JP4938997B2 - Molding resin with excellent electrical insulation and thermal conductivity - Google Patents

Molding resin with excellent electrical insulation and thermal conductivity Download PDF

Info

Publication number
JP4938997B2
JP4938997B2 JP2005166468A JP2005166468A JP4938997B2 JP 4938997 B2 JP4938997 B2 JP 4938997B2 JP 2005166468 A JP2005166468 A JP 2005166468A JP 2005166468 A JP2005166468 A JP 2005166468A JP 4938997 B2 JP4938997 B2 JP 4938997B2
Authority
JP
Japan
Prior art keywords
resin
thermal conductivity
weight
electrical insulation
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005166468A
Other languages
Japanese (ja)
Other versions
JP2006342192A (en
Inventor
伯竹 新井
正志 吉崎
Original Assignee
ダイセー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセー工業株式会社 filed Critical ダイセー工業株式会社
Priority to JP2005166468A priority Critical patent/JP4938997B2/en
Publication of JP2006342192A publication Critical patent/JP2006342192A/en
Application granted granted Critical
Publication of JP4938997B2 publication Critical patent/JP4938997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、電気絶縁性でかつ熱伝導性に優れた成形用樹脂で、放熱性と電気絶縁性を求められる電気、電子部品あるいは自動車電装部品などの用途に関するものである。   The present invention relates to a resin for molding that is electrically insulating and excellent in thermal conductivity, and relates to applications such as electricity, electronic parts, and automobile electrical parts that require heat dissipation and electrical insulation.

ポリアミド樹脂は機械的強度、耐熱性、耐摩耗性、耐薬品性などに優れていることから、各種電気・電子部品、自動車部品などの各種分野における成形材料として幅広く使われている。   Polyamide resins are widely used as molding materials in various fields such as various electric / electronic parts and automobile parts because of their excellent mechanical strength, heat resistance, wear resistance, and chemical resistance.

しかしながら、ポリアミド樹脂の熱伝導性は一般に低く、発熱を伴う電子部品の放熱ができず、機能を損なう可能性があるため使用用途が限定されていた。   However, the heat conductivity of polyamide resin is generally low, and heat dissipation of electronic components accompanied by heat generation cannot be performed, and the function may be impaired.

特に電気・電子部品分野では、電気絶縁性が求められることが多く、そのため樹脂材料の熱伝導性の改善とともに電気絶縁性が必要とされている。   In particular, in the electric / electronic parts field, electrical insulation is often required, and therefore electrical insulation is required along with improvement in the thermal conductivity of resin materials.

樹脂材料の熱伝導率の改良は、一般にはアルミナ、シリカなどの無機フィラーやカーボンファイバー、黒鉛、低触点合金などの熱伝導性材料をマトリックス樹脂に単独または併用して配合することにより改良が試みられている。   Improvement of the thermal conductivity of resin materials is generally improved by blending inorganic fillers such as alumina and silica, and thermal conductive materials such as carbon fibers, graphite, and low contact point alloys, either alone or in combination with matrix resins. Has been tried.

しかし、カーボンファイバー、黒鉛、低融点合金などは導電性のため電気絶縁性が損なわれ、使用用途が限定されている。   However, carbon fibers, graphite, low melting point alloys, and the like are electrically conductive, so that their electrical insulation is impaired and their use is limited.

一方アルミナやシリカは電気絶縁性であるが、熱伝導率はそれほど大きくはなく、高熱伝導性を達成するためには高充填化が必要で、そのため形状を球状にして流動性を上げたり、大きさの異なるものを組み合せるなどして最密充填がなされている。しかし高充填にすると樹脂の流動性が極端に悪くなりコンパウンドや成形が難しいのが現状である。   Alumina and silica, on the other hand, are electrically insulative, but their thermal conductivity is not so high, and high packing is necessary to achieve high thermal conductivity. Close-packing is done by combining different things. However, when the filling is high, the fluidity of the resin is extremely deteriorated and it is difficult to compound or mold the resin.

微細な層状フィラーを併用する場合はさらに流動性が悪く、そのため熱伝導率改善の障害となっていた。   When a fine layered filler is used in combination, the fluidity is further deteriorated, which is an obstacle to improving the thermal conductivity.

