JP4942237B2 - 関心領域を画像内に配置する表示方法及びイメージングシステム - Google Patents

関心領域を画像内に配置する表示方法及びイメージングシステム Download PDF

Info

Publication number
JP4942237B2
JP4942237B2 JP2000092563A JP2000092563A JP4942237B2 JP 4942237 B2 JP4942237 B2 JP 4942237B2 JP 2000092563 A JP2000092563 A JP 2000092563A JP 2000092563 A JP2000092563 A JP 2000092563A JP 4942237 B2 JP4942237 B2 JP 4942237B2
Authority
JP
Japan
Prior art keywords
roi
region
interest
width
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000092563A
Other languages
English (en)
Other versions
JP2000300562A5 (ja
JP2000300562A (ja
Inventor
マイケル・ジョセフ・ワシバーン
パトリック・ロバート・メヤーズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2000300562A publication Critical patent/JP2000300562A/ja
Publication of JP2000300562A5 publication Critical patent/JP2000300562A5/ja
Application granted granted Critical
Publication of JP4942237B2 publication Critical patent/JP4942237B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • A61B8/565Details of data transmission or power supply involving data transmission via a network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • G01S7/52026Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52063Sector scan display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52073Production of cursor lines, markers or indicia by electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • G01S7/52084Constructional features related to particular user interfaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Hematology (AREA)
  • Human Computer Interaction (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一般的には、関心領域が背景画像フレーム上にスーパインポーズ(重ね合わせ表示)されているようなイメージングに関する。具体的には、本発明は、生体組織の超音波イメージングにおいて、セクタ(扇状)形状の背景画像フレームに対して関心領域を調節する方法及び装置に関する。
【0002】
【従来の技術】
従来の超音波スキャナは、ピクセルの輝度がエコー反射の強度に基づいている組織の2次元Bモード画像を形成する。あるいは、カラー・ドプラ・モードでは、体液(例えば、血液)又は組織の運動をイメージングすることができる。ドプラ効果を用いた心臓及び血管内の血流の測定は周知である。後方散乱した超音波の位相シフトを用いて、組織又は血液から後方散乱体の速度を測定することができる。ドプラ・シフトは、異なる色を用いて表示され、流れの速度及び方向を表わすことができる。あるいは、パワー・ドプラ・イメージングの場合には、戻ったドプラ信号に含まれているパワーが表示される。
【0003】
従来の超音波イメージング・システムは、1行又はこれよりも多い行を成して配列されており別個の電圧で駆動される超音波トランスデューサ素子のアレイ(配列)を含んでいる。印加電圧の時間遅延(又は位相)及び振幅を選択することにより、所与の行内の個々のトランスデューサ素子を制御して超音波を発生し、これらの超音波を組み合わせて、好ましいベクトル方向に沿って走行していると共にビームに沿って選択された点に集束されている正味の超音波を形成することができる。各回のファイアリング(firing)でのビーム形成パラメータを変化させて、例えば、各々のビームの焦点を前回のビームの焦点に対してシフトさせながら同じ走査線に沿って連続したビームを送信することにより、最大焦点に変化を与えることもできるし、他の場合には、各回のファイアリング毎に受信データの内容を変化させることもできる。方向可変式(steered)アレイの場合には、印加電圧の時間遅延及び振幅を変化させることにより、ビームをその焦点について平面内で移動させて物体を走査することができる。リニア型アレイの場合には、1回のファイアリングから次回のファイアリングにかけてアレイを横断するようにアパーチャを平行移動させることにより、アレイに垂直に指向した集束ビームで物体を横断して走査する。受信モードでトランスデューサ・プローブを用いて反射音を受信する場合にも、同じ原理を適用することができる。受信用のトランスデューサ素子において発生する電圧は、正味の信号が、物体内の単一の焦点から反射した超音波を示すものになるように加算される。送信モードの場合と同様に、この超音波エネルギの集束式受信は、各々の受信用トランスデューサ素子からの信号に別個の時間遅延(及び/又は位相シフト)並びにゲインを付与することにより達成される。
【0004】
集束した超音波エネルギを一点に送信し、次いで、反射エネルギを時間にわたって受信することにより、単一の走査線(又は局在化された走査線の小群)が取得される。集束した送信エネルギを送信ビームと呼ぶ。送信後の一定時間にわたって、1つ又はこれよりも多い受信ビームフォーマ(beam former) が、位相回転又は位相遅延を動的に変化させながら各々のチャネルによって受信されたエネルギをコヒーレントに加算して、所望の走査線に沿って経過時間に比例したレンジ(距離)におけるピーク感度を形成する。得られる集束した感度パターンを受信ビームと呼ぶ。走査線の分解能は、送信ビーム及び受信ビームの関連する対の指向性の結果となる。
【0005】
Bモード超音波画像は、多数の画像走査線で構成されている。ピクセルの輝度は、走査されている生体組織からのエコー反射の強度に基づく。受信ビームフォーマ・チャネルの出力は、コヒーレントに加算されて、物体の関心領域又は関心空間内の各々のサンプル空間についてそれぞれのピクセル強度値を形成する。これらのピクセル強度値は、対数圧縮され、走査変換された後に、走査されている解剖学的構造のBモード画像として表示される。
【0006】
加えて、ドプラ効果に基づいて血流を検出する超音波スキャナが周知である。これらのシステムは、物体内に超音波を送信すると共に物体から後方散乱した超音波エコーを受信するように超音波トランスデューサ・アレイを起動することにより動作する。血流特性の測定においては、戻った超音波を周波数基準と比較し、血球等の流動する散乱体によって反射波に付与された周波数シフトを決定する。この周波数シフト、即ち位相シフトは、血流の速度として解釈される。血液速度は、特定のレンジ・ゲートにおけるファイアリングからファイアリングにかけての位相シフトを測定することにより算出される。
【0007】
後方散乱後の周波数の変化又はシフトは、血液がトランスデューサに向かって流れているときには増大し、血液がトランスデューサから遠ざかって流れているときには減少する。カラー・フロー画像は、血液等の運動物質の速度のカラー画像を白黒の解剖学的構造のBモード画像上にスーパインポーズすることにより形成される。典型的には、カラー・フロー・モードは、Bモード画像上に同時に重ね合わせられた隣接する何百ものサンプル空間を表示し、各々のサンプル空間が、超音波応答要求呼び掛け(interrogation)の時刻の当該サンプル空間内部の運動物質の速度を表わすように色符号化されている。
【0008】
【発明が解決しようとする課題】
