic wave and the transient reflected wave appear as the cuff pressure decreases, but generally the diastolic wave appears first. When the peripheral vascular resistance is small, such as a young person, the end systolic pressure is decreased and a reflected wave may appear first. In this case, the reflected wave is delayed, and the influence of the reflected wave on the volume pulse wave amplitude is small.
Therefore, the present inventor detects the systolic time phase wave, subtracts the systolic time phase wave from the cuff volume pulse wave including the diastole wave appearing at a cuff pressure lower than the end systolic pressure, By extracting the diastolic wave in the interval, when the minimum blood pressure value of the living body is determined based on the amplitude of the diastolic volume pulse wave, which is a fraction of the amplitude of the cuff volume pulse wave, The diastolic blood pressure value by the cuff oscillometric method was obtained with high accuracy. The present invention has been made based on such knowledge.

すなわち、本発明の自動血圧測定装置は、(a)生体の一部に巻回されて該生体の一部に対する圧迫圧を低下させる圧迫帯を備え、該圧迫帯の圧迫圧を低下させる過程で得られた該圧迫圧を表わすカフ圧信号に含まれる、該生体の脈拍に同期する交流成分であるカフ容積脈波に基づいて該生体の最低血圧値を測定する自動血圧測定装置であって、(b)前記カフ容積脈波のうち前記カフ圧が前記生体の収縮期末期圧であるときのカフ容積脈波である収縮期末期圧容積脈波またはそれに連なる1つの容積脈波を基準波とし、前記カフ圧が前記生体の収縮期末期圧以下であるときに順次得られる各カフ容積脈波の該カフ容積脈波に含まれる反射波の重畳開始点の振幅と同等となるように前記基準波を調整した収縮期時相波を、それぞれ生成する収縮期時相波生成部と、(c)カフ圧が前記生体の収縮期末期圧以下であるときに順次得られる各カフ容積脈波の波形から前記それぞれ生成された収縮期時相波の波形を差し引くことにより拡張期波と反射波からなる拡張期合成波をそれぞれ生成する拡張期合成波生成部と、(d)前記生成された拡張期合成波の振幅に基づいて前記生体の最低血圧値を決定する最低血圧値決定部とを、含むことを特徴とする。 That is, the automatic blood pressure measurement device of the present invention includes (a) a compression band that is wound around a part of a living body and reduces the compression pressure on the part of the living body, and in the process of reducing the compression pressure of the compression band. An automatic blood pressure measurement device that measures a minimum blood pressure value of the living body based on a cuff volume pulse wave that is an alternating current component synchronized with the pulse of the living body, included in the obtained cuff pressure signal representing the compression pressure, (B) Among the cuff volume pulse waves, the end-systolic pressure pulse volume pulse that is a cuff volume pulse when the cuff pressure is the end-systolic pressure of the living body or one volume pulse wave connected thereto is used as a reference wave. The reference value so that the cuff volume pulse wave sequentially obtained when the cuff pressure is equal to or lower than the end-systolic pressure of the living body is equal to the amplitude of the superimposed start point of the reflected wave included in the cuff volume pulse wave. Shrinkage that generates systolic time phase waves with adjusted waves A time phase wave generating unit; and (c) subtracting the waveform of the generated systolic time phase wave from the waveform of each cuff volume pulse wave sequentially obtained when the cuff pressure is equal to or lower than the end-systolic pressure of the living body. A diastolic synthesized wave generating unit for generating diastolic synthesized waves each composed of a diastolic wave and a reflected wave, and (d) determining the minimum blood pressure value of the living body based on the amplitude of the generated diastolic synthesized wave And a diastolic blood pressure value determining unit.

このように構成された自動血圧測定装置によれば、カフ容積脈波から収縮期時相波を差し引くことによりそのカフ容積脈波に含まれる拡張期成分波を抽出し、それら拡張期成分波の振幅に基づいて前記生体の最低血圧値が算出されることから、その最低血圧値の決定にはカフ容積脈波に含まれる収縮期時相波の影響を受けない数分の1程度の小さい脈圧成分が使われるので、最低血圧値について高い測定精度が得られる。   According to the automatic blood pressure measurement device configured as described above, the diastolic component wave included in the cuff volume pulse wave is extracted by subtracting the systolic time phase wave from the cuff volume pulse wave, and Since the diastolic blood pressure value of the living body is calculated based on the amplitude, the diastolic blood pressure value is determined by a small pulse of about a fraction that is not affected by the systolic time phase wave included in the cuff volume pulse wave. Since the pressure component is used, high measurement accuracy can be obtained for the minimum blood pressure value.

ここで、好適には、たとえば血圧測定中の脈波の平均周期の間隔の移動平均処理を行なうローパスフィルタ処理を施すことで前記カフ圧信号から前記生体野一部への圧迫圧力であるDC成分を抽出し、前記カフ圧信号とDC成分との差分を求めることで前記カフ容積脈波を生成するカフ容積脈波生成部と、続する前記フ容積脈波の収縮期波下降脚の変曲点に対応して生じる一次微分波形の負の極小値が最小となったときのカフ圧力を前記収縮期末期圧として決定する収縮期末期圧決定部とを、さらに含む。このようにすれば、生体の心拍に同期したカフ容積脈波、および、生体の収縮期末期圧が容易に得られる。 Here, preferably, for example, a DC component that is a compression pressure from the cuff pressure signal to the part of the living body field by performing a low-pass filter process that performs a moving average process at intervals of an average period of a pulse wave during blood pressure measurement. extracting, and the cuff pressure signal and the cuff volumetric pulse wave generator generating the mosquito mutabilis product pulse wave by obtaining the difference between the DC component, the mosquito mutabilis systolic wave Sekimyakuha to continue communicating And a systolic end-of-systolic end-of-systolic pressure determining unit that determines the cuff pressure when the negative minimum value of the first-order differential waveform generated corresponding to the inflection point of the descending leg is minimum as the end-systolic end-of-systolic pressure. In this way, the cuff volume pulse wave synchronized with the heartbeat of the living body and the end systolic pressure of the living body can be easily obtained.

また、好適には、前記収縮期末期圧決定部は、共通の時間軸上において、前記カフ容積脈波の一次微分波形の変曲点の検出を二次微分波形の極小点により決定し、上記二次微分波形の負の極小点に対応したカフ容積脈波の振幅値が、上記カフ容積脈波の最大振幅の50[%]を超えたときのカフ圧を前記収縮期末期圧として決定するさらに含む。このようにすれば、拡張期波よりも先行して反射波が収縮期時相波に重なり、前期カフ容積脈波の一次微分波形の負の極小値が最小となる点が拡張期時相に延長する場合でも、収縮期末期圧が正確に決定される。前記カフ容積脈波の一次微分波形の負の極小点が最小となったときのカフ圧を収縮期末期圧として決定する場合は、上記反射波の重畳によって負の極小点がブロードとなって不明確となったり、複数発生したりして収縮期末期圧の精度が得られない場合がある。   Preferably, the end systolic pressure determining unit determines the detection of the inflection point of the primary differential waveform of the cuff volume pulse wave on the common time axis based on the minimum point of the secondary differential waveform, The cuff pressure when the amplitude value of the cuff volume pulse wave corresponding to the negative minimum point of the second derivative waveform exceeds 50% of the maximum amplitude of the cuff volume pulse wave is determined as the end systolic pressure. In addition. In this way, the point where the reflected wave overlaps the systolic time phase wave ahead of the diastole wave and the negative minimum of the first derivative waveform of the early cuff volume pulse wave is minimized is the diastole time phase. Even when it is extended, the end systolic pressure is accurately determined. When the cuff pressure at the time when the negative minimum point of the first derivative waveform of the cuff volume pulse wave is minimized is determined as the end systolic pressure, the negative minimum point is broadened due to the superposition of the reflected wave and is not effective. The accuracy of end-systolic pressure may not be obtained due to clarification or multiple occurrences.

また、好適には、前記収縮期時相波生成部は、前記収縮期末期圧より低いカフ圧力で得られたカフ容積脈波の上昇脚から頭頂部にかけての二次微分波の正から負に向かう零クロス点で且つ一次微分波の極小点に対応する、上記カフ容積脈波の変曲点を反射波重畳開始点として決定する反射波重畳開始点決定部と、前記収縮期末期圧より低いカフ圧力で得られたカフ容積脈波と前記基準波とを共通の時間軸上でそれらの立上がり開始点を一致させたときの、前記収縮期時相波の基準波の最大振幅時刻より遅れて上記反射波重畳開始点がある場合にはその基準波の最大振幅値をAESBPとし、その時刻のカフ容積脈波振幅をAPVRとし、前期反射波重畳開始点が基準波の最大振幅時刻より前の脈波上昇脚に存在する場合には、そのカフ容積脈波の前記反射波重畳開始点における振幅値をAPVRとし、上記基準波の前記反射波重畳開始点における振幅値をAESBPとして、その振幅比Aratio(=APVR/AESBP)を求め、その振幅比Aratioを前記基準波に乗算することで前記収縮期時相波を生成する基準波補正部とを、含むものである。このようにすれば、前記収縮期末期圧より低いカフ圧力で得られたカフ容積脈波にそれぞれ含まれる収縮期時相波を容易に得ることができる。 Preferably, the systolic time phase wave generation unit is configured to change from the positive to the negative of the second derivative wave from the rising leg to the top of the cuff volume pulse wave obtained at a cuff pressure lower than the end systolic pressure. A reflected wave superposition start point determination unit that determines the inflection point of the cuff volume pulse wave as a reflected wave superposition start point corresponding to the minimum point of the first-order differential wave at the zero crossing point, and lower than the end systolic pressure The cuff volume pulse wave obtained by cuff pressure and the reference wave are delayed from the maximum amplitude time of the reference wave of the systolic time phase wave when their rising start points coincide on the common time axis If there is a reflected wave superposition start point, the maximum amplitude value of the reference wave is A ESBP , the cuff volume pulse wave amplitude at that time is A PVR , and the reflected wave superposition start point of the previous period is from the maximum amplitude time of the reference wave If present in the previous pulse wave leg, its cuff volume The amplitude and A PVR in the reflected wave overlap starting point of the wave, the amplitude value of the reflected wave overlap starting point of the reference wave as the A ESBP, Searching for the amplitude ratio A ratio (= A PVR / A ESBP), A reference wave correction unit that generates the systolic time phase wave by multiplying the reference wave by the amplitude ratio A ratio . In this way, it is possible to easily obtain systolic time phase waves respectively included in the cuff volume pulse wave obtained at a cuff pressure lower than the end systolic pressure.

また、好適には、拡張期合成波生成部は、前記共通の時間軸上で、カフ圧が前記生体の収縮期末期圧以下であるときに順次得られる前記カフ容積脈波の振幅から、それぞれについて生成された前記収縮期時相波の振幅をそれぞれ差し引くことで、それぞれの拡張期合成波をカフ圧の減少過程で順次生成させるものである。このようにすれば、時系列的に複数の拡張期合成波が容易に得られる。   Preferably, the diastolic synthetic wave generation unit is configured so that, on the common time axis, the amplitude of the cuff volume pulse wave sequentially obtained when the cuff pressure is equal to or lower than the end-systolic pressure of the living body, By subtracting the amplitude of the systolic time phase wave generated for each diastolic phase, each diastolic synthesized wave is sequentially generated in the process of decreasing the cuff pressure. In this way, a plurality of diastolic synthesized waves can be easily obtained in time series.

また、好適には、前記最低血圧値決定部は、前記拡張期合成波生成部により生成された一連の拡張期合成波のうちの最大振幅を示す拡張期合成波の1つ後の拡張期合成波に対応するカフ圧を最低血圧値として決定するものである。このようにすれば、観血法すなわちカテーテルを用いた直接法による血圧測定により得られた最低血圧値との相関性が一層高められ、傾向誤差の無い測定精度が得られる。 Also, preferably, the diastolic blood pressure value determination section, the diastolic composite wave generation unit series of diastolic diastolic composite wave diastolic after one indicating the maximum amplitude of the composite wave generated by The cuff pressure corresponding to the composite wave is determined as the minimum blood pressure value. In this way, the correlation with the minimum blood pressure value obtained by the blood pressure measurement by the open method, that is, the direct method using a catheter, is further enhanced, and measurement accuracy without a tendency error can be obtained.

また、好適には、前記カフ圧の降下期間において逐次得られるカフ容積脈波と前記収縮期末期圧より低いカフ圧力ではカフ容積脈波にそれぞれ含まれる収縮期時相波からなる容積脈波の振幅値を結ぶエンベロープ(包絡線)の変曲点付近、或いは収縮期時相波の振幅をその最大脈振幅値で正規化した振幅比が所定の振幅比となる脈波に対応したカフ圧力を最高血圧値として決定する最高血圧値決定部を、さらに含む。このようにすれば、カフ容積脈波の収縮期時相波成分を用いて最高血圧値を決定するので、前記カフ容積脈波の反射波が重畳した脈波形の振幅が増加しエンベロープに複数の変曲点が現れる場合や脈波形の最大振幅に反射波成分が含まれる状況下で最高血圧値を決定するオシロメトリック法による場合に比較して、最高血圧値の精度が高められる。   Preferably, the cuff volume pulse wave sequentially obtained during the cuff pressure drop period and the volume pulse wave composed of the systolic time phase wave respectively included in the cuff volume pulse wave are lower than the end systolic pressure. The cuff pressure corresponding to the pulse wave whose amplitude ratio obtained by normalizing the amplitude of the systolic time phase wave with its maximum pulse amplitude value becomes a predetermined amplitude ratio near the inflection point of the envelope (envelope) connecting the amplitude values A systolic blood pressure value determining unit that determines the systolic blood pressure value is further included. In this way, since the systolic blood pressure value is determined using the systolic time phase component of the cuff volume pulse wave, the amplitude of the pulse waveform on which the reflected wave of the cuff volume pulse wave is superimposed increases, and a plurality of envelopes are added to the envelope. The accuracy of the systolic blood pressure value is improved as compared with the case of using the oscillometric method in which the systolic blood pressure value is determined under the situation where the inflection point appears or the reflected wave component is included in the maximum amplitude of the pulse waveform.

