JP2008266586A - Low electric conductivity high heat radiation polymer material and molded article - Google Patents

Low electric conductivity high heat radiation polymer material and molded article Download PDF

Info

Publication number
JP2008266586A
JP2008266586A JP2008055563A JP2008055563A JP2008266586A JP 2008266586 A JP2008266586 A JP 2008266586A JP 2008055563 A JP2008055563 A JP 2008055563A JP 2008055563 A JP2008055563 A JP 2008055563A JP 2008266586 A JP2008266586 A JP 2008266586A
Authority
JP
Japan
Prior art keywords
polymer material
carbon fiber
high heat
electrical conductivity
low electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008055563A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nakamura
祥宜 中村
Hideyuki Fujiwara
秀之 藤原
Hideyuki Imai
英幸 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2008055563A priority Critical patent/JP2008266586A/en
Priority to US12/076,872 priority patent/US20080242772A1/en
Publication of JP2008266586A publication Critical patent/JP2008266586A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Fuel Cell (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer material and a molded article that can assure both characters of low electrical conductivity and high heat radiation property. <P>SOLUTION: The low electric conductivity and high heat radiation polymer material is produced by combining a polymer material 1 with a carbon fiber 2 of 10-35 vol% and a ceramics 3 of 1-20 vol%, and the molded article is made from the low electric conductivity and high heat radiation polymer material, wherein, the ceramics is e.g. alumina (Al<SB>2</SB>O<SB>3</SB>), aluminium nitride (AlN), boron nitride (BN), silicone nitride (Si<SB>3</SB>N<SB>4</SB>), and silicon carbide (SiC), etc. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低電気伝導性と高放熱性とを有する高分子材料と成形体に関するものである。   The present invention relates to a polymer material having a low electrical conductivity and a high heat dissipation property and a molded body.

CO削減等の環境面より、自動車においても低燃費化が進んでおり、近年、ハイブリッド車が注目を集めている。また、今後、燃料電池車等の普及も予測される。その中で、電池やモータの関連部品において、低電気伝導性と高放熱性とを要求される製品が多くあり、その両特性を確保するために、材料や形状について種々検討されている。 In terms of the environment such as CO 2 reduction, the fuel efficiency of automobiles has been reduced. In recent years, hybrid cars have attracted attention. In the future, the spread of fuel cell vehicles and the like is also expected. Among them, there are many products that require low electrical conductivity and high heat dissipation in battery and motor-related parts, and various materials and shapes have been studied in order to ensure both characteristics.

しかし、実用材料の単体では、両特性を確保することが困難である。なぜなら、高放熱性は高熱伝導性(高い熱伝導性)が前提となるが、高熱伝導性の実用材料は高電気伝導性でもあることがほとんどであるからである。すなわち、
(1)金属は、高熱伝導性で高放熱性であるが、高電気伝導性でもあるから、そのままでは低電気伝導性(好ましくは電気絶縁性)を確保できない。そこで、別途、樹脂等よりなる絶縁プレートを設定する必要があり、絶縁プレートの低放熱性が問題となったり、絶縁プレートの分だけ製品重量が重くなったりする。また、金属自体も比重が高い。
(2)高分子材料(樹脂、ゴム)は、低電気伝導性(ほぼ電気絶縁性)であるが、低熱伝導性でもあるから、そのままでは高放熱性を確保できない。そこで、製品形状の工夫(空気の通り道を作る)で高放熱性を確保する必要があり、製品が大きくなって広い設置スペースを必要とすることになる。
However, it is difficult to ensure both characteristics with a single practical material. This is because high heat dissipation is premised on high thermal conductivity (high thermal conductivity), but practical materials having high thermal conductivity are almost always high in electrical conductivity. That is,
(1) A metal has high thermal conductivity and high heat dissipation, but also has high electrical conductivity, so low electrical conductivity (preferably electrical insulation) cannot be secured as it is. Therefore, it is necessary to separately set an insulating plate made of resin or the like, and the low heat dissipation of the insulating plate becomes a problem, or the product weight increases by the amount of the insulating plate. Also, the metal itself has a high specific gravity.
(2) Although the polymer material (resin, rubber) has low electrical conductivity (substantially electrical insulation), it is also low thermal conductivity, so high heat dissipation cannot be secured as it is. Therefore, it is necessary to secure high heat dissipation by devising the product shape (creating air passages), and the product becomes large and requires a large installation space.

(3)そこで、次のような複合材料が検討されている。
特許文献1には、高分子材料中に、ホウ素化合物を含有した黒鉛化炭化水素を配合したものが記載されている。
特許文献2には、シリコーンゴム中に、黒鉛化炭素繊維、電気絶縁性熱伝導充填剤を配合した材料が記載されている。
特許文献3には、高分子材料中に、表面がセラミックス系材料で被覆処理された熱伝導充填剤粒子を配合した材料が記載されている。
特許文献4には、ゴム等のポリマー中に、水酸基を有する有機化合物と金属酸化物等とを配合した材料が記載されている。
特許文献5には、シリコーンゴム中に、ボロンナイトライドを配合した材料が記載されている。
特許文献6には、シリコーンゴム中に、表面がアミノ変性シリコーンオイルで被覆された窒化硼素を配合した材料が記載されている。
特許文献7には、液状シリコーン等に、窒化アルミニウム粉末、金属粉末を配合した材料が記載されている。
特開2002−88249号公報 特開2002−3717号公報 特開平9−321191号公報 特開平7−145270号公報 特開平7−111300号公報 特開平7−33983号公報 特開2004−10880号公報
(3) Therefore, the following composite materials are being studied.
Patent Document 1 describes a polymer material in which a graphitized hydrocarbon containing a boron compound is blended.
Patent Document 2 describes a material in which graphitized carbon fiber and an electrically insulating heat conductive filler are blended in silicone rubber.
Patent Document 3 describes a material in which heat conductive filler particles whose surface is coated with a ceramic material are blended in a polymer material.
Patent Document 4 describes a material in which an organic compound having a hydroxyl group and a metal oxide are blended in a polymer such as rubber.
Patent Document 5 describes a material in which boron nitride is blended in silicone rubber.
Patent Document 6 describes a material in which boron nitride whose surface is coated with amino-modified silicone oil is blended in silicone rubber.
Patent Document 7 describes a material in which liquid nitride or the like is mixed with aluminum nitride powder or metal powder.
JP 2002-88249 A Japanese Patent Laid-Open No. 2002-3717 Japanese Patent Laid-Open No. 9-32191 JP-A-7-145270 JP-A-7-111300 JP 7-33983 A JP 2004-10880 A

特許文献1〜7は、いずれも低電気伝導性をもたらす高分子材料(母材)中に、高放熱性をもたらすセラミックス等よりなるフィラーを充填して、両特性を確保しようとする発想の複合材料である。しかし、この複合材料にも次のような問題があった。
(a)フィラーをかなり多量に(高密度に)充填しないと、高放熱性を確保できない。
(b)フィラーを多量に充填するため、製品形状に制約(シート状に限定)がある。
(c)ミキシング中に被覆が割れてフィラーの導電性部分が露出する可能性があり、信頼性に欠ける。
Patent Documents 1 to 7 are composites of the idea of ensuring both characteristics by filling a polymer material (base material) that provides low electrical conductivity with a filler made of ceramics or the like that provides high heat dissipation. Material. However, this composite material also has the following problems.
(A) High heat dissipation cannot be ensured unless the filler is filled in a considerably large amount (in high density).
(B) Since a large amount of filler is filled, the product shape is limited (limited to a sheet shape).
(C) The coating may be broken during mixing, and the conductive portion of the filler may be exposed, resulting in lack of reliability.

本発明の目的は、上記課題を解決し、低電気伝導性及び高放熱性の両特性を確保することができる高分子材料及び成形体を提供することにある。   An object of the present invention is to provide a polymer material and a molded body that can solve the above-described problems and can ensure both low electrical conductivity and high heat dissipation characteristics.

[A]本発明の低電気伝導性高放熱性高分子材料は、高分子材料中に、炭素繊維を10〜35体積%配合し、且つ、セラミックスを1〜20体積%配合してなるものとした。 [A] The low electrical conductivity and high heat dissipation polymer material of the present invention comprises 10 to 35% by volume of carbon fiber and 1 to 20% by volume of ceramic in the polymer material. did.