カラー・ドプラ・イメージングを行う超音波スキャナは、グレイ・スケールBモード画像内でカラー・ドプラ・データを重ね合わせる区域を設定するROI(関心領域)を用いる。ROIはしばしば、許容可能な音波フレーム・レートを維持するためにBモード画像よりも小さく設定される。スキャナは、操作者がBモード画像区域に関してROIを移動させることを可能にするようにプログラムされている。ストレート・リニア型トランスデューサを用いる場合には、Bモード画像区域及びROIの両方が矩形である。従って、ROIの深さが変更されても、ROIの高さ又は幅を自動的に変更する必要はない。しかしながら、カーブド・リニア型又はセクタ型のいずれかのトランスデューサを用いる場合には、スキャナは、操作者がBモード画像区域に関してROIを移動させるのに伴ってROIの寸法を自動的に調節するようにプログラムされる。従来のアルゴリズムによれば、ROIは典型的には、Bモード画像区域の中央又は中央の付近に配置される。操作者がROIを画像のより深い方へ移動させると、ROIの高さは不変に保たれ、ROIの幅が自動的に変更されて、前回の位置においてROIに含まれていたものと同じ数のベクトルを収容するようにする。ベクトルは、深くなるにつれて発散するので、ROI幅は、深さが増すにつれて増大する。あるいは、操作者がROIを画像の浅い方へ移動させると、同じアルゴリズムを用いて、より狭いROIが結果として得られる。操作者によって始動されたROI位置の変更、及びこの位置変更に応答して行われるROI幅の自動的な変更に続いて、操作者は、元のROI幅を復元するようにROI幅を調節してもよい。後者の調節は、ROIの深さが増す場合に、結果として得られる音波フレーム・レートが増大するので望ましい。しかしながら、超音波スキャナを動作させるこの従来の方法は、音波フレーム・レートの増大という利点を得るために、ROIの深さの増大に追随して操作者が更なる調節を行わなければならないという問題点を有している。
【非特許文献】
HSU C ET AL: 'A constraint-based manipulator toolset for editing 3D objects' PROCEEDINGS OF THE FOURTH SYMPOSIUM ON SOLID MODELLING AND APPLICATIONS ATLANTA, GA, MAY, 14-1 6, 1997, pages 168-1 80, XP000724303 ISBN: 0-89791 -946-7
【0009】
【課題を解決するための手段】
本発明の一面によれば、表示画像は、第1のイメージング・モードを用いて取得された背景領域のデータと、第1のイメージング・モードと異なる第2のイメージング・モードを用いて取得されたROIのデータとを含んでおり、ROIは、背景領域によって包囲されていると共にROI図形によって境界付けされている。表示されるROI図形の位置の深さがシステム操作者によって変更されたとき、ROI図形の構成は、従来の方法よりも良好にROIの幅を維持するように自動的に調節される。結果として、操作者がROIの深さの変更の後にROIの幅を修正する必要性が少なくなり、操作者がROIを画像の深い方へ移動させるときには、より少ないベクトルが用いられ、より高い音波フレーム・レートが達成される。本発明は、超音波イメージング及びその他のイメージング・モダリティに応用することができる。
【0010】
好ましい実施態様は、超音波イメージングに関わる。好ましい一実施態様によれば、第1のイメージング・モードはBモードであり、第2のイメージング・モードはカラー・ドプラ・モードである。もう1つの好ましい実施態様では、第1のイメージング・モードはBモードであり、第2のイメージング・モードはズームBモードである。更にもう1つの好ましい実施態様では、第1のイメージング・モードは非最適画質Bモードであり、第2のイメージング・モードは最適画質Bモードである。
【0011】
深さの変更に応答して行われるROIの形状の調節は、ROIの高さ及び底辺幅を実質的に一定に維持するアルゴリズムで超音波スキャナをプログラムすることにより達成される。ROIの頂辺幅及び各エッジ線の角度のみが、操作者が始動するROIの深さの変更に応答して自動的に変更される。
【0012】
最初に、ROIは典型的には、Bモード画像区域の中央又は中央近くに配置される。本アルゴリズムの好ましい実施態様によれば、利用者がROIを画像の深い方へ移動させる場合に、ROIの高さ及び底辺幅は変更されない。ROIの頂辺幅が増大され、ROIの各エッジ線の角度が、ROIの各エッジ線がROIの底辺の範囲内で最も左のベクトル及び最も右のベクトルにそれぞれ平行になるように変更される。あるいは、利用者がROIを画像の浅い方へ移動させる場合には、やはりROIの高さ及び底辺幅は不変のままにする。ROIの頂辺の幅が減少され、ROIの各エッジ線の角度が、やはりROIの各エッジ線がROIの底辺の範囲内で最も左のベクトル及び最も右のベクトルにそれぞれ平行になるように変更される。このアルゴリズムから、従来の方法よりも良好に幅を維持しているROIが得られる。
【0013】
【発明の実施の形態】
図1について説明する。超音波イメージング・システムは、別個に駆動される複数のトランスデューサ素子3から成るトランスデューサ・アレイ2を含んでいる。トランスデューサは、送信器28と、受信器30とを含んでいるビームフォーマ4に接続されている。送信モードでは、一組の送受信(T/R)スイッチ26が、トランスデューサ素子を送信器28に結合する。各々のトランスデューサ素子3は、送信器28によって発生されるそれぞれのパルス波形によってエネルギを与えられると、単位バーストの超音波エネルギを発生する。受信モードでは、送受信スイッチ26は、トランスデューサ素子を受信器30に結合する。被検体から反射されてトランスデューサ・アレイ2へ戻った超音波エネルギは、各々の受信用トランスデューサ素子3によってアナログ電気信号へ変換され、受信器30に別個に印加される。送信器及び受信器は、ホスト・コンピュータ(即ち、マスタ・コントローラ)44の制御下で動作する。1回の完全な走査は一連のエコーを取得することにより行われ、この取得では、送信器28が瞬間的にONにゲート制御されて送信アパーチャ内の各々のトランスデューサ素子3にエネルギを与え、各々のトランスデューサ素子によって発生される後続のエコー信号が受信器30に印加される。受信器30は、アナログのエコー信号をディジタル信号へ変換し、各々のトランスデューサ素子から得られたそれぞれのディジタル信号を合計してビーム加算された単一の信号を形成し、この信号を用いて、表示モニタ14によって表示される画像の1本の線を形成する。
【0014】
図3について説明する。送信アパーチャ内の各々のトランスデューサ素子は、それぞれのパルサ48によって出力されるパルス波形によってパルス駆動され、このパルス駆動は、送信シーケンス・メモリ54から当該パルサへ出力されるそれぞれの送信シーケンスに応答して行われる。送信波形の周波数及び/又は長さの調節は、送信シーケンス・メモリ54をプログラムすることにより実現される。各々のパルス波形の周波数及び長さは、それぞれの送信シーケンスによって決定される。例えば、パルサ48が双極型であるならば、+1及び−1の要素から成る送信シーケンスを各々のパルサによって反対の位相を有するパルスへ変換する。尚、0の要素は無パルスに相当する。衝撃係数(duty cycle)及びパルス幅は、送信シーケンスにおける連続した+1又は−1の数に比例する。
【0015】
ホスト・コンピュータ44の指令下で、送信器28は、超音波エネルギが指向性の集束ビームとして送信されるようにトランスデューサ・アレイ2を駆動する。集束を行うためには、送信焦点遅延ブロック52によってパルサ48に対してそれぞれの時間遅延を付与する一方、それぞれのパルス振幅は、送信レベル制御ブロック50によって設定される。パルサは、T/Rスイッチ26を介してトランスデューサ・アレイ2の各素子へ送信パルスを送る。送信焦点時間遅延を従来の方式で適当に調節することにより、送信焦点ゾーンの位置へ超音波ビームを指向させると共にこの位置で集束させることができる。送信焦点ゾーンの軸方向長さは、送信アパーチャの幅の関数となる。
【0016】
ホスト・コンピュータ44は、音波パルスを送信する条件を決定する。この情報によって、送信焦点遅延及び送信レベル制御の各ブロックは、パルサ48によって発生されるべき送信パルスの各々のタイミング及び振幅をそれぞれ決定する一方、送信パルスの周波数及び長さは、送信シーケンスによって決定される。ホスト・コンピュータは、Bモード・イメージング及びカラー・フロー(color flow)・モード・イメージングについて、異なる送信シーケンス、送信焦点遅延及び送信レベルの組を提供することができる。
【0017】