生体の被圧迫部位である上腕に巻き付けられる上腕用の圧迫帯を備えた本発明の一実施例の自動血圧測定装置を示している。1 shows an automatic blood pressure measurement device according to an embodiment of the present invention, which includes an upper arm compression band that is wound around an upper arm that is a compressed portion of a living body. 図1の圧迫帯の外周面を示す一部を切り欠いた図である。It is the figure which notched a part which shows the outer peripheral surface of the compression belt | band | zone of FIG. 図2の圧迫帯内に備えられた上流側膨張袋、中間膨張袋、および下流側膨張袋を示す平面図である。It is a top view which shows the upstream expansion bag, the intermediate | middle expansion bag, and the downstream expansion bag which were provided in the compression belt | band | zone of FIG. 図3の上流側膨張袋、中間膨張袋、および下流側膨張袋を幅方向に切断して示す断面図である。It is sectional drawing which cut | disconnects and shows the upstream expansion bag of FIG. 3, an intermediate | middle expansion bag, and a downstream expansion bag in the width direction. 図1の電子制御装置に備えられた制御機能の要部を説明するための機能ブロック線図である。It is a functional block diagram for demonstrating the principal part of the control function with which the electronic control apparatus of FIG. 1 was equipped. 血圧測定の開始時点からの時間経過に伴って低下するカフ内の圧力を示すカフ圧信号Spcを破線で例示し、そのカフ圧信号Spcに含まれる直流成分である圧迫圧Pcuffを実線で例示する図である。The cuff pressure signal Spc indicating the pressure in the cuff that decreases with the passage of time from the start time of blood pressure measurement is illustrated by a broken line, and the compression pressure Pcuff that is a direct current component included in the cuff pressure signal Spc is illustrated by a solid line. FIG. 共通の時間軸上において、カフ圧信号Spcに含まれる交流成分であるカフ容積脈波PVRを実線で示し、カフ容積脈波PVRの一次微分波形PVR’を破線で例示する図である。It is a figure which illustrates the cuff volume pulse wave PVR which is an alternating current component included in the cuff pressure signal Spc on a common time axis by a solid line, and illustrates the primary differential waveform PVR 'of the cuff volume pulse wave PVR by a broken line. カフ容積脈波PVRの一次微分波形PVR’の負の極小点が最小値を示す時点である収縮期末期圧ESBPの推定点を示す図である。It is a figure which shows the estimated point of the end systolic pressure ESBP which is a time of the negative minimum point of the primary differential waveform PVR 'of the cuff volume pulse wave PVR showing the minimum value. カフ容積脈波PVR、その一次微分波形PVR’、および二次微分波形PVR”を共通の時間軸上に示し、且つ、カフ容積脈波PVRの振幅A、および二次微分波形PVR”の負の極小点に相当する時点のカフ容積脈波PVR上の振幅値dを示す図である。The cuff volume pulse PVR, its first derivative waveform PVR ′, and the second derivative waveform PVR ″ are shown on a common time axis, and the amplitude A of the cuff volume pulse PVR and the negative derivative waveform PVR ″ are negative. It is a figure which shows the amplitude value d on the cuff volume pulse wave PVR at the time corresponding to the minimum point. 図5の電子制御装置に含まれるカフ圧制御部の制御作動を説明するタイムチャートである。It is a time chart explaining the control action of the cuff pressure control part contained in the electronic controller of FIG. カフ容積脈波PVRの立上り開始点Pfの定義を説明する図である。It is a figure explaining the definition of the starting point Pf of the cuff volume pulse wave PVR. 圧迫圧Pcuffが収縮期末期圧ESBPより低い区間で得られる一つのカフ容積脈波PVRから、それの立上り開始点Pfが一致し且つそのカフ容積脈波PVRの振幅にそれぞれ一致するように補正された基準波PVRb(収縮期時相波PVRsys)の波形を差し引くことで拡張期合成波PVRdiaが生成されることを説明する図である。From one cuff volume pulse wave PVR obtained in a section where the compression pressure Pcuff is lower than the end systolic pressure ESBP, the rising start point Pf of the cuff volume pulse wave PVR and the amplitude of the cuff volume pulse wave PVR are corrected. It is a figure explaining that the diastole synthetic wave PVRdia is produced | generated by subtracting the waveform of the reference wave PVRb (systolic time phase wave PVRsys). 圧迫圧Pcuffが収縮期末期圧ESBPより降下する過程で得られる複数のカフ容積脈波PVRから、それと立上り開始点Pfが一致し且つそのカフ容積脈波PVRの振幅にそれぞれ一致するように補正された基準波PVRb(収縮期時相波PVRsys)を差し引くことで拡張期合成波PVRdiaが生成されることを説明する図である。A plurality of cuff volume pulse waves PVR obtained in the process in which the compression pressure Pcuff drops below the end-systolic pressure ESBP is corrected so that the rising start point Pf coincides with the amplitude of the cuff volume pulse wave PVR. It is a figure explaining that the diastole synthetic wave PVRdia is produced | generated by subtracting the reference wave PVRb (systolic time phase wave PVRsys). 圧迫圧Pcuffの降下過程において逐次得られるカフ容積脈波PVRと、収縮期時相波PVRsysと、拡張期合成波PVRdiaとを、共通の時間軸上に示す図である。It is a figure which shows the cuff volume pulse wave PVR, the systolic time phase wave PVRsys, and the diastolic synthetic wave PVRdia which are sequentially obtained in the descending process of the compression pressure Pcuff on a common time axis. 図14のうちの拡張期合成波PVRdiaの最大振幅発生時点付近を示す部分拡大図である。It is the elements on larger scale which show the vicinity of the maximum amplitude generation | occurrence | production of the expansion period synthetic wave PVRdia of FIG. Wオシロメトリック法を用いて、圧迫圧力Pcuffの降下期間において逐次得られるカフ容積脈波PVRと前記収縮期末期圧より低いカフ圧力ではカフ容積脈波にそれぞれ含まれる収縮期時相波からなる容積脈波の振幅値を結ぶエンベロープ(包絡線)と、カフ容積脈波PVRの収縮期時相波の振幅の第1階差とその変曲点(矢印)とを示す図である。Using the W oscillometric method, the volume consisting of the cuff volume pulse wave PVR successively obtained during the period of decrease in the compression pressure Pcuff and the systolic time phase wave respectively included in the cuff volume pulse wave at a cuff pressure lower than the end systolic pressure. It is a figure which shows the 1st step difference of the amplitude (envelope) which connects the amplitude value of a pulse wave, the amplitude of the systolic time phase wave of the cuff volume pulse wave PVR, and its inflection point (arrow). Wオシロメトリック法を用いて、圧迫圧力Pcuffの降下期間において逐次得られるカフ容積脈波PVRと前記収縮期末期圧より低いカフ圧力ではカフ容積脈波にそれぞれ含まれる収縮期時相波からなる容積脈波の振幅値を結ぶエンベロープ(包絡線)と、反射波を含むカフ容積脈波PVRの振幅の第1階差と複数の変曲点(矢印)とを示す図である。Using the W oscillometric method, the volume consisting of the cuff volume pulse wave PVR successively obtained during the period of decrease in the compression pressure Pcuff and the systolic time phase wave respectively included in the cuff volume pulse wave at a cuff pressure lower than the end systolic pressure. It is a figure which shows the 1st difference of the amplitude (envelope) which connects the amplitude value of a pulse wave, the amplitude of the cuff volume pulse wave PVR containing a reflected wave, and several inflection points (arrow). 圧迫圧の降下期間に得られたカフ容積脈波PVRの主成分の時間幅Tを説明する図である。It is a figure explaining the time width T of the main component of the cuff volume pulse wave PVR obtained in the fall period of the compression pressure. 図5の電子制御装置による制御作動の要部を説明するフローチャートである。It is a flowchart explaining the principal part of the control action by the electronic controller of FIG. 実施例の自動血圧測定装置14のWオシロメトリック法により測定された最低血圧値DBPを縦軸に示し、観血法により測定された最低血圧値DBPdirectを横軸に示す相関図である。It is a correlation figure which shows the minimum blood pressure value DBP measured by the W oscillometric method of the automatic blood pressure measuring device 14 of an Example on a vertical axis | shaft, and shows the minimum blood pressure value DBPdirect measured by the open blood method on a horizontal axis. 生体の動脈血管の貫壁圧力Pt[mmHg]と血管断面積A[cm]との関係を示す図である。It is a figure which shows the relationship between the transmural pressure Pt [mmHg] of the biological artery blood vessel, and blood vessel sectional area A [cm < 2 >]. 図21により表示されるP−A曲線において、入力された圧力波に対応して出力される容積脈波の関係を説明する図である。It is a figure explaining the relationship of the volume pulse wave output corresponding to the input pressure wave in the PA curve displayed by FIG. 脈圧PP[mmHg]をパラメータとする圧迫圧Pcuffと容積脈波PVRの振幅のエンペローブとの関係を示す図である。It is a figure which shows the relationship between the compression pressure Pcuff which uses pulse pressure PP [mmHg] as a parameter, and the envelope of the amplitude of the volume pulse wave PVR.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、生体の一部である被圧迫部位、たとえば生体の肢体の1つである上腕10に巻き付けられた上腕用の圧迫帯12を備えた本発明の一例の自動血圧測定装置14を示している。この自動血圧測定装置14は、上腕10内の動脈16を止血するのに十分な値まで昇圧させた圧迫帯12の圧迫圧力を予め設定された降圧速度で降圧させる過程において、動脈16の脈動すなわち容積変化に応答して発生する圧力振動を含む圧迫帯12内の圧力を表わすカフ圧信号Spcを読み込むとともに、そのカフ圧信号Spcからその直流(DC)成分すなわち上腕10に対する圧迫圧力を表わすカフ圧Pcuffとその交流成分であるカフ容積脈波PVRとに分離し、それらカフ圧Pcuffおよびカフ容積脈波PVRに基づいてその生体の最高血圧値SBPおよび最低血圧値DBPを測定するものである。   FIG. 1 shows an automatic blood pressure measurement apparatus 14 according to an example of the present invention, which includes a compression band 12 for an upper arm that is wound around a pressed part that is a part of a living body, for example, the upper arm 10 that is one of the limbs of the living body. ing. This automatic blood pressure measurement device 14 pulsates the artery 16 in the process of lowering the compression pressure of the compression band 12 that has been increased to a value sufficient to stop the artery 16 in the upper arm 10 at a predetermined pressure reduction rate. The cuff pressure signal Spc representing the pressure in the compression band 12 including the pressure vibration generated in response to the volume change is read, and the direct current (DC) component, that is, the cuff pressure representing the compression pressure on the upper arm 10 is read from the cuff pressure signal Spc. It separates into Pcuff and the cuff volume pulse wave PVR which is the AC component, and measures the maximum blood pressure value SBP and the minimum blood pressure value DBP of the living body based on the cuff pressure Pcuff and the cuff volume pulse wave PVR.

図2は圧迫帯12の外周面を示す一部を切り欠いた図である。図2に示すように、圧迫帯12は、PVC等の合成樹脂により裏面が相互にラミネートされた合成樹脂繊維製の外周側面不織布20aおよび図示しない内周側不織布から成る帯状外袋20と、その帯状外袋20内において幅方向に順次収容され、たとえば軟質ポリ塩化ビニールシートなどの可撓性シートから構成されて独立して上腕10を圧迫可能な上流側膨張袋22、中間膨張袋24、および下流側膨張袋26とを備え、外周側面不織布20aの端部に取り付けられた面ファスナ28に前記内周側不織布の端部に取り付けられた図示しない起毛パイルが着脱可能に接着されることにより、上腕10に着脱可能に装着されるようになっている。上腕10に装着された状態においては、下流側膨張袋26は上流側膨張袋22および中間膨張袋24よりも上腕10内の動脈16の下流側に位置させられる。また、中間膨張袋24は下流側膨張袋26よりも上流側に位置させられ、上流側膨張袋22は下流側膨張袋26および中間膨張袋24よりも上流側に位置させられる。上流側膨張袋22、中間膨張袋24、および下流側膨張袋26は、幅方向に連ねられて前記上腕10を各々圧迫する独立した気室をそれぞれ有するとともに、管接続用コネクタ32、34、および36を外周面側に備えている。それら管接続用コネクタ32、34、および36は、外周側面不織布20aを通して圧迫帯12の外周面に露出されている。   FIG. 2 is a partially cutaway view showing the outer peripheral surface of the compression band 12. As shown in FIG. 2, the compression band 12 includes a belt-shaped outer bag 20 made of a synthetic resin fiber outer circumferential side nonwoven fabric 20 a and a inner circumferential side nonwoven fabric (not shown) whose back surfaces are laminated with a synthetic resin such as PVC. An upstream inflatable bag 22, an intermediate inflatable bag 24, which are sequentially accommodated in the width direction within the belt-like outer bag 20 and are made of a flexible sheet such as a soft polyvinyl chloride sheet and can independently press the upper arm 10. A raised pile (not shown) attached to the end of the inner peripheral nonwoven fabric is detachably bonded to a hook and loop fastener 28 attached to the end of the outer peripheral side nonwoven fabric 20a. The upper arm 10 is detachably mounted. When attached to the upper arm 10, the downstream inflation bag 26 is positioned on the downstream side of the artery 16 in the upper arm 10 with respect to the upstream inflation bag 22 and the intermediate inflation bag 24. Further, the intermediate expansion bag 24 is positioned upstream of the downstream expansion bag 26, and the upstream expansion bag 22 is positioned upstream of the downstream expansion bag 26 and the intermediate expansion bag 24. The upstream inflatable bag 22, the intermediate inflatable bag 24, and the downstream inflatable bag 26 have independent air chambers that are connected in the width direction and press the upper arm 10 respectively, and have pipe connecting connectors 32, 34, and 36 is provided on the outer peripheral surface side. The pipe connecting connectors 32, 34, and 36 are exposed to the outer peripheral surface of the compression band 12 through the outer peripheral side nonwoven fabric 20a.

図3は圧迫帯12内に備えられた上流側膨張袋22、中間膨張袋24、および下流側膨張袋26を示す平面図であり、図4はそれらを幅方向すなわち図3の矢印a方向に切断した断面図である。上流側膨張袋22、中流側膨張袋24、および下流側膨張袋26は、それらにより圧迫された動脈16の容積変化に応答して発生する圧力振動である脈波を検出するためのものであり、それぞれ長手状を成している。上流側膨張袋22および下流側膨張袋26は中間膨張袋24の両側に隣接した状態で配置されている。また、中間膨張袋24は上流側膨張袋22および下流側膨張袋26の間に挟まれた状態で圧迫帯12の幅方向の中央部に配置されている。なお、圧迫帯12が前記上腕10に巻き付けられた状態においては、上流側膨張袋22および下流側膨張袋26は上記上腕10の長手方向に所定間隔を隔てて位置させられ、また、中間膨張袋24は上記上腕10の長手方向において連なるように上記上流側膨張袋22および下流側膨張袋26の間に配置させられる。   3 is a plan view showing the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 provided in the compression band 12, and FIG. 4 shows them in the width direction, that is, in the direction of arrow a in FIG. It is sectional drawing cut | disconnected. The upstream expansion bag 22, the middle flow expansion bag 24, and the downstream expansion bag 26 are for detecting a pulse wave that is pressure vibration generated in response to a volume change of the artery 16 compressed by them. , Each has a longitudinal shape. The upstream expansion bag 22 and the downstream expansion bag 26 are arranged adjacent to both sides of the intermediate expansion bag 24. Further, the intermediate expansion bag 24 is disposed at the center in the width direction of the compression band 12 while being sandwiched between the upstream expansion bag 22 and the downstream expansion bag 26. In the state where the compression band 12 is wound around the upper arm 10, the upstream expansion bag 22 and the downstream expansion bag 26 are positioned at a predetermined interval in the longitudinal direction of the upper arm 10, and the intermediate expansion bag 24 is arranged between the upstream expansion bag 22 and the downstream expansion bag 26 so as to be continuous in the longitudinal direction of the upper arm 10.

