JP4937240B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4937240B2
JP4937240B2 JP2008313863A JP2008313863A JP4937240B2 JP 4937240 B2 JP4937240 B2 JP 4937240B2 JP 2008313863 A JP2008313863 A JP 2008313863A JP 2008313863 A JP2008313863 A JP 2008313863A JP 4937240 B2 JP4937240 B2 JP 4937240B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
evaporator
heat exchanger
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008313863A
Other languages
Japanese (ja)
Other versions
JP2010139114A (en
Inventor
真哉 東井上
宗 野本
多佳志 岡崎
和樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008313863A priority Critical patent/JP4937240B2/en
Publication of JP2010139114A publication Critical patent/JP2010139114A/en
Application granted granted Critical
Publication of JP4937240B2 publication Critical patent/JP4937240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えばエジェクタを搭載した冷凍サイクル装置に用いられ、複数の伝熱管で構成された熱交換器が蒸発器として機能するときの入口側および熱交換器が凝縮器として機能するときの出口側(即ち、液冷媒側)に設けられ、伝熱管を流れる冷媒を均等に分配する分配器を備えた冷凍サイクル装置に関するものである。 The present invention is used in, for example, a refrigeration cycle apparatus equipped with an ejector, and an outlet side when a heat exchanger composed of a plurality of heat transfer tubes functions as an evaporator and an outlet when a heat exchanger functions as a condenser The present invention relates to a refrigeration cycle apparatus including a distributor that is provided on the side (that is, the liquid refrigerant side) and that evenly distributes the refrigerant flowing through the heat transfer tubes.

一般に、エジェクタを搭載した冷凍サイクルでは、減圧過程における膨張動力をエジェクタにより回収することで冷凍サイクルの高効率化を図ることができる。   Generally, in a refrigeration cycle equipped with an ejector, it is possible to increase the efficiency of the refrigeration cycle by collecting the expansion power in the decompression process by the ejector.

エジェクタはノズル、混合部、ディフューザーで構成される。高圧冷媒はエジェクタへ流入したのち、エジェクタのノズル部で減圧され、混合部とディフューザーで昇圧される。このノズル部とディフューザーの昇圧効果を利用して、冷媒を吸引する。このエジェクタの吸引流量は、エジェクタでの昇圧量とエジェクタ出口とエジェクタ吸引までの冷媒の圧力損失と関係し、冷媒の圧力損失に比例してエジェクタの吸引流量は減少する。つまり、昇圧量が100kPaのエジェクタの場合、エジェクタ出口とエジェクタ吸引までの圧力損失を100kPa以下にする必要がある。また、この圧力損失が100kPaよりも0kPaに近づけるほどエジェクタの吸引流用は増大する。つまり、エジェクタを搭載する冷凍サイクルにおいて、圧力損失を低減させることは性能向上を図るための課題となる。   The ejector is composed of a nozzle, a mixing section, and a diffuser. After the high-pressure refrigerant flows into the ejector, the pressure is reduced by the nozzle portion of the ejector, and the pressure is increased by the mixing portion and the diffuser. The refrigerant is sucked using the pressure increasing effect of the nozzle part and the diffuser. The suction flow rate of the ejector is related to the pressure increase amount at the ejector and the pressure loss of the refrigerant from the ejector outlet to the ejector suction, and the suction flow rate of the ejector decreases in proportion to the refrigerant pressure loss. That is, in the case of an ejector having a pressure increase of 100 kPa, the pressure loss between the ejector outlet and the ejector suction needs to be 100 kPa or less. In addition, the suction diversion of the ejector increases as the pressure loss approaches 0 kPa rather than 100 kPa. That is, in the refrigeration cycle in which the ejector is mounted, reducing the pressure loss is a problem for improving the performance.

一方、複数本の伝熱管で構成される熱交換器には、熱交換器が蒸発器として機能するときの蒸発器入口側の伝熱管に、伝熱管よりも細い管径で構成される冷媒分配器(ディストリビューター)が接続され、このディストリビューターで生じる流動損失を熱交換器で生じる圧力損失より大きくすることで冷媒の均等分配を図っている。しかし、この様な形態の冷媒分配器をエジェクタ冷凍サイクルに直接適用すると圧力損失が増大し、エジェクタの吸引流量の低下要因となり、結果、冷凍サイクルの性能が悪化する。   On the other hand, in a heat exchanger composed of a plurality of heat transfer tubes, refrigerant distribution with a smaller diameter than the heat transfer tubes is arranged on the heat transfer tubes on the evaporator inlet side when the heat exchanger functions as an evaporator A distributor (distributor) is connected, and the flow loss generated in the distributor is made larger than the pressure loss generated in the heat exchanger, so that the refrigerant is evenly distributed. However, when such a refrigerant distributor is directly applied to the ejector refrigeration cycle, the pressure loss increases, which causes a decrease in the suction flow rate of the ejector, and as a result, the performance of the refrigeration cycle deteriorates.

従来の冷凍サイクル装置ではヘッダ型分配器と言われる分配器形態の一種で、複数の分岐管の端面が切り欠けられた分岐管を長手方向が略鉛直方向になるように設けられた鉛直管に複数挿入し、端面が切り欠かれて形成される開口の冷媒通流方向に対する投影面積を段階的又は連続的に異ならせて配置することで、分岐管に流れる冷媒分配量の均一化を図る技術が知られている(例えば、特許文献1を参照)。   In a conventional refrigeration cycle apparatus, a type of distributor called a header-type distributor is used. A branch pipe in which end faces of a plurality of branch pipes are notched is replaced with a vertical pipe provided so that the longitudinal direction is substantially vertical. A technique for making the distribution amount of refrigerant flowing through the branch pipes uniform by arranging a plurality of insertions, and arranging the projected areas of the openings formed by cutting out the end faces with respect to the refrigerant flow direction stepwise or continuously. Is known (see, for example, Patent Document 1).

また、別の従来の冷凍サイクル装置では分配器内に取り付けたオリフィスを取り外し、気液二相における液冷媒の偏流を抑制するため、分配器内に液管と蒸気管を取り付け、液冷媒のみが蒸発器に流れる構造にすることで、冷媒分配量の均一化を図る技術が知られている(例えば、特許文献2を参照)。   In another conventional refrigeration cycle apparatus, an orifice attached in the distributor is removed, and a liquid pipe and a vapor pipe are attached in the distributor in order to suppress the liquid refrigerant drift in the gas-liquid two-phase. There is known a technique for making a refrigerant distribution amount uniform by using a structure that flows to an evaporator (see, for example, Patent Document 2).

特開2007−139231号公報(第5頁〜第7頁、図2、図5〜図6、図8〜図9)JP 2007-139231 A (pages 5 to 7, FIG. 2, FIG. 5 to FIG. 6, FIG. 8 to FIG. 9) 特開2008−196762号公報(第10頁〜13頁、図1〜3)JP 2008-196762 A (pages 10 to 13, FIGS. 1 to 3)

しかしながら、例えば、特許文献1に示す従来の冷凍サイクル装置では、熱交換器が蒸発器として機能するとき、分配器を蒸発器入口側に取り付けた場合、分配器入口で冷媒が液単相で流入するため、鉛直管に取り付けた分岐管の最上段側と最下段側で水頭圧差(液ヘッド差)が生じ、液冷媒は下段側の分岐管に流れやすく、上段側に流れにくくなり、冷媒分配に偏流が生じる。   However, for example, in the conventional refrigeration cycle apparatus shown in Patent Document 1, when the heat exchanger functions as an evaporator, when the distributor is attached to the evaporator inlet side, the refrigerant flows in a liquid single phase at the distributor inlet. Therefore, a hydraulic head pressure difference (liquid head difference) occurs between the uppermost side and the lowermost side of the branch pipe attached to the vertical pipe, and the liquid refrigerant tends to flow to the lower branch pipe and is difficult to flow to the upper stage. Drift occurs.

また、特許文献2に示す従来の冷凍サイクル装置では、冷媒分配器は、蒸発器として機能する熱交換器を対象とした分配器であるが、この場合においても熱交換器を垂直設置した場合には、上段側と下段側のヘッド差による分配不良を解決することは難しい。   Moreover, in the conventional refrigeration cycle apparatus shown in Patent Document 2, the refrigerant distributor is a distributor intended for a heat exchanger functioning as an evaporator, but in this case as well, when the heat exchanger is vertically installed It is difficult to solve the distribution failure due to the head difference between the upper side and the lower side.

また、特許文献1、2に示される従来例において、冷房運転と暖房運転の両運転モードで運転可能なエジェクタ冷凍サイクルでは、室内熱交換器は冷房運転では蒸発器として機能し、暖房運転では凝縮器として機能する。また、室外熱交換器は冷房運転では凝縮器として機能し、暖房運転では蒸発器として機能する。したがって、分配器は室内および室外熱交換器の両熱交換器に取り付ける必要である。   Further, in the conventional examples shown in Patent Documents 1 and 2, in an ejector refrigeration cycle that can be operated in both the cooling operation and heating operation modes, the indoor heat exchanger functions as an evaporator in the cooling operation and condenses in the heating operation. It functions as a vessel. The outdoor heat exchanger functions as a condenser in the cooling operation, and functions as an evaporator in the heating operation. Therefore, the distributor must be attached to both the indoor and outdoor heat exchangers.

この発明は、上記のような課題を解決するためになされたもので、空調機、冷凍機、給湯器などを対象とする冷凍サイクル装置において、室外熱交換器および室内熱交換器を構成する複数の伝熱管に対して冷媒流量を均一に分配させる分配器を備えた冷凍サイクル装置を提供することを主な目的としている。また、冷房運転、暖房運転ならびに除霜運転時のいずれに対しても上記冷媒流量の均一分配が実現できることを目的とする。 This invention was made in order to solve the above problems, and in a refrigeration cycle apparatus intended for an air conditioner, a refrigerator, a water heater, etc., a plurality of components constituting an outdoor heat exchanger and an indoor heat exchanger are provided. to provide a refrigeration cycle apparatus provided with a distributor to uniformly distribute the refrigerant flow against the heat transfer tubes it is primarily intended. It is another object of the present invention to achieve uniform distribution of the refrigerant flow rate for any of the cooling operation, heating operation, and defrosting operation.

この発明に係る冷凍サイクル装置は、圧縮機,第一の四方弁,3本以上の伝熱管を有する凝縮器,第二の四方弁,エジェクタ,気液分離器及び3本以上の伝熱管を有する蒸発器が順次配管で環状に接続され、前記エジェクタは前記凝縮器,前記第二の四方弁を順次流れた冷媒が流入する第一の入口と前記蒸発器からの冷媒が流入する第二の入口を備え、前記エジェクタの出口と前記気液分離器が接続され、前記気液分離器には蒸気冷媒が流出する第一の出口と液冷媒が流出する第二の出口を備え、前記気液分離器の第一の出口と前記圧縮機が接続され、前記気液分離器の第二の出口と前記蒸発器の入口側が接続され、前記蒸発器の出口側と前記エジェクタの第二の入口とが接続された冷凍サイクル装置であって、前記蒸発器と前記凝縮器はそれぞれ分配器を備え、前記蒸発器の分配器は、前記蒸発器の入口側に長手方向が略鉛直方向になるように設けられ、冷媒が流入する鉛直管と、該鉛直管に上下方向に並べて略水平に接続され前記3本以上の伝熱管に対応して設けられた3本以上の分岐管と、該3本以上の分岐管のそれぞれに設けられた流量制御弁と、前記分岐管のうち最上段の分岐管の温度を検出する最上段温度計測器、及び前記分岐管のうち最下段の分岐管の温度を検出する最下段温度計測器と、前記最上段温度計測器及び前記最下段温度計測器の検出結果に基づいて、前記鉛直管に流入した冷媒が前記3本以上の分岐管に均等に分配されるように、前記分岐管の最上段から下段側にかけて段階的に流量を絞るようにして前記流量制御弁を制御する制御部と、を備え、前記凝縮器の分配器は、前記凝縮器の出口側に長手方向が略鉛直方向になるように設けられ、冷媒が流入する鉛直管と、該鉛直管に上下方向に並べて略水平に接続され前記3本以上の伝熱管に対応して設けられた3本以上の分岐管と、該3本以上の分岐管のそれぞれに設けられた流量制御弁と、前記分岐管のうち最上段の分岐管の温度を検出する最上段温度計測器、及び前記分岐管のうち最下段の分岐管の温度を検出する最下段温度計測器と、前記最上段温度計測器及び前記最下段温度計測器の検出結果に基づいて、前記鉛直管に流入した冷媒が前記3本以上の分岐管に均等に分配されるように、前記分岐管の最下段から上段側にかけて段階的に流量を絞るようにして前記流量制御弁を制御する制御部と、を備えたものである。
The refrigeration cycle apparatus according to the present invention has a compressor, a first four-way valve, a condenser having three or more heat transfer tubes, a second four-way valve, an ejector, a gas-liquid separator, and three or more heat transfer tubes. The evaporator is sequentially connected in an annular shape by piping, and the ejector has a first inlet through which the refrigerant that has flowed sequentially through the condenser and the second four-way valve flows, and a second inlet through which the refrigerant from the evaporator flows. An outlet of the ejector is connected to the gas-liquid separator, and the gas-liquid separator includes a first outlet through which vapor refrigerant flows out and a second outlet through which liquid refrigerant flows out, and the gas-liquid separation A first outlet of the evaporator and the compressor, a second outlet of the gas-liquid separator and an inlet side of the evaporator are connected, and an outlet side of the evaporator and a second inlet of the ejector A connected refrigeration cycle apparatus, wherein the evaporator and the condenser are Each of the evaporators is provided on the inlet side of the evaporator so that the longitudinal direction is substantially vertical, and a vertical pipe into which the refrigerant flows, and a vertical pipe in the vertical pipe. Three or more branch pipes arranged side by side and connected to the three or more heat transfer pipes, a flow control valve provided in each of the three or more branch pipes, Among them, the uppermost temperature measuring device for detecting the temperature of the uppermost branch pipe, the lowermost temperature measuring device for detecting the temperature of the lowermost branch pipe among the branching tubes, the uppermost temperature measuring device, and the lowermost stage. Based on the detection result of the temperature measuring device, the flow rate is gradually reduced from the uppermost stage to the lower stage side of the branch pipe so that the refrigerant flowing into the vertical pipe is evenly distributed to the three or more branch pipes. A control unit for controlling the flow rate control valve, The distributor of the condenser is provided on the outlet side of the condenser so that the longitudinal direction is substantially vertical, and the vertical pipe into which the refrigerant flows and the vertical pipe arranged in the vertical direction are connected substantially horizontally. Three or more branch pipes provided corresponding to the heat transfer pipes of three or more, a flow control valve provided in each of the three or more branch pipes, and the temperature of the uppermost branch pipe among the branch pipes Based on the detection results of the uppermost temperature measuring device for detecting the temperature, the lowermost temperature measuring device for detecting the temperature of the lowermost branch tube of the branch tubes, and the detection results of the uppermost temperature measuring device and the lowermost temperature measuring device The flow control valve is configured to gradually reduce the flow rate from the lowermost stage to the upper stage of the branch pipe so that the refrigerant flowing into the vertical pipe is evenly distributed to the three or more branch pipes. And a control unit for controlling .

この発明によれば、冷房運転と暖房運転および除霜運転において、分配器における冷媒の圧力損失を増加させることなく熱交換器を構成する伝熱管に冷媒を均等に分配でき、冷凍サイクルの性能向上を図ることができる。   According to this invention, in the cooling operation, the heating operation, and the defrosting operation, the refrigerant can be evenly distributed to the heat transfer tubes constituting the heat exchanger without increasing the pressure loss of the refrigerant in the distributor, thereby improving the performance of the refrigeration cycle. Can be achieved.

実施の形態1.
図1は本発明の実施の形態1における冷凍サイクル装置の構成を示す図である。図1に示すように、冷凍サイクル装置は室外ユニット1と室内ユニット2から構成される。室外ユニット1と室外ユニット2は接続配管である蒸気管3、液管4で接続されて閉回路を形成し、冷媒が封入されている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigeration cycle apparatus includes an outdoor unit 1 and an indoor unit 2. The outdoor unit 1 and the outdoor unit 2 are connected by a steam pipe 3 and a liquid pipe 4 which are connection pipes to form a closed circuit, and a refrigerant is enclosed.

室外ユニット1には、圧縮機5、第一四方弁6、室外熱交換器11、第二四方弁8、エジェクタ9、気液分離機10が備えられている。   The outdoor unit 1 includes a compressor 5, a first four-way valve 6, an outdoor heat exchanger 11, a second four-way valve 8, an ejector 9, and a gas-liquid separator 10.

室内ユニット2には、室内熱交換器7が備えられている。また、図示は省略しているが、室外熱交換器11、室内熱交換器7には複数の伝熱管が並設され、室内熱交換器7と室外熱交換器11には、熱交換器が蒸発器として機能する場合の冷媒流入側に本発明の流量制御機能を備えた分配器が取り付けられ、熱交換器が凝縮器として機能する場合の冷媒流出側に本発明の流量制御機能が取り付けられ、もう一方には一般的なヘッダ分配器が取り付けられている。また、それぞれの室外熱交換器には送風機が備えられ、それぞれ室内外の空気との熱交換を促進、調整している。すなわち、この冷凍サイクル装置は、室内の冷房もしくは暖房を行う空気調和装置の一例である。   The indoor unit 2 is provided with an indoor heat exchanger 7. Although not shown, the outdoor heat exchanger 11 and the indoor heat exchanger 7 are provided with a plurality of heat transfer tubes, and the indoor heat exchanger 7 and the outdoor heat exchanger 11 have heat exchangers. The distributor having the flow control function of the present invention is attached to the refrigerant inflow side when functioning as an evaporator, and the flow control function of the present invention is attached to the refrigerant outflow side when the heat exchanger functions as a condenser. On the other hand, a general header distributor is attached. Each outdoor heat exchanger is provided with a blower, which promotes and adjusts heat exchange with the air inside and outside the room. That is, this refrigeration cycle apparatus is an example of an air conditioner that performs indoor cooling or heating.

次に冷媒の流れについて説明する。
まず、暖房運転時の冷媒の流れについて説明する。
圧縮機5から吐出した高温高圧の蒸気冷媒は、第一四方弁6、蒸気管3を順次経由して室内熱交換器7へ流入し、室内に放熱して凝縮する。この凝縮によって生成された高圧液冷媒は液管4、第二四方弁8を順次通り、エジェクタ9に流入する。エジェクタ9では、エジェクタ9に流入した冷媒と室外熱交換器11で蒸気となった冷媒が混合する。エジェクタ9の下流側に設けた気液分離機10で気液二相状態の低圧冷媒は蒸気と液に分離され、蒸気冷媒は圧縮機5へ吸引され、液冷媒は第二四方弁、液管4を順次通り、室外側のヘッダで伝熱管に分配されて室外熱交換器11へ流入する。室外熱交換器11では外気から熱を吸収して蒸発し、蒸気となった各伝熱管内を流れる冷媒は下流のヘッダで集められた後、エジェクタ9に吸引される。
Next, the flow of the refrigerant will be described.
First, the flow of the refrigerant during the heating operation will be described.
The high-temperature and high-pressure vapor refrigerant discharged from the compressor 5 flows into the indoor heat exchanger 7 via the first four-way valve 6 and the vapor pipe 3 in order, radiates heat into the room, and condenses. The high-pressure liquid refrigerant generated by this condensation passes through the liquid pipe 4 and the second four-way valve 8 in order and flows into the ejector 9. In the ejector 9, the refrigerant that has flowed into the ejector 9 and the refrigerant that has become vapor in the outdoor heat exchanger 11 are mixed. The gas-liquid separator 10 provided on the downstream side of the ejector 9 separates the low-pressure refrigerant in the gas-liquid two-phase state into vapor and liquid, the vapor refrigerant is sucked into the compressor 5, and the liquid refrigerant is the second four-way valve, liquid It passes through the pipe 4 in sequence, is distributed to the heat transfer pipe by the header on the outdoor side, and flows into the outdoor heat exchanger 11. The outdoor heat exchanger 11 absorbs heat from the outside air and evaporates, and the refrigerant flowing through each heat transfer tube is collected by the downstream header and then sucked into the ejector 9.

次に図1に示す冷凍サイクル装置における冷房運転時の冷媒の流れについて説明する。圧縮機5から吐出された高温高圧の蒸気冷媒は、第一四方弁6を経由して室外熱交換器11へ流入し、室外に放熱して凝縮する。この凝縮によって生成された高圧液冷媒は第二四方弁8を通り、エジェクタ9に流入する。エジェクタ9では、エジェクタ9に流入した冷媒と室内熱交換器7で蒸気となった冷媒が混合する。エジェクタ9の下流側に設けた気液分離機10で気液二相状態の低圧冷媒は蒸気と液に分離され、蒸気冷媒は圧縮機5へ吸引され、液冷媒は第二四方弁8、液管4を順次通り、室内側のヘッダで伝熱管に分配されて室内熱交換器7へ流入する。室内熱交換器7では室内の空気から熱を吸収して蒸発し、蒸気となった各伝熱管内を流れる冷媒は下流のヘッダで集められた後、エジェクタ9に吸引される。   Next, the refrigerant flow during the cooling operation in the refrigeration cycle apparatus shown in FIG. 1 will be described. The high-temperature and high-pressure vapor refrigerant discharged from the compressor 5 flows into the outdoor heat exchanger 11 via the first four-way valve 6 and dissipates heat to the outside to condense. The high-pressure liquid refrigerant generated by this condensation passes through the second four-way valve 8 and flows into the ejector 9. In the ejector 9, the refrigerant that has flowed into the ejector 9 and the refrigerant that has become vapor in the indoor heat exchanger 7 are mixed. The gas-liquid separator 10 provided on the downstream side of the ejector 9 separates the low-pressure refrigerant in the gas-liquid two-phase state into vapor and liquid, the vapor refrigerant is sucked into the compressor 5, and the liquid refrigerant is the second four-way valve 8, The liquid pipe 4 is sequentially passed, distributed to the heat transfer pipe by the header on the indoor side, and flows into the indoor heat exchanger 7. The indoor heat exchanger 7 absorbs heat from the indoor air and evaporates, and the refrigerant flowing through each heat transfer tube is collected by the downstream header and then sucked into the ejector 9.

図2は本発明の実施の形態1における冷凍サイクル装置の別の構成を示す図である。図2において、図1と同符号は同一または相当部分を示す。
図2に示す冷凍サイクル装置において、第二四方弁8と第二四方弁8の関連経路が削除され、代わりに圧力制御弁14と圧力制御弁14の関連経路が設けられている点以外は図1と同じである。
FIG. 2 is a diagram showing another configuration of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
In the refrigeration cycle apparatus shown in FIG. 2, the related path between the second four-way valve 8 and the second four-way valve 8 is deleted, and a related path between the pressure control valve 14 and the pressure control valve 14 is provided instead. Is the same as FIG.

このように構成された本実施の形態1の冷凍サイクル装置における暖房運転時の冷媒の流れについて図2を用いて説明する。圧縮機5から吐出された高温高圧の蒸気冷媒は、第一四方弁6、蒸気管3を経由して室内熱交換器7へ流入し、室内に放熱して凝縮する。この高圧液冷媒は液管4を通り、室外ユニット1に流入する。暖房運転時、第一開閉弁12、第二開閉弁13を開放し、圧力制御弁14を閉止することで、高圧液冷媒はエジェクタ9に流入する。エジェクタ9では、エジェクタ9に流入した冷媒と室外熱交換器11で蒸気となった冷媒が混合する。エジェクタ9の下流側に設けた気液分離機10で気液二相状態の低圧冷媒は蒸気と液に分離され、蒸気冷媒は圧縮機5へ吸引され、液冷媒は第二開閉弁13を通り、室外熱交換器11で外部から熱を吸収して蒸発し、蒸気となった冷媒はエジェクタ9に吸引される。   The refrigerant flow during the heating operation in the refrigeration cycle apparatus of the first embodiment configured as described above will be described with reference to FIG. The high-temperature and high-pressure vapor refrigerant discharged from the compressor 5 flows into the indoor heat exchanger 7 via the first four-way valve 6 and the vapor pipe 3, and dissipates heat into the room to condense. The high-pressure liquid refrigerant passes through the liquid pipe 4 and flows into the outdoor unit 1. During the heating operation, the first on-off valve 12 and the second on-off valve 13 are opened and the pressure control valve 14 is closed, whereby the high-pressure liquid refrigerant flows into the ejector 9. In the ejector 9, the refrigerant that has flowed into the ejector 9 and the refrigerant that has become vapor in the outdoor heat exchanger 11 are mixed. The gas-liquid separator 10 provided downstream of the ejector 9 separates the gas-liquid two-phase low-pressure refrigerant into vapor and liquid, the vapor refrigerant is sucked into the compressor 5, and the liquid refrigerant passes through the second on-off valve 13. Then, the outdoor heat exchanger 11 absorbs heat from the outside and evaporates, and the refrigerant turned into vapor is sucked into the ejector 9.

次に図2に示す冷凍サイクル装置における冷媒の流れについて説明する。
まず、冷房運転時の冷媒の流れについて説明する。冷房運転時は第一開閉弁12と、第二開閉弁13を閉止させる。
圧縮機5から吐出された高温高圧の蒸気冷媒は、第一四方弁6を経由して室外熱交換器11へ流入し、室外に放熱して凝縮する。冷房運転時は第一開閉弁12と第二開閉弁13が閉止しているため、凝縮によって生成された高圧液冷媒は圧力制御弁14によって減圧され低圧冷媒となる。この低圧冷媒は液管4を通過し、室内側のヘッダで伝熱管に分配されて室内熱交換器7に流入する。室内熱交換器7では室内の空気から熱を吸収して蒸発する。蒸気となった各伝熱管内を流れる冷媒は下流のヘッダで集められた後、エジェクタ9の吸引部、気液分離器14を順次通過し、圧縮機5へ吸引される。
Next, the flow of the refrigerant in the refrigeration cycle apparatus shown in FIG. 2 will be described.
First, the refrigerant flow during the cooling operation will be described. During the cooling operation, the first on-off valve 12 and the second on-off valve 13 are closed.
The high-temperature and high-pressure vapor refrigerant discharged from the compressor 5 flows into the outdoor heat exchanger 11 via the first four-way valve 6 and dissipates heat to the outside to condense. Since the first on-off valve 12 and the second on-off valve 13 are closed during the cooling operation, the high-pressure liquid refrigerant generated by the condensation is reduced in pressure by the pressure control valve 14 to become a low-pressure refrigerant. The low-pressure refrigerant passes through the liquid pipe 4, is distributed to the heat transfer pipe by the indoor header, and flows into the indoor heat exchanger 7. The indoor heat exchanger 7 absorbs heat from indoor air and evaporates. The refrigerant flowing through the heat transfer tubes in the form of steam is collected by the downstream header, and then sequentially passes through the suction portion of the ejector 9 and the gas-liquid separator 14 and is sucked into the compressor 5.

本実施の形態1において、空気調和機を本冷凍サイクル装置の一例として示したが、空調機に限らず、給湯器や冷凍機など冷凍サイクル装置でもよい。   In the first embodiment, the air conditioner is shown as an example of the present refrigeration cycle apparatus, but is not limited to an air conditioner, and may be a refrigeration cycle apparatus such as a water heater or a refrigerator.

次に、本発明の特徴である冷媒分配器の詳細について説明する。   Next, details of the refrigerant distributor, which is a feature of the present invention, will be described.

図3は従来のヘッダ分配方式の分配器を搭載した熱交換機の構成を示す図であり、複数本の伝熱管21を略水平に高さ方向(上下方向)に積み重ねて構成させた熱交換器22の両端にヘッダ分配器23が取り付けられており、このヘッダ分配器23内で各伝熱管21に冷媒が分配される。   FIG. 3 is a diagram showing a configuration of a heat exchanger equipped with a conventional header distribution type distributor, in which a plurality of heat transfer tubes 21 are stacked substantially horizontally in the height direction (vertical direction). Header distributors 23 are attached to both ends of 22, and the refrigerant is distributed to the heat transfer tubes 21 in the header distributor 23.

続いて、図4を参照して従来のヘッダ分配器を、熱交換器が蒸発器として機能するときの蒸発器入口側に取り付けた場合について説明する。ヘッダ分配器23は長手方向が略鉛直方向になるように設けられた鉛直管31と分岐管32で構成され、鉛直管31には2本以上の分岐管が略水平に取り付けられて、各分岐管は伝熱管に接続されている。鉛直管31から流入した冷媒は分岐管31a〜31hに分流されて伝熱管に流入する。   Next, the case where the conventional header distributor is attached to the evaporator inlet side when the heat exchanger functions as an evaporator will be described with reference to FIG. The header distributor 23 is composed of a vertical pipe 31 and a branch pipe 32 provided so that the longitudinal direction is substantially vertical. Two or more branch pipes are attached to the vertical pipe 31 substantially horizontally, and each branch is provided. The tube is connected to the heat transfer tube. The refrigerant flowing from the vertical pipe 31 is divided into branch pipes 31a to 31h and flows into the heat transfer pipe.

しかしながら、図4のヘッダ分配器では水頭圧により、鉛直管の流れ方向に沿ってρghの圧力差が生る。ρは冷媒密度、gは重力加速度、hは鉛直導入管入口から分岐管までの高さであり、分岐管までに液冷媒を持ち上げるためにはこの水頭圧差に相当する位置にエネルギを必要とする。このことから、エネルギ消費の小さい方向、すなわち、熱交換器の下段側の分岐管により多くの液冷媒が流れるため、伝熱管の冷媒流量に偏りが生じる。   However, in the header distributor of FIG. 4, a pressure difference of ρgh is generated along the flow direction of the vertical pipe due to the water head pressure. ρ is the refrigerant density, g is the gravitational acceleration, h is the height from the inlet of the vertical introduction pipe to the branch pipe, and energy is required at a position corresponding to this water head pressure difference to lift the liquid refrigerant to the branch pipe . For this reason, since a large amount of liquid refrigerant flows through the branch pipe on the lower side of the heat exchanger, that is, the lower stage of the heat exchanger, the refrigerant flow rate in the heat transfer pipe is biased.

次に従来のヘッダ分配器での分配特性について図を用いて説明する。図5は従来のヘッダ型分配器を熱交換器が蒸発器として機能する場合の冷媒流入側に取り付けたときの伝熱管の流れ方向の温度分布を示す図であり、伝熱管の入口、中間および出口の温度分布を示している。熱交換器の入口では伝熱管温度は一律であるが、熱交換器出口では伝熱管32hの温度が最も高く、下段側に行くほど伝熱管出口温度は低下し、32aが最も温度が低い。この温度分布の偏りは冷媒流量の偏りによるものであり、これは液ヘッド差に起因するものである。   Next, distribution characteristics in the conventional header distributor will be described with reference to the drawings. FIG. 5 is a diagram showing the temperature distribution in the flow direction of the heat transfer tube when the conventional header-type distributor is attached to the refrigerant inflow side when the heat exchanger functions as an evaporator, The temperature distribution at the outlet is shown. Although the heat transfer tube temperature is uniform at the inlet of the heat exchanger, the temperature of the heat transfer tube 32h is the highest at the outlet of the heat exchanger, the heat transfer tube outlet temperature decreases toward the lower side, and 32a has the lowest temperature. This uneven temperature distribution is due to the uneven flow rate of the refrigerant, and this is due to the liquid head difference.

さらに、除霜運転時での室外熱交換器の分配特性について図を用いて説明する。図6は従来のヘッダを有する除霜運転開始時からの伝熱管出口温度を時系列に示したデータであり、このとき熱交換器は凝縮器として機能する。熱交換器の最下段の伝熱管温度が他の伝熱管温度よりも温度上昇する時間が最も長い(遅れる)。つまり、これは凝縮した冷媒が伝熱管から円滑に排出されず、伝熱管に滞留していることを示す。   Furthermore, the distribution characteristics of the outdoor heat exchanger during the defrosting operation will be described with reference to the drawings. FIG. 6 is data showing the heat transfer tube outlet temperature from the start of the defrosting operation having the conventional header in time series, and at this time, the heat exchanger functions as a condenser. It takes the longest (delayed) time for the temperature of the lowermost heat transfer tube of the heat exchanger to rise than the temperature of other heat transfer tubes. In other words, this indicates that the condensed refrigerant is not smoothly discharged from the heat transfer tube and stays in the heat transfer tube.

図7は本発明の実施の形態1における分配器及び分配器間の構成を示す系統図である。
本実施の形態1の分配器は図7に示すように、長手方向が略鉛直方向になるように設けられた鉛直管41に対して略水平に接続された分岐管42、流量制御弁43、伝熱管44が順次接続され、もう一方の伝熱管の端部は分岐管45と長手方向が略鉛直方向になるように設けられた鉛直管46が接続された構成である。図7では分岐管48を4本記載しているが、これは一例にすぎず、分岐管43の本数は何本でもよい。また、分岐管45には第一温度計測器47が、分岐管42には第二温度計測器が取り付けられている。
FIG. 7 is a system diagram showing the configuration between the distributor and the distributor in the first embodiment of the present invention.
As shown in FIG. 7, the distributor according to the first embodiment has a branch pipe 42, a flow rate control valve 43, which are connected to a vertical pipe 41 provided so that its longitudinal direction is substantially vertical. The heat transfer tubes 44 are sequentially connected, and the end portion of the other heat transfer tube is connected to a branch tube 45 and a vertical tube 46 provided so that the longitudinal direction is substantially vertical. Although four branch pipes 48 are illustrated in FIG. 7, this is only an example, and the number of branch pipes 43 may be any number. A first temperature measuring instrument 47 is attached to the branch pipe 45, and a second temperature measuring instrument is attached to the branch pipe 42.

次に冷媒の流れを説明する。図7において、破線は熱交換器が凝縮器として機能した場合の冷媒の流れ方向を示し、実線は熱交換器が蒸発器として機能した場合の冷媒の流れ方向を示す。熱交換器が蒸発器として機能する場合、冷媒は鉛直管41から流入し、分岐管42で分流したのち流量制御弁43、伝熱管44、分岐管45を順次通り、鉛直管46で合流したのち流出する。熱交換器が凝縮器として機能する場合は、冷媒は鉛直管46から流入し、分岐管45で分流し、伝熱管44、流量制御弁43、分岐管42を通り、鉛直管41で合流し、流出する。   Next, the flow of the refrigerant will be described. In FIG. 7, the broken line indicates the flow direction of the refrigerant when the heat exchanger functions as a condenser, and the solid line indicates the flow direction of the refrigerant when the heat exchanger functions as an evaporator. When the heat exchanger functions as an evaporator, the refrigerant flows in from the vertical pipe 41 and is divided by the branch pipe 42, and then passes through the flow rate control valve 43, the heat transfer pipe 44 and the branch pipe 45 in order, and then joins in the vertical pipe 46. leak. In the case where the heat exchanger functions as a condenser, the refrigerant flows in from the vertical pipe 46, is divided in the branch pipe 45, passes through the heat transfer pipe 44, the flow rate control valve 43, the branch pipe 42, and joins in the vertical pipe 41. leak.

図8は本発明の実施の形態1における制御系の構成を示すブロック図である。図8に示すように制御系は、演算制御を行う制御部81と各種データ類を一時記憶するメモリ82と制御用プログラムや各種固定テーブル類を格納するROM83と、これらを接続し、これらの間でデータ信号や制御信号が相互に乗り合う入出力バス84と、弁の開度に応じて各分岐管を流れる冷媒の流量をそれぞれ制御する流量制御弁43(43a〜43d)と、制御部81からの指令に応じて流量制御弁43(43a〜43d)を駆動してその開度が指令通りになるように制御する流量制御弁駆動手段431(431a〜431d)と、分岐管45の入口側の温度を検知する第一温度計測器47及びこの第一温度計測器47の出力信号を制御部81(制御手段を構成する)が処理できるディジタル信号に変換する温度検出部471と、分岐管42の入口側の温度を検知する第二温度計測器48及びこの第二温度計測器48の出力信号を制御部81が処理できるディジタル信号に変換する温度検出部481と、を備えている。   FIG. 8 is a block diagram showing the configuration of the control system in Embodiment 1 of the present invention. As shown in FIG. 8, the control system connects a control unit 81 that performs arithmetic control, a memory 82 that temporarily stores various types of data, a ROM 83 that stores control programs and various fixed tables, and the like. An input / output bus 84 on which data signals and control signals ride each other, a flow rate control valve 43 (43a to 43d) for controlling the flow rate of the refrigerant flowing through each branch pipe according to the opening of the valve, and a control unit 81 The flow rate control valve drive means 431 (431a to 431d) for controlling the opening degree of the flow rate control valve 43 (43a to 43d) in accordance with the command from the control unit so that the opening degree is as commanded; A first temperature measuring device 47 for detecting the temperature of the first temperature measuring device, a temperature detecting unit 471 for converting the output signal of the first temperature measuring device 47 into a digital signal that can be processed by the control unit 81 (which constitutes the control means), Includes a second temperature measuring device 48 and the temperature detection unit 481 for converting a digital signal that can be processed by the control unit 81 the output signal of the second temperature measuring device 48 for detecting the temperature of the inlet side of the tube 42, the.

次に、本実施の形態1における制御部81による分岐管の冷媒流量制御について説明する。
まず、熱交換器が蒸発器として機能する場合の分岐管の流量冷媒制御について説明する。
図9は本発明の実施の形態1において熱交換器が蒸発器として機能するときの制御部81による冷媒流量制御のフローチャートである。図9に示すように冷凍サイクルの運転開始時、制御部81は流量制御弁43をすべて開放状態にする(ステップS901)。運転を開始したのち第一温度計測器47での測定値がすべて同じならば、流量制御弁の開放度を保持する(ステップS902〜S903)。この測定温度に差がある場合、最も低い温度を測定した流路の流量制御弁を絞り冷媒の流量を減らす(ステップS902〜S904)。上記制御を測定温度が一定になるまで繰り返すことで冷媒の均等分配が可能となる。
Next, the refrigerant flow control of the branch pipe by the control unit 81 in the first embodiment will be described.
First, the flow rate refrigerant control of the branch pipe when the heat exchanger functions as an evaporator will be described.
FIG. 9 is a flowchart of refrigerant flow rate control by the control unit 81 when the heat exchanger functions as an evaporator in Embodiment 1 of the present invention. As shown in FIG. 9, at the start of the operation of the refrigeration cycle, the controller 81 opens all the flow control valves 43 (step S901). If the measured values at the first temperature measuring instrument 47 are all the same after starting operation, the degree of opening of the flow control valve is maintained (steps S902 to S903). If there is a difference between the measured temperatures, the flow rate control valve of the flow path that measured the lowest temperature is throttled to reduce the flow rate of the refrigerant (steps S902 to S904). By repeating the above control until the measured temperature becomes constant, the refrigerant can be evenly distributed.

次に、熱交換器が凝縮器として機能する場合の分配器の流量冷媒制御について説明する。
図10は本発明の実施の形態1において熱交換器が凝縮器として機能するときの制御部81による冷媒流量制御のフローチャートである。図10に示すように冷凍サイクルの運転開始時、制御部81は流量制御弁43をすべて開放状態にする(ステップS1001)。運転開始したのち第二温度計測器48の温度測定値がすべて同じならば、流量制御弁の開放度を保持する(ステップS1002〜S1003)。この温度に差がある場合、最も高い温度を測定した流路に接続する流量制御弁を絞り冷媒の流量を減らす(ステップS1002〜S1004)。上記制御を温度測定値が一定になるまで繰り返すことで冷媒の均等分配が可能となる。
Next, the flow rate refrigerant control of the distributor when the heat exchanger functions as a condenser will be described.
FIG. 10 is a flowchart of refrigerant flow rate control by the control unit 81 when the heat exchanger functions as a condenser in the first embodiment of the present invention. As shown in FIG. 10, when starting the operation of the refrigeration cycle, the controller 81 opens all the flow control valves 43 (step S1001). If the temperature measurement values of the second temperature measuring device 48 are all the same after starting operation, the degree of opening of the flow control valve is maintained (steps S1002 to S1003). When there is a difference in temperature, the flow rate control valve connected to the flow path where the highest temperature is measured is throttled to reduce the flow rate of the refrigerant (steps S1002 to S1004). By repeating the above control until the temperature measurement value becomes constant, the refrigerant can be evenly distributed.

また、上記実施の形態1において、第一温度計測器と第二温度計測器を最上段の分岐管と最下段の分岐管に1つずつ取り付け、これらの温度測定値より流量制御弁を制御してもよい。
この場合、熱交換器が蒸発器として機能する場合、制御部81は、最上段側の流量制御弁43dを開放状態に保ち、最上段から下段側に進むに連れて段階的に流量制御弁を絞るように各流量制御弁43d〜43aの駆動手段431d〜431aをそれぞれ制御する。
熱交換器が凝縮器として機能する場合、制御部81は、最下段側の流量制御弁43aを開放状態にし、最下段から上段側に進むに連れて段階的に流量制御弁を絞るように各流量制御弁43a〜43dの駆動手段431a〜431dをそれぞれ制御する。
In the first embodiment, the first temperature measuring device and the second temperature measuring device are attached to the uppermost branch pipe and the lowermost branch pipe one by one, and the flow rate control valve is controlled from these temperature measurement values. May be.
In this case, when the heat exchanger functions as an evaporator, the control unit 81 keeps the uppermost flow control valve 43d in an open state, and gradually increases the flow control valve as it proceeds from the uppermost step to the lower step. The drive means 431d-431a of each flow control valve 43d-43a are each controlled so that it may throttle.
When the heat exchanger functions as a condenser, the control unit 81 opens the flow control valve 43a on the lowermost stage side, and throttles the flow control valve in stages as it proceeds from the lowermost stage to the upper stage. The drive means 431a-431d of the flow control valves 43a-43d are each controlled.

実施の形態2.
次に本発明の実施の形態2を説明する。
図11は本発明の実施の形態2における分配器及び分配器間の構成を示す系統図である。
本実施の形態2の分配器は図11に示すように長手方向が略鉛直方向になるように設けられた鉛直管51と略水平方向に取り付けた4本の冷媒配管52a〜52d、との間に、熱交換器が蒸発器として機能する伝熱管の入口側に、水頭圧差による冷媒の均等分配不良を改善するための第一キャピラリーチューブ53a〜53dと、熱交換器が凝縮器として機能するときの熱交換器出口側に、液冷媒の滞留を改善するための第二のキャピラリーチューブ54a〜54dを設け、運転状態により流路を切り替えるための第一流路制御弁55a〜55dおよび第二流路制御弁56a〜56dを構成することで、冷媒流量を制御したものである。第一キャピラリーチューブ53a〜53dの長さは熱交換器最下段から上方へ進むに連れて段階的に短くなり、第二キャピラリーチューブ54a〜54dは熱交換器最下段から上方へ進むに連れて段階的に長くなる。分岐管52の本数は何本でもよく、分岐管52a〜52dの外管径は、気密性を確保するため鉛直管51よりも小さく設計する必要がある。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described.
FIG. 11 is a system diagram showing the configuration between the distributor and the distributor in the second embodiment of the present invention.
As shown in FIG. 11, the distributor according to the second embodiment is between a vertical pipe 51 provided so that the longitudinal direction is substantially vertical and four refrigerant pipes 52 a to 52 d attached in a substantially horizontal direction. In addition, when the heat exchanger functions as a condenser on the inlet side of the heat transfer tube where the heat exchanger functions as an evaporator, and the first capillary tubes 53a to 53d for improving the poor distribution of the refrigerant due to the water head pressure difference. The second capillary tubes 54a to 54d for improving the retention of the liquid refrigerant are provided at the outlet side of the heat exchanger, and the first flow path control valves 55a to 55d and the second flow path for switching the flow path depending on the operation state The refrigerant flow rate is controlled by configuring the control valves 56a to 56d. The lengths of the first capillary tubes 53a to 53d are reduced stepwise as they proceed upward from the lowermost stage of the heat exchanger, and the lengths of the second capillary tubes 54a to 54d are stepped upward from the lowermost stage of the heat exchanger. Become longer. The number of the branch pipes 52 may be any number, and the outer pipe diameters of the branch pipes 52a to 52d need to be designed smaller than the vertical pipe 51 in order to ensure airtightness.

次に冷媒の流れを説明する。熱交換器が蒸発器として機能する場合、冷媒は鉛直管51を上昇し、分岐管52、第一キャピラリーチューブ53、流路制御弁55を順次通り、伝熱管57で冷媒は蒸発し、長手方向が略鉛直方向になるように設けられた鉛直管58で合流する。このとき第二キャピラリーチューブ54には逆流阻止用の第二流路制御弁56(逆止弁)が設けられているので流れない。
熱交換器が凝縮器として機能する場合、冷媒は鉛直管58を上昇した後で分岐し、伝熱管57a〜57dで凝縮した後、第二流路制御弁56、第二キャピラリーチューブ54、分岐管52を順次通り、鉛直管51で合流する。このとき第一キャピラリーチューブ53には逆流阻止用の第一流路制御弁55(逆止弁)が設けられているので流れない。
Next, the flow of the refrigerant will be described. When the heat exchanger functions as an evaporator, the refrigerant ascends the vertical pipe 51 and sequentially passes through the branch pipe 52, the first capillary tube 53, and the flow path control valve 55, and the refrigerant evaporates in the heat transfer pipe 57. Are joined by a vertical pipe 58 provided in a substantially vertical direction. At this time, the second capillary tube 54 is provided with a second flow path control valve 56 (a check valve) for preventing a backflow, so that it does not flow.
When the heat exchanger functions as a condenser, the refrigerant branches after rising up the vertical pipe 58, condenses in the heat transfer pipes 57a to 57d, and then the second flow path control valve 56, the second capillary tube 54, the branch pipe. 52 are sequentially joined by a vertical pipe 51. At this time, since the first capillary tube 53 is provided with the first flow path control valve 55 (check valve) for preventing the backflow, the first capillary tube 53 does not flow.

蒸発器の冷媒を流量制御に用いられる第一キャピラリーチューブの理想的な長さを決定する方法について図12の計算モデルを用いて説明する。熱交換器を蒸発器として使用する場合、点A-点Bi間(iは最下段からの分岐管番号)の圧力損失ΔPiは、
ΔPi=ρg(i-1)Δh+ΔPcapi
ρ:冷媒の液密度 [kg/m3]
g:重力加速度 [m/s2]
Δh:分岐管の略鉛直方向の間隔 [m]
ΔPcapi:第一キャピラリーチューブにおける圧力損失
であらわされる。さらに、第一キャピラリーチューブでの圧力損失ΔPcapiは単相流における圧力損失の式より、
ΔPcapi=λ・ρ・u2 ・Lcapi/(2・dcap)
λ:管摩擦係数 [-]
ρ:冷媒の液密度 [kg/m3]
u :第一キャピラリーチューブを流れる冷媒の平均速度 [m/s]
Lcapi:第一キャピラリーチューブの長さ
g:重力加速度 [m/s2]
dcap:キャピラリーチューブの内径 [m]
であらわせる。
A method for determining the ideal length of the first capillary tube used for controlling the flow rate of the refrigerant of the evaporator will be described with reference to the calculation model of FIG. When using a heat exchanger as an evaporator, the pressure loss ΔPi between point A and point Bi (i is the branch pipe number from the lowest stage) is
ΔPi = ρg (i-1) Δh + ΔPcapi
ρ: Liquid density of refrigerant [kg / m 3 ]
g: Gravity acceleration [m / s 2 ]
Δh: Distance between branch pipes in the vertical direction [m]
ΔPcapi: Expressed by pressure loss in the first capillary tube. Furthermore, the pressure loss ΔPcapi in the first capillary tube is
ΔPcapi = λ ・ ρ ・ u 2・ Lcapi / (2 ・ dcap)
λ: Pipe friction coefficient [-]
ρ: Liquid density of refrigerant [kg / m 3 ]
u: Average velocity of refrigerant flowing through the first capillary tube [m / s]
Lcapi: Length of the first capillary tube
g: Gravity acceleration [m / s 2 ]
dcap: Inner diameter of capillary tube [m]
Show.

第一キャピラリーチューブ長さLcapiは、ΔPi(i=1〜4)の値がすべて一致するように決める。したがって、第一キャピラリーチューブ長さLcapiは、
Lcapi=(ρg(N-i)Δh)/{λ・ρ・u2 /(2・dcap)}
但し、Nは最上段のパス番号
で表せる。このモデルでは分岐管の略鉛直方向に均等間隔としているが、この間隔が不均等の場合でも最下段の分岐管位置Aを原点とした略鉛直方向の距離を直接用いて求めてもよい。
The first capillary tube length Lcapi is determined so that the values of ΔPi (i = 1 to 4) all match. Therefore, the first capillary tube length Lcapi is
Lcapi = (ρg (N−i) Δh) / {λ · ρ · u 2 / (2 · dcap)}
However, N can be expressed by the uppermost pass number. In this model, even intervals are set in the substantially vertical direction of the branch pipes. However, even if the intervals are not uniform, the distance in the substantially vertical direction with the lowest branch pipe position A as the origin may be directly used.

このモデルにより算出される第一キャピラリーチューブの長さは、熱交換器の最下段の分岐管に取り付けられるものが最も長く、上段側程短くなる。最下段の伝熱管を流れる冷媒流量は、このキャピラリーチューブが流動抵抗となり、従来のヘッダ分配器の場合と比べて冷媒流量を抑制できる。また、熱交換器上段側にいくほどキャピラリーチューブの流動抵抗は低下するが、その一方で液ヘッドによる圧力損失が増大するため、その結果、液ヘッド差とキャピラリーチューブの圧力損失がバランスをとり、各伝熱管に冷媒を均等に分配できる。   The length of the first capillary tube calculated by this model is the longest that is attached to the lowermost branch pipe of the heat exchanger, and is shorter toward the upper side. As for the flow rate of the refrigerant flowing through the lowermost heat transfer tube, this capillary tube becomes a flow resistance, and the refrigerant flow rate can be suppressed as compared with the case of the conventional header distributor. In addition, the flow resistance of the capillary tube decreases as it goes to the upper side of the heat exchanger, but on the other hand, the pressure loss due to the liquid head increases, so that the liquid head difference and the pressure loss of the capillary tube balance, Refrigerant can be evenly distributed to each heat transfer tube.

このキャピラリーチューブは、熱交換器最下部と最上部の液ヘッド差に起因する冷媒の不均一分配を改善するために取り付けたものであり、キャピラリーチューブでの流動抵抗は従来のディストリビューター分配器でのそれよりも低いため、エジェクタ吸引流量を確保できる。   This capillary tube is installed to improve the non-uniform distribution of the refrigerant due to the difference between the liquid head at the bottom and top of the heat exchanger, and the flow resistance in the capillary tube is the same as that of a conventional distributor. Therefore, it is possible to secure the ejector suction flow rate.

次に熱交換器を凝縮器として使用する場合の流量制御機能について説明する。
図13は、本発明の実施の形態2における分配器の凝縮器用キャピラリーチューブの長さを表す図である。図13に示すように熱交換器を凝縮器として使用する場合、熱交換器の下段側伝熱管に滞留する液冷媒の流れを円滑に排出させる必要がある。これは熱交換器下段側の流動抵抗を熱交換器最上段側の流路抵抗より小さくすることで冷媒流量を均等化でき、蒸発器として機能する場合と同様にキャピラリーチューブの長さで流量を制御できる。厳密には、凝縮器の流量制御を制御する第二キャピラリーチューブの長さは、蒸発器の流量制御に用いられる第一キャピラリーチューブ長さを決定する方法と同様にモデル化しても求められる。しかしながら、長さの異なるキャピラリーチューブを凝縮器用と蒸発器用とで複数準備すると、取り付け時に作業者の混乱を招き、また、熱交換機ユニット内に無駄なスペースが発生する。例えば、8本のキャピラリーチューブの長さがすべて異なるとすると、どれを第一キャピラリーチューブの2段目あるいは3段目にしてどれを第二キャピラリーチューブの2段目あるいは3段目とするか作業者は混乱してしまう。そこで、例えば、図13のように熱交換器最上段である4段目に取り付けた第一キャピラリーチューブLcap1と同じ寸法形状のキャピラリーチューブを第二キャピラリーチューブとして最下段(1段目)に取り付け、3段目を2段目に、2段目を3段目として取り付ける。これにより、熱交換器を凝縮器として使用する場合における熱交換器下段側伝熱管内の液冷媒を円滑に流せることができ、また、上記問題を回避できる。
Next, the flow rate control function when the heat exchanger is used as a condenser will be described.
FIG. 13 is a diagram showing the length of the condenser capillary tube of the distributor according to Embodiment 2 of the present invention. When using a heat exchanger as a condenser as shown in FIG. 13, it is necessary to smoothly discharge the flow of the liquid refrigerant staying in the lower heat transfer tube of the heat exchanger. This is because the flow rate on the lower side of the heat exchanger is made smaller than the flow resistance on the uppermost side of the heat exchanger, so that the flow rate of the refrigerant can be equalized. Can be controlled. Strictly speaking, the length of the second capillary tube for controlling the flow rate control of the condenser can be obtained by modeling in the same manner as the method for determining the length of the first capillary tube used for the flow rate control of the evaporator. However, if a plurality of capillary tubes having different lengths are prepared for the condenser and the evaporator, the operator is confused during the installation, and a wasteful space is generated in the heat exchanger unit. For example, if the lengths of 8 capillary tubes are all different, which is the second or third stage of the first capillary tube and which is the second or third stage of the second capillary tube? Will be confused. Therefore, for example, as shown in FIG. 13, a capillary tube having the same size and shape as the first capillary tube Lcap1 attached to the fourth stage, which is the uppermost stage of the heat exchanger, is attached to the lowermost stage (first stage) as a second capillary tube. Attach the third level to the second level and the second level to the third level. Thereby, when using a heat exchanger as a condenser, the liquid refrigerant in the heat exchanger lower stage side heat transfer tube can be made to flow smoothly, and the above problem can be avoided.

上記本発明の実施の形態2は、本発明の実施の形態1における流量制御弁、温度計測器および流量制御弁の制御機能を除いたものであり、製作コストを削減できる。   In the second embodiment of the present invention, the control functions of the flow rate control valve, the temperature measuring instrument, and the flow rate control valve in the first embodiment of the present invention are excluded, and the manufacturing cost can be reduced.

以上のように、本発明の実施の形態1および実施の形態2によれば、室外熱交換器が蒸発器と機能した場合と凝縮器と機能した場合の両方において、熱交換器の伝熱管に冷媒を均等に分配でき、また、室内熱交換器も同様に蒸発器として機能した場合と凝縮器として機能した場合の両方において、熱交換器の伝熱管に冷媒を均等に分配できる。   As described above, according to Embodiment 1 and Embodiment 2 of the present invention, in both the case where the outdoor heat exchanger functions as an evaporator and the case where the outdoor heat exchanger functions as a condenser, The refrigerant can be evenly distributed, and the indoor heat exchanger can be equally distributed to the heat transfer tubes of the heat exchanger both when it functions as an evaporator and as a condenser.

また、均等分配を実現するうえでの流動損失は最小にしているため、分配器での圧力損失は小さく、エジェクタの吸引流量を確保でき、高効率な運転を行うことができる。   In addition, since the flow loss for realizing uniform distribution is minimized, the pressure loss in the distributor is small, the suction flow rate of the ejector can be secured, and high-efficiency operation can be performed.

なお、以上の実施の形態では、エジェクタを含む冷凍サイクル装置について説明したが、エジェクタを含まない冷凍サイクル装置に適用することも可能である。   In the above embodiment, the refrigeration cycle apparatus including the ejector has been described. However, the present invention can be applied to a refrigeration cycle apparatus that does not include the ejector.

本発明の実施の形態1における冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍サイクル装置の別の構成を示す図である。It is a figure which shows another structure of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 従来のヘッダ分配方式の分配器を搭載した熱交換機の構成を示す図である。It is a figure which shows the structure of the heat exchanger carrying the conventional header distribution system divider | distributor. 従来のヘッダの部分断面図である。It is a fragmentary sectional view of the conventional header. 従来のヘッダ型分配器を蒸発器の冷媒流入側に取り付けたときの伝熱管の流れ方向の温度分布を示す図である。It is a figure which shows the temperature distribution of the flow direction of a heat exchanger tube when the conventional header type distributor is attached to the refrigerant | coolant inflow side of an evaporator. 従来構造のヘッダを有する除霜運転時における室外熱交換器の伝熱管温度の時系列データである。It is time series data of the heat exchanger tube temperature of an outdoor heat exchanger at the time of defrost operation which has a header of conventional structure. 本発明の実施の形態1における分配器及び分配器間の構成を示す系統図である。It is a systematic diagram which shows the structure between the divider | distributor in Embodiment 1 of this invention, and a divider | distributor. 本発明の実施の形態1における制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the control system in Embodiment 1 of this invention. 本発明の実施の形態1において熱交換器が蒸発器として機能するときの制御部81による冷媒流量制御のフローチャートである。It is a flowchart of refrigerant | coolant flow control by the control part 81 when a heat exchanger functions as an evaporator in Embodiment 1 of this invention. 本発明の実施の形態1において熱交換器が凝縮器として機能するときの制御部81による冷媒流量制御のフローチャートである。It is a flowchart of the refrigerant | coolant flow control by the control part 81 when a heat exchanger functions as a condenser in Embodiment 1 of this invention. 本発明の実施の形態2における分配器及び分配器間の構成を示す系統図である。It is a systematic diagram which shows the structure between the divider | distributor in Embodiment 2 of this invention, and a divider | distributor. 本発明の実施の形態2における分配器の蒸発器用キャピラリーチューブ長さを決定する計算モデル図である。It is a calculation model figure which determines the capillary tube length for evaporators of the divider | distributor in Embodiment 2 of this invention. 本発明の実施の形態2における分配器の凝縮器用キャピラリーチューブの長さを表す図である。It is a figure showing the length of the capillary tube for condensers of the divider | distributor in Embodiment 2 of this invention.

符号の説明Explanation of symbols

1:室外ユニット、2:室内ユニット、3:蒸気管、4:液管、5:圧縮機、6:第一四方弁、7:室内熱交換器、8:第二四方弁、9:エジェクタ、10:気液分離器、11:室外熱交換器、12:第一開閉弁、13:第二開閉弁、14:圧力制御弁、21、44、57:伝熱管、22、49、59:熱交換器、23:ヘッダ分配器、31、51、41、46、58:鉛直管、32、42、45、52:分岐管、43:流量制御弁、47:第一温度計測器、48:第二温度計測器、51 鉛直管、52、52a〜d 冷媒配管、53:第一キャピラリーチューブ、54:第二キャピラリーチューブ、55:第一流路制御弁、56:第二流路制御弁、59 熱交換器、60:第一流量制御ユニット、61:第二流量制御ユニット。   1: outdoor unit, 2: indoor unit, 3: steam pipe, 4: liquid pipe, 5: compressor, 6: first four-way valve, 7: indoor heat exchanger, 8: second four-way valve, 9: Ejector, 10: Gas-liquid separator, 11: Outdoor heat exchanger, 12: First on-off valve, 13: Second on-off valve, 14: Pressure control valve, 21, 44, 57: Heat transfer tube, 22, 49, 59 : Heat exchanger, 23: header distributor, 31, 51, 41, 46, 58: vertical pipe, 32, 42, 45, 52: branch pipe, 43: flow control valve, 47: first temperature measuring instrument, 48 : Second temperature measuring instrument, 51 vertical pipe, 52, 52a to d refrigerant pipe, 53: first capillary tube, 54: second capillary tube, 55: first flow path control valve, 56: second flow path control valve, 59 heat exchanger, 60: first flow rate control unit, 61: second flow rate control unit.

Claims (2)

圧縮機,第一の四方弁,3本以上の伝熱管を有する凝縮器,第二の四方弁,エジェクタ,気液分離器及び3本以上の伝熱管を有する蒸発器が順次配管で環状に接続され、
前記エジェクタは前記凝縮器,前記第二の四方弁を順次流れた冷媒が流入する第一の入口と前記蒸発器からの冷媒が流入する第二の入口を備え、
前記エジェクタの出口と前記気液分離器が接続され、
前記気液分離器には蒸気冷媒が流出する第一の出口と液冷媒が流出する第二の出口を備え、
前記気液分離器の第一の出口と前記圧縮機が接続され、
前記気液分離の第二の出口と前記蒸発器の入口側が接続され、
前記蒸発器の出口側と前記エジェクタの第二の入口とが接続された冷凍サイクル装置であって、
前記蒸発器と前記凝縮器はそれぞれ分配器を備え、
前記蒸発器の分配器は、
前記蒸発器の入口側に長手方向が略鉛直方向になるように設けられ、冷媒が流入する鉛直管と、
該鉛直管に上下方向に並べて略水平に接続され前記3本以上の伝熱管に対応して設けられた3本以上の分岐管と、
該3本以上の分岐管のそれぞれに設けられた流量制御弁と、
前記分岐管のうち最上段の分岐管の温度を検出する最上段温度計測器、及び前記分岐管のうち最下段の分岐管の温度を検出する最下段温度計測器と、
前記最上段温度計測器及び前記最下段温度計測器の検出結果に基づいて、前記鉛直管に流入した冷媒が前記3本以上の分岐管に均等に分配されるように、前記分岐管の最上段から下段側にかけて段階的に流量を絞るようにして前記流量制御弁を制御する制御部と、を備え、
前記凝縮器の分配器は、
前記凝縮器の出口側に長手方向が略鉛直方向になるように設けられ、冷媒が流入する鉛直管と、
該鉛直管に上下方向に並べて略水平に接続され前記3本以上の伝熱管に対応して設けられた3本以上の分岐管と、
該3本以上の分岐管のそれぞれに設けられた流量制御弁と、
前記分岐管のうち最上段の分岐管の温度を検出する最上段温度計測器、及び前記分岐管のうち最下段の分岐管の温度を検出する最下段温度計測器と、
前記最上段温度計測器及び前記最下段温度計測器の検出結果に基づいて、前記鉛直管に流入した冷媒が前記3本以上の分岐管に均等に分配されるように、前記分岐管の最下段から上段側にかけて段階的に流量を絞るようにして前記流量制御弁を制御する制御部と、を備えたことを特徴とする冷凍サイクル装置。
A compressor, a first four-way valve, a condenser having three or more heat transfer tubes, a second four-way valve, an ejector, a gas-liquid separator, and an evaporator having three or more heat transfer tubes are connected in a circular pattern with sequential piping. And
The ejector includes the condenser, a first inlet through which the refrigerant that sequentially flows through the second four-way valve flows, and a second inlet through which the refrigerant from the evaporator flows.
The outlet of the ejector and the gas-liquid separator are connected,
The gas-liquid separator includes a first outlet from which vapor refrigerant flows out and a second outlet from which liquid refrigerant flows out,
A first outlet of the gas-liquid separator and the compressor are connected;
The inlet side of the evaporator and the second outlet of the gas-liquid separator is connected,
A refrigeration cycle apparatus in which an outlet side of the evaporator and a second inlet of the ejector are connected ,
The evaporator and the condenser each have a distributor,
The evaporator distributor is:
A vertical pipe that is provided on the inlet side of the evaporator so that the longitudinal direction is substantially vertical;
Three or more branch pipes provided in correspondence with the three or more heat transfer pipes that are connected to the vertical pipe in a vertical direction and are substantially horizontally connected;
A flow control valve provided in each of the three or more branch pipes;
An uppermost temperature measuring instrument for detecting the temperature of the uppermost branch pipe among the branch pipes, and a lowermost temperature measuring instrument for detecting the temperature of the lowermost branch pipe among the branch pipes;
Based on the detection results of the uppermost temperature measuring instrument and the lowermost temperature measuring instrument, the uppermost stage of the branch pipe is configured so that the refrigerant flowing into the vertical pipe is evenly distributed to the three or more branch pipes. A control unit that controls the flow rate control valve so that the flow rate is gradually reduced from the lower side to the lower side, and
The condenser distributor is:
A vertical pipe that is provided on the outlet side of the condenser so that the longitudinal direction is substantially vertical;
Three or more branch pipes provided in correspondence with the three or more heat transfer pipes that are connected to the vertical pipe in a vertical direction and are substantially horizontally connected;
A flow control valve provided in each of the three or more branch pipes;
An uppermost temperature measuring instrument for detecting the temperature of the uppermost branch pipe among the branch pipes, and a lowermost temperature measuring instrument for detecting the temperature of the lowermost branch pipe among the branch pipes;
Based on the detection results of the uppermost temperature measuring instrument and the lowermost temperature measuring instrument, the lowermost stage of the branch pipe is configured so that the refrigerant flowing into the vertical pipe is evenly distributed to the three or more branch pipes. And a control unit that controls the flow rate control valve so as to reduce the flow rate stepwise from the upper side to the upper side.
前記第一の四方弁と前記第二の四方弁の流路を切り替えることで冷房運転と暖房運転を行うことを特徴とする請求項に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1 , wherein the cooling operation and the heating operation are performed by switching flow paths of the first four-way valve and the second four-way valve.
JP2008313863A 2008-12-10 2008-12-10 Refrigeration cycle equipment Active JP4937240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313863A JP4937240B2 (en) 2008-12-10 2008-12-10 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313863A JP4937240B2 (en) 2008-12-10 2008-12-10 Refrigeration cycle equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011198060A Division JP5197819B2 (en) 2011-09-12 2011-09-12 Distributor and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2010139114A JP2010139114A (en) 2010-06-24
JP4937240B2 true JP4937240B2 (en) 2012-05-23

Family

ID=42349396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313863A Active JP4937240B2 (en) 2008-12-10 2008-12-10 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4937240B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101270207B1 (en) * 2011-01-06 2013-05-31 한국기계연구원 Orifice Device for Same Distribution of Flow Rate using Expansion Valve Distributor between Cooler
JP5994317B2 (en) * 2012-03-22 2016-09-21 株式会社富士通ゼネラル Refrigeration cycle equipment
WO2014184914A1 (en) 2013-05-15 2014-11-20 三菱電機株式会社 Laminated header, heat exchanger, and air conditioning device
JP6041995B2 (en) * 2013-09-24 2016-12-14 三菱電機株式会社 Air conditioner
JP6188951B2 (en) * 2014-07-31 2017-08-30 三菱電機株式会社 Refrigerant distributor, heat exchanger and refrigeration cycle apparatus
US10436458B2 (en) 2015-04-21 2019-10-08 Mitsubishi Electric Corporation Heat source unit
KR102151188B1 (en) * 2019-04-26 2020-09-02 이형오 Air-cooled condenser for reducing variation of condensation pressure due to seasonal change and its operation method
WO2021075024A1 (en) * 2019-10-17 2021-04-22 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840107B2 (en) * 1979-11-12 1983-09-03 株式会社日立製作所 Refrigeration equipment
JPH01312369A (en) * 1988-06-13 1989-12-18 Matsushita Electric Ind Co Ltd Flow separator
JPH09126595A (en) * 1995-11-02 1997-05-16 Matsushita Seiko Co Ltd Multi-chamber air conditioner
JPH09280670A (en) * 1996-04-17 1997-10-31 Mitsubishi Electric Corp Heat exchanger
JP4069656B2 (en) * 2002-03-29 2008-04-02 株式会社デンソー Vapor compression refrigerator
JP2004150692A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2010139114A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP4937240B2 (en) Refrigeration cycle equipment
US10655917B2 (en) Heat exchanger and air conditioning device
US10443944B2 (en) Heat exchanger and air conditioning device
JP6087611B2 (en) Refrigeration cycle and air conditioner equipped with the same
CN104884876B (en) Refrigerating circulatory device and the control method of refrigerating circulatory device
CN105371539B (en) Air regulator
CN105190202B (en) Heat exchanger and refrigerating circulatory device
JP6625229B2 (en) Heat exchangers and air conditioners
JP2009186034A (en) Economizer
CN104567135A (en) Air conditioning device
JP5197819B2 (en) Distributor and refrigeration cycle apparatus
CN107917523A (en) A kind of outdoor heat exchanger for heat pump and its control method
US9618235B2 (en) Air conditioner including an indoor auxiliary heat exchanger
JP4349430B2 (en) Heat exchanger and air conditioner
CN103574952B (en) Refrigerating circulatory device and refrigerating plant and the air-conditioning device with this refrigerating circulatory device
JP4966742B2 (en) Air conditioner
JP4845987B2 (en) Air conditioning system
JP2006275435A (en) Gas-liquid separator and air-conditioner
CN101769659A (en) Heat pump type air conditioner system
JP5511897B2 (en) Refrigeration cycle apparatus and refrigerator, low-temperature apparatus, and air conditioner using this refrigeration cycle apparatus
KR102581931B1 (en) vapor compression system
JP6273838B2 (en) Heat exchanger
JP2018059673A (en) Heat exchanger and heat pump device using the same
JP5874754B2 (en) Refrigeration equipment
JP3177302U (en) Air conditioning unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250