各回の送信の後に、T/Rスイッチ26は、走査されている物体から後方散乱した反射エコーを受け取るように受信モードに切り換えられる。これらの反射信号は、受信器30のそれぞれの受信チャネル56へ供給される。各々の受信チャネルがアナログ・ディジタル(analog-to-digital)変換器を含んでいる。受信器は、ホスト・コンピュータ44の指令下で、受信されたRFエコー信号に対して適正な受信焦点時間遅延58を付与することによりエコーを追尾する。ビーム加算器60が、各回のファイアリング毎にRFエコー信号を加算して、特定の送信焦点位置に対応する一連のレンジから反射した全超音波エネルギを正確に指示するエコー信号を形成する。
【0018】
再び図1を見ると、ベースバンド・イメージング・システムの場合には、ビーム加算された信号は、復調器32へ出力され、復調器32は、ビーム加算された信号をベースバンドの同相(I)データ・ベクトル及び直角位相(Q)データ・ベクトルへ変換する。復調器32からのI及びQの音波データ・ベクトルは、フィルタ係数メモリ(図示されていない)からフィルタ係数を与えられているFIRフィルタ34へ出力される。フィルタ係数メモリは、ホスト・コンピュータ44によってプログラムされている。
【0019】
フィルタ34からの音波データ(acoustic data) は、スイッチ(図示されていない)へ送られる。Bモードでは、全体の画像フレームの走査時に取得された音波データ・ベクトルが、Bモード・プロセッサ6へ出力される。カラー・フロー・モードでは、ROIの走査時に取得された音波データ・ベクトルが、カラー・フロー・プロセッサ8へ出力される。音波データが背景画像用であるか又はROI用であるかに応じて、フィルタ34の出力は適当なプロセッサへ送られる。
【0020】
Bモードでは、Bモード・プロセッサ6は、I及びQの音波データのストリームの包絡線を検出(図2の包絡線検波器16)した後に、それぞれの信号包絡線を対数圧縮(図2の対数圧縮ブロック18)する。ベースバンド信号の包絡線は、I及びQが表わすベクトルの大きさとなる。I及びQの位相角は、Bモード表示には用いられない。信号の大きさ(即ち、強度)は、直交する各成分の平方和の平方根、即ち、(I2 +Q2 1/2 となる。
【0021】
再び図1を見ると、Bモード強度データは、スキャン・コンバータ10内のBモード音線メモリ38へ出力される。音線メモリ38は、背景区域の走査時に取得されたBモード強度データの処理済ベクトルを受け取り、必要があれば補間する。音線メモリ38は又、Bモード強度データの極座標(Rθ)セクタ型フォーマット又はデカルト座標リニア型フォーマットから適当に拡縮されたデカルト座標表示ピクセル強度データへの座標変換を行う。背景画像区域のピクセル強度データは、XY表示メモリ40に書き込まれる。
【0022】
XY表示メモリ40に記憶された走査変換後のBモード画像フレームは、ビデオ・プロセッサ12へ渡され、ビデオ・プロセッサ12は、ピクセル強度データをビデオ・フレーム・レートへ変換した後に、ビデオ表示のためにグレイ・スケール・マッピングとしてマッピングする。従来の超音波イメージング・システムは典型的には、グレイ・スケール・レベルを表示するために生の強度データの単純な伝達関数である様々なグレイ・マップを用いている。次いで、グレイ・スケール画像フレームは、表示モニタ14へ送られて表示される。
【0023】
グレイ・マッピングの前に、ビデオ・プロセッサ12内の表示ピクセル強度データの連続したフレームは、先入れ先出し方式でシネ・メモリ42に記憶される。記憶は連続的であってもよいし、又は外部のトリガ事象の結果として生じてもよい。シネ・メモリ42は、バックグラウンドで稼働する循環的な画像バッファのようなものであり、画像データを取り込んで、リアル・タイムで利用者に対して表示する。利用者がシステムをフリーズさせる(操作者インタフェイス46上の適当な装置の操作により)と、利用者は、シネ・メモリに以前に取り込まれている画像データを視認する能力を有するようになる。
【0024】
システム制御は、ホスト・コンピュータ44に集中化されており、ホスト・コンピュータ44は、操作者インタフェイス46(例えば、制御盤)を介して操作者の入力を受け取って、様々なサブシステムを制御する。ホスト・コンピュータ44は、システム・レベルの制御作用を実行する。システム制御バス(図示されていない)が、ホスト・コンピュータから各サブシステムへのインタフェイスを提供している。ホスト・コンピュータは好ましくは、様々なサブシステムに対して実時間(音波ベクトル速度)の制御入力を供給する走査制御器(図示されていない)を組み入れている。走査制御器は、ベクトル・シーケンス及び音波フレーム取得の同期の選択肢を用いてホスト・コンピュータのCPUによってプログラムされている。このようにして、走査制御器は、ビーム分布及びビーム密度を制御する。走査制御器は、ホスト・コンピュータのCPUによって定義されたビーム・パラメータを走査制御バス(図示されていない)を介して各サブシステムへ伝達する。代替的には、走査制御器は、ホスト・コンピュータによってプログラムされている独立した専用プロセッサであってもよい。
【0025】
モニタ14によって表示されるBモード画像は、その各々が表示におけるそれぞれのピクセルの強度又は輝度を指示しているデータから成る画像フレームで形成されている。画像フレームは、各々の表示ピクセル強度データが、ピクセル輝度を指示する8ビットの2進数であるような、例えば、256×256のデータの配列を含み得る。各々のピクセルは、呼び掛け用超音波パルスに応答したそれぞれのサンプル空間の後方散乱体断面積と、用いられているグレイ・マップとの関数である強度値を有している。表示画像は、イメージングされている物体を貫通する走査平面内での組織及び/又は血流を表わしている。
【0026】
カラー・フロー・モードでは、カラー・フロー・プロセッサ8が、I及びQの音波データのストリームを速度又はパワーのカラー・フロー推定値へ変換する。音波エネルギを与える(insonifying)ビームと流れの軸との間の角度をθとすると、速度ベクトルの大きさは、次の標準的なドプラ方程式によって決定することができる。
【0027】
v=cfd/(2f0cosθ) (1)
ここで、cは血中での音速であり、f0は送信周波数であり、fdは後方散乱した超音波における動きに誘起されたドプラ周波数シフトである。
【0028】
1つの従来の超音波イメージング・システムでは、超音波トランスデューサ・アレイ2が起動されて、同一の送信特性で同一の送信焦点位置に集束している一連のマルチ・サイクル(典型的には4サイクル〜8サイクル)の波形を送信する。これらの波形は、一定のパルス繰り返し周波数(PRF)でファイアリングされる。同一の送信焦点位置に集束した一連の送信ファイアリングを「パケット(packet)」と呼ぶ。各々の送信ビームは、走査されている物体を通じて伝播し、血球等の超音波散乱体によって反射される。反射信号は、トランスデューサ・アレイの各素子によって検出された後に、受信器30によって受信ビームとして形成される。この処理が、操作者インタフェイス46を介してシステム操作者によって選択されたROI内の多数の点について繰り返される。
【0029】
従来のカラー・ファイアリング・シーケンスは、同一の送信焦点位置に集束した一連のファイアリングであり、これらのファイアリングは、それぞれの受信信号
1234...FM
を形成する。ここで、Fi は、i番目のファイアリングについての受信信号であり、Mはパケット内のファイアリングの数である。次いで、これらの受信信号は、カラー・フロー・プロセッサ8へ送られる。図2を見ると、典型的なカラー・フロー・プロセッサ8は、コーナ・ターナ・メモリ(corner turner memory)20と、I成分及びQ成分のそれぞれのためのウォール・フィルタ22と、パラメータ推定器24とを含んでいる。I成分及びQ成分は、コーナ・ターナ・メモリ20にロードされ、コーナ・ターナ・メモリ20の目的は、インタリーブされている可能性のあるファイアリングからのデータをバッファリング(buffer)して、これらのデータを所与のレンジ・セルにおいて複数のファイアリングに跨がる点から成るベクトルとして出力することにある。データは、「高速」で、即ち、各回のファイアリング毎に(ベクトルに沿って)レンジを下降する(ダウン・レンジ)順で受信されている。結果として得られる「低速」のI信号及びQ信号のサンプルは、それぞれのウォール・フィルタ22を通される。典型的なシステムでは、各々のウォール・フィルタは、各回のファイアリングに跨がる各々のダウン・レンジ位置に適用される、即ち、「低速」で適用される高域通過フィルタである。(1,−1)のウォール・フィルタという最も単純な例では、各々のレンジ点がフィルタ処理されて、次のようなそれぞれの差信号
(F1−F2)(F2−F3)(F3−F4)...(FM-1−FM
を発生し、これらの差がカラー・フロー・パラメータ推定器24に入力される。
【0030】