図4に示すように、中間膨張袋24は所謂マチ構造の側縁部を両側に備えている。すなわち、中間膨張袋24の上腕10の長手方向における両端部には、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る一対の折込溝24fがそれぞれ形成されている。そして、上流側膨張袋22および下流側膨張袋26の中間膨張袋24に隣接する側の隣接側端部22aおよび26aが上記一対の折込溝24f内に差し入れられて配置されるようになっている。これにより、中間膨張袋24の両端部24aおよび24bと上流側膨張袋22の隣接側端部22aおよび下流側膨張袋26の隣接側端部26aとが相互に重ねられた構造すなわちオーバラップ構造となるので、上流側膨張袋22、中間膨張袋24、および下流側膨張袋26が等圧で上腕10を圧迫したときにそれらの境界付近においても比較的均等な圧力分布が得られる。   As shown in FIG. 4, the intermediate inflatable bag 24 has side edges of a so-called gusset structure on both sides. That is, a pair of folding grooves 24f made of flexible sheets are formed at both ends in the longitudinal direction of the upper arm 10 of the intermediate expansion bag 24 so as to be closer to each other so as to become closer to each other. ing. The adjacent end portions 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 adjacent to the intermediate expansion bag 24 are inserted into the pair of folding grooves 24f and arranged. . Thereby, both ends 24a and 24b of the intermediate expansion bag 24, the adjacent end 22a of the upstream expansion bag 22, and the adjacent end 26a of the downstream expansion bag 26 are overlapped with each other, that is, an overlap structure. Therefore, when the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 press the upper arm 10 with equal pressure, a relatively uniform pressure distribution is obtained even in the vicinity of the boundary between them.

上流側膨張袋22および下流側膨張袋26も、所謂マチ構造の側縁部を中間膨張袋24とは反対側の端部22bおよび26bに備えている。すなわち、上流側膨張袋22および下流側膨張袋26の中間膨張袋24とは反対側の端部22bおよび26bには、互いに接近するほど深くなるように互いに接近する方向に折れ込まれた可撓性シートから成る折込溝22fおよび26fがそれぞれ形成されている。それら折込溝22fおよび26fを構成するシートは、幅方向に飛び出ないように、上流側膨張袋22および下流側膨張袋26内に配置された貫通穴を備える接続シート38、40を介してその反対側部分すなわち中間膨張袋24側の部分に接続されている。これにより、上流側膨張袋22および下流側膨張袋26の端部22bおよび26bにおいても前記上腕10の動脈16に対する圧迫圧力が他の部分と同様に得られるので、圧迫帯12の幅方向の有効圧迫幅がその幅寸法と同等になる。圧迫帯12の幅方向は12cm程度であり、その幅方向に3つの上流側膨張袋22、中間膨張袋24、および下流側膨張袋26が配置された構造であるから、それぞれが実質的に4cm程度の幅寸法とならざるを得ない。このような狭い幅寸法であっても圧迫機能を十分に発生させるために、中間膨張袋24の両端部24aおよび24bと上流側膨張袋22および下流側膨張袋26の隣接側端部22aおよび26aとが相互に重ねられたオーバラップ構造とされるとともに、上流側膨張袋22および下流側膨張袋26の中間膨張袋24とは反対側の端部22bおよび26bが所謂マチ構造の側縁部とされている。   The upstream inflatable bag 22 and the downstream inflatable bag 26 also have side edges of a so-called gusset structure at the end portions 22 b and 26 b opposite to the intermediate inflatable bag 24. That is, the end portions 22b and 26b on the opposite side of the intermediate expansion bag 24 of the upstream expansion bag 22 and the downstream expansion bag 26 are flexibly folded in a direction approaching each other so as to become deeper as they approach each other. Folding grooves 22f and 26f made of a conductive sheet are respectively formed. The sheets constituting the folding grooves 22f and 26f are opposite to each other via connection sheets 38 and 40 having through holes arranged in the upstream expansion bag 22 and the downstream expansion bag 26 so as not to protrude in the width direction. It is connected to the side portion, that is, the portion on the intermediate expansion bag 24 side. As a result, the compression pressure on the artery 16 of the upper arm 10 can be obtained at the end portions 22b and 26b of the upstream expansion bag 22 and the downstream expansion bag 26 in the same manner as the other portions. The compression width is equivalent to the width dimension. The width direction of the compression band 12 is about 12 cm, and since the three upstream expansion bags 22, the intermediate expansion bag 24, and the downstream expansion bag 26 are arranged in the width direction, each is substantially 4 cm. It must be a width dimension of about. In order to generate a sufficient compression function even with such a narrow width dimension, both end portions 24a and 24b of the intermediate expansion bag 24 and adjacent end portions 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 are used. And end portions 22b and 26b of the upstream side expansion bag 22 and the downstream side expansion bag 26 opposite to the intermediate expansion bag 24 are side edges of a so-called gusset structure. Has been.

上流側膨張袋22および下流側膨張袋26の中間膨張袋24側の端部22aおよび26aと、それが差し入れられている一対の折込溝24fの内壁面すなわち相対向する溝側面との間には、圧迫帯12の長手方向の曲げ剛性よりもその圧迫帯12の幅方向の曲げ剛性が高い剛性の異方性を有する長手状の遮蔽部材42がそれぞれ介在させられている。この遮蔽部材42は、上流側膨張袋22および下流側膨張袋26、或いは中間膨張袋24と同様の長さ寸法を備えている。   Between the end portions 22a and 26a of the upstream expansion bag 22 and the downstream expansion bag 26 on the side of the intermediate expansion bag 24 and the inner wall surfaces of the pair of folding grooves 24f into which they are inserted, that is, the opposite groove side surfaces In addition, longitudinal shielding members 42 having rigidity anisotropy having a bending rigidity in the width direction of the compression band 12 higher than that in the longitudinal direction of the compression band 12 are interposed. The shielding member 42 has the same length as the upstream expansion bag 22 and the downstream expansion bag 26 or the intermediate expansion bag 24.

上記遮蔽部材42は、たとえば、上腕10の長手方向すなわち圧迫帯12の幅方向に平行な樹脂製の複数本の可撓性中空管44が互いに平行な状態で、上腕10の周方向すなわち圧迫帯12の長手方向に連ねて配列されるとともに、それら可撓性中空管44が型成形或いは接着により直接に或いは粘着テープなどの可撓性シート等の他の部材を介して間接的に相互に連結されることにより構成されている。上記遮蔽部材42は、上流側膨張袋22および下流側膨張袋26の中間膨張袋24側の端部22aおよび26aの外周側の複数箇所に設けられた複数の掛止シート46に掛け止められている。   The shielding member 42 is, for example, the circumferential direction of the upper arm 10, that is, the compression, in a state where a plurality of resin-made flexible hollow tubes 44 parallel to the longitudinal direction of the upper arm 10, that is, the width direction of the compression band 12, are parallel to each other. The flexible hollow tubes 44 are arranged in a row in the longitudinal direction of the belt 12, and the flexible hollow tubes 44 are directly or indirectly connected to each other by molding or bonding, or indirectly through another member such as a flexible sheet such as an adhesive tape. It is comprised by connecting to. The shielding member 42 is latched by a plurality of latching sheets 46 provided at a plurality of positions on the outer peripheral side of the end portions 22a and 26a of the upstream inflation bag 22 and the downstream inflation bag 26 on the intermediate inflation bag 24 side. Yes.

図1に戻って、自動血圧測定装置14においては、空気ポンプ50、急速排気弁52、および排気制御弁54が主配管56にそれぞれ接続されている。その主配管56からは、上流側膨張袋22に接続された第1分岐管58、中間膨張袋24に接続された第2分岐管62、および下流側膨張袋26に接続された第3分岐管64がそれぞれ分岐させられている。上記第1分岐管58は、空気ポンプ50と上流側膨張袋22との間を直接開閉するための第1開閉弁E1を直列に備えている。また、上記主配管56は、空気ポンプ50、急速排気弁52、および排気制御弁54と、上記各分岐管との間を直接開閉するための第2開閉弁E2を直列に備えている。また、上記第3分岐管64は、空気ポンプ50と下流側膨張袋26との間を直接開閉するための第3開閉弁E3を直列に備えている。そして、上流側膨張袋22内の圧力値を検出するための第1圧力センサT1が第1分岐管58に接続され、中間膨張袋24内の圧力値を検出するための第2圧力センサT2が第2分岐管62に接続され、下流側膨張袋26内の圧力値を検出するための第3圧力センサT3が第3分岐管64に接続されている。   Returning to FIG. 1, in the automatic blood pressure measurement device 14, an air pump 50, a quick exhaust valve 52, and an exhaust control valve 54 are connected to the main pipe 56. From the main pipe 56, a first branch pipe 58 connected to the upstream expansion bag 22, a second branch pipe 62 connected to the intermediate expansion bag 24, and a third branch pipe connected to the downstream expansion bag 26. 64 is branched. The first branch pipe 58 includes a first on-off valve E1 in series for directly opening and closing between the air pump 50 and the upstream expansion bag 22. The main pipe 56 includes a second open / close valve E2 in series for directly opening and closing the air pump 50, the quick exhaust valve 52, the exhaust control valve 54, and the branch pipes. The third branch pipe 64 includes a third on-off valve E3 in series for directly opening and closing the space between the air pump 50 and the downstream expansion bag 26. A first pressure sensor T1 for detecting the pressure value in the upstream expansion bag 22 is connected to the first branch pipe 58, and a second pressure sensor T2 for detecting the pressure value in the intermediate expansion bag 24 is provided. A third pressure sensor T 3 connected to the second branch pipe 62 and detecting the pressure value in the downstream expansion bag 26 is connected to the third branch pipe 64.

電子制御装置70には、第1圧力センサT1、第2圧力センサT2、および第3圧力センサT3から、上流側膨張袋22内の圧力値すなわち上流側膨張袋22の圧迫圧力値PC1を示す第1カフ圧信号、中間膨張袋24内の圧力値すなわち中間膨張袋24の圧迫圧力値PC2を示す第2カフ圧信号、および下流側膨張袋26内の圧力値すなわち下流側膨張袋26の圧迫圧力値PC3を示す第3カフ圧信号がそれぞれ供給される。電子制御装置70は、CPU72、RAM74、ROM76、および図示しないI/Oポートなどを含む所謂マイクロコンピュータである。この電子制御装置70は、CPU72がRAM74の記憶機能を利用しつつ予めROM76に記憶されたプログラムにしたがって入力信号を処理し、電動式の空気ポンプ50、急速排気弁52、排気制御弁54、第1開閉弁E1、第2開閉弁E2、および第3開閉弁E3をそれぞれ制御することにより、膨張袋22、24、および26を用いて同じ圧迫圧で上腕10を圧迫するとともに、その圧迫圧を予め設定された速度で降下させる過程で、上腕10の動脈16の容積変化に応答してそれぞれ発生する膨張袋22、24、および26内の圧力を表わす第1カフ圧信号、第2カフ圧信号、第3カフ圧信号をそれぞれ採取する。また、電子制御装置70は、たとえば徐々に降下するカフ圧を示す第2カフ圧信号を平滑化処理した後でローパスフィルタを通すことにより第2カフ圧信号のDC成分を抽出するとともに、第2カフ圧信号からDC成分を差し引くことで、カフ圧信号に含まれる交流成分であるカフ容積脈波信号SM2を生成し、以下に示すWオシロメトリック法を用いてそのカフ容積脈波信号SM2に基づいて前記生体の収縮期脈波の振幅のエンベロープから最高血圧値SBP、拡張期脈波の振幅のエンベロープから最低血圧値DBPを算出し、表示装置78にその演算結果である測定値を表示させる。この電子制御装置70には、血圧値測定起動部80からの出力信号も供給される。この血圧値測定起動部80は、図示しない起動釦を用いた手動による起動操作に応答して、或いは予め設定された血圧測定周期毎に、血圧測定開始の指令信号を出力するものである。   The electronic control unit 70 includes a first pressure sensor T1, a second pressure sensor T2, and a third pressure sensor T3 that indicate the pressure value in the upstream inflation bag 22, that is, the compression pressure value PC1 of the upstream inflation bag 22. 1 cuff pressure signal, second cuff pressure signal indicating the pressure value in the intermediate expansion bag 24, that is, the compression pressure value PC2 of the intermediate expansion bag 24, and pressure value in the downstream expansion bag 26, that is, the compression pressure of the downstream expansion bag 26 A third cuff pressure signal indicating the value PC3 is supplied. The electronic control unit 70 is a so-called microcomputer including a CPU 72, a RAM 74, a ROM 76, an I / O port (not shown), and the like. In the electronic control unit 70, the CPU 72 processes input signals in accordance with a program stored in the ROM 76 in advance using the storage function of the RAM 74, and the electric air pump 50, the quick exhaust valve 52, the exhaust control valve 54, By controlling the first on-off valve E1, the second on-off valve E2, and the third on-off valve E3, the upper arm 10 is compressed with the same compression pressure using the expansion bags 22, 24, and 26, and the compression pressure is reduced. A first cuff pressure signal and a second cuff pressure signal representing the pressures in the inflation bags 22, 24, and 26 respectively generated in response to the volume change of the artery 16 of the upper arm 10 in the process of lowering at a preset speed. The third cuff pressure signal is sampled. Further, the electronic control unit 70 extracts the DC component of the second cuff pressure signal by smoothing the second cuff pressure signal indicating the gradually decreasing cuff pressure and passing the low pass filter, for example. By subtracting the DC component from the cuff pressure signal, a cuff volume pulse wave signal SM2 which is an AC component included in the cuff pressure signal is generated, and based on the cuff volume pulse wave signal SM2 using the W oscillometric method shown below. The systolic pulse wave amplitude envelope of the living body is calculated from the systolic blood pressure value SBP and the diastolic pulse wave amplitude envelope is calculated from the diastolic pulse wave amplitude envelope, and the measurement value as the calculation result is displayed on the display device 78. The electronic control device 70 is also supplied with an output signal from the blood pressure value measurement activation unit 80. The blood pressure value measurement activation unit 80 outputs a command signal for starting blood pressure measurement in response to a manual activation operation using an activation button (not shown) or every preset blood pressure measurement cycle.