またアルミナ配合の熱伝導率が小さい原因としては、マトリックス樹脂の熱伝導率の低いことが律速となり、樹脂組成物の熱伝導の妨げになっている。そのため樹脂自体の熱伝導率を上げることが試みられているが有効なものは得られていない。   Further, the reason why the thermal conductivity of the alumina blend is small is that the low thermal conductivity of the matrix resin is the rate-determining factor, which hinders the thermal conductivity of the resin composition. Therefore, attempts have been made to increase the thermal conductivity of the resin itself, but no effective one has been obtained.

微細な層状フィラーを併用することによりマトリックス樹脂層の熱伝導率を向上させることが試みられている。例えば特許文献1(特開2002−256147号公報)には、平均厚さが0.5μm以上の板状フィラーを2〜20重量%球状アルミナと併用し溶融混合することにより熱伝導率が向上することが提案されているが、機械による溶融混練では分子レベルの微分散は困難である。従って板状フィラーの添加量が少ないときは熱伝導率改善の効果が少なく、添加量が多くなると樹脂の流動性を阻害することになり、高充填化はできず、結果として良好な熱伝導材料は得られない。   Attempts have been made to improve the thermal conductivity of the matrix resin layer by using a fine layered filler together. For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-256147), thermal conductivity is improved by melt-mixing a plate-like filler having an average thickness of 0.5 μm or more in combination with 2 to 20 wt% spherical alumina. However, fine dispersion at the molecular level is difficult by melt kneading with a machine. Therefore, when the amount of the plate filler added is small, the effect of improving the thermal conductivity is small, and when the amount added is large, the fluidity of the resin is hindered and high filling cannot be achieved, resulting in a good heat conductive material. Cannot be obtained.

強度、耐熱性、靱性などを向止させる目的でポリアミド樹脂に層状珪酸塩を微分散することは特許文献2(国際公開特許公報WO98/49235)や特許文献3(特開2000−212432号公報)に記載されているが、いずれも強度や耐熱性に関するもので熱伝導に関する記述はない。   Fine dispersion of a layered silicate in a polyamide resin for the purpose of preventing strength, heat resistance, toughness, etc. is disclosed in Patent Document 2 (International Patent Publication WO98 / 49235) and Patent Document 3 (Japanese Patent Laid-Open No. 2000-212432). However, all are related to strength and heat resistance, and there is no description about heat conduction.

特開2002−256147号公報JP 2002-256147 A 国際公開特許公報WO98/49235International Patent Publication WO98 / 49235 特開2000−212432号公報JP 2000-212432 A

本発明の解決しようとする問題点は電気、電子部品あるいは自動車部品などの放熱性と電気絶縁性が求められる用途に電気絶縁牲があり、かつ熱伝導性に優れた高熱伝導性樹脂を提供することにある。   The problem to be solved by the present invention is to provide a highly thermally conductive resin having electrical insulation and excellent thermal conductivity in applications requiring heat dissipation and electrical insulation, such as electricity, electronic parts and automobile parts. There is.

本発明者らは上記の課題を解決すべく鋭意検討した結果、層状珪酸塩などの層状フィラーを分子レベルまで分散することにより、流動性を損なわずに熱伝導性を向上させたナノコンポジットポリアミド樹脂をマトリックス樹脂とし、球状アルミナを高充填に併用することで、電気絶縁性でかつ熱伝導性に優れた熱伝導性樹脂用途が得られることを見出し、本発明に到違した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a nanocomposite polyamide resin in which thermal conductivity is improved without impairing fluidity by dispersing layered fillers such as layered silicates to the molecular level. As a matrix resin and using spherical alumina in a highly filled state, it was found that a heat conductive resin application that is electrically insulating and excellent in heat conductivity can be obtained, and the present invention was mistaken.

層状珪酸塩の添加量が2重量%以下ではマトリックス樹脂の熱伝導率改善には不足で、5重量%以上となるとナノコンポジット樹脂自体の流動性が阻害されアルミナの高充填ができない。好ましくは4〜5重量%が最適である。   If the amount of layered silicate added is 2% by weight or less, the thermal conductivity of the matrix resin is insufficient to improve, and if it is 5% by weight or more, the fluidity of the nanocomposite resin itself is hindered and high filling with alumina cannot be performed. Preferably, 4 to 5% by weight is optimal.