ウォール(wall)・フィルタの目的は、関心のある血流の周りの組織によって発生された信号成分を除去することにある。これらの信号成分が除去されなければ、得られる速度推定値は、血流からの速度と周囲の組織の速度との組み合わせとなる。組織からの後方散乱体成分は、血液からの後方散乱体成分よりも何倍も大きいので、速度推定値は、血流よりも組織をより多く表わすものとなりかねない。流速を得るためには、組織信号はフィルタ除去しなければならない。
【0031】
ウォール・フィルタで処理された出力は、パラメータ推定器24へ供給され、パラメータ推定器24は、レンジ・セルの情報を中間自己相関パラメータN、D及びR(0)へ変換する。N及びDは、次に示すように、自己相関方程式の分子と分母である。
【0032】
【数1】
Figure 0004942237
【0033】
ここで、Ii 及びQi はファイアリングiについての入力データであり、Mはパケット内のファイアリングの数である。R(0)は、あるパケットにおけるファイアリングの数の全体にわたる有限の加算として近似することができ、次のようになる。
【0034】
【数2】
Figure 0004942237
【0035】
R(0)は、反射した超音波エコーのパワーを指示している。
【0036】
パラメータ推定器24のプロセッサは、N及びDを各々のレンジ・セル毎に振幅及び位相へ変換する。用いられる式は、次の通りである。
【0037】
|R(T)|=(N2+D21/2 (5)
φ(R(T))=tan-1(N/D) (6)
パラメータ推定器24は、これらの振幅値及び位相値を処理して、パワー、速度及び乱れ(turbulence)の推定値とする。位相は、後に示すように、速度に比例した平均ドプラ周波数を算出するのに用いられ、R(0)及び|R(T)|(振幅)は、乱れを推定するのに用いられる。
【0038】
平均ドプラ周波数は、N及びDの位相、並びにパルス繰り返し時間Tから得られる。
【0039】
【数3】
Figure 0004942237
【0040】
平均速度は、次のドプラ・シフト方程式を用いて算出される。
【0041】
【数4】
Figure 0004942237
【0042】
尚、パラメータ推定器24は、平均ドプラ周波数を中間出力として算出するわけではなく、ルックアップ・テーブルを用いてプロセッサの位相出力から直接的に
【0043】
【外1】
Figure 0004942237
【0044】
い)を用いて、走査変換の前に圧縮される。
【0045】
カラー・フロー推定値(即ち、パワー又は速度)は、スキャン・コンバータ10のカラー・フロー音線(acoustic line) メモリ36へ送られ、スキャン・コンバータ10は、カラー画像をビデオ表示用のXYフォーマットへ変換し、変換後の画像をXY表示メモリ40に記憶する。次いで、走査変換後のカラー画像は、ビデオ・プロセッサ12へ渡され、ビデオ・プロセッサ12は、ビデオ・データをビデオ表示用の表示カラー・マップへマッピングする。次いで、カラー・フロー画像データは、ビデオ・モニタ14へ送られて、Bモード画像データ上にスーパインポーズされているROI内に表示される。
【0046】
図4について説明する。表示時に、ROI図形64がBモード画像区域62上にスーパインポーズされている。このROI図形の周辺の内部では、カラー・フロー・データがBモード・データ上にスーパインポーズされている。図4に、ROI図形の既定位置を示す。既定位置のROI図形64を表わす表示データは、ホスト・コンピュータ44によって形成され、スキャン・コンバータ10の図形表示メモリ41に記憶されている。代替的には、図形データは、ホスト・コンピュータと通信する専用の図形プロセッサによって形成されていてもよい。ROI図形データは、図形表示メモリ41からビデオ・プロセッサ12へ出力されて連続表示され、即ち、各々の連続した画像フレームのカラー・フロー・データ及びBモード・データが表示されているのと同時に、不変のROIが表示されて、Bモード・データ上にスーパインポーズされているカラー・フロー・データの境界を画定する。
【0047】
本発明の好ましい実施態様によれば、ROIの幅及び高さは、操作者インタフェイス46上のそれぞれの制御つまみの操作によって調節することができる。ROIの位置は、第3の制御つまみの操作によって変更することができる。代替的には、ROIの位置及び寸法を他の任意の標準的なユーザ・インタフェイス装置(例えば、トラックボール)を介して調節してもよい。
【0048】
ROIの寸法及び位置に応じて、カラー・フロー・モードにおいて、ホスト・コンピュータ44は、送信器28及び受信器30に対して所要のビーム・パラメータを供給する。ROIイメージング・パラメータは、送信波形、送信焦点ゾーンの数、ベクトル間隔、フィルタ係数及びフレーム・レートを含めてすべて、背景のBモード画像のパラメータとは独立である。
【0049】
従来のシステムでは、ROI64の既定位置は典型的には、図4に示すように、Bモード画像区域62の中央又は中央近くに位置する。公知のアルゴリズムによれば、ROIが操作者によって移動されるのに伴って、システムは、ROIを自動的に再構成して、ROI内のベクトルの数を一定に維持する。操作者がROIを画像の深い方へ移動させると、ROIの高さは不変に留まり、ROIの幅が自動的に変更されて、前回のROIの位置でROIに含まれていたものと同じ数のベクトルを収容するようにし、これにより、音波フレーム・レートを一定に維持する。このようなより深いROIを図5の参照番号66に示す。ベクトルは深くなるにつれて発散するので、図5のROI66の幅は、図4のROI64の幅よりも広い。操作者がROIを画像の浅い方へ移動させると、同じアルゴリズムによって、より狭いROIが形成される。このようなより狭いROIを図6の参照番号68に示す。操作者によって始動されたROI位置の変更、及びこの位置変更に応答して行われるROI幅の自動的な変更に続いて、操作者は、元のROI幅を復元するようにROI幅を調節することもできる。
【0050】
以上に述べた従来のアルゴリズムに対して、本発明で用いられるアルゴリズムは、位置変更時にROI内のベクトルの数を一定に維持しようとしない。その代わりに、好ましい実施例によるアルゴリズムは、操作者が始動したROI位置の変更時に、ROIの高さ及び底辺幅を一定に維持する。位置変更に応答して、ROIの頂辺幅のみが自動的に変更される。例えば、利用者がROIを画像の深い方へ(例えば、図4に示す既定位置から図7に示す位置へ)移動させると、ROIの高さ及び底辺幅は変更されず、即ち、図7のROI70の高さ及び底辺幅は、図4のROI64の高さ及び底辺幅とそれぞれ同じになる。しかしながら、ROI70の頂辺での幅が増大され、ROI70の各エッジの角度が、ROIの各エッジがROI70の底辺領域の範囲内でカラー・フロー・データの最も左のベクトル及び最も右のベクトルにそれぞれ平行になるように変更される。あるいは、利用者がROIを画像の浅い方へ移動させると、やはりROIの高さ及びROIの底辺幅は変更されない。図8に示すように、ROI72の頂辺幅が、図4のROI64の頂辺幅に対して減少し、ROI72の各エッジの角度が、この場合にも、ROIの各エッジがROI70の底辺領域の範囲内でカラー・フロー・データの最も左のベクトル及び最も右のベクトルにそれぞれ平行になるように変更される。
【0051】
好ましい一実施例によれば、第1のイメージング・モードはBモードであり、第2のイメージング・モードはカラー・ドプラ・モードである。もう1つの好ましい実施例では、第1のイメージング・モードはBモードであり、第2のイメージング・モードはズームBモードである。更にもう1つの好ましい実施例では、第1のイメージング・モードは非最適画質Bモードであり、第2のイメージング・モードは最適画質Bモードである。
【0052】
各々の好ましい実施例において、ROIの形状は、ROI深さの変更に応答して自動的に調節される。ROI、及びROIが配置されている画像フレームの両方が、円環の部分区画(セクタ)の形状を有しており、即ち、頂辺弧及び底辺弧がそれぞれの端部において左のエッジ線及び右のエッジ線によって接続されており、ROI及び画像フレームの両方の弧が、共通の曲率中心を有しており、この曲率中心において各エッジ線の投影が交わる。この共通の曲率中心を、ここでは「画像フレームの頂点」と呼ぶものとする。好ましい実施例では、ROIの高さ及び幅は、ROIの深さが変更されても変更されない。高さは、ROIの底辺弧の中点から頂辺弧の中点までの距離であり、幅は、ROIの底辺弧の中点からROIの一方のエッジ線の投影が底辺弧の中点の接線と交わる点までの距離である。ホスト・コンピュータ又は専用の図形プロセッサ(図示されていない)は、画像フレームの頂点から底辺弧の中点までの中線と、一方のエッジ線から画像フレームの頂点へ投射される線との間に内包される角度を算出する。この角度、2分の1幅、及び底辺弧の中点から画像フレーム頂点までの距離に基づいて、コンピュータ又は図形プロセッサは、ROIの一方のエッジ線を表わす図形データで埋められるべき表示モニタ上のピクセルの座標を決定する。ROIの他方のエッジ線を表わす図形データで埋められるべき表示モニタ上のピクセルの座標を決定するためには、類似の計算が行われる。又、ROIの頂辺弧及び底辺弧を表わす図形データで埋められるべき表示モニタ上のピクセルの座標も決定される。次いで、コンピュータ又は図形プロセッサは、ROI図形を表わすデータを図形表示メモリ内の決定されたピクセル座標に対応する番地へ入力する。