図5は、電子制御装置70に備えられた制御機能の要部を説明するための機能ブロック線図である。図5において、カフ圧制御部82は、血圧測定開始の指令信号が血圧値測定起動部80から供給された場合に、急速排気弁52および排気制御弁54を閉じ、第1開閉弁E1、第2開閉弁E2、および第3開閉弁E3を開いた状態で空気ポンプ50を起動させることにより、上流側膨張袋22、中間膨張袋24、および下流側膨張袋26による上腕10の動脈16への圧迫圧力値PCをその動脈16における最高血圧値SBPよりも充分に高い値に予め設定された昇圧目標圧力値PCM(たとえば180[mmHg])までそれぞれ急速に昇圧させる。例えば、中間膨張袋24の圧迫圧力値PC2が上記昇圧目標圧力値PCM以上となるまで各膨張袋を昇圧する。続いて、カフ圧制御部82は、排気制御弁54を用いて、上記昇圧させた上流側膨張袋22、中間膨張袋24、および下流側膨張袋26の圧迫圧力値PCをたとえば3〜5[mmHg/sec]程度に予め設定された徐速降圧速度でそれぞれ同時に徐速降圧させ、上流側膨張袋22、中間膨張袋24、および下流側膨張袋26で均等な圧で圧迫される上腕10の圧迫圧力を降下させる。そして、カフ圧制御部82は、中間膨張袋24の圧迫圧力値PC2が、上記動脈16における最低血圧値DBPよりも充分に低い値に予め設定された測定終了圧力値PCE(たとえば30[mmHg])よりも小さくなったときに、急速排気弁52を用いて上流側膨張袋22、中間膨張袋24、および下流側膨張袋26内の圧力をそれぞれ大気圧まで排圧する。   FIG. 5 is a functional block diagram for explaining the main part of the control function provided in the electronic control unit 70. In FIG. 5, the cuff pressure control unit 82 closes the quick exhaust valve 52 and the exhaust control valve 54 when the command signal for starting the blood pressure measurement is supplied from the blood pressure value measurement starting unit 80, and the first on-off valve E 1, By starting the air pump 50 with the second on-off valve E2 and the third on-off valve E3 open, the upstream inflating bag 22, the intermediate inflating bag 24, and the downstream inflating bag 26 are connected to the artery 16 of the upper arm 10. The compression pressure value PC is rapidly raised to a pressure increase target pressure value PCM (for example, 180 [mmHg]) set in advance to a value sufficiently higher than the maximum blood pressure value SBP in the artery 16. For example, the pressure of each expansion bag is increased until the compression pressure value PC2 of the intermediate expansion bag 24 becomes equal to or higher than the pressure increase target pressure value PCM. Subsequently, the cuff pressure control unit 82 uses the exhaust control valve 54 to set the pressure values PC of the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 that have been increased to 3-5 [ mmHg / sec] of the upper arm 10 that is gradually depressurized at a predetermined depressurization speed set in advance and compressed with equal pressure by the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26. Decrease pressure. Then, the cuff pressure control unit 82 sets the measurement end pressure value PCE (for example, 30 [mmHg]) in which the compression pressure value PC2 of the intermediate inflation bag 24 is set to a value sufficiently lower than the minimum blood pressure value DBP in the artery 16. ), The pressure in the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 is discharged to atmospheric pressure using the quick exhaust valve 52.

カフ圧信号記憶部84は、カフ圧制御部82により上流側膨張袋22、中間膨張袋24、および下流側膨張袋26の圧迫圧力値PCがそれぞれ徐速降圧させられる過程において、第1圧力センサT1、第2圧力センサT2、および第3圧力センサT3からの出力信号、とりわけ第2圧力センサT2からの出力信号をカフ圧信号Spcとして用いる。   The cuff pressure signal storage unit 84 includes a first pressure sensor in a process in which the cuff pressure control unit 82 gradually decreases the pressure values PC of the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26, respectively. The output signals from T1, the second pressure sensor T2, and the third pressure sensor T3, particularly the output signal from the second pressure sensor T2, are used as the cuff pressure signal Spc.

カフ容積脈波生成部86は、たとえば血圧測定中の脈波の平均周期の間隔の移動平均を行う実質的なローパスフィルタ処理を上記カフ圧信号Spcに施すことで、そのカフ圧信号SpcからそのDC成分すなわち上腕10に対する圧迫圧力を表わす圧迫圧(カフ圧)Pcuffを生成するとともに、カフ圧信号Spcとカフ圧Pcuffとの差分を求めることでカフ圧信号Spcに含まれる交流成分であるカフ容積脈波PVRとを生成する。たとえば図6の破線はカフ圧信号Spcを示し、図6の実線は圧迫圧Pcuffを示している。また、図7の実線は、カフ容積脈波PVRを示している。   The cuff volume pulse wave generation unit 86 performs, for example, a substantial low-pass filter process for performing a moving average of an interval of an average period of a pulse wave during blood pressure measurement on the cuff pressure signal Spc, so that the cuff pressure signal Spc A cuff volume, which is an AC component included in the cuff pressure signal Spc, is generated by generating a DC component, that is, a compression pressure (cuff pressure) Pcuff representing a compression pressure on the upper arm 10 and obtaining a difference between the cuff pressure signal Spc and the cuff pressure Pcuff. A pulse wave PVR is generated. For example, the broken line in FIG. 6 indicates the cuff pressure signal Spc, and the solid line in FIG. 6 indicates the compression pressure Pcuff. Moreover, the solid line of FIG. 7 has shown the cuff volume pulse wave PVR.

収縮期末期圧決定部88は、カフ容積脈波PVRをたとえばカットオフ周波数が0.5[Hz]のハイパスフィルタを通すことにより、図7の破線および図8に示されるカフ容積脈波PVRの一次微分波形PVR’を求める。次いで、その一次微分波形PVR’の負の極小値が最小となったときの圧迫圧Pcuffを生体の心臓の収縮期末期圧ESBPとして決定する。一次微分波形PVR’の負の極小値は心臓の拡張期に発生する成分である拡張期波が表れると減衰する性質があることを利用して、一次微分波形PVR’の負の極小値が最小となったときの圧迫圧Pcuffを収縮期末期圧として決定するものである。 Systolic end pressure determination unit 88, by the cuff volume pulse PVR e.g. cutoff frequency through a high-pass filter of 0.5 [Hz], mosquitoes mutabilis Sekimyakuha shown in dashed lines and 8 in FIG. 7 First-order differential waveform PVR ′ of PVR is obtained. Next, the compression pressure Pcuff when the negative minimum value of the primary differential waveform PVR ′ is minimized is determined as the end-systolic pressure ESBP of the living heart. The negative minimum value of the first-order differential waveform PVR ′ has the property that the negative minimum value of the first-order differential waveform PVR ′ has the property of being attenuated when the diastolic wave that is a component generated in the diastole of the heart appears. The compression pressure Pcuff at that time is determined as the end-systolic pressure.

また、収縮期末期圧決定部88は、上記に加えて或いはそれとは別に、カフ容積脈波PVRをたとえばカットオフ周波数が1.0[Hz]のハイパスフィルタを2回通すことにより、図9の2点鎖線に示されるカフ容積脈波PVRの二次微分波形PVR”を求める。次いで、その共通の時間軸上において、カフ容積脈波PVRの二次微分波形PVR”の負の極小点に相当する時点のカフ容積脈波PVR上の振幅値dが、そのカフ容積脈波PVRの振幅Aの予め定められた所定割合たとえば50%を超えたときの圧迫圧Pcuffを収縮期末期圧ESBPとして決定する。この所定割合は、予め実験的に求められたものである。   In addition to or in addition to the above, the end systolic pressure determining unit 88 passes the cuff volume pulse wave PVR through, for example, a high-pass filter having a cutoff frequency of 1.0 [Hz] twice as shown in FIG. A second-order differential waveform PVR ″ of the cuff volume pulse wave PVR shown by a two-dot chain line is obtained. Next, it corresponds to the negative minimum point of the second-order differential waveform PVR ″ of the cuff volume pulse wave PVR on the common time axis. The compression pressure Pcuff when the amplitude value d on the cuff plethysmogram PVR at the point of time exceeds a predetermined ratio, for example, 50%, of the amplitude A of the cuff plethysmogram PVR is determined as the end systolic pressure ESBP. To do. This predetermined ratio is obtained experimentally in advance.

収縮期時相波生成部90は、一連のカフ容積脈波PVRのうち圧迫帯12(中間膨張袋24)内の圧迫圧(カフ圧)Pcuffが生体の心臓の収縮期末期圧ESBPであるときに発生した1つのカフ容積脈波PVRである収縮期末期圧容積脈波PVRESBPよりも1つ前に発生した容積脈波を基準波PVRbとし、圧迫圧Pcuffが生体の収縮期末期圧ESBP以下であるときに順次得られる各カフ容積脈波PVRのうちそのカフ容積脈波PVRに含まれる拡張期合成波PVRdiaの重畳開始点の振幅と同等となるように前記基準波PVRbの振幅をそれぞれ調整(補正)した収縮期時相波PVRsysを、それぞれ生成する。すなわち、収縮期時相波生成部90は、一連のカフ容積脈波PVRのうち圧迫帯12(中間膨張袋24)内の圧迫圧(カフ圧)Pcuffが生体の心臓の収縮期末期圧ESBPであるときに発生した1つのカフ容積脈波PVRである収縮期末期圧容積脈波PVRESBPよりも1つ前に発生した容積脈波を基準波PVRbとする基準波決定部92と、圧迫圧(カフ圧)Pcuffが生体の心臓の収縮期末期圧ESBPより低い区間で得られたカフ容積脈波PVRの二次微分波PVR”の正から負に向かう零クロス点で且つ一次微分波PVR’の極小点に対応する、カフ容積脈波PVRの基線BL上の点を反射波重畳開始点Prsとして決定する反射波重畳開始点決定部94と、圧迫圧(カフ圧)Pcuffが生体の心臓の収縮期末期圧ESBPより低い区間で複数得られたうちの1つのカフ容積脈波PVRと基準波PVRbとを共通の時間軸上で相互の立上り開始点(フット点)Pfを一致させたときの、前記収縮期時相波の基準波の最大振幅時刻より遅れて上記反射波重畳開始点がある場合にはその基準波の最大振幅値をAESBPとし、その時刻のカフ容積脈波振幅をAPVRとし、前期反射波重畳開始点が基準波の最大振幅時刻より前の脈波上昇脚に存在する場合には、そのカフ容積脈波の前記反射波重畳開始点における振幅値をAPVRとし、上記基準波の前記反射波重畳開始点における振幅値をAESBPとして、その振幅比Aratio(=APVR/AESBP)を個々のカフ容積脈波PVR毎に求め、その振幅比Aratioを基準波の最大振幅値AESBPに乗算して個々のカフ容積脈波PVRの振幅に基準波PVRbの振幅をそれぞれ一致させる補正をすることで収縮期時相波PVRsysを生成する基準波補正部96とを、含む。 The systolic time phase wave generation unit 90, when the compression pressure (cuff pressure) Pcuff in the compression band 12 (intermediate inflation bag 24) in the series of cuff volume pulse waves PVR is the end-systolic pressure ESBP of the living heart. The plethysmogram generated one time before the end-systolic pressure plethysmogram PVR ESBP, which is one cuff plethysmogram PVR, is used as the reference wave PVRb, and the compression pressure Pcuff is equal to or lower than the end-systolic end-pressure ESBP The amplitude of the reference wave PVRb is adjusted to be equal to the amplitude of the superposition start point of the diastolic synthesized wave PVRdia included in the cuff volume pulse wave PVR among the cuff volume pulse waves PVR obtained sequentially when Each (corrected) systolic time phase wave PVRsys is generated. That is, the systolic time phase wave generation unit 90 includes the compression pressure (cuff pressure) Pcuff in the compression band 12 (intermediate inflation bag 24) of the series of cuff volume pulse waves PVR as the end-systolic pressure ESBP of the living heart. a reference wave determination unit 92 as a reference wave PVRb the volume pulse wave generated in one before the one cuff volume pulse PVR is a systolic end container Sekimyakuha PVR ESBP that occurred when a certain, pressing pressure ( Cuff pressure) The zero-crossing point of the second-order differential wave PVR of the cuff volume pulse wave PVR obtained in the interval where Pcuff is lower than the end-systolic pressure ESBP of the living heart and the first-order differential wave PVR ′. A reflected wave superimposition start point determination unit 94 that determines a point on the base line BL of the cuff volume pulse wave PVR corresponding to the minimum point as a reflected wave superimposition start point Prs, and compression pressure (cuff pressure) Pcuff is a contraction of the heart of the living body End of term pressure ESB When one of the cuff plethysmogram PVR and the reference wave PVRb obtained in a plurality of lower intervals is made to coincide with each other at the rising start point (foot point) Pf on a common time axis If the reflected wave superposition start point is behind the maximum amplitude time of the reference wave of the phase wave, the maximum amplitude value of the reference wave is A ESBP , the cuff volume pulse wave amplitude at that time is A PVR , and the previous reflection When the wave superposition start point exists in the pulse wave rising leg before the maximum amplitude time of the reference wave, the amplitude value at the reflected wave superposition start point of the cuff volume pulse wave is A PVR , and the reference wave the amplitude value at the reflected wave overlap starting point as a ESBP, the amplitude ratio a ratio (= a PVR / a ESBP) and determined for each individual cuff volume pulse PVR, the maximum amplitude value of the reference wave and the amplitude ratio a ratio A ESB And a reference wave correction unit 96 that generates a systolic time phase wave PVRsys by correcting P so as to make the amplitude of the reference wave PVRb coincide with the amplitude of each cuff volume pulse wave PVR.

図10は、上記反射波重畳開始点決定部94におけるカフ容積脈波PVR内の反射波重畳開始点Prsの決定方法を説明する図である。図10において、共通の時間軸上のカフ容積脈波PVRの一次微分波PVR’およびカフ容積脈波PVRの二次微分波PVR”において、二次微分波PVR”の零クロス点Z、および一次微分波PVR’の極小点PBが求められ、二次微分波PVR”の零クロス点Zで且つ一次微分波PVR’の極小点PBに対応する、カフ容積脈波PVRの基線BL上の変曲点が、反射波重畳開始点Prsとして決定される。   FIG. 10 is a diagram for explaining a method for determining the reflected wave superposition start point Prs in the cuff volume pulse wave PVR in the reflected wave superposition start point determination unit 94. In FIG. 10, in the first-order differential wave PVR ′ of the cuff volume pulse wave PVR and the second-order differential wave PVR ″ of the cuff volume pulse wave PVR on the common time axis, the zero-cross point Z of the second-order differential wave PVR ″ and the first-order wave A minimum point PB of the differential wave PVR ′ is obtained, and the inflection on the base line BL of the cuff volume pulse wave PVR corresponding to the zero cross point Z of the secondary differential wave PVR ″ and the minimum point PB of the primary differential wave PVR ′. The point is determined as the reflected wave superposition start point Prs.