本発明における各要素について、その態様を以下に例示する。
[1]高分子材料
高分子材料としては、特に限定されないが、樹脂、ゴム、熱可塑性エラストマーを例示でき、PE(ポリエチレン)、PP(ポリプロピレン)、PPS(ポリフェニレンサルファイド)、エポキシ樹脂又はシリコーンであることが好ましい。
1.樹脂:PP、PE等のオレフィン系樹脂、PS(ポリスチレン)等のスチレン系樹脂、PVC(ポリ塩化ビニル)等のビニル樹脂、PPS、LCP(液晶ポリマー)、PBT(ポリブチレンテレフタレート)、PET(ポリエチレンテレフタレート)、PA6(ポリアミド6)等のPA(ポリアミド)、PTFE(ポリテトラフルオロエチレン)、POM(ポリアセタール)等のエンプラ樹脂、エポキシ樹脂、フェノール樹脂、アクリル樹脂等の熱硬化性樹脂を例示できる。
2.ゴム:EPDM(エチレンプロピレンジエン共重合物)、CR(クロロプレンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、シリコーンゴム等を例示できる。
3.熱可塑性エラストマー:オレフィン系、スチレン系、塩化ビニル系、ポリエステル系、ポリウレタン系、ポリアミド系、フッ素系の熱可塑性エラストマーを例示できる。
The aspect of each element in the present invention is exemplified below.
[1] Polymer material Although it does not specifically limit as a polymer material, Resin, rubber | gum, a thermoplastic elastomer can be illustrated, It is PE (polyethylene), PP (polypropylene), PPS (polyphenylene sulfide), an epoxy resin, or silicone. It is preferable.
1. Resins: Olefin resins such as PP and PE, styrene resins such as PS (polystyrene), vinyl resins such as PVC (polyvinyl chloride), PPS, LCP (liquid crystal polymer), PBT (polybutylene terephthalate), PET (polyethylene) Examples thereof include thermosetting resins such as terephthalate), PA (polyamide) such as PA6 (polyamide 6), engineering plastic resins such as PTFE (polytetrafluoroethylene) and POM (polyacetal), epoxy resins, phenol resins, and acrylic resins.
2. Rubber: EPDM (ethylene propylene diene copolymer), CR (chloroprene rubber), NBR (acrylonitrile-butadiene rubber), silicone rubber and the like can be exemplified.
3. Thermoplastic elastomers: Examples of olefin-based, styrene-based, vinyl chloride-based, polyester-based, polyurethane-based, polyamide-based, and fluorine-based thermoplastic elastomers.

高分子材料としては、特に限定されないが、熱伝導率が1.0W/m・K未満のものであることが好ましい。また、熱伝導率が0.1〜0.5W/m・Kのものであることがより好ましい。具体的には、次の表1に示すものが例示できる。また、炭素繊維及びセラミックスの熱伝導率を表2に示す。   The polymer material is not particularly limited, but preferably has a thermal conductivity of less than 1.0 W / m · K. The thermal conductivity is more preferably 0.1 to 0.5 W / m · K. Specifically, those shown in the following Table 1 can be exemplified. Table 2 shows the thermal conductivity of the carbon fibers and ceramics.

樹脂等にセラミックス等を充填(配合)したものの熱伝導率とセラミックス等の熱伝導率及び充填率との関係については、次の数式1に示すBruggemanの式がある。樹脂等の熱伝導率(表1に示す)は、セラミックス及び炭素繊維の熱伝導率(表2に示す)に比べ小さいことから、樹脂等を変更したことによる、樹脂等にセラミックス等を充填したものの熱伝導率への影響(熱伝導率の変化)は小さい。   Regarding the relationship between the thermal conductivity of a resin or the like filled (blended) with a ceramic or the like, and the thermal conductivity and filling rate of the ceramic or the like, there is a Bruggeman formula shown in the following formula 1. Since the thermal conductivity of the resin (shown in Table 1) is smaller than the thermal conductivity of the ceramics and carbon fibers (shown in Table 2), the resin etc. was filled with the ceramic etc. by changing the resin etc. The effect on the thermal conductivity (change in thermal conductivity) is small.

φ:セラミックス等の体積充填率
λe:樹脂等にセラミックス等を充填したものの熱伝導率
λd:セラミックス等の熱伝導率
λc:樹脂等の熱伝導率
φ: Volume filling rate of ceramics, etc. λe: Thermal conductivity of resin filled with ceramics, etc. λd: Thermal conductivity of ceramics, etc. λc: Thermal conductivity of resin, etc.

[2]炭素繊維
炭素繊維としては、特に限定されないが、PAN系炭素繊維、ピッチ系炭素繊維を例示でき、ピッチ系炭素繊維であることが好ましい。
[2] Carbon fiber Although it does not specifically limit as carbon fiber, A PAN-type carbon fiber and a pitch-type carbon fiber can be illustrated, and it is preferable that it is a pitch-type carbon fiber.

[2−1]PAN系炭素繊維
一般にPAN系炭素繊維は、PAN(ポリアクリロニトリル)繊維を原料とした炭素繊維であり、PAN繊維を不活性気体中で1000℃〜1500℃で仮焼きを行い、その後に2000〜3000℃で炭化して製造する。
PAN系炭素繊維の特徴として、炭素繊維を構成するグラファイト結晶が小さくランダムに配置しているので、繊維のいろいろな方向へ電気や熱を通しやすい。また、PAN系炭素繊維は結晶に欠陥が多いことから、熱伝導率がピッチ系炭素繊維に比べると小さい。
[2-1] PAN-based carbon fiber Generally, a PAN-based carbon fiber is a carbon fiber using PAN (polyacrylonitrile) fiber as a raw material, and the PAN fiber is calcined at 1000 ° C. to 1500 ° C. in an inert gas, Thereafter, it is carbonized at 2000 to 3000 ° C. for production.
A characteristic of PAN-based carbon fibers is that the graphite crystals constituting the carbon fibers are small and randomly arranged, so that electricity and heat can be easily passed in various directions of the fibers. In addition, since PAN-based carbon fibers have many defects in crystals, their thermal conductivity is smaller than that of pitch-based carbon fibers.

[2−2]ピッチ系炭素繊維
一般にピッチ系炭素繊維は、石油系のタールを原料とした炭素繊維であり、タールに増粘度剤などの種々の配合剤を配合し、250〜400℃で糸をつくり、その後に不活性気体中で1000〜1500℃で炭化させ、さらに2500〜3000℃で焼くことで製造する。
ピッチ系炭素繊維中のグラファイト結晶はPAN系炭素繊維に比べて大きく、繊維長方向にきれいに並んでおり欠陥も少ない。よって、ピッチ系炭素繊維は繊維長方向に電気や熱を通しやすく、熱伝導率がPAN系炭素繊維に比べてはるかに大きい。なお、後述する配向によって、ピッチ系炭素繊維の熱伝導率が大きく増加するのは、繊維長方向をそろえることで熱伝導の方向も揃うからである。
[2-2] Pitch-based carbon fiber In general, pitch-based carbon fiber is carbon fiber made from petroleum-based tar. The tar is blended with various compounding agents such as a thickener, and yarn is formed at 250 to 400 ° C. And then carbonized at 1000 to 1500 ° C. in an inert gas and further baked at 2500 to 3000 ° C.
Graphite crystals in pitch-based carbon fibers are larger than PAN-based carbon fibers, neatly arranged in the fiber length direction, and have few defects. Therefore, the pitch-based carbon fiber can easily conduct electricity and heat in the fiber length direction, and its thermal conductivity is much higher than that of the PAN-based carbon fiber. The reason why the thermal conductivity of the pitch-based carbon fiber is greatly increased by the orientation described later is that the direction of thermal conduction is aligned by aligning the fiber length direction.

[3]セラミックス
セラミックスとしては、特に限定されないが、金属の酸化物、窒化物、炭化物等を例示でき、窒化ホウ素、アルミナ又は窒化アルミニウムであることが好ましい。また、セラミックスの形状としては、特に限定されないが、粉状、繊維状、鱗片状等を例示でき、寸法としては、特に限定されないが、平均粒径で5〜100μmを例示できる。
[3−1]酸化物
金属酸化物としては、特に限定されないが、アルミナ(Al)、ジルコニア(ZrO)、マグネシア(MgO)等を例示できる。
[3−2]窒化物
金属窒化物としては、特に限定されないが、窒化アルミニウム(AlN)、窒化ホウ素(BN)、窒化ケイ素(Si)等を例示できる。
[3−3]炭化物
金属炭化物としては、特に限定されないが、炭化ケイ素(SiC)、炭化ホウ素(BC)等を例示できる。
[3] Ceramics The ceramics is not particularly limited, and examples thereof include metal oxides, nitrides and carbides, and boron nitride, alumina or aluminum nitride is preferable. In addition, the shape of the ceramic is not particularly limited, but examples thereof include powdery, fibrous, and scale-like shapes, and the dimensions are not particularly limited, but an average particle diameter of 5 to 100 μm can be exemplified.
[3-1] Oxide The metal oxide is not particularly limited, and examples include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), and magnesia (MgO).
The [3-2] nitride metal nitride is not particularly limited, aluminum nitride (AlN), boron nitride (BN), silicon nitride (Si 3 N 4) or the like can be exemplified.
[3-3] Carbide The metal carbide is not particularly limited, and examples thereof include silicon carbide (SiC) and boron carbide (B 4 C).