【0053】
カラー・フロー・データがBモード・データの画像フレーム上のROIにスーパインポーズされるといった好ましい実施例では、操作者が始動したROI深さの変更に応答して新たなROIの境界が決定された後に、ホスト・コンピュータ44(図1を参照)は、カラー・フロー・モードに用いる新たなビーム・パラメータを送信用ビームフォーマ28及び受信用ビームフォーマ30へ伝達する。これらのビーム・パラメータは、カラー・フロー・データの取得を画像フレーム上のROIに実質的に対応する走査平面内の領域に限定する。同じ動作原理は、他の好ましい実施例にも当てはまり、即ち、システム・コンピュータは、第1のイメージング・モードでは走査平面の領域内のデータを取得する第1のビーム・パラメータの組を伝達すると共に、第2のイメージング・モードでは走査平面のROIに対応する領域の部分でのみデータを取得する第2のビーム・パラメータの組を伝達する。
【0054】
本発明の好ましい実施例によれば、アルゴリズムの開始時に、ホスト・コンピュータは、ROIの初期位置を画定する2つのパラメータをホスト・コンピュータのメモリに記憶している。図9を見ると、第1のパラメータは深さd1で、画像頂点AからROI74の底辺の中心Bまでの距離であり、第2のパラメータは、角度α1で、線分ABと、ROI74の左側のエッジと同一直線上にある線分ACとの間の角度である。次いで、d1 及びα1 から、ROI74の2分の1幅w1 (図9の線BC)を次のようにして算出することができる。
【0055】
1=d1tanα1 (9)
ここで、線分ABと線分BCとの間の角度は直角である。この好ましい実施例によれば、利用者がROIの高さ又は底辺幅のいずれも変更しないでROIを図10に示す位置まで移動させると、ホスト・コンピュータは先ず、新たな深さd2 、即ち、画像頂点Aから新たなROI76の中心B′までの距離を直接指示する移動量を決定する。新たなROI76の2分の1幅w2 (線分B′C′)は、古いROI74の2分の1幅w1 に等しく設定され、ここで、線分AB′と線分B′C′との間の角度はやはり直角である。d2 及びw2 の両方が既知であるので、次いで、ホスト・コンピュータは、線分AB′と線分AC′との間の新たな角度α2 を次のようにして算出する。
【0056】
α2=tan-1(w2/d2) (10)
この角度は、ROI76の左側のエッジの配向を画定している。ROIの他の二半部についても同じ計算を行うことができ、これにより、ROI76の右側のエッジの配向を画定する。
【0057】
上述のアルゴリズムによれば、ホスト・コンピュータは又、ROI76の底辺弧の中点(図10の点B′)のピクセル座標を利用者によるROIの配置の関数として算出するようにプログラムされている。ROI76の高さ及び幅も又、既に既知であり、即ち、高さ及び幅は図9に示すROI74のものと同じである。ROI76の左側のエッジと中心線(線分AB′)との間の角度を算出し、ROIの高さ及び幅並びに底辺の中点のピクセル座標と組み合わせることにより、ホスト・コンピュータは、ROI76の左側のエッジのピクセル座標を算出することができる。同様に、ホスト・コンピュータは、ROI76の右側のエッジのピクセル座標を算出する。ROIの底辺のピクセル座標は、B′及び半径d2 (線分AB′)のピクセル座標に部分的に基づいて算出することができる一方、ROIの頂辺のピクセル座標は、ピクセル座標B′及び半径(d2 −h)に部分的に基づいて算出することができ、ここで、hはROIの高さである。ホスト・コンピュータは、ROI76を表わすピクセル座標の組に対応する図形表示メモリ41内の番地に図形データを出力する。ROIピクセル座標の計算は、ROIの位置の変更を操作者が入力するのに応答して瞬時に実行されることが理解されよう。
【0058】
もう1つの好ましい実施例によれば、第1のイメージング・モードは非最適画質Bモードであり、第2のイメージング・モードは最適画質Bモードである。この実施例では、ROI内での最適画質は、背景領域の画像データを取得するのに用いたイメージング・パラメータの組と異なるイメージング・パラメータの組を用いることにより達成される。背景領域のものに対して異なるROIのイメージング・パラメータは、例えば、異なる(例えば、より短い)送信波形、単位深さ当たりより多い送信焦点ゾーンの数、異なる送信及び/又は受信アパーチャ、受信帯域通過フィルタの異なる中心周波数(主調波及び/又は高(低)調波)、並びにより高いベクトル密度(即ち、より小さいベクトル間隔)を含み得る。最適イメージングはROIに制限されているので、ROIの寸法によるがROI内では高フレーム・レートが依然として可能である。背景画像(ROIの外部)は、分解能及び/又はフレーム・レートに関して、何らかの最低限の許容可能なレベルに又はこのレベルよりも高くに維持されるべきである。
【0059】
好ましい実施例を参照して本発明を記載したが、当業者には、本発明の範囲から逸脱せずに様々な変更を行うと共に本発明の要素を均等構成で置き換え得ることが理解されよう。加えて、本発明の本質的な範囲から逸脱せずに本発明の教示に具体的な状況を適合させる多くの改変を行うことができる。例えば、ROI調節作用は、超音波イメージング・システムにおいて実現されるものと限定されているわけではなく、カーブドリニア型又はセクタ型トランスデューサ・アレイを用いる任意のフェーズド・アレイ・イメージング・システムにおいて実現されることもできる。加えて、計算は、ホスト・コンピュータによる代わりに専用の図形プロセッサによって行うこともできる。又、2分の1幅は必ずしも、底辺弧の中点をエッジ線の投影と接続する線分に沿った距離として計算されなくてもよい。例えば、代替的に、2分の1幅を底辺弧の各端点を接続する線分に沿った距離の2分の1として算出することもできよう。どの計算法を用いるかに拘わらず、2分の1幅は、ROI深さの変更に応答して一定に保たれる。従って、本発明は、本発明を実行するために想到される最良の態様として開示された特定の実施例に限定されているわけではなく、特許請求の範囲内に含まれるすべての実施態様を含むものとする。
【図面の簡単な説明】
【図1】本発明を組み込むことのできる超音波イメージング・システムの一形式について、Bモード信号処理系及びカラー・フロー・モード信号処理系を示すブロック図である。
【図2】図1に示すシステムの更なる構成要素を示すブロック図である。
【図3】図2の送信器及び受信器を更に詳細に示すブロック図である。
【図4】従来の手法に従ってROI画像が既定位置で背景画像区域上にスーパインポーズされている場合のセクタ走査を示す概略図である。
【図5】図4のROI画像が背景画像区域の底辺へ移動されて従来のアルゴリズムに従って調節された場合のセクタ走査を示す概略図である。
【図6】図4のROI画像が背景画像区域の頂辺へ移動されて従来のアルゴリズムに従って調節された場合のセクタ走査を示す概略図である。
【図7】図4のROI画像が背景画像区域の底辺へ移動されて好ましい実施例のアルゴリズムに従って調節された場合のセクタ走査を示す概略図である。
【図8】図4のROI画像が背景画像区域の頂辺へ移動されて好ましい実施例のアルゴリズムに従って調節された場合のセクタ走査を示す概略図である。
【図9】好ましい実施例のアルゴリズムに従って当初の位置でのROIの2分の1幅を算出するのに用いられる幾何を示す概略図である。
【図10】好ましい実施例のアルゴリズムに従って最終の位置でのROIの2分の1幅を算出するのに用いられる幾何を示す概略図である。
【符号の説明】
2 トランスデューサ・アレイ
3 トランスデューサ素子
4 ビームフォーマ
6 Bモード・プロセッサ
8 カラー・フロー・プロセッサ
10 スキャン・コンバータ
12 ビデオ・プロセッサ
14 表示モニタ
16 包絡線検波器
18 対数圧縮
20 コーナ・ターナ・メモリ
22 ウォール・フィルタ
24 パラメータ推定器
26 送受信スイッチ
28 送信器
30 受信器
32 復調器
34 FIRフィルタ
36 カラー・フロー音線メモリ
38 Bモード音線メモリ
40 XY表示メモリ
41 図形表示メモリ
42 シネ・メモリ
44 ホスト・コンピュータ
46 操作者インタフェイス
48 パルサ
50 送信レベル制御
52 送信焦点遅延
54 送信シーケンス・メモリ
56 受信チャネル
58 受信集束時間遅延
60 ビーム加算器
62 Bモード画像区域
64、66、68、70、72、74、76 ROI図形