また、上記基準波補正部96において、カフ容積脈波PVRおよび基準波PVRbの立上り開始点(フット点)Pfは、図11に示すように求められる。たとえば図11に示されているカフ容積脈波PVRにおいて、カフ容積脈波PVRの振幅の20[%]に相当する点P20と50[%]に相当する点P50とを結ぶ直線Lがカフ容積脈波PVRの基線BLと交差する点が、基準波PVRbの立上り開始点(フット点)Pfとして決定される。   Further, in the reference wave correction unit 96, rising start points (foot points) Pf of the cuff volume pulse wave PVR and the reference wave PVRb are obtained as shown in FIG. For example, in the cuff volume pulse wave PVR shown in FIG. 11, a straight line L connecting a point P20 corresponding to 20 [%] of the amplitude of the cuff volume pulse wave PVR and a point P50 corresponding to 50 [%] is a cuff volume. A point that intersects the base line BL of the pulse wave PVR is determined as a rising start point (foot point) Pf of the reference wave PVRb.

拡張期合成波生成部98は、圧迫圧Pcuffが収縮期末期圧ESBPより低い区間で順次得られる各カフ容積脈波PVRから、それの立上り開始点Pfが一致し且つそのカフ容積脈波PVRの振幅にそれぞれ一致するように補正された基準波PVRbすなわち収縮期時相波PVRsys(=Aratio×PVRb)の波形をそれぞれ差し引くことで拡張期合成波PVRdiaを、図12或いは図13に示すようにそれぞれ生成する。図12では、1つの波形について、2点鎖線で示されているカフ容積脈波PVRから、その振幅に一致するように補正された基準波PVRbすなわち収縮期時相波PVRsys(破線で示された波形)が差し引かれることにより生成された拡張期合成波PVRdiaが、実線で示されている。図13では、圧迫圧Pcuffが収縮期末期圧ESBPより降下する過程で得られた複数のカフ容積脈波PVRが2点鎖線で示され、そのカフ容積脈波PVRの立上り開始点Pfが一致し且つそのカフ容積脈波PVRの振幅にそれぞれ一致するように補正された基準波PVRbすなわち収縮期時相波PVRsysが破線で示され、カフ容積脈波PVRから収縮期時相波PVRsysを差し引くことで得られた拡張期合成波PVRdiaが、実線で示されている。この拡張期合成波PVRdiaは、動脈の分岐点から反射される反射波と拡張期に発生する拡張期時相波との合成波である。図13の矢印は、収縮期末期圧ESBPに対応する時点と収縮期末期圧容積脈波PVRESBPとを示している。 The diastolic synthetic wave generation unit 98 matches the rising start point Pf of each cuff plethysmogram PVR obtained sequentially in a section where the compression pressure Pcuff is lower than the end-systolic pressure ESBP, and the cuff plethysmogram PVR The diastolic composite wave PVRdia is obtained by subtracting the waveform of the reference wave PVRb, that is, the systolic phase wave PVRsys (= A ratio × PVRb) corrected to match the amplitude, as shown in FIG. 12 or FIG. Generate each. In FIG. 12, a reference wave PVRb, that is, a systolic time phase wave PVRsys (shown by a broken line) corrected to match the amplitude from the cuff volume pulse wave PVR indicated by a two-dot chain line for one waveform. The diastolic synthetic wave PVRdia generated by subtracting the waveform is shown by a solid line. In FIG. 13, a plurality of cuff volume pulse waves PVR obtained in the process in which the compression pressure Pcuff drops below the end-systolic pressure ESBP is indicated by a two-dot chain line, and the rising start points Pf of the cuff volume pulse waves PVR coincide with each other. In addition, the reference wave PVRb corrected to match the amplitude of the cuff volume pulse wave PVR, that is, the systolic time phase wave PVRsys is indicated by a broken line, and the systolic time wave PVRsys is subtracted from the cuff volume pulse wave PVR. The obtained diastolic synthetic wave PVRdia is indicated by a solid line. The diastolic synthesized wave PVRdia is a synthesized wave of a reflected wave reflected from the branch point of the artery and a diastolic time phase wave generated in the diastole. The arrows in FIG. 13 indicate the time point corresponding to the end systolic pressure ESBP and the end systolic pressure volume pulse wave PVR ESBP .

最低血圧値決定部100は、Wオシロメトリック法を用いて拡張期合成波生成部98により生成された拡張期合成波PVRdiaの振幅変化に基づいて生体の最低血圧値DBPを算出する。最低血圧値決定部100は、たとえば、圧迫圧Pcuffが収縮期末期圧ESBPより降下する過程で順次得られる各カフ容積脈波PVRから収縮期時相波PVRsysを差し引くことで得られた複数の拡張期合成波PVRdiaは、時系列的に振幅が最大振幅まで増加した後減少する。最低血圧値決定部100は、拡張期合成波生成部98により生成された一連の拡張期合成波PVRdiaのうちの最大振幅を示す拡張期合成波の1つ後の拡張期合成波PVRdiaの発生時点に対応する圧迫圧力Pcuffを最低血圧値DBPとして決定する。図14では、圧迫圧力Pcuffの降下過程において逐次得られるカフ容積脈波PVRのうちの収縮期時相波PVRsysと重なる部分は破線で、重ならない部分が2点鎖線で示され、収縮期時相波PVRsysが破線で示され、拡張期合成波PVRdiaが実線で示されている。拡張期合成波のうち心拡張期領域の波形を前期脈波の立ち上がり点から300[msec]以降の時間領域で抽出すると拡張期波が得られる。図15は図14のうちの拡張期合成波PVRdia抽出分離された拡張期波PVRdiaの最大振幅発生時点付近を示す部分拡大図である。図14および図15の矢印は、最大振幅を示す拡張期波PVRdiaの1つ後で発生した拡張期波PVRdiaの発生時点すなわち最低血圧値DBPとして決定された圧迫圧力Pcuffに対応する時点を示している。   The diastolic blood pressure value determining unit 100 calculates the diastolic blood pressure DBP of the living body based on the amplitude change of the diastolic synthesized wave PVRdia generated by the diastolic synthesized wave generating unit 98 using the W oscillometric method. The diastolic blood pressure determining unit 100, for example, a plurality of dilations obtained by subtracting the systolic time phase wave PVRsys from each cuff volume pulse wave PVR sequentially obtained in the process in which the compression pressure Pcuff is lower than the end systolic pressure ESBP. The period synthesized wave PVRdia decreases after the amplitude increases to the maximum amplitude in time series. The diastolic blood pressure value determining unit 100 generates the diastolic synthesized wave PVRdia one after the diastolic synthesized wave indicating the maximum amplitude among the series of diastolic synthesized waves PVRdia generated by the diastolic synthesized wave generating unit 98. Is determined as the minimum blood pressure DBP. In FIG. 14, the portion of the cuff volume pulse wave PVR sequentially obtained in the decreasing process of the compression pressure Pcuff is indicated by a broken line, and the non-overlapping portion is indicated by a two-dot chain line. The wave PVRsys is indicated by a broken line, and the diastolic synthesized wave PVRdia is indicated by a solid line. The diastolic wave is obtained by extracting the waveform of the diastole region from the rising point of the previous pulse wave in the time region after 300 [msec] from the diastolic synthetic wave. FIG. 15 is a partially enlarged view showing the vicinity of the maximum amplitude occurrence time of the diastolic wave PVRdia extracted and separated in FIG. The arrows in FIGS. 14 and 15 indicate the generation time of the diastolic wave PVRdia generated after the diastolic wave PVRdia indicating the maximum amplitude, that is, the time corresponding to the compression pressure Pcuff determined as the diastolic blood pressure value DBP. Yes.

最高血圧値決定部102は、Wオシロメトリック法を用いて、たとえば、圧迫圧力Pcuffの降下期間において逐次得られるカフ容積脈波PVRと前記収縮期末期圧より低いカフ圧力ではカフ容積脈波にそれぞれ含まれる収縮期時相波からなる容積脈波の振幅値を結ぶエンベロープ(包絡線)の変曲点付近、或いは収縮期時相波の振幅をその最大脈振幅値で正規化した振幅比が所定の振幅比となる脈波に対応した圧迫圧力Pcuffが、最高血圧値SBPとして決定される。上記カフ容積脈波PVRの収縮期時相波の振幅の第1階差のポイントを示す黒点とその変曲点を示す矢印が、図16に示されている。また、図17では、反射波を含むカフ容積脈波PVRの振幅の第1階差のポイントを示す黒点とその複数の変曲点が矢印で示されている。図18は、容積脈波PVRの主成分の時間幅Tを示している。   The systolic blood pressure value determination unit 102 uses the W oscillometric method to, for example, convert the cuff volume pulse wave PVR obtained sequentially during the decrease period of the compression pressure Pcuff and the cuff volume pulse wave at a cuff pressure lower than the end systolic pressure, respectively. Amplitude ratio obtained by normalizing the amplitude of the systolic time phase wave by its maximum pulse amplitude value in the vicinity of the inflection point of the envelope (envelope) connecting the amplitude values of the volume pulse wave composed of the systolic time phase wave is predetermined. The compression pressure Pcuff corresponding to the pulse wave having the amplitude ratio is determined as the maximum blood pressure value SBP. FIG. 16 shows a black point indicating the first difference point of the amplitude of the systolic time phase wave of the cuff volume pulse wave PVR and an arrow indicating the inflection point. In FIG. 17, a black point indicating a first difference point of the amplitude of the cuff volume pulse wave PVR including the reflected wave and a plurality of inflection points are indicated by arrows. FIG. 18 shows the time width T of the main component of the volume pulse wave PVR.

図19は、上記電子制御装置70の制御作動の要部を説明するフローチャートである。図示しない電源スイッチが投入されると初期状態とされる。この初期状態では、第1開閉弁E1、第2開閉弁E2、第3開閉弁E3、および急速排気弁52は常開弁であるため開状態(非作動状態)とされ、排気制御弁54は常閉弁であるため閉状態(非作動状態)とされ、また、空気ポンプ50は非作動状態とされている。   FIG. 19 is a flowchart for explaining a main part of the control operation of the electronic control unit 70. When a power switch (not shown) is turned on, the initial state is set. In this initial state, the first on-off valve E1, the second on-off valve E2, the third on-off valve E3, and the quick exhaust valve 52 are normally open, so that they are open (non-operating state), and the exhaust control valve 54 is Since it is a normally closed valve, it is in a closed state (non-operating state), and the air pump 50 is in a non-operating state.

次いで、図示しない起動操作装置が操作されて自動血圧測定装置14の測定動作が開始されると、先ず、前記カフ圧制御部82に対応する図19のステップ(以下、「ステップ」を省略する)S1においては、圧迫帯12の圧迫圧力値が昇圧される。具体的には、急速排気弁52が閉状態とされるとともに、空気ポンプ50が作動状態とされてその空気ポンプ50から圧送される圧縮空気により主配管56内およびそれに連通された上流側膨張袋22、中間膨張袋24、および下流側膨張袋26内の圧力が急速に高められる。そして、圧迫帯12による上腕10の圧迫が開始される。   Next, when a startup operation device (not shown) is operated and the measurement operation of the automatic blood pressure measurement device 14 is started, first, the steps in FIG. 19 corresponding to the cuff pressure control unit 82 (hereinafter, “step” is omitted). In S1, the compression pressure value of the compression band 12 is increased. Specifically, the quick exhaust valve 52 is closed, and the air pump 50 is activated, and the upstream expansion bag communicated with the compressed air compressed from the air pump 50 and in the main pipe 56. 22, the pressure in the intermediate expansion bag 24 and the downstream expansion bag 26 is rapidly increased. Then, compression of the upper arm 10 by the compression band 12 is started.

上記S1に次いで、前記カフ圧制御部82に対応するS2においては、中間膨張袋24の圧迫圧力値PC2を示すカフ圧信号PK2に基づいて、その圧迫圧力値PC2が生体の最高血圧値よりも高くなるように予め設定された昇圧目標圧力値PCM(たとえば180[mmHg])以上であるか否かが判定される。上記S2の判定が否定されて図19のS1以下が繰り返し実行される。   Subsequent to S1, in S2 corresponding to the cuff pressure control unit 82, based on the cuff pressure signal PK2 indicating the compression pressure value PC2 of the intermediate inflatable bag 24, the compression pressure value PC2 is higher than the maximum blood pressure value of the living body. It is determined whether or not a pressure increase target pressure value PCM (for example, 180 [mmHg]) that is set in advance so as to be higher. The determination of S2 is negative, and S1 and subsequent steps in FIG. 19 are repeatedly executed.

しかし、S2の判定が肯定されると、前記カフ圧制御部82に対応するS3において、空気ポンプ50の作動が停止される。そして、昇圧させた上流側膨張袋22、中間膨張袋24、および下流側膨張袋26の圧迫圧力値PC1、PC2、およびPC3が例えば3〜5[mmHg/sec]に予め設定された所定の徐速降圧速度でそれぞれ同時に降圧するように排気制御弁54が作動させられ、徐速排気が開始される。これにより、図6に示すように、カフ圧信号Spcが減少し、圧迫圧力Pcuffが降下させられる。   However, if the determination in S2 is affirmative, the operation of the air pump 50 is stopped in S3 corresponding to the cuff pressure control unit 82. Then, the pressurized pressure values PC1, PC2, and PC3 of the boosted upstream expansion bag 22, intermediate expansion bag 24, and downstream expansion bag 26 are set to predetermined gradual values set in advance to 3 to 5 [mmHg / sec], for example. The exhaust control valve 54 is actuated so as to simultaneously reduce the pressure at the fast step-down speed, and the slow exhaust is started. As a result, as shown in FIG. 6, the cuff pressure signal Spc is decreased, and the compression pressure Pcuff is decreased.