[4]配合量
[4−1]炭素繊維の配合量
高分子材料中への炭素繊維の配合量は、10〜35体積%であり、15〜30体積%であることが好ましく、15〜25体積%であることがより好ましい。配合量が少ないと十分な放熱性が確保できない傾向となり、多いと低電気伝導性が損なわれたり、加工性が悪化したりする傾向となる。
[4−2]セラミックスの配合量
高分子材料中へのセラミックスの配合量は、1〜20体積%であり、5〜15体積%であることがより好ましい。
[4] Compounding amount [4-1] Carbon fiber compounding amount The carbon fiber compounding amount in the polymer material is 10 to 35% by volume, preferably 15 to 30% by volume, and 15 to 25%. More preferably, it is volume%. When the blending amount is small, sufficient heat dissipation tends not to be secured, and when the blending amount is large, low electrical conductivity tends to be impaired or processability tends to deteriorate.
[4-2] Blending amount of ceramics The blending amount of the ceramics in the polymer material is 1 to 20% by volume, and more preferably 5 to 15% by volume.

[5]炭素繊維の配向
高分子材料中に配合した炭素繊維を磁場等により配向させて、使用することもできる。この配向により、炭素繊維の配合量が同じでも、熱伝導性を高めることができるとか、同じ熱伝導性でよければ、炭素繊維の配合量を減らすことができるとかというメリットがある。配向とは、母材である高分子材料中で、炭素繊維が特定の方向に規則正しく並んだ状態である。
[5] Orientation of carbon fiber The carbon fiber blended in the polymer material can be oriented by a magnetic field or the like. With this orientation, there is a merit that the thermal conductivity can be increased even if the blending amount of the carbon fiber is the same, or that the blending amount of the carbon fiber can be reduced if the same thermal conductivity is acceptable. The orientation is a state in which carbon fibers are regularly arranged in a specific direction in a polymer material as a base material.

[5−1]配向の確認ないし評価
配向は、例えば次の2つの方法で確認でき、特に方法1で評価できる。
1.X線回折による炭素繊維の結晶格子の方位角強度分布測定
例えば炭素繊維においては、グラファイト結晶が繊維長方向へ規則正しくならんでできており、このグラファイト結晶(0.0.2)面についてX線回折による方位角強度分布を測定することで(例えば後述する図5)、炭素繊維自体の配向方向を知ることができる。配向している場合には、方位角強度分布にピークが発生する。特に良く配向している場合には、該ピークについて半値幅を測定し、下記の配向度を定義する。配向度は、0.7以上のときに配向を視覚的に捉えられる程度といえるとともに配向の作用効果が明瞭になると評価でき、特に0.9〜1のときは好ましい良配向ということができる。
配向度=(180°−半値幅)/180° ・・・数式2
2.顕微鏡観察等による目視確認
成形体を配向を確認したい面でカットし、走査型電子顕微鏡等で炭素繊維の方向を観察する。ただし、この観察から、配向の度合いを定量的にいうことは難しい。
[5-1] Confirmation or Evaluation of Orientation Orientation can be confirmed, for example, by the following two methods, and particularly by Method 1.
1. Measurement of azimuth intensity distribution of crystal lattice of carbon fiber by X-ray diffraction For example, in carbon fiber, graphite crystals are regularly arranged in the fiber length direction, and X-ray diffraction is performed on the graphite crystal (0.0.2) plane. By measuring the azimuth intensity distribution by (for example, FIG. 5 described later), the orientation direction of the carbon fiber itself can be known. In the case of orientation, a peak occurs in the azimuth intensity distribution. In the case of particularly good orientation, the half width is measured for the peak, and the following degree of orientation is defined. It can be said that the degree of orientation is such that the orientation can be visually perceived when 0.7 or more and the action effect of the orientation becomes clear.
Degree of orientation = (180 ° −half-value width) / 180 ° Formula 2
2. Visual confirmation by microscopic observation etc. A molded object is cut in the surface which wants to confirm orientation, and the direction of carbon fiber is observed with a scanning electron microscope. However, from this observation, it is difficult to quantitatively say the degree of orientation.

[5−2]配向の方向
高分子材料中での炭素繊維が配向する方向は、特に限定されないが、例えば成形体が板状部を含むものである場合、その板状部の表面に沿ったいずれか一方向でもよいし、その板状部の厚さ方向でもよい。
[5-2] Orientation direction The direction in which the carbon fibers in the polymer material are oriented is not particularly limited. For example, when the molded body includes a plate-shaped portion, any of the carbon fibers along the surface of the plate-shaped portion is used. One direction may be sufficient and the thickness direction of the plate-shaped part may be sufficient.

[5−3]配向の方法
炭素繊維を配向させる方法としては、特に限定されないが、次の磁場による方法と加工による方法を例示できる。
1.磁場による方法
上記の低電気伝導性高放熱性高分子材料で成形体又は該成形体の素材としての成形体を成形し、これらの成形体の高分子材料が流動性を有する状態で該高分子材料中の炭素繊維を磁場により配向させる方法である。炭素繊維は磁場の方向(磁力線の方向)に沿うように配向する。配向後に高分子材料を冷却等し固化させる。磁場の強さは、特に限定されないが、1T(テスラ)以上の強磁場が好ましい。この方法によれば、配向方向を磁場の方向に合わせるだけで、上で例示した配向方向も含め種々の配向方向を実現できる利点がある。
ここで、高分子材料が流動性を有する状態とは、特に限定されないが、溶融している状態、架橋・重合する前の状態等を例示できる。
2.加工による方法
上記の低電気伝導性高放熱性高分子材料で成形体又は該成形体の素材としての成形体を成形し、これらの成形体の高分子材料が流動性を有する状態で成形体の少なくとも一部を加工により伸長変形させて該高分子材料中の炭素繊維を配向させる方法である。炭素繊維は伸長方向に沿うように配向する。配向後に高分子材料を冷却等し固化させる。
なお、上記方法において成形体の素材としての成形体とは、例えば成形体がシート材を真空成形等して三次元形状に賦形したものである場合のシート材をさすように、複数段階の成形を経る場合の前駆の成形体をいう。
[5-3] Orientation Method The method for orienting the carbon fiber is not particularly limited, and examples thereof include the following magnetic field method and processing method.
1. Method by magnetic field Molding a molded body or a molded body as a raw material of the molded body with the above-mentioned low electrical conductivity and high heat dissipation polymer material, and the polymer material of the molded body having fluidity In this method, the carbon fibers in the material are oriented by a magnetic field. The carbon fibers are oriented along the direction of the magnetic field (the direction of the magnetic field lines). After the orientation, the polymer material is solidified by cooling or the like. The strength of the magnetic field is not particularly limited, but a strong magnetic field of 1T (Tesla) or more is preferable. According to this method, there is an advantage that various alignment directions including the alignment direction exemplified above can be realized only by aligning the alignment direction with the direction of the magnetic field.
Here, the state in which the polymer material has fluidity is not particularly limited, but examples include a melted state and a state before crosslinking and polymerization.
2. Method by processing A molded body or a molded body as a raw material of the molded body is molded with the above-mentioned low electrical conductivity high heat dissipation polymer material, and the molded body is in a state where the polymer material of the molded body has fluidity. In this method, at least a part is stretched and deformed by processing to orient the carbon fibers in the polymer material. The carbon fibers are oriented along the extension direction. After the orientation, the polymer material is solidified by cooling or the like.
In the above method, the molded body as the material of the molded body refers to, for example, a sheet material in a case where the molded body is a sheet material formed into a three-dimensional shape by vacuum forming or the like of the sheet material. It refers to a precursor molded body when it undergoes molding.