Claims (9)

  1. 関心領域の図形を表示する方法において、
    基準点を有する画像フレーム(62)を表示する画像フレーム表示工程と、
    底辺幅と、頂辺幅と、高さと、第1のエッジ線の投影と第2のエッジ線の投影とがなす角度とを有する関心領域の図形(64,66,70,72,74)を、前記画像フレーム(62)上の、前記基準点に対して決定された深さ位置に表示する関心領域図形表示工程と、
    前記関心領域(64,66,70,72,74)の前記深さを変更する深さ変更工程と、
    前記関心領域(64,66,70,72,74)の図形の前記高さと前記底辺幅を実質的に不変に維持しながら、前記関心領域図形の前記頂辺幅と前記角度とを前記深さの変更の関数として変更する頂辺幅・角度変更工程と、
    を備え
    前記第1のエッジ線が変更後の底辺幅の範囲内で前記基準点から延びる最も左のベクトルに平行となる角度に変更され、
    前記第2のエッジ線が前記変更後の底辺幅の範囲内で前記基準点から延びる最も右のベクトルに平行となる角度に変更されることを特徴とする関心領域図形の表示方法。
  2. 前記頂辺幅は深さの増大に応答して増大し、且つ深さの減少に応答して減少することを特徴とする請求項1に記載の方法。
  3. 前記関心領域図形(64,66,70,72,74)は、前記第1及び第2のエッジ線によりそれぞれの端点で接続されている第1及び第2の弧を含み、該第1及び第2の弧は共通の曲率中心を前記基準点の位置に有しており、前記各エッジ線の前記各投影は前記基準点で交わることを特徴とする請求項1または2に記載の方法。
  4. 前記頂辺幅・角度変更工程は、
    前記底辺幅の2分の1幅を決定する工程と、
    前記第1のエッジ線と、前記基準点及び前記第2の弧の中点を接続する中線との間に内包される角度を前記2分の1幅及び前記深さの関数として決定する工程、
    とを含むことを特徴とする請求項に記載の方法。
  5. 前記関心領域図形(64,66,70,72,74)の内部に位置する前記画像フレームの第1の一部分上に表示されるイメージング・データを第1のイメージング・モードで取得する第1イメージングデータ取得工程と、
    少なくとも前記関心領域図形(64,66,70,72,74)の外部に位置する前記画像フレームの少なくとも1つの第2の一部分上に表示されるイメージング・データを第2のイメージング・モードで取得する第2イメージングデータ取得工程と、
    を更に含むことを特徴とする請求項1乃至のいずれかに記載の方法。
  6. 前記第1イメージングデータ取得工程は、前記画像フレームの前記第2の一部分に対応する走査平面の第1の領域に対して、超音波エネルギビームによる呼び掛けを行う第1スキャン工程を含んでおり、
    前記第2イメージングデータ取得工程は、前記少なくとも1つの第2の一部分に対応する前記走査平面の第2の領域に対して、超音波エネルギビームによる呼び掛けを行う第2スキャン工程を含むことを特徴とする請求項に記載の方法。
  7. 前記第1と第2のスキャン工程の各々が、
    被検体内部に超音波エネルギのビームを送信する工程と、
    各回の送信に続いて前記被検体内部から戻った超音波エネルギを検出する工程、
    とを含むことを特徴とする請求項またはに記載の方法。
  8. 前記関心領域図形(64,66,70,72,74)の深さを変更する前記深さ変更工程は、操作者インタフェイスの入力装置を操作する工程を含むことを特徴とする請求項1乃至のいずれかに記載の方法。
  9. 表示サブシステム(12,14)と、
    基準点を有する画像フレームを表示するように前記表示サブシステムを制御する画像フレーム表示制御手段と、
    底辺幅と、頂辺幅と、高さと、第1のエッジ線の投影と第2のエッジ線の投影とがなす角度とを有する関心領域の図形(64,66,70,72,74)を、前記画像フレーム(62)上の前記基準点に対して決定されたある深さ位置に表示するように、前記表示サブシステムを制御する関心領域表示制御手段と、
    前記関心領域の前記深さを変更する深さ変更手段(46)と、
    前記関心領域図形の前記高さと前記底辺幅とを実質的に不変に維持しながら、前記関心領域図形の前記頂辺幅と前記角度とを前記深さの変更の関数として変更する頂辺幅・角度変更手段と、
    を備え
    前記第1のエッジ線が変更後の底辺幅の範囲内で最も左のベクトルに平行となる角度に変更され、
    前記第2のエッジ線が前記変更後の底辺幅の範囲内で最も右のベクトルに平行となる角度に変更されることを特徴とするイメージング・システム。
JP2000092563A 1999-03-30 2000-03-30 関心領域を画像内に配置する表示方法及びイメージングシステム Expired - Lifetime JP4942237B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/281192 1999-03-30
US09/281,192 US6077226A (en) 1999-03-30 1999-03-30 Method and apparatus for positioning region of interest in image