S3に次いで、カフ圧信号記憶部84に対応するS4では、圧迫圧力値PC1、PC2、およびPC3がそれぞれ所定の降圧速度で降下される間に、カフ圧信号SpcがRAM74に記憶される。次に、前記カフ圧制御部82に対応するS5では、カフ圧信号Spcが予め設定された測定終了圧力値PCE(たとえば30[mmHg])以下であるか否かが判定される。このS5の判定が否定されるうちは図19のS3以下が繰り返し実行されるが、S5の判定が肯定されると、前記カフ圧制御部82に対応するS7において、上流側膨張袋22、中間膨張袋24、および下流側膨張袋26内の圧力がそれぞれ大気圧まで排圧させられるように急速排気弁52が作動させられる。   Subsequent to S3, in S4 corresponding to the cuff pressure signal storage unit 84, the cuff pressure signal Spc is stored in the RAM 74 while the compression pressure values PC1, PC2, and PC3 are respectively lowered at a predetermined step-down speed. Next, in S5 corresponding to the cuff pressure control unit 82, it is determined whether or not the cuff pressure signal Spc is equal to or less than a preset measurement end pressure value PCE (for example, 30 [mmHg]). While the determination of S5 is negative, the steps after S3 of FIG. 19 are repeatedly executed. When the determination of S5 is positive, in S7 corresponding to the cuff pressure control unit 82, the upstream expansion bag 22, intermediate The quick exhaust valve 52 is operated so that the pressure in the expansion bag 24 and the downstream expansion bag 26 is discharged to atmospheric pressure.

続いて、前記カフ容積脈波生成部86に対応するS7では、RAM74に記憶されたカフ圧信号Spcに、たとえば血圧測定中の脈波の平均周期の間隔の移動平均を行う実質的なローパスフィルタ処理が施されることで、そのカフ圧信号SpcからそのDC成分すなわち上腕10に対する圧迫圧力を表わす圧迫圧力(カフ圧力)Pcuffが生成される。また、カフ圧信号Spcと圧迫圧力(カフ圧力)Pcuffとの差分が求められることでカフ圧信号Spcに含まれる交流成分であるカフ容積脈波PVRが生成される。   Subsequently, in S7 corresponding to the cuff volume pulse wave generation unit 86, a substantive low-pass filter that performs, for example, a moving average of intervals of an average period of a pulse wave during blood pressure measurement on the cuff pressure signal Spc stored in the RAM 74. By performing the processing, a compression pressure (cuff pressure) Pcuff indicating the compression pressure on the DC component, that is, the upper arm 10 is generated from the cuff pressure signal Spc. Further, by obtaining the difference between the cuff pressure signal Spc and the compression pressure (cuff pressure) Pcuff, a cuff volume pulse wave PVR that is an AC component included in the cuff pressure signal Spc is generated.

次に、前記収縮期末期圧決定部88に対応するS8では、カフ容積脈波PVRがたとえばカットオフ周波数が0.5[Hz]のハイパスフィルタに通されることで、カフ容積脈波PVRの一次微分波形PVR’が求められる。そして、その一次微分波形PVR’の負の極小値が最小となったときの圧迫圧力Pcuffが生体の心臓の収縮期末期圧ESBPとして決定される。 Next, step S8 corresponding to the systolic end pressure determination unit 88, that the cuff volume pulse PVR is for example cut-off frequency is passed through a high-pass filter of 0.5 [Hz], mosquitoes mutabilis Sekimyakuha A primary differential waveform PVR ′ of PVR is obtained. Then, the compression pressure Pcuff when the negative minimum value of the primary differential waveform PVR ′ is minimized is determined as the end systolic pressure ESBP of the living heart.

また、上記収縮期末期圧決定部88に対応するS8では、上記に加えて或いはそれに替えて、カフ容積脈波PVRがたとえばカットオフ周波数が1.0[Hz]のハイパスフィルタに2回通されることにより、カフ容積脈波PVRの二次微分波形PVR”が求められる。そして、共通の時間軸上において、カフ容積脈波PVRの二次微分波形PVR”の負の極小点に相当する時点のカフ容積脈波PVR上の振幅値dが、そのカフ容積脈波PVRの振幅Aの予め定められた所定割合たとえば50[%]を超えたときの圧迫圧力Pcuffが収縮期末期圧ESBPとして決定される。拡張期波よりも先行して反射波が収縮期時相波に重なり、前記カフ容積脈波の一次微分波形の負の極小値が最小となる点が拡張期時相に延長する場合、例えば前記カフ容積脈波の立ち上がり点から上記一次微分波形の負の極小点が260[msec]を越えるような場合は、その負の極小点が最小となったときの圧迫圧力Pcuffが生体の心臓の収縮期末期圧ESBPに替えて、上記振幅dがカフ容積脈波PVRの振幅Aの50[%]を超えたときの圧迫圧力Pcuffから決定された収縮期末期圧ESBPが用いられる。   In S8 corresponding to the end systolic pressure determining unit 88, in addition to or instead of the above, the cuff volume pulse wave PVR is passed through a high-pass filter having a cutoff frequency of 1.0 [Hz] twice, for example. Thus, the second-order differential waveform PVR ″ of the cuff volume pulse wave PVR is obtained. On the common time axis, the time point corresponding to the negative minimum point of the second-order differential waveform PVR ″ of the cuff volume pulse wave PVR The compression pressure Pcuff when the amplitude value d on the cuff volume pulse wave PVR exceeds a predetermined ratio, for example, 50 [%] of the amplitude A of the cuff volume pulse wave PVR is determined as the end systolic pressure ESBP. Is done. When the reflected wave overlaps the systolic time phase wave prior to the diastolic wave, and the point where the negative minimum value of the first derivative waveform of the cuff volume pulse wave is minimized extends to the diastolic time phase, for example, When the negative minimum point of the first-order differential waveform exceeds 260 [msec] from the rising point of the cuff volume pulse wave, the compression pressure Pcuff when the negative minimum point becomes the minimum is the contraction of the living heart. Instead of the end-term pressure ESBP, the end-systolic pressure ESBP determined from the compression pressure Pcuff when the amplitude d exceeds 50% of the amplitude A of the cuff volume pulse wave PVR is used.

次いで、前記収縮期時相波生成部90に対応するS9では、一連のカフ容積脈波PVRのうち圧迫帯12(中間膨張袋24)内の圧迫圧力(カフ圧力)Pcuffが生体の心臓の収縮期末期圧ESBPであるときに発生した1つのカフ容積脈波PVRである収縮期末期圧容積脈波PVRsysよりも1つ前に発生した容積脈波が基準波PVRbとされ、圧迫圧力Pcuffが生体の収縮期末期圧ESBP以下であるときに順次得られる各カフ容積脈波PVRのうちそのカフ容積脈波PVRに含まれる拡張期合成波PVRdiaの重畳開始点の振幅と同等となるように前記基準波PVRbの振幅をそれぞれ調整(補正)した収縮期時相波PVRsysが、それぞれ生成される。   Next, in S9 corresponding to the systolic time phase wave generator 90, the compression pressure (cuff pressure) Pcuff in the compression band 12 (intermediate inflation bag 24) in the series of cuff volume pulse waves PVR is contraction of the living heart. The plethysmogram generated immediately before the end-systolic pressure plethysmogram PVRsys, which is one cuff plethysmogram PVR generated at the end-term pressure ESBP, is used as the reference wave PVRb, and the compression pressure Pcuff is the living body pressure. Among the cuff plethysmograms PVR sequentially obtained when the end-systolic pressure ESBP is equal to or less than the end-systolic pressure ESBP, the reference is set to be equal to the amplitude of the superposition start point of the diastolic synthesized wave PVRdia included in the cuff plethysmogram PVR The systolic time phase wave PVRsys in which the amplitude of the wave PVRb is adjusted (corrected) is generated.

次いで、前記拡張期合成波生成部98に対応するS10では、圧迫圧力Pcuffが収縮期末期圧ESBPより低い区間で順次得られる各カフ容積脈波PVRから、それの立上り開始点Pfが一致し且つそのカフ容積脈波PVRの振幅にそれぞれ一致するように補正された基準波PVRbすなわち収縮期時相波PVRsys(=Aratio×PVRb)の波形をそれぞれ差し引くことで拡張期合成波PVRdiaが、図12或いは図13に示すようにそれぞれ生成される。 Next, in S10 corresponding to the diastolic synthetic wave generation unit 98, the rising start point Pf of each cuff volume pulse wave PVR obtained sequentially in a section where the compression pressure Pcuff is lower than the end systolic pressure ESBP and The diastolic composite wave PVRdia is obtained by subtracting the waveform of the reference wave PVRb, that is, the systolic time phase wave PVRsys (= A ratio × PVRb) corrected to match the amplitude of the cuff volume pulse wave PVR, respectively. Alternatively, they are generated as shown in FIG.

最低血圧値決定部100に対応するS11では、拡張期合成波生成部98により生成された拡張期合成波のうちの心拡張期領域の波形を前期脈波の立ち上がり点から300[msec]以降の時間領域で抽出した拡張期波について、一連の拡張期波PVRdiaのうちの最大振幅を示す拡張期波の1つ後の拡張期波PVRdiaが決定され、その1つ後の拡張期波PVRdiaの発生時点に対応する圧迫圧力Pcuffが最低血圧値DBPとして決定される。   In S11 corresponding to the diastolic blood pressure determining unit 100, the waveform of the diastolic region of the diastolic synthetic wave generated by the diastolic synthetic wave generating unit 98 is 300 [msec] or later from the rising point of the previous pulse wave. For the diastolic wave extracted in the time domain, the diastolic wave PVRdia that is one after the diastolic wave that indicates the maximum amplitude in the series of diastolic waves PVRdia is determined, and the generation of the diastolic wave PVRdia after that The compression pressure Pcuff corresponding to the time point is determined as the minimum blood pressure value DBP.

最高血圧値決定部102に対応するS12では、圧迫圧力Pcuffの降下期間において逐次得られるカフ容積脈波PVRと前記収縮期末期圧より低いカフ圧力ではカフ容積脈波にそれぞれ含まれる収縮期時相波からなる容積脈波の振幅値を結ぶエンベロープ(包絡線)の変曲点付近、或いは収縮期時相波の振幅をその最大脈振幅値で正規化した振幅比が所定の振幅比となる脈波に対応した圧迫圧力Pcuffが、最高血圧値SBPとして決定される。そして、S13では、上記のようにして決定された最高血圧値SBPおよび最低血圧値DBPを示す血圧データが出力されるともに、それら最高血圧値SBPおよび最低血圧値DBPが表示装置78に表示される。   In S12 corresponding to the systolic blood pressure value determining unit 102, the cuff volume pulse wave PVR sequentially obtained during the decrease period of the compression pressure Pcuff and the systolic time phase included in the cuff volume pulse wave at the cuff pressure lower than the end systolic pressure are respectively. A pulse whose predetermined amplitude ratio is the vicinity of the inflection point of the envelope (envelope) connecting the amplitude values of the volume pulse wave composed of waves, or the amplitude ratio obtained by normalizing the amplitude of the systolic time phase wave with the maximum pulse amplitude value The compression pressure Pcuff corresponding to the wave is determined as the maximum blood pressure value SBP. In S13, blood pressure data indicating the systolic blood pressure value SBP and the diastolic blood pressure value DBP determined as described above is output, and the systolic blood pressure value SBP and the diastolic blood pressure value DBP are displayed on the display device 78. .

上述のように、本実施例の自動血圧測定装置14によれば、収縮期末期圧よりも低い圧迫圧力Pcuffの区間で逐次得られたカフ容積脈波PVRから収縮期時相波PVRsysをそれぞれ差し引くことによりカフ容積脈波PVRに含まれる拡張期合成波PVRdiaをそれぞれ抽出し、それら拡張期合成波の心拡張期領域の拡張期波PVRdiaの振幅に基づいて生体の最低血圧値DBPが算出されることから、その最低血圧値DBPの決定にはカフ容積脈波PVRに含まれる収縮期時相波PVRsysの数分の1程度の小さな振幅の拡張期波が用いられるので、最低血圧値DBPについて高い測定精度が得られる。因みに、図20は、観血法により測定された最低血圧値DBPdirectを横軸とし、上記のように決定された最低血圧値DBPを縦軸とした図であって、相互に高い相関を示し傾向誤差が見られない。   As described above, according to the automatic blood pressure measurement device 14 of the present embodiment, the systolic time phase wave PVRsys is subtracted from the cuff volume pulse wave PVR sequentially obtained in the section of the compression pressure Pcuff lower than the end systolic pressure. Thus, the diastolic synthetic wave PVRdia included in the cuff volume pulse wave PVR is extracted, and the diastolic wave PVRdia of the diastolic region of the diastolic synthetic wave is calculated to calculate the diastolic blood pressure DBP of the living body. Therefore, since the diastolic wave having a small amplitude of about a fraction of the systolic phase wave PVRsys included in the cuff volume pulse wave PVR is used for determining the diastolic blood pressure value DBP, the diastolic wave value DBP is high. Measurement accuracy is obtained. Incidentally, FIG. 20 is a diagram in which the abscissa represents the diastolic blood pressure value DBPdirect measured by the open blood method, and the ordinate represents the diastolic blood pressure value DBP determined as described above, and shows a high correlation with each other. There is no error.

また、本実施例の自動血圧測定装置14によれば、たとえば血圧測定中の脈波の平均周期の間隔の移動平均処理を行なうローパスフィルタ処理を施すことでカフ圧信号SpcからそのDC成分である圧迫圧力Pcuffを抽出し、そのカフ圧信号SpcとそのDC成分である圧迫圧力Pcuffとの差分を求めることでカフ容積脈波PVRを生成するカフ容積脈波生成部86と、カフ容積脈波PVRの一次微分波形PVR’の負の極小点が最小となったときの圧迫圧力(カフ圧力)Pcuffを収縮期末期圧ESBPとして決定する収縮期末期圧決定部88とを、さらに含む。このため、生体の心拍に同期したカフ容積脈波PVR、および、生体の収縮期末期圧ESBPが容易に得られる。 Further, according to the automatic blood pressure measurement device 14 of the present embodiment, the DC component of the cuff pressure signal Spc is obtained by performing a low-pass filter process for performing a moving average process at intervals of an average period of a pulse wave during blood pressure measurement, for example. the compressive pressure Pcuff extracted, the cuff volumetric pulse wave generator 86 for generating a mosquito mutabilis Sekimyakuha PVR by obtaining the difference of the cuff pressure signal Spc and compressive pressure Pcuff its DC component, mosquitoes mutabilis An end-systolic pressure determining unit 88 that determines a compression pressure (cuff pressure) Pcuff as the end-systolic pressure ESBP when the negative minimum point of the first-order differential waveform PVR ′ of the product pulse PVR is minimized. . For this reason, the cuff volume pulse wave PVR synchronized with the heartbeat of the living body and the end-systolic pressure ESBP of the living body can be easily obtained.