[B]本発明の低電気伝導性高放熱性成形体は、上記の低電気伝導性高放熱性高分子材料で成形したものである。
同成形体の具体的製品としては、特に限定されないが、次の製品を例示できる。
・図2に示すように、(ハイブリット車、燃料電池車等の電気駆動車等の)電池パック11の電池素子間を絶縁する絶縁プレート12やバッテリーケース13、バスバモジュール等
・(電気駆動車等の)モーターのモーターコイルインシュレーター・封止材等
・(電気駆動車、家電等の)インバーターケース
・(家電、パソコン等の)放熱シート、筐体等
[B] The low electrical conductivity high heat dissipation molded article of the present invention is formed from the above low electrical conductivity high heat dissipation polymer material.
Although it does not specifically limit as a specific product of the molded object, The following product can be illustrated.
As shown in FIG. 2, an insulating plate 12, a battery case 13, a bus bar module, etc. that insulates the battery elements of the battery pack 11 (such as an electric drive vehicle such as a hybrid vehicle or a fuel cell vehicle) Motor coil insulators, sealing materials, etc. for motors, inverter cases (for electric drive vehicles, home appliances, etc.), heat dissipation sheets (for home appliances, personal computers, etc.), housings, etc.

本発明の開発経緯及び作用は、次のとおりである。
炭素繊維は、熱伝導性が(よって放熱性も)高く、また高分子材料に対する補強性もあり、本目的に適する。しかし、炭素繊維は、電気伝導性も高いため、本発明では炭素繊維を配合した材料の電気伝導性を抑制することを目指した。
そして、種々検討の結果、炭素繊維と絶縁性である各種セラミックスとを組み合わせて高分子材料中に配合することにより、低電気伝導性と高放熱性とを確保した新規材料を得たものである。
The development history and operation of the present invention are as follows.
Carbon fiber is suitable for this purpose because it has a high thermal conductivity (and hence a high heat dissipation property) and also has a reinforcing property to the polymer material. However, since carbon fiber has high electrical conductivity, the present invention aims to suppress the electrical conductivity of the material blended with carbon fiber.
As a result of various studies, a new material having low electrical conductivity and high heat dissipation was obtained by combining carbon fiber and various insulating ceramics in a polymer material. .

本発明の高分子材料及び成形体によれば、低電気伝導性及び高放熱性の両特性を確保することができる。   According to the polymer material and the molded body of the present invention, both low electrical conductivity and high heat dissipation characteristics can be ensured.

高分子材料中に、炭素繊維を15〜30体積%配合し、且つ、セラミックスを5〜15体積%配合してなる低電気伝導性高放熱性高分子材料である。また、同低電気伝導性高放熱性高分子材料で成形した低電気伝導性高放熱性成形体である。   It is a low-electric-conductivity, high-heat-dissipating polymer material obtained by blending 15 to 30% by volume of carbon fiber and 5 to 15% by volume of ceramic in the polymer material. Moreover, it is the low electrical conductivity high heat dissipation molded object shape | molded with the same low electrical conductivity high heat dissipation polymer material.

次の表3は、母材の高分子材料1として、ポリエチレン(PE)樹脂(住友化学社製の、商品名「スミカセンG807」)を用い、このポリエチレン樹脂に炭素繊維2とセラミックス3とを所定量配合した実施例1〜15及び炭素繊維等を所定量配合した比較例1〜5の組成と物性である。   Table 3 below uses polyethylene (PE) resin (trade name “Sumikasen G807” manufactured by Sumitomo Chemical Co., Ltd.) as the polymer material 1 of the base material, and carbon fiber 2 and ceramics 3 are placed on this polyethylene resin. It is a composition and physical property of Examples 1-15 which mix | blended fixed quantity, and Comparative Examples 1-5 which mix | blended predetermined amounts of carbon fiber.

実施例1〜11は、炭素繊維と窒化ホウ素とを配合したものであり、実施例12〜14は、炭素繊維とアルミナとを配合したもの、実施例15は、炭素繊維と窒化アルミニウムとを配合したものである。
一方、比較例1は、ポリエチレン樹脂のみのものであり、比較例2、3は、炭素繊維のみを配合したもの、比較例4、5は、窒化ホウ素のみを配合したものである。
Examples 1 to 11 are blends of carbon fibers and boron nitride, Examples 12 to 14 are blends of carbon fibers and alumina, and Example 15 is blends of carbon fibers and aluminum nitride. It is a thing.
On the other hand, Comparative Example 1 is a polyethylene resin only, Comparative Examples 2 and 3 are those containing only carbon fibers, and Comparative Examples 4 and 5 are those containing only boron nitride.

また、次の表4は、母材の高分子材料1として、ポリエチレン(PE)樹脂の変わりにポリプロピレン(PP)樹脂(日本ポリプロ社製の、商品名「ノバテックPP」)、ポリフェニレンサルファイド(PPS)樹脂(東レ社製の、商品名「トレリナA900」)、シリコーンゴム(信越化学社製の、商品名「KE106」)又はビスフェノールA型エポキシ樹脂(リファインテック社製の、商品名「エポマウント」)を用いた実施例16〜43及び比較例6〜8の組成と物性である。   In addition, Table 4 below shows, as a polymer material 1 as a base material, polypropylene (PP) resin (trade name “Novatech PP” manufactured by Nippon Polypro) instead of polyethylene (PE) resin, polyphenylene sulfide (PPS). Resin (trade name “Torelina A900” manufactured by Toray Industries, Inc.), silicone rubber (trade name “KE106” manufactured by Shin-Etsu Chemical Co., Ltd.) or bisphenol A type epoxy resin (trade name “Epomount” manufactured by Refine Tech) The compositions and physical properties of Examples 16 to 43 and Comparative Examples 6 to 8 using

各試料に用いた母材の高分子材料は、実施例16〜24及び比較例6がポリプロピレン樹脂、実施例25〜33及び比較例7がPPS樹脂、実施例34〜42及び比較例8がシリコーンゴム、実施例43がビスフェノールA型エポキシ樹脂である。
また、実施例16〜19、25〜28、34〜37は、炭素繊維と窒化ホウ素とを配合したものであり、実施例20〜23、29〜32、38〜41、43は、炭素繊維とアルミナとを配合したもの、実施例24、33、42は、炭素繊維と窒化アルミニウムとを配合したものである。
The polymer materials of the base materials used for each sample are polypropylene resin in Examples 16 to 24 and Comparative Example 6, PPS resin in Examples 25 to 33 and Comparative Example 7, and silicone in Examples 34 to 42 and Comparative Example 8 Rubber, Example 43, is a bisphenol A type epoxy resin.
Moreover, Examples 16-19, 25-28, 34-37 mix | blend carbon fiber and boron nitride, and Examples 20-23, 29-32, 38-41, and 43 are carbon fiber. Examples in which alumina was blended, Examples 24, 33, and 42 were blended with carbon fiber and aluminum nitride.

なお、本試験に用いた、炭素繊維は、ピッチ系炭素繊維である三菱化学産資社製の、商品名「ダイアリード K223HGM」(平均粒径Φ10×50μm)であり、窒化ホウ素(BN)は、GEスペシャリティーマテリアルズ社製の、商品名「PT110」(平均粒径50μm)、アルミナ(Al)は、電気化学工業社製の、商品名「DAW10」(平均粒径10μm)、窒化アルミニウム(AlN)は、東洋アルミ社製の、商品名「FAN−f80」(平均粒径80μm)である。 The carbon fiber used in this test is a product name “DIALEAD K223HGM” (average particle diameter Φ10 × 50 μm) manufactured by Mitsubishi Chemical Corporation, which is a pitch-based carbon fiber, and boron nitride (BN) is , Trade name “PT110” (average particle size 50 μm) manufactured by GE Specialty Materials, and alumina (Al 2 O 3 ) are trade names “DAW10” (average particle size 10 μm) manufactured by Denki Kagaku Kogyo Co., Ltd. Aluminum nitride (AlN) is a trade name “FAN-f80” (average particle size 80 μm) manufactured by Toyo Aluminum.

[成形と物性試験]
各実施例又は比較例の配合の材料を、東洋精機製作所社製ラボプラストミルのセグメントミキサ(型番「KF70V」)により、温度210℃(ポリエチレン樹脂)、200℃(ポリプロピレン樹脂)、320℃(PPS樹脂)、室温(シリコーンゴム、ビスフェノールA型エポキシ樹脂)、回転数100rpm、時間10分、充填率70%の条件で混合した。混合後の材料を、ハンドプレス装置により、圧力20MPaで、ポリエチレン樹脂は210℃で5分間、ポリプロピレン樹脂は200℃で5分間、PPS樹脂は320℃で5分間、シリコーンゴムは150℃で30分間、ビスフェノールA型エポキシ樹脂は室温で24時間の条件でプレス成形し、25mm×25mm×(厚さ)2mmの試験片を作成した。
[Molding and physical properties test]
The ingredients of each example or comparative example were mixed at a temperature of 210 ° C. (polyethylene resin), 200 ° C. (polypropylene resin), 320 ° C. (PPS) using a laboratory mixer (model number “KF70V”) manufactured by Toyo Seiki Seisakusho. Resin), room temperature (silicone rubber, bisphenol A type epoxy resin), rotation speed 100 rpm, time 10 minutes, and filling rate 70%. After mixing, the material was mixed with a hand press at a pressure of 20 MPa, polyethylene resin at 210 ° C. for 5 minutes, polypropylene resin at 200 ° C. for 5 minutes, PPS resin at 320 ° C. for 5 minutes, and silicone rubber at 150 ° C. for 30 minutes. The bisphenol A type epoxy resin was press-molded at room temperature for 24 hours to prepare a test piece of 25 mm × 25 mm × (thickness) 2 mm.