(1)マトリックス樹脂としてナノコンポジットポリアミド樹脂に熱伝導性無機粒状フィラーを高配合することで、電気絶縁性でかつ熱伝導性に優れた成形用樹脂となった。
(2)上記(1)において熱伝導性無機粒状フィラーとしてアルミナを高配合してなることで、電気絶縁性でかつ熱伝導性に優れた成形用樹脂となった。
(3)上記(1)(2)においてナノコンポジットポリアミド樹脂に用いられる層状フィラーが層状珪酸塩であり、その珪酸塩層が分子レベルに均一に分散されていることを特徴とすることで、電気絶縁性でかつ熱伝導性に優れた成形用樹脂となった。
(4)上記(1)〜(3)において層状珪酸塩が4〜5重量%配合されたナノコンポジットポリアミド樹脂を用いたことで、電気絶縁性でかつ熱伝導性に優れた成形用樹脂となった。
(5)上記(1)〜(4)においてナノコンポジットポリアミド樹脂5〜15重量%とアルミナを85〜95重量%を配合してなることで、電気絶縁性でかつ熱伝導性に優れた成形用樹脂となった。
(6)上記(1)〜(5)においてマトリックス樹脂としてナノコンポジットポリアミド樹脂40〜70重量%とポリフェニレンサルファイド樹脂30〜60重量%を配合してなることで、電気絶縁性でかつ熱伝導性に優れた成形用樹脂となった。
(1) As a matrix resin, a highly heat-conducting inorganic particulate filler was added to the nanocomposite polyamide resin, thereby providing a molding resin that was electrically insulating and excellent in thermal conductivity.
(2) In the above (1), by forming a high blend of alumina as the thermally conductive inorganic particulate filler, a molding resin that is electrically insulating and excellent in thermal conductivity was obtained.
(3) The layered filler used in the nanocomposite polyamide resin in the above (1) and (2) is a layered silicate, and the silicate layer is uniformly dispersed at a molecular level. It became a molding resin with excellent insulation and thermal conductivity.
(4) By using a nanocomposite polyamide resin in which 4 to 5% by weight of layered silicate is blended in (1) to (3) above, it becomes a molding resin that is electrically insulating and excellent in thermal conductivity. It was.
(5) In the above (1) to (4), 5-15% by weight of nanocomposite polyamide resin and 85-95% by weight of alumina are blended, so that it is electrically insulating and has excellent thermal conductivity. It became resin.
(6) In the above (1) to (5), 40 to 70% by weight of the nanocomposite polyamide resin and 30 to 60% by weight of the polyphenylene sulfide resin are blended as the matrix resin, so that it is electrically insulating and thermally conductive. It became an excellent molding resin.

本発明で使用するナノコンポジットポリアミド樹脂としては、ポリアミド重合工程の際に層状珪酸塩を分子レベルに分散したものが市販されている。例えばユニチカ株式会社製のナノコンポジットナイロン(商品名;NANOCON)で未配合6ナイロンと比較し、流動性は変わらず、高強度で耐熱性に優れている。   The nanocomposite polyamide resin used in the present invention is commercially available in which a layered silicate is dispersed at the molecular level during the polyamide polymerization step. For example, nanocomposite nylon (trade name; NANOCON) manufactured by Unitika Co., Ltd. has no change in fluidity, high strength and excellent heat resistance compared to unblended 6 nylon.