また、本実施例の自動血圧測定装置14によれば、収縮期末期圧決定部88は、共通の時間軸上において、カフ容積脈波PVRの二次微分波形PVR”の負の極小点に相当する時点のカフ容積脈波PVR上の振幅値dが、カフ容積脈波PVRの振幅Aの50[%]を超えたときの圧迫圧力(カフ圧力)Pcuffを収縮期末期圧ESBPとして決定する。このため、拡張期波よりも先行して反射波が収縮期時相波に重なり、前期カフ容積脈波の一次微分波形の負の極小値が最小となる点が拡張期時相に延長する場合でも、収縮期末期圧ESBPが正確に決定される。カフ容積脈波PVRの一次微分波形PVR’の負の極小値が最小となったときの圧迫圧力(カフ圧力)Pcuffを収縮期末期圧ESBPとして決定する場合は、反射波の重畳によって負の極小点がブロードで不明確となったり、極小点が複数発生したりして収縮期末期圧ESBPの精度が得られない場合がある。   Further, according to the automatic blood pressure measurement device 14 of the present embodiment, the end-systolic pressure determining unit 88 corresponds to the negative minimum point of the second-order differential waveform PVR ″ of the cuff volume pulse wave PVR on the common time axis. The compression pressure (cuff pressure) Pcuff when the amplitude value d on the cuff volume pulse wave PVR at the time exceeds 50% of the amplitude A of the cuff volume pulse wave PVR is determined as the end-systolic pressure ESBP. For this reason, the reflected wave overlaps the systolic time phase wave before the diastole wave, and the point where the negative minimum of the first derivative waveform of the early cuff volume pulse wave is minimized extends to the diastole time phase However, the end-systolic pressure ESBP is accurately determined, and the compression pressure (cuff pressure) Pcuff when the negative minimum value of the first-order differential waveform PVR ′ of the cuff plethysmogram PVR is minimized becomes the end-systolic pressure ESBP. When determining as a superposition of reflected waves Thus may become unclear at the negative minimum point is broad, there are cases where minimum point is not multiple occurrence or to systolic end pressure ESBP precision obtained.

また、本実施例の自動血圧測定装置14によれば、収縮期時相波生成部90は、収縮期末期圧ESBPであるときに発生した収縮期末期圧容積脈波PVRESBPよりも1つ前に発生したカフ容積脈波を基準波PVRbとして決定する基準波決定部92を、含む、この場合、その収縮期末期圧容積脈波PVRESBPよりも1つ前に発生したカフ容積脈波は、反射波或いは拡張期時相波の影響を受けない純粋な容積脈波であることから、そのような基準波PVRbから得られた拡張期合成波PVRdiaの形状が正確となり、その拡張期合成波PVRdiaに基づいて測定される最低血圧値DBPの精度が、一層高められる。 In addition, according to the automatic blood pressure measurement device 14 of the present embodiment, the systolic time phase wave generation unit 90 is one before the end systolic pressure volume pulse wave PVR ESBP generated when the end systolic pressure ESBP. In this case, the cuff volume pulse wave generated immediately before the end-systolic pressure volume pulse wave PVR ESBP is determined. Since it is a pure volume pulse wave that is not affected by the reflected wave or the diastolic time phase wave, the shape of the diastolic synthesized wave PVRdia obtained from such a reference wave PVRb becomes accurate, and the diastolic synthesized wave PVRdia is obtained. The accuracy of the diastolic blood pressure value DBP measured based on this is further enhanced.

また、本実施例の自動血圧測定装置14によれば、収縮期時相波生成部90は、収縮期末期圧ESBPより低い圧迫圧Pcuffで得られたカフ容積脈波PVRの上昇脚から頭頂部にかけての二次微分波PVR”の正から負に向かう零クロス点で且つ一次微分波PVR’の極小点に対応する、カフ容積脈波PVRの変曲点を反射波重畳開始点Prsとして決定する反射波重畳開始点決定部94と、収縮期末期圧ESBPより低い圧迫圧力Pcuffで得られたカフ容積脈波PVRと基準波PVRbとを共通の時間軸上でそれらの立上がり開始点Pfを一致させたときの、前記収縮期時相波の基準波の最大振幅時刻より遅れて上記反射波重畳開始点がある場合にはその基準波の最大振幅値をAESBPとし、その時刻のカフ容積脈波振幅をAPVRとし、前期反射波重畳開始点が基準波の最大振幅時刻より前の脈波上昇脚に存在する場合には、そのカフ容積脈波の前記反射波重畳開始点における振幅値をAPVRとし、上記基準波の前記反射波重畳開始点における振幅値をAESBPとして、その振幅比Aratio(=APVR/AESBP)を求め、その振幅比Aratioを基準波PVRbに乗算することで収縮期時相波PVRsysを生成する基準波補正部96とを、含むものである。このため、収縮期末期圧ESBPより低い圧迫圧力Pcuffで得られたカフ容積脈波PVRにそれぞれ含まれる収縮期時相波PVRsysを容易に得ることができる。 In addition, according to the automatic blood pressure measurement device 14 of the present embodiment, the systolic time phase wave generation unit 90 starts from the rising leg of the cuff volume pulse wave PVR obtained with the compression pressure Pcuff lower than the end systolic pressure ESBP. And the inflection point of the cuff volume pulse wave PVR corresponding to the minimum point of the first-order differential wave PVR ′ and the zero-crossing point of the second-order differential wave PVR ″ going from positive to negative is determined as the reflected wave superposition start point Prs. The reflected wave superposition start point determination unit 94 and the cuff volume pulse wave PVR obtained at the compression pressure Pcuff lower than the end systolic pressure ESBP and the reference wave PVRb are matched with each other on the common time axis. If the reflected wave superposition start point is delayed from the maximum amplitude time of the reference wave of the systolic time phase wave, the maximum amplitude value of the reference wave is A ESBP, and the cuff volume pulse wave at that time the amplitude a P And R, when year reflected waves overlap starting point exists pulse wave rising phase prior to maximum amplitude time of the reference wave, and the amplitude value at the reflected wave overlap starting point of the cuff plethysmography and A PVR, The amplitude value A ratio (= A PVR / A ESBP ) is obtained by setting the amplitude value of the reference wave at the reflection wave superimposition start point as A ESBP , and the contraction period is obtained by multiplying the reference wave PVRb by the amplitude ratio A ratio. A reference wave correction unit 96 that generates a time phase wave PVRsys, and therefore, a systolic time phase wave PVRsys included in the cuff volume pulse wave PVR obtained at a compression pressure Pcuff lower than the end systolic pressure ESBP. Can be easily obtained.

また、本実施例の自動血圧測定装置14によれば、拡張期合成波生成部98は、共通の時間軸上で、圧迫圧力Pcuffが生体の収縮期末期圧ESBP以下であるときに順次得られるカフ容積脈波PVRの形状(振幅)から、それぞれについて生成された収縮期時相波PVRsysの形状(振幅)をそれぞれ差し引くことで、それぞれの拡張期合成波PVRdiaを圧迫圧力Pcuffの減少過程で順次生成させるものである。このため、時系列的に複数の拡張期合成波PVRdiaが容易に得られる。   Further, according to the automatic blood pressure measurement device 14 of the present embodiment, the diastolic synthetic wave generation unit 98 is sequentially obtained when the compression pressure Pcuff is equal to or lower than the end systolic pressure ESBP of the living body on the common time axis. By subtracting the shape (amplitude) of the systolic phase wave PVRsys generated for each from the shape (amplitude) of the cuff volume pulse wave PVR, each diastolic composite wave PVRdia is sequentially reduced in the compression pressure Pcuff decreasing process. It is generated. Therefore, a plurality of diastolic synthesized waves PVRdia can be easily obtained in time series.

また、本実施例の自動血圧測定装置14によれば、最低血圧値決定部100は、拡張期合成波生成部98により生成された一連の拡張期合成波PVRdiaのうちの最大振幅を示す拡張期合成波PVRdiaの1つ後に発生したの拡張期合成波PVRdiaに対応する圧迫圧力Pcuffを最低血圧値として決定するものである。このため、観血法すなわちカテーテルを用いた直接法を用いたコロトコフ音方式の血圧測定により得られた最低血圧値との相関性が一層高められ、傾向誤差の無い測定精度が得られる。   Further, according to the automatic blood pressure measurement device 14 of the present embodiment, the diastolic blood pressure value determining unit 100 has a diastolic period that indicates the maximum amplitude of the series of diastolic synthesized waves PVRdia generated by the diastolic synthesized wave generating part 98. The compression pressure Pcuff corresponding to the diastolic synthetic wave PVRdia generated after the synthetic wave PVRdia is determined as the minimum blood pressure value. For this reason, the correlation with the lowest blood pressure value obtained by Korotkoff blood pressure measurement using the open method, that is, the direct method using a catheter, is further enhanced, and measurement accuracy without a tendency error is obtained.

また、本実施例の自動血圧測定装置14によれば、圧迫圧力Pcuffの降下期間において逐次得られるカフ容積脈波PVRと前記収縮期末期圧ESBPより低いカフ圧力ではカフ容積脈波にそれぞれ含まれる収縮期時相波からなる容積脈波の振幅値を結ぶエンベロープ(包絡線)の変曲点付近、或いは収縮期時相波の振幅をその最大脈振幅値で正規化した振幅比が所定の振幅比となる脈波に対応した圧迫圧力Pcuffを最高血圧値SBPとして決定する最高血圧値決定部102を、含む。このため、カフ容積脈波の収縮期時相波成分を用いて最高血圧値を決定するので、前記カフ容積脈波の反射波が重畳した脈波形の振幅が増加しエンベロープに複数の変曲点が現れる場合や脈波形の最大振幅に反射波成分が含まれる状況下で最高血圧値SBPとして決定するオシロメトリック法により場合に比較して、最高血圧値SBPの精度が高められる。   Further, according to the automatic blood pressure measurement device 14 of the present embodiment, the cuff volume pulse PVR sequentially obtained during the decrease period of the compression pressure Pcuff and the cuff pressure lower than the end systolic pressure ESBP are included in the cuff volume pulse wave, respectively. Near the inflection point of the envelope (envelope) that connects the amplitude values of the volume pulse wave consisting of the systolic time phase wave, or the amplitude ratio obtained by normalizing the amplitude of the systolic time phase wave with its maximum pulse amplitude value is a predetermined amplitude A systolic blood pressure value determining unit 102 that determines the compression pressure Pcuff corresponding to the pulse wave as the ratio as the systolic blood pressure value SBP is included. Therefore, since the systolic blood pressure value is determined by using the systolic time phase component of the cuff volume pulse wave, the amplitude of the pulse waveform on which the reflected wave of the cuff volume pulse wave is superimposed increases, and a plurality of inflection points are added to the envelope. If the oscillometric method determines the systolic blood pressure value SBP under the condition that the reflected wave component is included in the maximum amplitude of the pulse waveform, the accuracy of the systolic blood pressure value SBP is improved.

以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。   As mentioned above, although one Example of this invention was described in detail with reference to drawings, this invention is not limited to this Example, It can implement in another aspect.

たとえば、前述の実施例の収縮期時相波生成部90では、圧迫帯12による圧迫圧力Pcuffが収縮期末期圧ESBPであるときに発生した容積脈波である収縮期末期圧容積脈波PVRESBPより1つ前に発生した容積脈波を基準波PVRbとしていた。しかし、この基準波PVRbは、拡張期合成波PVRdia成分を含まない収縮期の代表的な正確な形状の容積脈波であればよいので、実用上問題のない僅かな精度の低下が許容されるのであれば、収縮期末期圧容積脈波PVRESBPそのものを基準波PVRbとしたり、収縮期末期圧容積脈波PVRESBPより1つ後に発生した容積脈波を基準波PVRbとしてもよい。要するに、収縮期末期圧容積脈波PVRESBPに隣接する容積脈波或いは収縮期末期圧容積脈波PVRESBPに連なる容積脈波を基準波PVRbとしてもよい。 For example, in the systolic time phase wave generation unit 90 of the above-described embodiment, the end systolic pressure volume pulse wave PVR ESBP which is a volume pulse wave generated when the compression pressure Pcuff by the compression band 12 is the end systolic pressure ESBP. The plethysmogram generated one time before was used as the reference wave PVRb. However, since the reference wave PVRb may be a volume pulse wave having a precise shape representative of the systole that does not include the diastolic synthesized wave PVRdia component, a slight decrease in accuracy that does not cause a practical problem is allowed. In this case, the end-systolic pressure volume pulse wave PVR ESBP itself may be used as the reference wave PVRb, or the volume pulse wave generated immediately after the end-systolic pressure volume pulse wave PVR ESBP may be used as the reference wave PVRb. In short, the volume pulse wave leading to volume pulse or systolic end container Sekimyakuha PVR ESBP adjacent systole end container Sekimyakuha PVR ESBP may be used as the reference wave PVRb.

また、前述の実施例の最低血圧値決定部100では、最低血圧値DBPの決定に際して、最大振幅をd有する拡張期合成波PVRdiaよりも1つ後で発生した拡張期合成波PVRiaの発生時点の圧迫圧力Pcuffを最低血圧値DBPとして決定していた。しかし、実用上問題のない僅かな精度の低下が許容されるのであれば、最大振幅を有する拡張期合成波PVRdiaの発生時点の圧迫圧力Pcuffを最低血圧値DBPとして決定してもよい。   In the diastolic blood pressure value determination unit 100 of the above-described embodiment, when the diastolic blood pressure value DBP is determined, the diastolic synthetic wave PVRia generated one time after the diastolic synthetic wave PVRdia having the maximum amplitude d is detected. The compression pressure Pcuff was determined as the minimum blood pressure value DBP. However, if a slight decrease in accuracy with no practical problem is allowed, the compression pressure Pcuff at the time of generation of the diastolic synthetic wave PVRdia having the maximum amplitude may be determined as the minimum blood pressure value DBP.

また、前述の実施例で用いられた圧迫帯12は、独立して上腕10を圧迫可能な上流側膨張袋22、中間膨張袋24および下流側膨張袋26を備えたものであったが、単一の膨張袋を備えたものであってもよい。   In addition, the compression band 12 used in the above-described embodiment includes the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 that can independently compress the upper arm 10. One inflatable bag may be provided.

また、前述の実施例では、カフ圧制御部82は、上流側膨張袋22、中間膨張袋24、および下流側膨張袋26の圧迫圧力値PCをたとえば3〜5[mmHg/sec]程度の一定の速度で連続的に降圧させるものであったが、圧迫帯12の圧迫圧力が一定値に維持される過程で脈波が採取されるようにするステップ降圧を行なうものであってもよい。   In the above-described embodiment, the cuff pressure control unit 82 sets the compression pressure value PC of the upstream expansion bag 22, the intermediate expansion bag 24, and the downstream expansion bag 26 to a constant value of about 3 to 5 [mmHg / sec], for example. However, step pressure reduction may be performed so that a pulse wave is collected in a process in which the compression pressure of the compression band 12 is maintained at a constant value.

なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。   It should be noted that the above description is merely an embodiment, and other examples are not illustrated. However, the present invention should be implemented in variously modified and improved modes based on the knowledge of those skilled in the art without departing from the gist of the present invention. Can do.

10:上腕(生体の被圧迫部位)
12:圧迫帯
14:自動血圧測定装置
16:動脈
24:中間膨張袋
DBP:最低血圧値
SBP:最高血圧値
Spc:カフ圧信号
Pcuff:圧迫圧力(カフ圧力)
PVR:カフ容積脈波
PVR’:カフ容積脈波の一次微分波
PVR”:カフ容積脈波の二次微分波
ESBP:収縮期末期圧
PVRESBP:収縮期末期圧容積脈波
Prs:反射波重畳開始点
PVRb:基準波
PVRsys:収縮期時相波
PVRdia:拡張期合成波
10: Upper arm (stressed part of living body)
12: compression band 14: automatic blood pressure measurement device 16: artery 24: intermediate inflation bag DBP: minimum blood pressure value SBP: maximum blood pressure value Spc: cuff pressure signal Pcuff: compression pressure (cuff pressure)
PVR: Cuff volume pulse wave PVR ′: First-order differential wave PVR of cuff volume pulse wave “Second-order differential wave of cuff volume pulse wave ESBP: End-systolic pressure PVR ESBP : End-systolic pressure volume pulse Prs: Reflected wave superposition Starting point PVRb: Reference wave PVRsys: Systolic phase wave PVRdia: Diastolic synthesized wave

Claims (7)

生体の一部に巻回されて該生体の一部に対する圧迫圧を低下させる圧迫帯を備え、該圧迫帯の圧迫圧を低下させる過程で得られた該圧迫圧を表わすカフ圧信号に含まれる、該生体の脈拍に同期する交流成分であるカフ容積脈波に基づいて該生体の最低血圧値を測定する自動血圧測定装置であって、
前記カフ容積脈波のうち前記カフ圧が前記生体の収縮期末期圧であるときのカフ容積脈波である収縮期末期圧容積脈波またはそれに連なる1つの容積脈波を基準波とし、前記カフ圧が前記生体の収縮期末期圧以下であるときに順次得られる各カフ容積脈波の該カフ容積脈波に含まれる反射波の重畳開始点の振幅と同等となるように前記基準波を調整した収縮期時相波を、それぞれ生成する収縮期時相波生成部と、
カフ圧が前記生体の収縮期末期圧以下であるときに順次得られる各カフ容積脈波の波形から前記それぞれ生成された収縮期時相波の波形を差し引くことにより拡張期合成波をそれぞれ生成する拡張期合成波生成部と、
前記生成された拡張期合成波の振幅に基づいて前記生体の最低血圧値を決定する最低血圧値決定部と
を、含むことを特徴とする自動血圧測定装置。
A cuff pressure signal representing the compression pressure obtained in the process of reducing the compression pressure of the compression band, comprising a compression band wound around a part of the living body to reduce the compression pressure on the part of the biological body An automatic blood pressure measurement device for measuring a minimum blood pressure value of the living body based on a cuff volume pulse wave that is an alternating current component synchronized with the pulse of the living body,
Which is a cuff volume Sekimyaku wave systolic end pressure and volume pulse wave or one volume pulse wave connected to it when the cuff pressure is systolic end pressure of the body of said cuff volume pulse as a reference wave, the The reference wave is set so that the cuff pressure is equal to or less than the amplitude of the superimposed start point of the reflected wave included in the cuff volume pulse wave obtained sequentially when the cuff pressure is equal to or lower than the end-systolic pressure of the living body. A systolic time phase wave generating unit for generating the adjusted systolic time phase wave,
A diastolic composite wave is generated by subtracting the generated systolic time phase waveform from the waveform of each cuff volume pulse wave sequentially obtained when the cuff pressure is equal to or lower than the end systolic pressure of the living body. Diastolic synthetic wave generator,
An automatic blood pressure measurement device comprising: a minimum blood pressure value determination unit that determines a minimum blood pressure value of the living body based on the amplitude of the generated diastolic synthetic wave.
血圧測定中の脈波の平均周期の間隔の移動平均処理を行なうローパスフィルタ処理を施すことで前記カフ圧信号から前記生体野一部への圧迫圧力であるDC成分を抽出し、前記カフ圧信号とDC成分との差分を求めることで前記カフ容積脈波を生成するカフ容積脈波生成部と、
続する前記フ容積脈波の収縮期波下降脚の変曲点に対応して生じる一次微分波形の負の極小値が最小となったときのカフ圧力を前記収縮期末期圧として決定する収縮期末期圧決定部と
を、さらに含むことを特徴とする請求項1の自動血圧測定装置。
A DC component that is a compression pressure applied to a part of the living body field is extracted from the cuff pressure signal by performing a low-pass filter process that performs a moving average process at intervals of the average period of the pulse wave during blood pressure measurement, and the cuff pressure signal a cuff volumetric pulse wave generator generating the mosquito mutabilis product pulse wave by obtaining the difference between the DC component and,
Determining the cuff pressure when the negative minimum value of the primary differential waveform arising in response to the inflection point of the systolic wave descending limb of the mosquito mutabilis Sekimyakuha for continuous is minimized as the systolic end pressure The automatic blood pressure measuring device according to claim 1, further comprising: an end systolic pressure determining unit.
前記収縮期末期圧決定部は、共通の時間軸上において、前記カフ容積脈波の一次微分波形の変曲点の検出を二次微分波形の極小点により決定し、上記二次微分波形の負の極小点に対応したカフ容積脈波の振幅値が、上記カフ容積脈波の最大振幅の50[%]を超えたときのカフ圧を前記収縮期末期圧として決定する
ことを特徴とする請求項2の自動血圧測定装置。
The end systolic pressure determining unit determines the detection of the inflection point of the primary differential waveform of the cuff volume pulse wave on the common time axis based on the minimum point of the secondary differential waveform, and determines the negative of the secondary differential waveform. The cuff pressure when the amplitude value of the cuff volume pulse wave corresponding to the minimum point of the cuff exceeds 50 [%] of the maximum amplitude of the cuff volume pulse wave is determined as the end systolic pressure. Item 2. The automatic blood pressure measurement apparatus according to Item 2.
前記収縮期時相波生成部は、
前記収縮期末期圧より低いカフ圧力で得られたカフ容積脈波の上昇脚から頭頂部にかけての二次微分波の正から負に向かう零クロス点で且つ一次微分波の極小点に対応する、上記カフ容積脈波の変曲点を反射波重畳開始点として決定する反射波重畳開始点決定部と、
前記収縮期末期圧より低いカフ圧力で得られたカフ容積脈波と前記基準波とを共通の時間軸上でそれらの立上がり開始点を一致させたときの、前記収縮期時相波の基準波の最大振幅時刻より遅れて上記反射波重畳開始点がある場合にはその基準波の最大振幅値をAESBPとし、その時刻のカフ容積脈波振幅をAPVRとし、前期反射波重畳開始点が基準波の最大振幅時刻より前の脈波上昇脚に存在する場合には、そのカフ容積脈波の前記反射波重畳開始点における振幅値をAPVRとし、上記基準波の前記反射波重畳開始点における振幅値をAESBPとして、その振幅比Aratio(=APVR/AESBP)を求め、その振幅比Aratioを前記基準波に乗算することで前記収縮期時相波を生成する基準波補正部と
を、含むことを特徴とする請求項1乃至3のいずれか1の自動血圧測定装置。
The systolic time phase wave generation unit,
Corresponding to the zero-crossing point of the second-order differential wave from the rising leg of the cuff volume pulse wave obtained at the cuff pressure lower than the end-systolic pressure at the end of systole to the top of the head, and corresponding to the minimum point of the first-order differential wave, A reflected wave superposition start point determination unit that determines the inflection point of the cuff volume pulse wave as a reflected wave superposition start point;
A reference wave of the systolic time phase wave when the cuff volume pulse wave obtained at a cuff pressure lower than the end systolic pressure and the reference wave are coincident with each other on the rising start point on a common time axis If the reflected wave superimposition start point is later than the maximum amplitude time, the maximum amplitude value of the reference wave is AESBP, the cuff volume pulse wave amplitude at that time is APVR, and the previous reflected wave superposition start point is the reference wave When the pulse wave rise leg before the maximum amplitude time is APVR, the amplitude value of the cuff volume pulse wave at the reflection wave superposition start point is APVR, and the amplitude value of the reference wave at the reflection wave superposition start point AESBP is used as an AESBP, an amplitude ratio Aratio (= APVR / AESBP) is obtained, and the reference wave correction unit that generates the systolic time phase wave by multiplying the reference wave by the amplitude ratio Aratio is included. The automatic blood pressure measuring device according to any one of claims 1 to 3.
前記拡張期合成波生成部は、前記共通の時間軸上で、カフ圧力が前記生体の収縮期末期圧以下であるときに順次得られる前記カフ容積脈波の振幅から、それぞれについて生成された前記収縮期時相波の振幅をそれぞれ差し引くことで、それぞれの拡張期合成波がカフ圧の降下過程で順次生成することを特徴とする請求項1乃至4のいずれか1の自動血圧測定装置。   The diastolic synthesized wave generating unit is generated for each of the cuff volume pulse wave amplitude obtained sequentially when the cuff pressure is equal to or lower than the end-systolic pressure of the living body on the common time axis. 5. The automatic blood pressure measurement device according to claim 1, wherein each diastolic composite wave is sequentially generated in the process of decreasing the cuff pressure by subtracting the amplitude of the systolic time phase wave. 前記最低血圧値決定部は、前記拡張期合成波生成部により生成された一連の拡張期合成波のうちの最大振幅を示す拡張期合成波の1つ後の拡張期合成波に対応するカフ圧を最低血圧値として決定することを特徴とする請求項1乃至5のいずれか1の自動血圧測定装置。 The diastolic blood pressure value determining unit includes a cuff pressure corresponding to a diastolic synthesized wave one after the diastolic synthesized wave indicating the maximum amplitude in a series of diastolic synthesized waves generated by the diastolic synthesized wave generating unit. Is determined as the minimum blood pressure value, the automatic blood pressure measuring device according to any one of claims 1 to 5. 前記カフ圧の降下期間において逐次得られるカフ容積脈波と前記収縮期末期圧より低いカフ圧力ではカフ容積脈波にそれぞれ含まれる収縮期時相波からなる容積脈波の振幅値を結ぶエンベロープの変曲点付近、或いは収縮期時相波の振幅をその最大脈振幅値で正規化した振幅比が所定の振幅比となる脈波に対応したカフ圧力を最高血圧値として決定する最高血圧値決定部を、さらに含むことを特徴とする請求項1乃至6のいずれか1の自動血圧測定装置。   In the cuff volume pulse wave sequentially obtained during the cuff pressure drop period and the cuff pressure lower than the end systolic pressure, the envelope linking the amplitude value of the volume pulse wave composed of the systolic time phase wave respectively included in the cuff volume pulse wave Determination of systolic blood pressure value that determines the cuff pressure corresponding to the pulse wave that has a predetermined amplitude ratio near the inflection point or the amplitude ratio obtained by normalizing the amplitude of the systolic time phase wave with the maximum pulse amplitude value The automatic blood pressure measurement device according to claim 1, further comprising a unit.
JP2014078982A 2014-04-07 2014-04-07 Automatic blood pressure measurement device Active JP6340152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078982A JP6340152B2 (en) 2014-04-07 2014-04-07 Automatic blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078982A JP6340152B2 (en) 2014-04-07 2014-04-07 Automatic blood pressure measurement device

Publications (2)

Publication Number Publication Date
JP2015198740A JP2015198740A (en) 2015-11-12
JP6340152B2 true JP6340152B2 (en) 2018-06-06

Family

ID=54550649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078982A Active JP6340152B2 (en) 2014-04-07 2014-04-07 Automatic blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP6340152B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102626585B1 (en) 2018-08-20 2024-01-17 삼성전자주식회사 Apparatus and method for estimating blood pressure
EP3897393A1 (en) * 2018-12-20 2021-10-27 Koninklijke Philips N.V. Methods and systems for monitoring a function of a heart
KR102567952B1 (en) 2019-09-11 2023-08-16 삼성전자주식회사 Apparatus and method for estimating bio-information
JP7445518B2 (en) 2020-05-27 2024-03-07 株式会社エー・アンド・デイ automatic blood pressure measuring device
JP2023157366A (en) * 2022-04-14 2023-10-26 株式会社エー・アンド・デイ blood pressure measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119243A (en) * 1984-11-15 1986-06-06 オムロン株式会社 Electronic hemomanometer
JP4906204B2 (en) * 2001-09-27 2012-03-28 テルモ株式会社 Electronic blood pressure monitor
JP5146997B2 (en) * 2007-10-25 2013-02-20 テルモ株式会社 Electronic blood pressure monitor and signal processing method thereof

Also Published As

Publication number Publication date
JP2015198740A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP6340152B2 (en) Automatic blood pressure measurement device
JP6086647B2 (en) Automatic blood pressure measurement device
TW491697B (en) Blood-pressure measuring apparatus
CN104822314B (en) The method and apparatus that blood pressure is determined for continuous, non-invasive
JP5584077B2 (en) Automatic blood pressure measurement device
JP5584076B2 (en) Automatic blood pressure measurement device
KR100804454B1 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
JP5573550B2 (en) Blood pressure information measuring device and blood pressure information measuring method
JP6027767B2 (en) Automatic blood pressure measurement device.
JP6306463B2 (en) Biological information measuring device, biological information measuring method, and program
JP5619593B2 (en) Arterial blood vessel inspection device
JP2003199720A (en) Leg and arm blood pressure index-measuring device
JP5049097B2 (en) Pulse wave detection compression band, and automatic blood pressure measurement device, blood vessel flexibility measurement device, and pulse wave propagation velocity measurement device including the same.
JP6241304B2 (en) Electronic blood pressure monitor and connection cuff type determination method
KR101059109B1 (en) Cuff for blood pressure monitering
JP2015146894A5 (en)
JP2012090961A (en) Automatic blood pressure measuring apparatus
JP2003093357A (en) Electronic tonometer
JP2009112429A (en) Cuff for pulse wave detection
JP6247735B2 (en) Automatic blood pressure measurement device
JP7397754B2 (en) automatic blood pressure measuring device
JP7445518B2 (en) automatic blood pressure measuring device
WO2022080329A1 (en) Blood pressure monitoring device
WO2023199990A1 (en) Blood pressure measurement device
JP6430161B2 (en) Central blood pressure measuring device and central blood pressure measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180512

R150 Certificate of patent or registration of utility model

Ref document number: 6340152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350