各試験片について、次の方法で物性を測定した。
(1)熱伝導性測定
測定装置としてNETZSCH社製 商品名「XeフラッシュアナライザーLFA447 Nanoflash」を用い、25℃(室温)にて測定した。熱伝導の方向は試験片の厚さ方向である。
(2)体積固有抵抗測定
体積固有抵抗が10Ω・cm以下の場合は、測定装置としてダイヤインスツルメント社製 商品名「ロレスタGP」を用い、四端子法で測定した。電流印加端子の離間方向(電流の方向)も、電圧測定端子の離間方向(電位差の方向)も、試験片の厚さ方向である。
体積固有抵抗が10Ω・cm以上の場合は、測定装置としてダイヤインスツルメント社製 商品名「ハイレスタUP」を用い、二重リング法(JISK6911準拠)で測定した。
About each test piece, the physical property was measured with the following method.
(1) Thermal conductivity measurement The product name “Xe flash analyzer LFA447 Nanoflash” manufactured by NETZSCH was used as a measuring device, and the measurement was performed at 25 ° C. (room temperature). The direction of heat conduction is the thickness direction of the test piece.
(2) Volume Specific Resistance Measurement When the volume specific resistance was 10 6 Ω · cm or less, a product name “Loresta GP” manufactured by Dia Instruments Co., Ltd. was used as a measuring device, and measurement was performed by a four-terminal method. Both the separation direction (current direction) of the current application terminal and the separation direction (potential difference direction) of the voltage measurement terminal are the thickness direction of the test piece.
When the volume resistivity was 10 6 Ω · cm or more, the product name “Hiresta UP” manufactured by Dia Instruments Co., Ltd. was used as the measuring device, and the measurement was performed by the double ring method (JISK6911 compliant).

[物性評価]
実施例の全ては、低電気伝導性(体積固有抵抗1×10Ω・cm以上)及び高放熱性(熱伝導率0.5W/m・K以上)を共に確保している。一方、比較例1、6〜8については、低電気伝導性は確保しているが、高放熱性は悪い。比較例2、3については、高放熱性は確保しているが、低電気伝導性が極めて悪い。比較例4、5については、低電気伝導性及び高放熱性を共に確保しているが、機械的強度が小さいため、実用的ではない。
なお、各配合材料の熱伝導性と電気伝導性を評価する際には、配合材料で成形する低電気伝導性高放熱性成形体の具体的製品の種類に応じて、要求される高放熱性のレベルも低電気伝導性のレベルも異なることを考慮する必要がある。
[Evaluation of the physical properties]
All of the Examples ensure both low electrical conductivity (volume resistivity 1 × 10 2 Ω · cm or more) and high heat dissipation (thermal conductivity 0.5 W / m · K or more). On the other hand, although the low electrical conductivity is ensured about the comparative examples 1 and 6-8, high heat dissipation is bad. In Comparative Examples 2 and 3, high heat dissipation is ensured, but low electrical conductivity is extremely poor. In Comparative Examples 4 and 5, both low electrical conductivity and high heat dissipation are ensured, but the mechanical strength is small, so it is not practical.
In addition, when evaluating the thermal conductivity and electrical conductivity of each compounding material, the required high heat dissipation is required depending on the specific product type of the low electrical conductivity, high heat dissipation molded product molded from the compounding material. It should be taken into account that the level of low and the level of low electrical conductivity are different.

[炭素繊維を配向させる予備試験]
まず、磁場により炭素繊維を配向させることができることを確認するための予備試験を行った。ポリエチレン樹脂にピッチ系炭素繊維を15体積%、25体積%、30体積%、又は35体積%配合したものと、ピッチ系炭素繊維15体積%と平均粒径10μmのアルミナ5体積%とを配合したものとの五種の材料を、上記と同様の条件で混合し且つ25mm×25mm×2mmの試験片に成形した後、炭素繊維を15体積%、25体積%、35体積%及び炭素繊維とアルミナとを配合の例について磁場を印加した(炭素繊維を30体積%配合の例には磁場を印加せず、炭素繊維を25体積%配合の例は磁場を印加しない場合も行った。)。具体的には、図3及び図4に示すように、次の装置及び手順で配向を行った。
・磁場発生手段として、住友重機械工業社製の冷却型超伝導磁石装置(HF10−100VHT)を用いた。
・同装置21の磁場中心部に位置する空間22(ボア)の下部に電気ヒーター23を設置し、該電気ヒーター23の上に、上記の試験片24を1つずつ、試験片厚さ方向が磁場の方向(磁力線の方向)となるようにセットした。
・同空間内の試験片24をポリエチレン樹脂が溶融する温度域(実施したのは220℃)に電気ヒーター23で加熱し、試験片の母材ポリエチレン樹脂を溶融した。この際、試験片は前記寸法を維持するように保持された。
・同加熱及び温度を維持しながら同装置を作動させて試験片に磁場を印加し(実施したのは8T(テスラ))、試験片24を該磁場中で1時間放置した。
・その後、前記加熱を止め、試験片24を0.5時間放置して自然冷却し、試験片の母材ポリエチレン樹脂を固化させた。
・試験片24を同装置21の空間22から取り出し、炭素繊維の配向を確認した。
[Preliminary test for orienting carbon fibers]
First, a preliminary test was performed to confirm that the carbon fibers can be oriented by a magnetic field. Polyethylene resin blended with 15% by volume, 25% by volume, 30% by volume, or 35% by volume of pitch-based carbon fiber, and 15% by volume of pitch-based carbon fiber and 5% by volume of alumina with an average particle size of 10 μm. 5 types of materials are mixed under the same conditions as above and formed into a test piece of 25 mm × 25 mm × 2 mm, and then carbon fiber is 15 volume%, 25 volume%, 35 volume% and carbon fiber and alumina. The magnetic field was applied to the examples of blending (the magnetic fiber was not applied to the example of 30% by volume of carbon fiber, and the magnetic field was applied to the example of 25% by volume of carbon fiber). Specifically, as shown in FIGS. 3 and 4, the orientation was performed by the following apparatus and procedure.
-A cooling superconducting magnet device (HF10-100VHT) manufactured by Sumitomo Heavy Industries, Ltd. was used as the magnetic field generating means.
An electric heater 23 is installed in the lower part of the space 22 (bore) located in the center of the magnetic field of the apparatus 21, and the test piece 24 is placed on the electric heater 23 one by one in the thickness direction of the test piece. It was set so as to be in the direction of the magnetic field (direction of the lines of magnetic force).
The test piece 24 in the same space was heated with an electric heater 23 to a temperature range where the polyethylene resin was melted (the temperature was 220 ° C.), and the base material polyethylene resin of the test piece was melted. At this time, the test piece was held so as to maintain the above dimensions.
While maintaining the same heating and temperature, the apparatus was operated to apply a magnetic field to the test piece (implemented 8T (Tesla)), and the test piece 24 was left in the magnetic field for 1 hour.
Thereafter, the heating was stopped, and the test piece 24 was allowed to stand for 0.5 hours to be naturally cooled, thereby solidifying the base material polyethylene resin of the test piece.
-The test piece 24 was taken out from the space 22 of the apparatus 21, and the orientation of the carbon fiber was confirmed.