ここで分子レベルに均一に分散されるとは、層状珪酸塩がポリアミド樹脂マトリックス中に分散する際に、それぞれが平均20A以上の層状距離を保っている場合をいう。ここで層状距離とは、層状珪酸塩の珪酸塩層の重心間の距離を指し、均一分散されるとは、前記珪酸塩層の一枚一枚、もしくは平均的な重なりが5層以下の多層物が平行あるいはランダムに、もしくは平行とランダムが混在した状態で、その50%以上が、好ましくはその70%以上が塊を形成することなく分散されている状態をいう。具体的には、透過型電子顕微鏡写真観察を行なったり、引張伸度のばらつきの評価を行うことにより確認することができる。   Here, being uniformly dispersed at the molecular level means that when the layered silicate is dispersed in the polyamide resin matrix, each of them maintains an average layered distance of 20 A or more. Here, the lamellar distance refers to the distance between the centers of gravity of the silicate layers of the lamellar silicate, and uniformly dispersed means that each of the silicate layers is a multilayer having an average overlap of 5 layers or less. In a state where an object is parallel or random, or in a state where parallel and random are mixed, 50% or more, preferably 70% or more, is dispersed without forming a lump. Specifically, it can be confirmed by observing a transmission electron micrograph or evaluating variation in tensile elongation.

本発明で用いられるアルミナは、最密高充填のため、球状で粒子径の異なる大きさのものを組み合わせたものが有効である。添加量は85〜95重量%が望ましく、95重量%以上では樹脂の流動性が悪く、85重量%以下では熱伝導の効果が少ない。   For the alumina used in the present invention, a combination of spherical particles having different particle diameters is effective for close-packed high packing. The addition amount is desirably 85 to 95% by weight. If the amount is 95% by weight or more, the fluidity of the resin is poor, and if it is 85% by weight or less, the effect of heat conduction is small.

また、本発明で用いられる樹脂としてはナノコンポジットポリアミド樹脂に熱伝導性を損なわない範囲の物性改良目的で従来公知の樹脂との併用が可能である。具体的には例えば、ポリフェニレンサルファイド樹脂、ポリエーテル系樹脂、ポリエステル系樹脂、ポリイミド樹脂、ポリカーポネート柑脂、ウレタン系樹脂、エポキシ系樹脂、フェノール樹脂、シリコーン系樹脂、フッ素樹脂、オレフィン系樹脂、スチレン系樹脂、酢酸ビニル系樹脂、アクリル系樹脂、天然あるいは合成ゴム系樹脂などが挙げられる。
さらに、最適配合としてナノコンポジットポリアミド樹脂にポリフェニレンサルファイド樹脂を配合することにより、樹脂組成物の熱伝導率を損なわずに流動性と耐熱性を付与することができる。
The resin used in the present invention can be used in combination with a conventionally known resin for the purpose of improving the physical properties of the nanocomposite polyamide resin without impairing the thermal conductivity. Specifically, for example, polyphenylene sulfide resin, polyether resin, polyester resin, polyimide resin, polycarbonate carbonate tallow, urethane resin, epoxy resin, phenol resin, silicone resin, fluorine resin, olefin resin, Examples include styrene resins, vinyl acetate resins, acrylic resins, natural or synthetic rubber resins, and the like.
Furthermore, fluidity | liquidity and heat resistance can be provided, without impairing the thermal conductivity of a resin composition by mix | blending polyphenylene sulfide resin with nanocomposite polyamide resin as optimal mixing | blending.

また、本発明で用いられる層状珪酸塩としてはマイカに限定されず、モンモリロナイト、バーミキュライト等がある。   The layered silicate used in the present invention is not limited to mica, and includes montmorillonite and vermiculite.

また本発明に用いられる熱伝導性無機粒状フィラーとしてはアルミナに限定されず、酸化マグネシウム、シリカ、酸化亜鉛、窒化ホウ素、炭化珪素、窒化珪素などのセラミック粒子が上げられる。   The thermally conductive inorganic particulate filler used in the present invention is not limited to alumina, and ceramic particles such as magnesium oxide, silica, zinc oxide, boron nitride, silicon carbide, and silicon nitride can be used.

ナノコンポジットナイロン6と球状アルミナの溶融混練はスクリュー型2軸押出機を用い、シリンダー温度230℃、スクリュー回転数50rpmの条件でペレット化した。ここで得られた樹脂組成物を試験片に射出成形し、熱伝導率および電気伝導度を測定した。熱伝導率の測定に関しては、ASTH E1530に準拠し、φ50mm×t3mmの試験片をアニター社製ユニサーモ2021型試験器を用いて試験条件23℃で測定した。   The nanocomposite nylon 6 and spherical alumina were melt-kneaded using a screw type twin screw extruder and pelletized under the conditions of a cylinder temperature of 230 ° C. and a screw rotation speed of 50 rpm. The resin composition obtained here was injection molded into a test piece, and the thermal conductivity and electric conductivity were measured. Regarding the measurement of thermal conductivity, in accordance with ASTM E1530, a test piece of φ50 mm × t3 mm was measured at 23 ° C. using an Anita Unithermo 2021 type tester.