Publications (3)

Publication Number Publication Date
JP2000300562A JP2000300562A (ja) 2000-10-31
JP2000300562A5 JP2000300562A5 (ja) 2009-09-10
JP4942237B2 true JP4942237B2 (ja) 2012-05-30

Family

ID=23076332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000092563A Expired - Lifetime JP4942237B2 (ja) 1999-03-30 2000-03-30 関心領域を画像内に配置する表示方法及びイメージングシステム

Country Status (5)

Country Link
US (2) US6077226A (ja)
EP (1) EP1041395B1 (ja)
JP (1) JP4942237B2 (ja)
DE (1) DE60025438T2 (ja)
IL (1) IL135040A0 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052225A (ja) * 2011-08-08 2013-03-21 Canon Inc 被検体情報取得装置、被検体情報取得システム、表示制御方法、表示方法、及びプログラム

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224556B1 (en) * 1998-11-25 2001-05-01 Acuson Corporation Diagnostic medical ultrasound system and method for using a sparse array
US6077226A (en) * 1999-03-30 2000-06-20 General Electric Company Method and apparatus for positioning region of interest in image
US6231512B1 (en) * 1999-05-28 2001-05-15 General Electric Company Method and apparatus for parametric harmonic imaging
JP4864212B2 (ja) * 2001-01-10 2012-02-01 株式会社東芝 医療業務管理システム
US6638226B2 (en) * 2001-09-28 2003-10-28 Teratech Corporation Ultrasound imaging system
US6544179B1 (en) * 2001-12-14 2003-04-08 Koninklijke Philips Electronics, Nv Ultrasound imaging system and method having automatically selected transmit focal positions
US7324665B2 (en) * 2002-09-16 2008-01-29 Massachusetts Institute Of Technology Method of multi-resolution adaptive correlation processing
EP1623674B1 (en) * 2003-05-08 2016-04-13 Hitachi Medical Corporation Reference image display method for ultrasonography and ultrasonograph
US7591788B2 (en) * 2003-08-19 2009-09-22 Siemens Medical Solutions Usa, Inc. Adaptive contrast agent medical imaging
US7946991B2 (en) * 2003-10-17 2011-05-24 Panasonic Corporation Ultrasonic doppler blood flow measuring device
US7290011B2 (en) * 2003-11-26 2007-10-30 Idx Investment Corporation Image publishing system using progressive image streaming
KR100686289B1 (ko) * 2004-04-01 2007-02-23 주식회사 메디슨 대상체 영상의 윤곽내 볼륨 데이터를 이용하는 3차원초음파 영상 형성 장치 및 방법
US20050228282A1 (en) * 2004-04-06 2005-10-13 Siemens Medical Solutions Usa, Inc. Image quality compensation for duplex or triplex mode ultrasound systems
US20060036147A1 (en) * 2004-07-20 2006-02-16 Scimed Life Systems, Inc. Systems and methods for detecting and presenting textural information from medical images
US20060173318A1 (en) * 2004-07-20 2006-08-03 Scimed Life Systems Inc. Systems and methods for detecting and presenting textural information from medical images
JP4768315B2 (ja) * 2005-05-20 2011-09-07 テルモ株式会社 超音波信号処理装置及び超音波信号処理方法
WO2006137016A1 (en) * 2005-06-21 2006-12-28 Koninklijke Philips Electronics N. V. Method and device for imaging a blood vessel
IL170320A (en) * 2005-08-17 2010-04-29 Orad Hi Tec Systems Ltd System and method for managing the visual effects insertion in a video stream
JP2007125152A (ja) * 2005-11-02 2007-05-24 Hitachi Medical Corp 超音波診断装置
JP4309936B2 (ja) * 2007-01-05 2009-08-05 オリンパスメディカルシステムズ株式会社 超音波診断装置
AU2008200011B2 (en) * 2007-01-05 2012-08-23 Olympus Medical Systems Corp. Ultrasonic diagnostic equipment and method for processing signal of ultrasonic diagnostic equipment
US7639008B2 (en) * 2007-03-19 2009-12-29 Kabushiki Kaisha Toshiba System, method and apparatus for identifying abnormality in MRI RF input circuits by combination mode switching in single MRI sequence scan
KR101055580B1 (ko) * 2007-11-14 2011-08-23 삼성메디슨 주식회사 Bc-모드 영상을 형성하는 초음파 시스템 및 방법
KR101055500B1 (ko) * 2007-11-14 2011-08-08 삼성메디슨 주식회사 Bc-모드 영상을 형성하는 초음파 시스템 및 방법
US9125586B2 (en) * 2008-01-25 2015-09-08 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Continuous acquisition and processing of ultrasound color data
JP5281855B2 (ja) * 2008-09-09 2013-09-04 オリンパスメディカルシステムズ株式会社 指標画像制御装置
JP5450000B2 (ja) * 2009-11-27 2014-03-19 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴イメージング装置
JP5456499B2 (ja) * 2010-01-29 2014-03-26 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴イメージング装置
KR101390186B1 (ko) * 2010-12-07 2014-04-29 삼성메디슨 주식회사 시간에 따른 혈류 변화를 나타내는 부가 정보를 제공하는 초음파 시스템 및 방법
KR20120067535A (ko) * 2010-12-16 2012-06-26 삼성메디슨 주식회사 미드 포인트 알고리즘에 기초하여 hprf 도플러 영상을 제공하는 초음파 시스템 및 방법
JP2012247320A (ja) * 2011-05-27 2012-12-13 Furuno Electric Co Ltd 映像表示装置及びレーダ装置
KR101266811B1 (ko) * 2011-06-28 2013-05-27 알피니언메디칼시스템 주식회사 초음파 영상의 벡터 보간 장치 및 방법
JP2015071028A (ja) * 2013-09-05 2015-04-16 セイコーエプソン株式会社 超音波測定装置、超音波画像装置及び超音波測定方法
WO2015076508A1 (en) * 2013-11-21 2015-05-28 Samsung Medison Co., Ltd. Method and apparatus for displaying ultrasound image
EP3150127B1 (en) 2014-05-28 2021-10-06 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Ultrasonic imaging method and system
JP6406019B2 (ja) * 2015-01-09 2018-10-17 コニカミノルタ株式会社 超音波信号処理装置、及び超音波診断装置
CN104537975B (zh) * 2015-01-16 2018-09-04 北京智谷睿拓技术服务有限公司 显示控制方法和装置、显示设备
CN104537976B (zh) * 2015-01-16 2018-09-04 北京智谷睿拓技术服务有限公司 时分显示控制方法和装置、显示设备
DE112016006202T5 (de) 2016-01-11 2018-09-27 B-K Medical Aps Automatische Time-Gain-Compensation (TGC) in der Ultraschall-Bildgebung
KR101781738B1 (ko) 2016-03-23 2017-09-25 단국대학교 천안캠퍼스 산학협력단 주파수 변조 방식 체지방 이미지화를 이용한 비만도 분석 시스템 및 방법
JP7143589B2 (ja) * 2017-07-31 2022-09-29 コニカミノルタ株式会社 超音波診断装置
JP7125479B2 (ja) * 2018-05-14 2022-08-24 富士フイルム株式会社 医療画像処理装置、医療画像処理装置の作動方法及び内視鏡システム
US20210015448A1 (en) * 2019-07-15 2021-01-21 GE Precision Healthcare LLC Methods and systems for imaging a needle from ultrasound imaging data
EP3828577A1 (en) * 2019-11-27 2021-06-02 Siemens Healthcare GmbH System for medical data acquisition with two scanner units sharing a common infrastructure unit
CN113741676B (zh) * 2020-05-29 2024-03-01 北京小米移动软件有限公司 显示屏帧率控制方法、装置及存储介质
EP4171370A4 (en) * 2020-06-26 2024-06-12 Caliber Imaging & Diagnostics Inc SYSTEM FOR PROVIDING REMOTE AND QUICK ACCESS TO SCANNED IMAGE DATA