炭素繊維の配向は次の2方法で確認した。
1.X線回折による炭素繊維の結晶格子の方位角強度分布測定
磁場を印加しない炭素繊維を30体積%配合の例と、磁場を印加した炭素繊維を15体積%配合の例、35体積%配合の例及び炭素繊維とアルミナとを配合の例について、X線回折装置を用い、前記の通り、炭素繊維のグラファイト結晶(0.0.2)面についてX線回折による方位角強度分布を測定した。その測定結果を図5に示す。炭素繊維は、磁場を印加した炭素繊維を15体積%配合の例、35体積%配合の例及び炭素繊維とアルミナとを配合の例において、試験片24の厚さ方向によく配向しており、方位角強度分布にピークが発生する。このピークについて半値幅を測定し、前出した数式2から配向度を求めたところ、炭素繊維を15体積%配合の例で0.98であり、35体積%配合の例で0.97であった。
2.サンプルの顕微鏡観察による目視確認
磁場を印加しない炭素繊維を25体積%配合の例と、磁場を印加した炭素繊維を25体積%配合の例について、試験片を厚さ方向に切断し、走査型電子顕微鏡で炭素繊維の厚さ方向の配向の有無を観察した。その顕微鏡写真を図6及び図7に示す。濃灰色部がポリエチレン樹脂、淡灰色部が炭素繊維である。図6が磁場を印加しない例であるが、炭素繊維の方向がランダムである。図7が磁場を印加した例であるが、炭素繊維が規則正しく厚さ方向を向いており、良く配向しているといえる。なお、磁場を印加した炭素繊維を25体積%配合の例の前出した数式2から求めた配向度は、0.98であった。
The orientation of the carbon fiber was confirmed by the following two methods.
1. Measurement of azimuth intensity distribution of crystal lattice of carbon fiber by X-ray diffraction Example of blending 30% by volume of carbon fiber not applying a magnetic field, Example of blending 15% by volume of carbon fiber to which a magnetic field is applied, Example of blending 35% by volume And as for the example of blending carbon fiber and alumina, using an X-ray diffractometer, as described above, the azimuth intensity distribution by X-ray diffraction was measured for the graphite crystal (0.0.2) plane of the carbon fiber. The measurement results are shown in FIG. The carbon fiber is well oriented in the thickness direction of the test piece 24 in the example of blending 15% by volume of carbon fiber to which a magnetic field is applied, in the example of blending 35% by volume, and in the example of blending carbon fiber and alumina. A peak occurs in the azimuth intensity distribution. The full width at half maximum of this peak was measured, and the degree of orientation was determined from Equation 2 given above. As a result, the carbon fiber was 0.98 in the example of 15% by volume and 0.97 in the example of the 35% by volume. It was.
2. Visual confirmation by microscopic observation of sample For a sample containing 25% by volume of carbon fiber not applied with a magnetic field and a sample containing 25% by volume of carbon fiber applied with a magnetic field, the test piece was cut in the thickness direction, and scanning electron The presence or absence of orientation in the thickness direction of the carbon fiber was observed with a microscope. The micrographs are shown in FIGS. The dark gray part is polyethylene resin and the light gray part is carbon fiber. FIG. 6 shows an example in which no magnetic field is applied, but the direction of the carbon fibers is random. Although FIG. 7 shows an example in which a magnetic field is applied, it can be said that the carbon fibers are regularly oriented in the thickness direction and are well oriented. In addition, the orientation degree calculated | required from the numerical formula 2 mentioned above of the example of carbon fiber which applied the magnetic field 25 volume% mixing | blending was 0.98.

[炭素繊維を配向させた実施例]
(A)ポリエチレン樹脂の母材
この予備試験で炭素繊維を良く配向させられることが確認できたので、次に、実施例1、2、3、5、6、12、13、14、15及び比較例1、2、3、4、5について、それぞれ材料組成と成形法は同一であるが、母材の高分子材料(ポリエチレン樹脂)中の炭素繊維を磁場により配向させた点においてのみ相違する実施例1a、2a、3a、5a、6a、12a、13a、14a、15a及び比較例1a、2a、3a、4a、5aを実施した。なお、これらは、含まれている炭素繊維が特に良く配向している(前出した数式2から求めた配向度が0.9〜1である)。
磁場による配向は、図3及び図4に示す装置及び手順で、前記の予備試験と同様に行った。そして、装置21の空間22から取り出した試験片を、前記の物性試験に供した。その結果を表5に示す。なお、実施例1aについては、炭素繊維の配向方向と直交する方向の熱伝導率についても測定し、その値は、1.1W/m・Kであった。
[Examples in which carbon fibers are oriented]
(A) Base material of polyethylene resin Since it was confirmed that carbon fibers could be well oriented in this preliminary test, Examples 1, 2, 3, 5, 6, 12, 13, 14, 15 and comparison Examples 1, 2, 3, 4, and 5 have the same material composition and molding method, but differ only in that the carbon fibers in the base polymer material (polyethylene resin) are oriented by a magnetic field. Examples 1a, 2a, 3a, 5a, 6a, 12a, 13a, 14a, 15a and Comparative Examples 1a, 2a, 3a, 4a, 5a were carried out. In these, the carbon fibers contained are particularly well oriented (the degree of orientation obtained from Equation 2 above is 0.9 to 1).
Orientation by a magnetic field was performed in the same manner as the preliminary test using the apparatus and procedure shown in FIGS. And the test piece taken out from the space 22 of the apparatus 21 was used for the said physical property test. The results are shown in Table 5. In addition, about Example 1a, it measured also about the heat conductivity of the direction orthogonal to the orientation direction of a carbon fiber, and the value was 1.1 W / m * K.

また、各試料のメルトフローレート(MFR)の測定をJISK7210−1999に準拠し、東洋精機製作所社製の、商品名「メルトインデクサーP−001型」を使用し、試験温度:220℃、試験荷重:2.16kgf(21.18N)の試験条件で行った。その結果を次の表6に示す。   Moreover, the measurement of the melt flow rate (MFR) of each sample is based on JISK7210-1999, and the brand name "Melt indexer P-001 type" made by Toyo Seiki Seisakusho Co., Ltd. is used. Test temperature: 220 ° C, test Load: 2.16 kgf (21.18 N) The test conditions were used. The results are shown in Table 6 below.

(B)ポリエチレン樹脂以外の樹脂等の母材
母材の高分子材料がポリエチレン樹脂以外の実施例16〜43及び比較例6〜8についても前記ポリエチレン樹脂の試料と同じように、それぞれ材料組成と成形法は同一であるが、母材の高分子材料中の炭素繊維を磁場により配向させた点においてのみ相違する実施例16a〜43a及び比較例6a〜8aを実施した。炭素繊維を配向させるため、ポリプロピレン樹脂の試料は、220℃に、PPS樹脂の試料は、320℃にそれぞれ加熱し、溶融状態にして炭素繊維の配向を行い、シリコーンゴム及びビスフェノールA型エポキシ樹脂は、加熱して溶融させるのではなく、重合等する前の状態で炭素繊維の配向を行った。その結果を表7に示す。
なお、配向方法及び物性試験は、上記の母材の高分子材料がポリエチレン樹脂のときと同じである。
(B) Base material such as resin other than polyethylene resin As in the case of Examples 16 to 43 and Comparative Examples 6 to 8 where the polymer material of the base material is other than polyethylene resin, the material composition and Although the molding method is the same, Examples 16a to 43a and Comparative Examples 6a to 8a which differ only in that the carbon fibers in the polymer material of the base material are oriented by a magnetic field were carried out. In order to orient the carbon fibers, the polypropylene resin sample is heated to 220 ° C., the PPS resin sample is heated to 320 ° C., and the carbon fibers are oriented in a molten state. Silicone rubber and bisphenol A type epoxy resin are Instead of heating and melting, the carbon fibers were oriented in a state before polymerization or the like. The results are shown in Table 7.
The orientation method and physical property test are the same as when the polymer material of the base material is a polyethylene resin.

また、実施例16a〜24a、比較例6aの各試料(母材の高分子材料がポリプロピレン樹脂)のメルトフローレート(MFR)の測定を、上記の母材の高分子材料がポリエチレン樹脂のときと同条件で行い、実施例25a〜33a、比較例7aの各試料(母材の高分子材料がPPS樹脂)のメルトフローレート(MFR)の測定を、試験温度:320℃、試験荷重:5kgf(49.03N)の試験条件(他の条件はポリプロピレン樹脂のときと同じ)で行った。さらに、実施例34a〜42a、比較例8aの各試料(母材の高分子材料がシリコーンゴム)及び実施例43a(母材の高分子材料がビスフェノールA型エポキシ樹脂)の重合等する前の状態における粘度をE型粘度計(メトック社製)を用いて測定した。その結果を表7に示す。   Further, measurement of the melt flow rate (MFR) of each sample of Examples 16a to 24a and Comparative Example 6a (the polymer material of the base material is polypropylene resin), and when the polymer material of the base material is a polyethylene resin Under the same conditions, the melt flow rate (MFR) of each of the samples of Examples 25a to 33a and Comparative Example 7a (the base polymer material is PPS resin) was measured at a test temperature of 320 ° C. and a test load of 5 kgf ( 49.03N) (other conditions are the same as for polypropylene resin). Furthermore, each sample of Examples 34a to 42a and Comparative Example 8a (matrix polymer material is silicone rubber) and Example 43a (matrix polymer material is bisphenol A type epoxy resin) before polymerization, etc. The viscosity was measured using an E-type viscometer (Metock Co., Ltd.). The results are shown in Table 7.