ナノコンポジットポリアミド樹脂としてユニチカ株式会社製ナノコンポジット6ナイロン(商品名;NANOCO)M1030DH(合成マイカ4重量%入り)を15重量%に球状アルミナ85重量%をそれぞれ計量後ドライブレンドし、実施例と同様の方法で混練、ペレット化し、物性評価した。   As nanocomposite polyamide resin, nanocomposite 6 nylon (trade name; NANOCO) M1030DH (containing 4% by weight of synthetic mica) manufactured by Unitika Ltd. was weighed to 15% by weight and 85% by weight of spherical alumina was dry blended. Were kneaded and pelletized by the method described above, and the physical properties were evaluated.

ナノコンポジットポリアミド樹脂としてユニチカ株式会社製ナノコンポジット6ナイロン(商品名;NANOCO)M1030DH(合成マイカ4重量%入り)を10重量%に球状アルミナ90重量%をそれぞれ計量後ドライブレンドし、実施例と同様の方法で混練、ペレット化し物性評価した。   As nanocomposite polyamide resin, we measured 10% by weight of nanocomposite 6 nylon (trade name: NANOCO) M1030DH (with 4% by weight of synthetic mica) manufactured by Unitika Ltd. and 90% by weight of spherical alumina, followed by dry blending. The properties were evaluated by kneading and pelletizing.

ナノコンポジットポリアミド樹脂としてユニチカ株式会社製ナノコンポジット6ナイロン(商品名;NANOCO)M1030DH(合成マイカ4重量%入り)を5重量%に球状アルミナ95重量%をそれぞれ計量後ドライブレンドし、実施例と同様の方法で混練、ペレット化し物性評価した。   As nanocomposite polyamide resin, nanocomposite 6 nylon (trade name: NANOCO) M1030DH (4% by weight of synthetic mica) manufactured by Unitika Ltd. was weighed to 5% by weight and 95% by weight of spherical alumina were dry blended. The properties were evaluated by kneading and pelletizing.

[比較例1]
比較例1としてユニチカ株式会社製6ナイロン樹脂(商品名;ユニチカナイロン6A1030JR)15重量%に球状アルミナ85重量%をそれぞれ計量後、実施例と同様の方法で混練、ペレット化し物性評価した。
[Comparative Example 1]
As Comparative Example 1, 85 wt% of spherical alumina was weighed in 15 wt% of 6 nylon resin (trade name; Unitika nylon 6A1030JR) manufactured by Unitika Ltd., and the physical properties were evaluated by kneading and pelletizing in the same manner as in the examples.

[比較例2]
比較例2としてユニチカ株式会社製6ナイロン樹脂(商品名;ユニチカナイロン6A1030JR)10重量%に球状アルミナ90重量%をそれぞれ計量後、実施例と同様の方法で混練、ペレット化し物性評価した。
[Comparative Example 2]
As Comparative Example 2, 90 wt% of spherical alumina was weighed into 10 wt% of 6 nylon resin (trade name; Unitika nylon 6A1030JR) manufactured by Unitika Ltd., and then kneaded and pelletized in the same manner as in the Examples to evaluate physical properties.

[比較例3]
比較例3としてユニチカ株式会社製6ナイロン樹脂(商品名;ユニチカナイロン6A1030JR)5重量%に球状アルミナ95重量%をそれぞれ計量後、実施例と同様の方法で混練、ペレット化し物性評価した。
[Comparative Example 3]
As Comparative Example 3, 95% by weight of spherical alumina was weighed in 5% by weight of 6 nylon resin (trade name; Unitika Nylon 6A1030JR) manufactured by Unitika Co., Ltd., and then kneaded and pelletized in the same manner as in Examples to evaluate physical properties.