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817619A (en) * 1985-06-24 1989-04-04 Hitachi Medical Corp. Ultrasonic diagnosis apparatus
JP3343380B2 (ja) * 1992-12-24 2002-11-11 フクダ電子株式会社 図形作成装置
JP3353955B2 (ja) * 1993-08-13 2002-12-09 フクダ電子株式会社 関心領域の形状変更方法
JPH08126641A (ja) * 1994-10-31 1996-05-21 Fujitsu Ltd 超音波診断装置
US5953439A (en) * 1994-11-04 1999-09-14 Ishihara; Ken Apparatus for and method of extracting time series image information
US5538004A (en) * 1995-02-28 1996-07-23 Hewlett-Packard Company Method and apparatus for tissue-centered scan conversion in an ultrasound imaging system
JPH1033535A (ja) * 1996-07-30 1998-02-10 Toshiba Corp 超音波ドプラ診断装置および超音波ドプラ診断の方法
JPH10201761A (ja) * 1997-01-20 1998-08-04 Shimadzu Corp 超音波診断装置
JP3862838B2 (ja) * 1997-11-26 2006-12-27 株式会社東芝 超音波診断装置
US5997478A (en) * 1998-02-03 1999-12-07 Acuson Corporation Ultrasound system and method for facilitating a reproducible ultrasound imaging environment
US6056691A (en) * 1998-06-24 2000-05-02 Ecton, Inc. System for collecting ultrasound imaging data at an adjustable collection image frame rate
US6126605A (en) * 1998-12-31 2000-10-03 General Electric Company Ultrasound color flow display optimization by adjusting dynamic range
US6017309A (en) * 1998-12-31 2000-01-25 Washburn; Michael J. Ultrasound color flow display optimization by adjusting color maps
US6077226A (en) * 1999-03-30 2000-06-20 General Electric Company Method and apparatus for positioning region of interest in image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052225A (ja) * 2011-08-08 2013-03-21 Canon Inc 被検体情報取得装置、被検体情報取得システム、表示制御方法、表示方法、及びプログラム

Also Published As

Publication number Publication date
US6077226A (en) 2000-06-20
US6500122B1 (en) 2002-12-31
DE60025438T2 (de) 2006-09-07
EP1041395A2 (en) 2000-10-04
JP2000300562A (ja) 2000-10-31
EP1041395A3 (en) 2004-01-28
IL135040A0 (en) 2001-05-20
DE60025438D1 (de) 2006-04-06
EP1041395B1 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP4942237B2 (ja) 関心領域を画像内に配置する表示方法及びイメージングシステム
EP1176910B1 (en) Method and apparatus for automatic vessel tracking in ultrasound imaging
JP5715594B2 (ja) フローパラメータイメージングのための方法及び装置
JP4828651B2 (ja) 可変空間合成を備える超音波診断イメージングシステム
EP1005834B1 (en) Method and apparatus for automatic doppler angle estimation in ultrasound imaging
US9005128B2 (en) Ultrasound imaging apparatus and method for displaying ultrasound image
JP4444108B2 (ja) 仰角バイプレーン画像を備える超音波診断システム
EP1697759B1 (en) Ultrasonic diagnostic imaging method and system with an automatic control of resolution and frame rate
US6123670A (en) Ultrasound imaging with optimal image quality in region of interest
JP4795675B2 (ja) 医療用超音波システム
JP4584458B2 (ja) 超音波カラーフロー/ドップラーでのドップラー角の展開
JP2003204963A (ja) 複数の2dスライスから画像を作成するための超音波診断方法及び装置
CN104825187A (zh) 超声波诊断装置、图像处理装置以及图像处理方法
JP4800214B2 (ja) カラーフローバイプレーンの超音波撮像システム及び方法
US20070073152A1 (en) Systems and methods for acquiring images simultaneously
EP0996002A2 (en) Method and apparatus for edge enhancement in ultrasound imaging
JP5823184B2 (ja) 超音波診断装置、医用画像処理装置および医用画像処理プログラム
US11419581B2 (en) Triple mode ultrasound imaging for anatomical, functional, and hemodynamical imaging
US6135962A (en) Method and apparatus for adaptive filtering by counting acoustic sample zeroes in ultrasound imaging
JP7377016B2 (ja) 超音波画像生成装置およびその制御方法
JP2005137422A (ja) 超音波画像生成装置および超音波画像生成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090723

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100713

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110311

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110401

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110725

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4942237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term