[物性評価]
母材の高分子材料にポリエチレン樹脂を用いた各試料は、炭素繊維が配向されることにより、次のような結果が得られた。
実施例の全ては、低電気伝導性(体積固有抵抗1×10Ω・cm以上)及び高放熱性(熱伝導率0.5W/m・K以上)を共に確保している。
実施例は、高放熱性(熱伝導率)が大きく向上し、低電気伝導性(体積固有抵抗)は若干悪化するものもあるが要求される性能は確保できた。一方、比較例2aについては、高放熱性は大きく向上したが、低電気伝導性はさらに悪化した。比較例3aについては、低電気伝導性はさらに悪化した。
[Evaluation of the physical properties]
Each sample using polyethylene resin as the base polymer material had the following results when the carbon fibers were oriented.
All of the Examples ensure both low electrical conductivity (volume resistivity 1 × 10 2 Ω · cm or more) and high heat dissipation (thermal conductivity 0.5 W / m · K or more).
In Examples, high heat dissipation (thermal conductivity) was greatly improved, and low electrical conductivity (volume specific resistance) was somewhat deteriorated, but required performance could be secured. On the other hand, in Comparative Example 2a, the high heat dissipation performance was greatly improved, but the low electrical conductivity was further deteriorated. About the comparative example 3a, the low electrical conductivity deteriorated further.

母材の高分子材料にポリエチレン樹脂以外の樹脂等を用いた各試料は、炭素繊維が配向されることで、次のような効果があった。
・実施例の全ては、低電気伝導性(体積固有抵抗1×10Ω・cm以上)及び高放熱性(熱伝導率0.5W/m・K以上)を共に確保している。
・炭素繊維の配合量が15〜30体積%の実施例は高放熱性が向上し、特に、炭素繊維の配合量が15〜20体積%のものは、高放熱性が大きく向上した。
・炭素繊維の配合量が15〜20体積%の実施例は一部(実施例38、39)を除いて低電気伝導性が向上した。
Each sample using a resin other than the polyethylene resin as the base polymer material has the following effects when the carbon fibers are oriented.
All of the examples ensure both low electrical conductivity (volume resistivity 1 × 10 2 Ω · cm or more) and high heat dissipation (thermal conductivity 0.5 W / m · K or more).
-The example with 15-30 volume% of carbon fiber compounding quantity improved high heat dissipation, and especially the thing of 15-20 volume% of carbon fiber compounding quantity improved the high heat dissipation significantly.
-The low electrical conductivity improved the Example whose compounding quantity of carbon fiber was 15-20 volume% except one part (Example 38, 39).

本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。   The present invention is not limited to the above-described embodiments, and can be modified and embodied as appropriate without departing from the spirit of the invention.

本発明の実施品の低電気導電性高放熱性高分子材料の模式図である。It is a schematic diagram of the low electrical conductivity high heat dissipation high molecular material of the implementation goods of this invention. 本発明の高分子材料で成形した成形体の例を示す斜視図である。It is a perspective view which shows the example of the molded object shape | molded with the polymeric material of this invention. 磁場により炭素繊維を配向させるための装置及び方法を示す説明図である。It is explanatory drawing which shows the apparatus and method for orienting carbon fiber with a magnetic field. 同じく磁場により炭素繊維を配向させる方法を示す説明図である。It is explanatory drawing which similarly shows the method of orientating carbon fiber with a magnetic field. X線回折による方位角強度分布の測定結果を示すグラフである。It is a graph which shows the measurement result of azimuth intensity distribution by X-ray diffraction. 炭素繊維を配向させない成形体の例の顕微鏡写真である。It is a microscope picture of the example of the molded object which does not orientate carbon fiber. 炭素繊維を配向させた成形体の例の顕微鏡写真である。It is a microscope picture of the example of the molded object which orientated carbon fiber.

符号の説明Explanation of symbols

1 高分子材料
2 炭素繊維
3 セラミックス
11 電池パック
12 絶縁プレート
13 バッテリーケース
21 冷却型超伝導磁石装置
22 空間
23 電気ヒーター
24 試験片
DESCRIPTION OF SYMBOLS 1 Polymer material 2 Carbon fiber 3 Ceramics 11 Battery pack 12 Insulation plate 13 Battery case 21 Cooling superconducting magnet apparatus 22 Space 23 Electric heater 24 Test piece

Claims (8)

高分子材料中に、炭素繊維を10〜35体積%配合し、且つ、セラミックスを1〜20体積%配合してなる低電気伝導性高放熱性高分子材料。   A low-electric-conductivity, high-heat-dissipating polymer material containing 10 to 35% by volume of carbon fiber and 1 to 20% by volume of ceramic in a polymer material. 前記高分子材料は、熱伝導率が1.0W/m・K未満のものである請求項1記載の低電気伝導性高放熱性高分子材料。   The low-conductivity, high heat-dissipating polymer material according to claim 1, wherein the polymer material has a thermal conductivity of less than 1.0 W / m · K. 前記高分子材料は、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、シリコーン又はエポキシ樹脂である請求項1又は2記載の低電気伝導性高放熱性高分子材料。   3. The low electrical conductivity and high heat dissipation polymer material according to claim 1, wherein the polymer material is polyethylene, polypropylene, polyphenylene sulfide, silicone or epoxy resin. 前記セラミックスが、窒化ホウ素、アルミナ又は窒化アルミニウムである請求項1〜3のいずれか一項に記載の低電気伝導性高放熱性高分子材料。   The said ceramic is boron nitride, an alumina, or aluminum nitride, The low electrical conductivity highly heat-dissipating polymeric material as described in any one of Claims 1-3. 前記炭素繊維が、ピッチ系炭素繊維である請求項1〜4のいずれか一項に記載の低電気伝導性高放熱性高分子材料。   The said carbon fiber is a pitch-type carbon fiber, The low electrical conductivity highly heat-dissipating polymeric material as described in any one of Claims 1-4. 請求項1〜5のいずれか一項に記載の低電気伝導性高放熱性高分子材料で成形された低電気伝導性高放熱性成形体。   The low electrical conductivity high heat dissipation molded object shape | molded with the low electrical conductivity high heat dissipation polymer material as described in any one of Claims 1-5. 高分子材料中で炭素繊維が配向している請求項6記載の低電気伝導性高放熱性成形体。   The low electrical conductivity high heat dissipation molded article according to claim 6, wherein carbon fibers are oriented in the polymer material. 請求項1〜5のいずれか一項に記載の低電気伝導性高放熱性高分子材料で成形体又は該成形体の素材としての成形体を成形し、これらの成形体の高分子材料が流動性を有する状態で該高分子材料中の炭素繊維を磁場により配向させる低電気伝導性高放熱性成形体の製造方法。   A molded body or a molded body as a raw material of the molded body is molded with the low electrical conductivity high heat dissipation polymer material according to any one of claims 1 to 5, and the polymeric material of these molded bodies is fluidized. A method for producing a low-electric-conductivity and high-heat-dissipation shaped body, in which carbon fibers in the polymer material are oriented by a magnetic field in a state having a property.
JP2008055563A 2007-03-27 2008-03-05 Low electric conductivity high heat radiation polymer material and molded article Withdrawn JP2008266586A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008055563A JP2008266586A (en) 2007-03-27 2008-03-05 Low electric conductivity high heat radiation polymer material and molded article
US12/076,872 US20080242772A1 (en) 2007-03-27 2008-03-25 Low electric conductivity high heat radiation polymeric composition and molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007080490 2007-03-27
JP2008055563A JP2008266586A (en) 2007-03-27 2008-03-05 Low electric conductivity high heat radiation polymer material and molded article

Publications (1)

Publication Number Publication Date
JP2008266586A true JP2008266586A (en) 2008-11-06

Family

ID=39994910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055563A Withdrawn JP2008266586A (en) 2007-03-27 2008-03-05 Low electric conductivity high heat radiation polymer material and molded article

Country Status (2)

Country Link
JP (1) JP2008266586A (en)
CN (1) CN101275035A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013390A (en) * 2007-06-04 2009-01-22 Teijin Ltd Thermally conductive sheet
WO2010110565A3 (en) * 2009-03-24 2010-12-23 에스케이에너지 주식회사 Outer casing member for preventing electricity leakage, and battery pack for a vehicle comprising same
WO2011013840A1 (en) * 2009-07-28 2011-02-03 帝人株式会社 Insulated pitch-based graphitized short fibers
JP2012511425A (en) * 2008-12-10 2012-05-24 ユーオーピー エルエルシー Adsorbent medium
JP2012243446A (en) * 2011-05-17 2012-12-10 Kojima Press Industry Co Ltd Battery pack
JP2013175423A (en) * 2012-01-26 2013-09-05 Toyota Industries Corp Terminal connection member and battery pack
JP2015093980A (en) * 2013-11-14 2015-05-18 独立行政法人産業技術総合研究所 Fiber-reinforced resin composition, fiber-reinforced molded article, method of producing fiber-reinforced resin composition, and method of producing fiber-reinforced molded article
JP2015105282A (en) * 2013-11-28 2015-06-08 住友理工株式会社 Elastomer molded body and method for production thereof
KR20160148404A (en) * 2015-06-16 2016-12-26 주식회사 엘지화학 Stack and folding-type electrode assembly and method for fabricating the same
JP2017500403A (en) * 2013-12-10 2017-01-05 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Tire comprising tread based on rubber composition containing pitch-based carbon fiber
WO2019111488A1 (en) * 2017-12-08 2019-06-13 住友電気工業株式会社 Coolant and power storage pack using same
JP2020506257A (en) * 2017-01-24 2020-02-27 ティコナ・エルエルシー Battery module for electric transport equipment
JPWO2019031457A1 (en) * 2017-08-08 2020-09-03 株式会社Gsユアサ Power storage module and power storage element
WO2022145771A1 (en) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 Catalyst layer for fuel cell, manufacturing method therefor, and membrane-electrode assembly and fuel cell which comprise same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565524B (en) * 2009-04-28 2011-04-27 华南理工大学 HDPE-carbon fiber-zinc oxide crystal whisker conductive composite material and preparation method thereof
US9243178B2 (en) * 2011-07-15 2016-01-26 Polyone Corporation Polyamide compounds containing pitch carbon fiber
JP6034562B2 (en) * 2011-12-20 2016-11-30 デクセリアルズ株式会社 Thermally conductive sheet and method for producing the thermally conductive sheet
CN103421225A (en) * 2012-05-21 2013-12-04 特茂热导工业股份有限公司 Electrical insulation heat-conductive fireproof material
CN103435895B (en) * 2013-09-11 2016-02-10 四川大学 A kind of method preparing insulation high-heat-conductive composite material
CN104194286B (en) * 2014-08-13 2016-05-25 上海交通大学 Carbon fiber strengthens thermoplas tic resin composite and preparation method thereof
CN106190051A (en) * 2015-05-05 2016-12-07 赖中平 The Graphene stack membrane of tool thermal conductance
CN104841860A (en) * 2015-05-07 2015-08-19 马鞍山市恒毅机械制造有限公司 Excellent-combination-property precoated sand for hot method and preparation method thereof
JP6301978B2 (en) * 2016-01-26 2018-03-28 デクセリアルズ株式会社 HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE
CN107383553A (en) * 2017-08-29 2017-11-24 德阳力久云智知识产权运营有限公司 A kind of conductive polymer composite and preparation method thereof
CN107325383A (en) * 2017-08-29 2017-11-07 德阳力久云智知识产权运营有限公司 A kind of cable composite shielding material and preparation method thereof
CN109294032B (en) * 2018-09-14 2021-04-13 江苏理工学院 Multi-element composite filling particle modified heat-conducting PE composite material and preparation method thereof
CN112635889B (en) * 2020-12-10 2021-11-30 东风汽车集团有限公司 Explosion-proof battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013390A (en) * 2007-06-04 2009-01-22 Teijin Ltd Thermally conductive sheet
JP2012511425A (en) * 2008-12-10 2012-05-24 ユーオーピー エルエルシー Adsorbent medium
WO2010110565A3 (en) * 2009-03-24 2010-12-23 에스케이에너지 주식회사 Outer casing member for preventing electricity leakage, and battery pack for a vehicle comprising same
KR101104650B1 (en) 2009-03-24 2012-01-13 에스케이이노베이션 주식회사 A Vehicle Battery Pack equipped wit h Exterior Member
CN102362387A (en) * 2009-03-24 2012-02-22 Sk新技术 Outer casing member for preventing electricity leakage, and battery pack for vehicle comprising same
WO2011013840A1 (en) * 2009-07-28 2011-02-03 帝人株式会社 Insulated pitch-based graphitized short fibers
JP2012243446A (en) * 2011-05-17 2012-12-10 Kojima Press Industry Co Ltd Battery pack
JP2013175423A (en) * 2012-01-26 2013-09-05 Toyota Industries Corp Terminal connection member and battery pack
JP2015093980A (en) * 2013-11-14 2015-05-18 独立行政法人産業技術総合研究所 Fiber-reinforced resin composition, fiber-reinforced molded article, method of producing fiber-reinforced resin composition, and method of producing fiber-reinforced molded article
JP2015105282A (en) * 2013-11-28 2015-06-08 住友理工株式会社 Elastomer molded body and method for production thereof
JP2017500403A (en) * 2013-12-10 2017-01-05 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Tire comprising tread based on rubber composition containing pitch-based carbon fiber
KR20160148404A (en) * 2015-06-16 2016-12-26 주식회사 엘지화학 Stack and folding-type electrode assembly and method for fabricating the same
KR101994948B1 (en) 2015-06-16 2019-09-30 주식회사 엘지화학 Stack and folding-type electrode assembly and method for fabricating the same
JP2020506257A (en) * 2017-01-24 2020-02-27 ティコナ・エルエルシー Battery module for electric transport equipment
JP7152405B2 (en) 2017-01-24 2022-10-12 ティコナ・エルエルシー Battery modules for electric transportation equipment
JPWO2019031457A1 (en) * 2017-08-08 2020-09-03 株式会社Gsユアサ Power storage module and power storage element
JP7214637B2 (en) 2017-08-08 2023-01-30 株式会社Gsユアサ Storage module and storage element
WO2019111488A1 (en) * 2017-12-08 2019-06-13 住友電気工業株式会社 Coolant and power storage pack using same
US11380946B2 (en) 2017-12-08 2022-07-05 Sumitomo Electric Industries, Ltd. Coolant and power storage pack using same
WO2022145771A1 (en) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 Catalyst layer for fuel cell, manufacturing method therefor, and membrane-electrode assembly and fuel cell which comprise same

Also Published As

Publication number Publication date
CN101275035A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP2008266586A (en) Low electric conductivity high heat radiation polymer material and molded article
US10851277B2 (en) Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article
US20080242772A1 (en) Low electric conductivity high heat radiation polymeric composition and molded body
JP2007291346A (en) Low electric conductivity high heat radiation polymer material and molded body
CN110343315A (en) Containing Monodispersed, polymer bond&#39;s film of highly oriented graphene and preparation method thereof
EP1533337B1 (en) Thermally conductive body and method of manufacturing the same
KR101139412B1 (en) Thermally Conductive Insulating Resin Composition and Plastic Article
CN102070899A (en) Insulating and heat-conducting polyamide composite material and preparation method thereof
JP5256716B2 (en) Resin composition and molded product obtained therefrom
CN106575644B (en) Thermally conductive resin molded article
Cheng et al. Achieving significant thermal conductivity improvement via constructing vertically arranged and covalently bonded silicon carbide nanowires/natural rubber composites
US20240092981A1 (en) Filler-loaded high thermal conductive dispersion liquid composition having excellent segregation stability, method for producing said dispersion liquid composition, filler-loaded high thermal conductive material using said dispersion liquid composition, method for producing said material, and molded article obtained using said material
JP2009280650A (en) Thermoplastic resin composition and thermoplastic resin molded article
JP4938997B2 (en) Molding resin with excellent electrical insulation and thermal conductivity
JP5029344B2 (en) Thermoplastic resin molded product
JP2005264059A (en) Method for producing composite resin composition, composite resin composition and composite resin molding
JP2012122057A (en) Inorganic organic composite composition
KR101791125B1 (en) Long-fiber reinforced thermoplastic resin composition with excellent thermal conductivity and mechanical properties
JP2012136684A (en) Thermoplastic resin composition and resin molded article
JP2008007647A (en) Heat conductive resin material and its molded product
JP6496109B2 (en) Method for producing electrically insulating heat conductive resin composition
WO2021200879A1 (en) Silicone composition and method for manufacturing silicone composition
KR20140080115A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
JP2008144094A (en) Molding resin excellent in thermal conductivity and fluidity
WO2021107894A1 (en) Polymer-based composite material with high thermal conductivity

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090630