結果は表1に示したとおりで、ナノコンボジットポリアミド樹脂を用いることにより、マトリックス自体の熱伝導率が改善され、さらに分子レベルに分散した層状珪酸塩の微細繊維がアルミナ粒子の熱伝達の繋ぎ役としての相乗効果を発揮するため、アルミナの充填量が多くなるに伴い、飛躍的に熱伝導性が向上することがわかる、

Figure 0004938997
The results are shown in Table 1. By using the nanocomposite polyamide resin, the thermal conductivity of the matrix itself is improved, and the layered silicate fine fibers dispersed at the molecular level are linked to the heat transfer of the alumina particles. In order to exert a synergistic effect as a role, it can be seen that the thermal conductivity is dramatically improved as the alumina filling amount increases.
Figure 0004938997

本発明により得られる電気絶縁性でかつ熱伝導性に優れた成形用樹脂の用途は電気・電子部品や自動車部品などの放熱性と電気絶縁性が求められる樹脂部品に用いられる。
例えば、半導体素子、抵抗あるいはモーターなど発熱性が高く、電気絶縁性が必要な電気機器部品に特に好適であり、また自動車、家電、照明機器、事務機など多くの放熱部品用途に適用できる。
The application of the molding resin obtained by the present invention having excellent electrical insulation and thermal conductivity is used for resin parts that require heat dissipation and electrical insulation, such as electrical / electronic parts and automobile parts.
For example, it is particularly suitable for electrical equipment parts that have high heat generation and require electrical insulation, such as semiconductor elements, resistors, and motors, and can be applied to many heat radiation parts such as automobiles, home appliances, lighting equipment, and office machines.

Claims (3)

マトリックス樹脂としてナノコンポジットポリアミド樹脂に熱伝導性無機粒状フィラーとしてアルミナを高配合してなり、
ナノコンポジットポリアミド樹脂に用いられる層状フィラーが層状珪酸塩であり、その珪酸塩層が分子レベルに均一に分散されているとともに、
ナノコンポジットポリアミド樹脂5〜15重量%とアルミナを85〜95重量%を配合してなることを特徴とする電気絶縁性でかつ熱伝導性に優れた成形用樹脂。
The alumina nanocomposite polyamide resin as the matrix resin as a thermally conductive inorganic particulate filler Ri greens and high loading,
The layered filler used in the nanocomposite polyamide resin is a layered silicate, and the silicate layer is uniformly dispersed at the molecular level,
A molding resin excellent in electrical insulation and thermal conductivity, comprising 5 to 15% by weight of nanocomposite polyamide resin and 85 to 95% by weight of alumina .
層状珪酸塩が4〜5重量%配合されたナノコンポジットポリアミド樹脂を用いた請求項1記載の電気絶縁性でかつ熱伝導性に優れた成形用樹脂。   The molding resin having excellent electrical insulation and thermal conductivity according to claim 1, wherein a nanocomposite polyamide resin containing 4 to 5% by weight of layered silicate is used. マトリックス樹脂としてナノコンポジットポリアミド樹脂40〜70重量%とポリフェニレンサルファイド樹脂30〜60重量%を配合してなる請求項1又は2記載の電気絶縁性でかつ熱伝導性に優れた成形用樹脂。   The molding resin according to claim 1 or 2, comprising 40 to 70% by weight of a nanocomposite polyamide resin and 30 to 60% by weight of a polyphenylene sulfide resin as a matrix resin.
JP2005166468A 2005-06-07 2005-06-07 Molding resin with excellent electrical insulation and thermal conductivity Expired - Fee Related JP4938997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166468A JP4938997B2 (en) 2005-06-07 2005-06-07 Molding resin with excellent electrical insulation and thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166468A JP4938997B2 (en) 2005-06-07 2005-06-07 Molding resin with excellent electrical insulation and thermal conductivity

Publications (2)

Publication Number Publication Date
JP2006342192A JP2006342192A (en) 2006-12-21
JP4938997B2 true JP4938997B2 (en) 2012-05-23

Family

ID=37639392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166468A Expired - Fee Related JP4938997B2 (en) 2005-06-07 2005-06-07 Molding resin with excellent electrical insulation and thermal conductivity

Country Status (1)

Country Link
JP (1) JP4938997B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191250A (en) * 2008-01-18 2009-08-27 Sumitomo Osaka Cement Co Ltd Precursor of heat-conductive resin composition, heat-conductive resin composition and method for producing the heat-conductive resin composition
FR2929285B1 (en) * 2008-03-25 2011-07-15 Rhodia Operations POLYAMIDE COMPOSITION
JP5109186B2 (en) * 2008-04-24 2012-12-26 大塚化学株式会社 High thermal conductive resin composition
KR101437880B1 (en) * 2011-12-30 2014-09-12 제일모직주식회사 Thermal conductive polyphenylene sulfide resin composition having a good surface gloss and article using the same
EP2887390A4 (en) 2012-05-21 2016-03-09 Toyo Ink Sc Holdings Co Ltd Easily deformable aggregates and process for producing same, thermally conductive resin composition, thermally conductive member and process for producing same, and thermally conductive adhesion sheet
KR101387086B1 (en) * 2013-06-05 2014-04-18 (주)창림이엔지 Insulative and heat-dissipative master batch and insulative and heat-dissipative products
CN105199379B (en) * 2015-10-27 2017-12-19 北京纳盛通新材料科技有限公司 A kind of continuous long carbon fiber enhancing nanocomposite and its preparation method and application

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036555A (en) * 1996-07-23 1998-02-10 Kanegafuchi Chem Ind Co Ltd Resin composition, and its production
JPH1171517A (en) * 1997-06-20 1999-03-16 Unitika Ltd Polyamide resin composition and molded article made therefrom
JP4214669B2 (en) * 1999-10-12 2009-01-28 東レ株式会社 Resin structure and its use
JP4543500B2 (en) * 2000-05-24 2010-09-15 東レ株式会社 Manufacturing method of polyamide resin molded body
JP4747424B2 (en) * 2001-03-05 2011-08-17 東レ株式会社 High thermal conductive resin composition

Also Published As

Publication number Publication date
JP2006342192A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP4938997B2 (en) Molding resin with excellent electrical insulation and thermal conductivity
KR101457016B1 (en) Thermal conductive thermoplastic resin composition having excellent water-resistance and article using the same
JP5861185B2 (en) Thermally conductive polymer composition
Bose et al. Effect of flyash on the mechanical, thermal, dielectric, rheological and morphological properties of filled nylon 6
KR101139412B1 (en) Thermally Conductive Insulating Resin Composition and Plastic Article
JP2008266586A (en) Low electric conductivity high heat radiation polymer material and molded article
JP5671822B2 (en) Resin composition and method for producing the same
KR20050045825A (en) Thermally conductive body and method of manufacturing the same
CN101899209A (en) Heat conductive insulation material and preparation method thereof
JP2008260830A (en) Heat-conductive resin composition
JP2011500935A (en) Thermally conductive polymer composite and molded article using the same
JP2009280650A (en) Thermoplastic resin composition and thermoplastic resin molded article
JP2010001402A (en) High thermal conductivity resin molded article
CN110536924A (en) The composition based on graphite with increased volume resistivity
TW201231634A (en) Thermally conductive resin composition including a milled pitch based carbon fiber
Russo et al. Thermal conductivity and dielectric properties of polypropylene‐based hybrid compounds containing multiwalled carbon nanotubes
Permal et al. Enhanced thermal and mechanical properties of epoxy composites filled with hybrid filler system of aluminium nitride and boron nitride
Jiang et al. Effect of micro-scale and nano-scale boron nitride on thermal property of silicone rubber via experimental and simulation method
JP5029344B2 (en) Thermoplastic resin molded product
KR101355472B1 (en) High thermal conductive resin composition
JP2012136684A (en) Thermoplastic resin composition and resin molded article
JP6496109B2 (en) Method for producing electrically insulating heat conductive resin composition
KR101355026B1 (en) Thermoplastic resin composition with excellent thermal conductivity and moldability
JP2012122057A (en) Inorganic organic composite composition
EP1784456A1 (en) Electrically conductive composites with resin and vgcf, production process, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees