JP4928354B2 - Manufacturing method and mounting method of ceramic parts for semiconductor manufacturing - Google Patents

Manufacturing method and mounting method of ceramic parts for semiconductor manufacturing Download PDF

Info

Publication number
JP4928354B2
JP4928354B2 JP2007142479A JP2007142479A JP4928354B2 JP 4928354 B2 JP4928354 B2 JP 4928354B2 JP 2007142479 A JP2007142479 A JP 2007142479A JP 2007142479 A JP2007142479 A JP 2007142479A JP 4928354 B2 JP4928354 B2 JP 4928354B2
Authority
JP
Japan
Prior art keywords
ceramic
semiconductor manufacturing
ceramic component
cleaning
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007142479A
Other languages
Japanese (ja)
Other versions
JP2008297136A (en
Inventor
弘徳 石田
保 原田
裕之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2007142479A priority Critical patent/JP4928354B2/en
Publication of JP2008297136A publication Critical patent/JP2008297136A/en
Application granted granted Critical
Publication of JP4928354B2 publication Critical patent/JP4928354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

本発明は、セラミックス部品の製造方法及び装着方法に関する。   The present invention relates to a manufacturing method and a mounting method for ceramic parts.

半導体製造装置や液晶パネルをはじめとするフラットパネルディスプレイ製造装置は、減圧下の激しい腐食環境の工程や、高真空での工程で使用される。これらの工程で使用される装置部品は、耐食性や低脱ガス性が求められる。セラミックスは金属や樹脂類と比較して、これらの性能に優れることから、半導体製造装置や液晶パネルをはじめとするフラットパネルディスプレイ製造装置、化学薬品処理装置用部品に使用されることが多い。   Flat panel display manufacturing apparatuses such as semiconductor manufacturing apparatuses and liquid crystal panels are used in processes of severe corrosive environments under reduced pressure and processes in high vacuum. The equipment parts used in these processes are required to have corrosion resistance and low degassing properties. Ceramics are superior in their performance compared to metals and resins, and are therefore often used in parts for semiconductor manufacturing equipment, flat panel display manufacturing equipment such as liquid crystal panels, and chemical processing equipment.

耐食性や低脱ガス性が求められる理由は、部品が腐食されるたり、部品から放出ガスが発生すると、処理室の中に異質の物質を放出することになり、製品を汚染してしまい、製品の歩留まり低下を引き起こすからである。   The reason why corrosion resistance and low degassing properties are required is that when parts are corroded or emitted gas is generated from the parts, foreign substances are released into the processing chamber, contaminating the product, and the product. This is because the yield is reduced.

近年、デバイスのデザインルールの微細化に伴い、処理室内により清浄な高真空の環境が、特に望まれるようになってきた。この様な環境下において使用される装置部品にセラミックスを用いることは好適である。しかしながら、セラミックスをこの様な環境下で使用したとき、セラミックス部品表面の清浄度が十分でなく、処理物の歩留まり低下を生ずることがあり、上記環境下で使用可能なセラミックス部品を製造し、これを半導体製造装置に装着する方法がなかった。金属汚染を検査するために、セラミックスを構成する金属原子を除く金属汚染を部品の表面を混酸によって処理し、誘導結合プラズマ−質量分析する例(特開2005−276891)が示されているが、表面の深さ方向の炭素の存在に関する状態分析には、不適である。また、炭素元素は、非破壊分析である蛍光X分析では、感度が低く、炭素の微量の状態分析には、不適であり、本方法の製造、装着方法への適用は困難であるとおもわれる。
特開2005−276891号公報
In recent years, with the miniaturization of device design rules, a cleaner and higher vacuum environment in a processing chamber has become particularly desirable. It is preferable to use ceramics for device parts used in such an environment. However, when ceramics are used in such an environment, the surface of the ceramic parts may not be clean enough and the yield of processed products may be reduced. There was no method for mounting the device on a semiconductor manufacturing apparatus. In order to inspect metal contamination, an example (Japanese Patent Laid-Open No. 2005-276891) in which metal contamination excluding metal atoms constituting ceramics is treated with mixed acid on the surface of the component and inductively coupled plasma-mass analysis is shown. It is not suitable for state analysis on the presence of carbon in the depth direction of the surface. In addition, the sensitivity of the carbon element in the fluorescence X analysis, which is a non-destructive analysis, is low, and it is not suitable for analyzing the state of a small amount of carbon, and it is considered that it is difficult to apply this method to manufacturing and mounting methods. .
JP 2005-276891 A

更に、特開2002−356387号公報には、耐プラズマ性部材をアルミナ系基材と中間層と気孔率が0.1%以下の表面層からなる積層形焼結体)から形成し、表面層に研磨を行って表面粗さ(Ra)0.01μm以下に加工したものであって、焼結後に焼結体を400℃に加熱保持された大気炉の中に10分間入れることも記載されている。 しかし、これを減圧環境下の半導体製造装置用セラミックス部品として装着して用いることができるかについては、性能の確認ができず、汚染面からの品質保証ができなかった。また、品質面での保証を与える前記セラミックス部品の製造方法も確立していなかった。
特開2002−356387
Further, JP-A-2002-356387 discloses that a plasma-resistant member is formed from an alumina base material, an intermediate layer, and a surface layer having a porosity of 0.1% or less). And the surface roughness (Ra) is processed to 0.01 μm or less, and it is also described that the sintered body is put in an atmospheric furnace heated to 400 ° C. for 10 minutes after sintering. Yes. However, as to whether it can be used as a ceramic part for semiconductor manufacturing equipment under a reduced pressure environment, performance could not be confirmed, and quality assurance from a contaminated surface could not be performed. In addition, a method for manufacturing the ceramic component that gives a guarantee in terms of quality has not been established.
JP2002-356387

本発明はかかる事情に鑑みてなされたものであり、減圧環境下で使用されるセラミックス部品であって、有機物の汚染の少ない半導体製造装置用セラミックス部品を製造し、これを装着することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and it is a ceramic component used in a reduced pressure environment, and an object of the present invention is to manufacture a ceramic component for a semiconductor manufacturing apparatus that is less contaminated with organic matter and to mount the ceramic component. To do.

前記課題を解決するため、本発明は、焼結体密度98%以上のセラミックス焼結体からなり、少なくとも半導体製造装置の処理室内で暴露される主面の表面粗さがRa1μm以下である半導体製造装置用非汚染性セラミックス部品の製造方法であって、芳香族炭化水素系化合物及び非イオン系界面活性剤のうち少なくとも一方を含む洗浄液であって、芳香族炭化水素系化合物の濃度が5〜10質量%の範囲にあり、非イオン系界面活性剤の濃度が10〜20質量%である洗浄液に前記セラミックス部品を浸漬することにより、前記セラミックス部品の表面を洗浄する洗浄工程と、400〜700℃の温度範囲で前記セラミックス部品を加熱処理する工程と、X線光電子分光法によって前記セラミックス部品の表面から5nm以深での深さで検出される炭素量5mass%以下であることを確認する工程と、を含むことを特徴とする半導体製造装置用非汚染性セラミックス部品の製造方法を提供する。 In order to solve the above-described problems, the present invention provides a semiconductor manufacturing method comprising a ceramic sintered body having a sintered body density of 98% or more, and having a surface roughness Ra of 1 μm or less of at least a main surface exposed in a processing chamber of a semiconductor manufacturing apparatus. A method for producing a non-fouling ceramic part for an apparatus , comprising a cleaning liquid containing at least one of an aromatic hydrocarbon compound and a nonionic surfactant, wherein the concentration of the aromatic hydrocarbon compound is 5 to 10 A cleaning step of cleaning the surface of the ceramic component by immersing the ceramic component in a cleaning solution having a nonionic surfactant concentration in the range of 10% by mass and 10 to 20% by mass ; and 400 to 700 ° C. test and heating treatment the ceramic component in the temperature range, at a depth of at 5nm deeper from the ceramic part of the surface I by the X-ray photoelectron spectroscopy Is the carbon amount is to provide a method for producing a non-contaminating ceramic parts for semiconductor manufacturing apparatus characterized by comprising a step, the to ensure that at most 5 mass%.

前記課題を解決するため、本発明は、焼結体密度98%以上のセラミックス焼結体からなり、少なくとも半導体製造装置の処理室内で暴露される主面の表面粗さがRa1μm以下である半導体製造装置用非汚染性セラミックス部品の装着方法であって、芳香族炭化水素系化合物及び非イオン系界面活性剤のうち少なくとも一方を含む洗浄液であって、芳香族炭化水素系化合物の濃度が5〜10質量%の範囲にあり、非イオン系界面活性剤の濃度が10〜20質量%である洗浄液に前記セラミックス部品を浸漬することにより、前記セラミックス部品の表面を洗浄する洗浄工程と、400〜700℃の温度範囲で前記セラミックス部品を加熱処理する工程と、真空中または不活性ガスを充填した密閉容器内で前記セラミックス部品を保存する工程と、クラス1000以上の清浄度を有するクリーンルームで前記容器を開封する工程とX線光電子分光法によって前記セラミックス部品の表面から5nm以深での深さで検出される炭素量5mass%以下であることを確認した上で前記セラミックス部品を半導体製造装置に装着する工程と、を含んでいることを特徴とする半導体製造装置用非汚染性セラミックス部品の装着方法を提供する。 In order to solve the above-described problems, the present invention provides a semiconductor manufacturing method comprising a ceramic sintered body having a sintered body density of 98% or more, and having a surface roughness Ra of 1 μm or less of at least a main surface exposed in a processing chamber of a semiconductor manufacturing apparatus. A method for mounting non-contaminating ceramic parts for a device , which is a cleaning liquid containing at least one of an aromatic hydrocarbon compound and a nonionic surfactant, and the concentration of the aromatic hydrocarbon compound is 5 to 10 A cleaning step of cleaning the surface of the ceramic component by immersing the ceramic component in a cleaning solution having a nonionic surfactant concentration in the range of 10% by mass and 10 to 20% by mass ; and 400 to 700 ° C. a step of heat-treating the ceramic parts in the temperature range of engineering storing the ceramic part in a closed container filled with a vacuum or in an inert gas When a step of unsealing the container in a clean room with a class 1000 or cleanliness, the amount of carbon to be detected at a depth of at 5nm deeper from the ceramic part of the surface I by the X-ray photoelectron spectroscopy 5 mass% A method for mounting a non-contaminating ceramic component for a semiconductor manufacturing apparatus , comprising the step of mounting the ceramic component on a semiconductor manufacturing apparatus after confirming the following is provided.

本発明によれば、減圧環境下で飛散炭素量が少ない半導体製造装置用セラミックス部品を製造する方法、及び、これを装着する方法が実現する。 ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing the ceramic component for semiconductor manufacturing apparatuses with few scattered carbon amounts in a pressure-reduced environment, and the method of mounting | wearing this are implement | achieved.

以下、本発明の実施の形態について詳細に説明する。ESCAで表面の深さ方向の測定をし、表面から5nm以深の深さで検出される炭素量が5mass%以下である状態で半導体製造装置に装着することを特徴とする半導体製造装置用非汚染性セラミックス部品の装着方法、半導体製造装置の処理室内で曝露される主面の表面粗さが、表面平滑度でRa1μm以下であることを特徴とする請求項1記載の半導体製造装置用非汚染性セラミックス部品の装着方法、を提供する。 Hereinafter, embodiments of the present invention will be described in detail. Non-contamination for semiconductor manufacturing equipment, characterized by measuring in the depth direction of the surface with ESCA and mounting the semiconductor manufacturing equipment in a state where the amount of carbon detected at a depth of 5 nm or less from the surface is 5 mass% or less. 2. The non-contaminating property for a semiconductor manufacturing apparatus according to claim 1, wherein the surface roughness of the main surface exposed in the processing chamber of the conductive ceramic component and the processing chamber of the semiconductor manufacturing apparatus is Ra 1 μm or less in surface smoothness. A method for mounting ceramic parts is provided.

減圧環境下で使用されるセラミックス部品において、処理物への汚染の原因は、セラミックスの表面に存在する有機物成分が原因であり、具体的には、セラミックスを減圧環境におくことで、表面に存在する有機物成分が処理室内に飛散する現象が汚染を引き起こす。特に、高温であるほど飛散しやすくなる。これは、処理室内が減圧であることから、セラミックス表面から飛散した有機物をトラップする障害が少なくなるため、処理室内の処理物に付着しやすくなるからである。有機物が処理物に付着してしまうと、微細な配線の形成に支障をきたす恐れがある。 In ceramic parts used in a reduced pressure environment, the cause of contamination of the processed material is caused by organic components present on the surface of the ceramic. Specifically, it exists on the surface by placing the ceramic in a reduced pressure environment. Phenomenon caused by scattering of organic components to the processing chamber. In particular, the higher the temperature, the easier it is to scatter. This is because the pressure in the processing chamber is reduced, so that the obstacle to trap the organic matter scattered from the ceramic surface is reduced, so that the processing chamber is likely to adhere to the processing chamber. If the organic matter adheres to the processed material, there is a risk of hindering the formation of fine wiring.

従来、これら多様な製造方法の効果を迅速、確実に判断し、半導体製造装置に装着できる手段がなかった。焼結体密度、表面平滑性が製造の中間工程で所定の値を有するセラミックス部品であっても、その後の洗浄工程等で適否が変化するからである。しかし、所定の製造方法あるいは装着方法によって、セラミックス表面の有機物の付着量を少なくし、その有機物に共通に含まれる炭素を、表面からの深さ方向で特定することで適切に製造、装着することができる。 Conventionally, there has been no means for quickly and surely determining the effects of these various manufacturing methods and mounting them on a semiconductor manufacturing apparatus. This is because even if the sintered body density and surface smoothness are ceramic parts having predetermined values in the intermediate process of manufacture, the suitability changes in the subsequent cleaning process or the like. However, by using a predetermined manufacturing method or mounting method, the amount of organic matter deposited on the ceramic surface is reduced, and the carbon contained in the organic matter is specified in the depth direction from the surface, so that it can be properly manufactured and mounted. Can do.

セラミックス表面の有機物の付着量は、ESCAにより5nm以深で検出される炭素量で評価した。5nm以深としたのは、表面で検出される炭素量は、ESCA測定時に測定室に存在する有機物が測定試料に付着することがあり、それを加えた値となりやすく、正確な付着量の測定値とならないからである。5nm以深でも炭素が5mass%以上検出されるようなセラミックス部品は、半導体製造装置に装着すると、デバイスの汚染を引き起こす。つまり、それだけ飛散の恐れのある有機物が堆積しているということができる。一方、ESCAで測定した場合に、5nm以深で検出される有機物由来の炭素量が5mass%以下のセラミックス部品ならば、半導体製造装置用部品として汚染に対して安全に使用できる。 The amount of organic matter deposited on the ceramic surface was evaluated by the amount of carbon detected at a depth of 5 nm or more by ESCA. The reason why the depth of carbon is 5 nm or more is that the amount of carbon detected on the surface is likely to be an added value because organic substances present in the measurement chamber may adhere to the measurement sample during ESCA measurement. It is because it does not become. A ceramic component in which carbon is detected at 5 mass% or more even at a depth of 5 nm or more causes contamination of the device when mounted on a semiconductor manufacturing apparatus. In other words, it can be said that organic substances that can be scattered are accumulated. On the other hand, when measured by ESCA, a ceramic part having an organic carbon content detected at a depth of 5 nm or less and having a mass of 5 mass% or less can be safely used as a component for semiconductor manufacturing equipment.

有機物由来の炭素は、5nmより浅い表面極近傍では、さまざまな分布をするが、5nm以深では、減衰するか、一定値を示す。各種窒化アルミニウム焼結体試料(焼結体密度98%以上)につき、ESCAによる深さ方向の炭素検出量を測定した結果、5nm深さまでは、有機物付着の多寡に拘らず、検出炭素量は、増加したり、減少したり、様々に変化する。これは、ESCA測定時に測定室に存在する有機物が測定試料に付着し、表面から5nmまでは、有機物の付着状態がさまざまであることを反映している。しかし、処理室内を汚染するおそれの少ない非汚染性の試料は、5nm以深の炭素量が5mass%以下であり、その値を保持または減衰しており、増加する試料は認められなかった。一方、汚染のおそれのある試料は、5nm以深での炭素量が5mass%より大であることが判明した。 Carbon derived from organic substances has various distributions near the surface pole shallower than 5 nm, but attenuates or shows a constant value at depths of 5 nm or more. As a result of measuring the carbon detection amount in the depth direction by ESCA for various aluminum nitride sintered body samples (sintered body density of 98% or more), the detected carbon amount is 5 nm deep, regardless of the amount of organic matter attached. It increases or decreases and changes in various ways. This reflects that organic substances existing in the measurement chamber adhere to the measurement sample at the time of ESCA measurement, and the adhesion state of the organic substances varies from the surface to 5 nm. However, the non-contaminating sample having a low possibility of contaminating the processing chamber has a carbon content of 5 nm or less at 5 mass% or less, and the value is maintained or attenuated, and an increasing sample was not recognized. On the other hand, it was found that the sample having a possibility of contamination had a carbon content at a depth of 5 nm or more larger than 5 mass%.

ここに、ESCAとは、超高真空下におかれた固体表面に軟X線を照射し、光電効果により表面から放出される光電子の運動エネルギーを測定する分析手法である。光電子の脱出深さが数nmであることから、固体最表面に近い層を構成する原子や分子に関する情報が得られる。 Here, ESCA is an analysis method for irradiating soft X-rays on a solid surface placed in an ultra-high vacuum and measuring the kinetic energy of photoelectrons emitted from the surface by the photoelectric effect. Since the escape depth of the photoelectrons is several nm, information on atoms and molecules constituting a layer close to the outermost surface of the solid can be obtained.

本発明に用いたX線光電子分光装置の主要な仕様は、X線源として、 MgKα,AlKα,単色化X線(Al)が用いられ、試料の分析面積が、直径3mm円領域で測定できる測定室を有するものを用いた。検出元素は、炭素(1s軌道)である。 The main specifications of the X-ray photoelectron spectrometer used in the present invention are MgKα, AlKα, and monochromatic X-ray (Al) as the X-ray source, and the measurement area of the sample can be measured in a 3 mm diameter circle region. The one having a chamber was used. The detection element is carbon (1s orbital).

炭素測定方法は、アルゴンイオンを併用するイオンエッチング法で深さ方向の分析をおこなった。深さの算出は、イオンエッチング速度、時間で検量した。吸着炭素濃度(mass%)の算出は、結合エネルギー284eV近辺の位置から有機物由来の炭素元素を特定し、半定量分析によった。有機物由来の炭素は、隣接元素(炭素、水素、酸素等)を勘案して、帰属する。具体的には、帰属、特定した炭素のピークの面積を計算し、標準元素のピーク面積との比をとる。標準として内部標準又は外部標準法を用いることができる。例えば、既知量のイットリウムのピーク面積を基準とした比率を計算し、相対感度係数を乗ずる方法によった。 As the carbon measurement method, analysis in the depth direction was performed by an ion etching method using argon ions together. The depth was calibrated by ion etching rate and time. The calculation of the adsorbed carbon concentration (mass%) was performed by semi-quantitative analysis by specifying a carbon element derived from an organic substance from a position near a binding energy of 284 eV. Carbon derived from organic matter is attributed to adjacent elements (carbon, hydrogen, oxygen, etc.). Specifically, the area of the assigned and specified carbon peak is calculated, and the ratio to the peak area of the standard element is calculated. An internal standard or external standard method can be used as a standard. For example, a ratio based on the peak area of a known amount of yttrium was calculated and multiplied by the relative sensitivity coefficient.

本発明は、炭化物セラミックス部品にも応用できる。例えば炭化珪素製部品のバルクの炭素と有機物由来の炭素は、結合エネルギーが隣接原子の元素や数により相違するので、シグナルにケミカルシフトを生じる。そこで、炭素シグナルのピークを電気的シグナル処理やカーブリゾルバー等で有機物由来のピークとして分離し、そのピークの面積測定が可能だからである。 The present invention can also be applied to carbide ceramic parts. For example, the bulk carbon of carbon carbide parts and the carbon derived from organic matter have a chemical shift in the signal because the bond energy differs depending on the element and number of adjacent atoms. This is because the peak of the carbon signal can be separated as an organic substance-derived peak by electrical signal processing or a curve resolver, and the area of the peak can be measured.

セラミックス部品としては、アルミナ、窒化アルミニウム、炭化珪素、窒化珪素、コーディエライト、酸化イットリウム、YAG等が好ましい。また、これらのいずれかを主成分とし、緻密化のための焼結助剤や、体積抵抗、誘電率等の電気的特性を適正化するため副成分を添加したものであっても良い。
焼結方法は、原料粉末に適合する公知の方法、例えば、大気または雰囲気焼成、ホットプレス焼成、HIP等より選択することができる。焼結体は、セラミックス単体のものでも、静電チャックやヒータのようなセラミックスに金属を埋設したものでもよい。
As ceramic parts, alumina, aluminum nitride, silicon carbide, silicon nitride, cordierite, yttrium oxide, YAG, and the like are preferable. Further, any of these may be used as a main component, and a sintering aid for densification, or a subcomponent may be added to optimize electrical characteristics such as volume resistance and dielectric constant.
The sintering method can be selected from known methods suitable for the raw material powder, such as air or atmosphere firing, hot press firing, HIP, and the like. The sintered body may be a single ceramic body or a ceramic body such as an electrostatic chuck or heater embedded with metal.

セラミックス部品の焼結体密度(相対密度)は98%以上が望ましく、半導体製造装置の処理室内で曝露される主面の表面粗さがRa1μm以下であることが望ましい。焼結体密度98%を満たしていないセラミックス部品は、汚染源となりうる有機物が気孔等に蓄積され易く、また、気孔等に蓄積して強固に固着した有機物は加熱によっても完全に除去し難いため、半導体装置用部品として不適である。さらに、半導体製造装置の処理室内で曝露される主面の表面粗さが、Ra1μm以下であると、有機物が付着し難く、洗浄も容易となり、また、加熱時に有機物を除去しやすくなる。その結果、有機物がすくなく、有機物の脱離による汚染の恐れの少ない部品が実現する。 The sintered body density (relative density) of the ceramic component is desirably 98% or more, and the surface roughness of the main surface exposed in the processing chamber of the semiconductor manufacturing apparatus is desirably Ra1 μm or less. Ceramic parts that do not satisfy the sintered body density of 98% tend to accumulate organic substances that can be a contamination source in pores, and organic substances that have accumulated in the pores and are firmly fixed are difficult to remove completely even by heating. It is not suitable as a component for semiconductor devices. Furthermore, when the surface roughness of the main surface exposed in the processing chamber of the semiconductor manufacturing apparatus is Ra 1 μm or less, it is difficult for organic substances to adhere, cleaning becomes easy, and organic substances are easily removed during heating. As a result, a component with less organic matter and less risk of contamination due to the detachment of the organic matter is realized.

表面付着物を洗浄する洗浄工程は、芳香族炭化水素系化合物および/または非イオン系界面活性剤を用いた洗浄液に浸漬するものである。表面付着物とは、主として有機成分であり、研削油や加工時に部材を固定するための接着剤が挙げられる。 The cleaning process for cleaning the surface deposit is to immerse in a cleaning liquid using an aromatic hydrocarbon compound and / or a nonionic surfactant. The surface deposit is mainly an organic component, and examples thereof include grinding oil and an adhesive for fixing the member during processing.

使用される洗浄液は芳香族炭化水素系化合物および/または非イオン系界面活性剤を用いたものである。一般的にセラミックスの洗浄液として、陰イオン系界面活性剤が用いられている。しかしながら、本発明者らの検討によれば、陰イオン系界面活性剤のような親水性の物質は表面に残りやすいことが分かっている。これは、セラミックス表面の親水基に陰イオン系界面活性剤が結合するためである。セラミックス部材のうち、酸化物セラミックスではもちろんのこと、非酸化物セラミックスにおいても表面近傍は通常酸化されており、親水性によりOH基が形成されている。そのためOH基と陰イオン系界面活性剤が結びつき、有機成分の残渣として残り、この残渣が製造装置内で汚染物質となる。 The cleaning liquid used is an aromatic hydrocarbon compound and / or a nonionic surfactant. In general, an anionic surfactant is used as a ceramic cleaning solution. However, according to studies by the present inventors, it has been found that a hydrophilic substance such as an anionic surfactant tends to remain on the surface. This is because the anionic surfactant is bonded to the hydrophilic group on the ceramic surface. Of the ceramic members, not only oxide ceramics, but also non-oxide ceramics, the vicinity of the surface is usually oxidized, and OH groups are formed due to hydrophilicity. Therefore, the OH group and the anionic surfactant are combined to remain as an organic component residue, and this residue becomes a contaminant in the manufacturing apparatus.

一方、本発明の芳香族炭化水素系化合物および非イオン系界面活性剤は、セラミックス表面の親水基と結合することがないため、残渣として残り難く、しかも、その後の加熱工程を経ることにより効果的に有機成分を除去することができる。 On the other hand, since the aromatic hydrocarbon compound and nonionic surfactant of the present invention do not bind to the hydrophilic group on the ceramic surface, it is difficult to remain as a residue, and more effective through a subsequent heating step. Organic components can be removed.

芳香族炭化水素系化合物としては、単環又は2環の芳香族化合物、及びこれらのアルキル置換体を含む化合物であり、アルキルベンゼン、ナフタレン、アルキルナフタレン、インダン、アルキルインダンなどが挙げられる。なかでも、アルキルベンゼン、ナフタレン及びアルキルナフタレンが好ましい。これらを単独または、必要に応じて2種以上を適宜に選択して組み合わせて使用できる。 The aromatic hydrocarbon compound is a monocyclic or bicyclic aromatic compound and a compound containing an alkyl substituent thereof, and examples thereof include alkylbenzene, naphthalene, alkylnaphthalene, indane, and alkylindan. Of these, alkylbenzene, naphthalene and alkylnaphthalene are preferable. These may be used alone or in combination of two or more as required.

非イオン系界面活性剤の具体例としては、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンフェノールエーテルなどのポリアルキレングリコールエーテル型非イオン系界面活性剤、ポリアルキレングリコールモノエステル、ポリアルキレングリコールジエステルなどのポリアルキレングリコールエステル型非イオン系界面活性剤、脂肪酸アミドのアルキレンオキサイド付加物、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステルなどの多価アルコール型非イオン系界面活性剤、脂肪酸アルカノールアミド、ポリオキシアルキレンアルキルアミンなどをあげることができる。これらを単独または2種以上を混合して用いても良い。 Specific examples of nonionic surfactants include polyalkylene glycol ether type nonionic surfactants such as polyoxyalkylene alkyl ethers and polyoxyalkylene phenol ethers, polyalkylene glycol monoesters, polyalkylene glycol diesters and the like. Alkylene glycol ester type nonionic surfactants, alkylene oxide adducts of fatty acid amides, polyhydric alcohol type nonionic surfactants such as sorbitan fatty acid esters, sucrose fatty acid esters, fatty acid alkanolamides, polyoxyalkylene alkylamines, etc. Can give. You may use these individually or in mixture of 2 or more types.

洗浄液としては、芳香族炭化水素系化合物または非イオン系界面活性剤のいずれか一方、もしくは両者を混合したものを希釈せずに、または、水もしくはアルコール等で希釈して使用することができる。ただし、芳香族炭化水素系化合物または非イオン系界面活性剤単独では、セラミックス表面に残存する可能性があるので、希釈して用いることが望ましい。洗浄液の濃度は、芳香族炭化水素系化合物は5〜10質量%、非イオン系界面活性剤は10〜20質量%であることが好ましい。上限値以上であると洗浄液が残存する可能性が高く、下限値以下であると洗浄効果が期待できない。 As the cleaning liquid, either an aromatic hydrocarbon compound or a nonionic surfactant, or a mixture of both may be used without dilution or diluted with water or alcohol. However, since an aromatic hydrocarbon compound or a nonionic surfactant alone may remain on the ceramic surface, it is desirable to use it diluted. The concentration of the cleaning liquid is preferably 5 to 10% by mass for the aromatic hydrocarbon compound and 10 to 20% by mass for the nonionic surfactant. If it is at least the upper limit, there is a high possibility that the cleaning liquid will remain, and if it is at most the lower limit, the cleaning effect cannot be expected.

また、洗浄工程内において酸洗浄することも好ましい。酸の種類はフッ酸、硝酸、硫酸など特に限定しない。酸の濃度としては3〜7質量%が最適な量である。 It is also preferable to perform acid cleaning in the cleaning step. The type of acid is not particularly limited, such as hydrofluoric acid, nitric acid, and sulfuric acid. The optimum amount of acid is 3 to 7% by mass.

大気加熱は400〜700℃で行うことが好ましく、より好ましくは500〜700℃で行うことが望ましい。400℃または500℃より低温では、分子量が大きな有機物は炭化して飛散しにくいからである。加熱処理の温度を例えば400℃または500℃よりも低温にすると、有機成分や金属成分を十分に除去することはできないし、洗浄しきれずに残存している有機成分が加熱により色シミになるなどの問題が生じる。また、洗浄工程を経ずに加熱処理のみを行っても有機成分を十分に除去することは困難である。したがって、先述の洗浄工程において、固着した有機成分を除去し、さらに加熱工程を経ることによって、ESCAによる表面から5nm以深で検出される炭素量を5mass%以下とすることができる。 The atmospheric heating is preferably performed at 400 to 700 ° C, more preferably 500 to 700 ° C. This is because at a temperature lower than 400 ° C. or 500 ° C., an organic substance having a large molecular weight is hardly carbonized and scattered. For example, if the temperature of the heat treatment is lower than 400 ° C. or 500 ° C., the organic component and the metal component cannot be sufficiently removed, and the remaining organic component that cannot be washed out becomes a color spot due to heating. Problem arises. Moreover, it is difficult to sufficiently remove the organic component even if only the heat treatment is performed without going through the cleaning step. Therefore, in the above-described cleaning step, the fixed organic component is removed, and further the heating step is performed, whereby the amount of carbon detected at a depth of 5 nm or more from the surface by ESCA can be set to 5 mass% or less.

500℃を越える温度での処理については、大気加熱をすることでセラミックスの表面が改質しない温度であることが望ましい。大気加熱により、表面改質を望むのであればその改質が損なわれない限度の処理温度が上限となる。通常、700℃が上限となる。また、加熱時間は、30分以上であることが好ましい。30分未満であると、気化温度としては、十分であっても、表面の吸着エネルギーを上回る運動エネルギーを供給できない場合がある。また、表面近傍の気孔を有する構造に再トラップされる恐れもある。減圧下での加熱も時間短縮には、有効である。 Regarding the treatment at a temperature exceeding 500 ° C., it is desirable that the temperature of the ceramic is not modified by heating in the atmosphere. If surface modification is desired by atmospheric heating, the upper limit is the treatment temperature at which the modification is not impaired. Usually, 700 ° C. is the upper limit. Moreover, it is preferable that heating time is 30 minutes or more. If it is less than 30 minutes, even if the vaporization temperature is sufficient, kinetic energy exceeding the adsorption energy of the surface may not be supplied. Moreover, there is a risk of being re-trapped by a structure having pores near the surface. Heating under reduced pressure is also effective for shortening the time.

このようなセラミックス部品の洗浄工程および加熱工程を経て、ESCAによる表面から5nm以深での深さで検出される炭素量を5mass%以下とすることにより、減圧環境下で飛散炭素量が少ない半導体製造装置用セラミックス部品を製造する方法が実現する。 By manufacturing the ceramic parts through the cleaning process and heating process, the amount of carbon detected at a depth of 5 nm or less from the surface by ESCA is 5 mass% or less, thereby producing a semiconductor with a small amount of scattered carbon in a reduced pressure environment. A method of manufacturing a ceramic part for an apparatus is realized.

加熱処理の後、試料の保管のためには、含有水分が10mg/m3以下の密閉雰囲気内において保管することが望ましい。セラミックス部品に水分が付着し、ウエハに水分が転移すると半導体製造における微細加工処理に影響があるためである。 In order to store the sample after the heat treatment, it is desirable to store it in a sealed atmosphere having a moisture content of 10 mg / m 3 or less. This is because if moisture adheres to the ceramic component and the moisture is transferred to the wafer, the fine processing in semiconductor manufacturing is affected.

不活性ガスとしてはアルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素を用いることができるが、取扱いやコストの点で、窒素またはアルゴンが好ましい。酸素のような活性ガスでは吸着面の素材と反応して搬送中に化学変化を起こす可能性が考えられる。また不活性ガスがこれらの混合ガス、特に窒素とアルゴンの混合ガスでも良い。 As the inert gas, argon, helium, neon, krypton, xenon, or nitrogen can be used, but nitrogen or argon is preferable in terms of handling and cost. An active gas such as oxygen may react with the material on the adsorption surface and cause a chemical change during transportation. The inert gas may be a mixed gas of these, particularly a mixed gas of nitrogen and argon.

不活性ガスの純度は99.5%以上が好ましい。ガスの純度が99.5%より低い場合、不純物に含まれる水分や有機物の影響を受けることがあるが、99.5%以上であれば、不純物の影響によるセラミックス部品の特性劣化は生じない。ただし不活性ガスの純度は高い程よく、99.9%以上がより望ましい。そのため封入する不活性ガスは液体窒素など高純度のガスを封入するのがより好ましいが、半導体用ガス等のボンベから供給されるガスでも上記条件を満たしていれば問題ない。 The purity of the inert gas is preferably 99.5% or more. If the purity of the gas is lower than 99.5%, it may be affected by moisture and organic substances contained in the impurities, but if it is 99.5% or more, the deterioration of the characteristics of the ceramic parts due to the influence of the impurities will not occur. However, the higher the purity of the inert gas, the better, and 99.9% or more is more desirable. Therefore, it is more preferable that the inert gas to be sealed be filled with a high-purity gas such as liquid nitrogen, but there is no problem if the gas supplied from a cylinder such as a semiconductor gas satisfies the above conditions.

密閉容器としては、オーリングを組み込んだアクリル板を容器形状にくみ上げたもの、もしくは水分や有機物の透過性の低いガスバリア袋を用いることができる。接着材によって接合した容器では密閉度が低く、不活性ガスで封入しても大気中の水分や有機物が混入してしまう場合がある。また、通常市販されているポリエチレンやナイロン系の袋では水分や有機物の透過性が高く、同様に大気中の水分等が混入してしまうおそれがある。そのためこれらの透過性の低いガスバリア袋を用いることが望ましい。ただし、水分や有機物の混入を防ぐことができれば良いので、これらの容器に限定されるものではない。水分に対しては容器内部にシリカゲルなどの吸湿材を入れるとより効果的である。 As the sealed container, an acrylic plate incorporating an O-ring is drawn up into a container shape, or a gas barrier bag having low permeability to moisture and organic matter can be used. Containers joined with an adhesive have a low hermeticity, and moisture and organic matter in the atmosphere may be mixed even when sealed with an inert gas. In addition, normally available polyethylene or nylon bags have high moisture and organic permeability, and there is a risk that moisture in the atmosphere will be mixed in. Therefore, it is desirable to use these gas barrier bags with low permeability. However, the container is not limited to these containers, as long as it can prevent mixing of moisture and organic substances. For moisture, it is more effective to put a moisture absorbent material such as silica gel inside the container.

従来の袋内を真空状態にする方法は、真空度を十分に高めることができないため水分や有機物が残留したり、透湿性を考慮した袋を用いていなかったため有機物等が混入したりという問題があった。真空状態で残存する有機分子は微量であるが、袋内に存在する有機分子以外の分子も少ないため障害物が少なく、分子の平均自由行程が伸び、有機分子のセラミックス部品への付着が大気圧下以上に起こりやすくなる。したがって、真空状態よりも不活性ガスの封入が望ましい。 The conventional method of making the inside of the bag in a vacuum state has a problem that moisture or organic matter remains because the degree of vacuum cannot be sufficiently increased, or organic matter or the like is mixed because a bag considering moisture permeability is not used. there were. The amount of organic molecules remaining in vacuum is very small, but there are few obstacles other than organic molecules present in the bag, so there are few obstacles, the mean free path of the molecules is extended, and the adhesion of organic molecules to the ceramic parts is atmospheric pressure. More likely to occur below. Therefore, it is desirable to enclose an inert gas rather than a vacuum state.

試料の開放は、密閉された、クラス1000以上の清浄度を有し、温度が19〜25℃、湿度が65%以下のクリーンルームでおこなわれることが望ましい。特に湿度が、65%を越えると、収納容器で保持した水分の条件が崩れてしまい、汚染を助長する素地をつくるおそれがある。 The opening of the sample is desirably performed in a sealed clean room having a cleanness of class 1000 or higher, a temperature of 19 to 25 ° C., and a humidity of 65% or less. In particular, when the humidity exceeds 65%, the condition of moisture held in the storage container is broken, and there is a risk of forming a substrate that promotes contamination.

このようなセラミックス部品の保存工程および開封工程を経ることにより、ESCAによる表面から5nm以深での深さで検出される炭素量を5mass%以下の状態を保持した状態で、半導体製造装置に装着することができ、減圧環境下で飛散炭素量が少ない半導体製造装置用セラミックス部品を装着する方法が実現する。 By passing through the storage process and the unsealing process of such ceramic parts, the carbon amount detected at a depth of 5 nm or less from the surface by ESCA is mounted on the semiconductor manufacturing apparatus while maintaining a state of 5 mass% or less. Therefore, a method of mounting ceramic parts for semiconductor manufacturing equipment with a small amount of scattered carbon in a reduced pressure environment is realized.

以下、試験例を示して説明する。
焼結体密度(相対密度)98%以上の炭化珪素、アルミナ、窒化アルミニウム、酸化イットリウム、YAG焼結体について、水と研削油を混合した研削液を用いての平面研削加工、油性スラリーを用いてのラップ加工を行って表面粗さRa1.0μm以下の表面を形成した。寸法はそれぞれ、50×50×5mmとし焼結体の表面粗さの測定はJISB0601に基づいて行った。
Hereinafter, a test example will be shown and described.
For silicon carbide, alumina, aluminum nitride, yttrium oxide, YAG sintered body having a sintered body density (relative density) of 98% or more, surface grinding using an abrasive slurry mixed with water and grinding oil, using an oily slurry All lapping was performed to form a surface with a surface roughness Ra of 1.0 μm or less. The dimensions were 50 × 50 × 5 mm, respectively, and the surface roughness of the sintered body was measured based on JISB0601.

加工後の洗浄は、以下の方法を用いて行った。それぞれ、(A)〜(E)とする。
(A)メタノールによる超音波洗浄を10分行った後、キシレン系の芳香族炭化水素系化合物を用いた洗浄液で30分浸漬洗浄を行った。次にメタノールによる浸漬洗浄を30分行い、硝酸(2%)洗浄を1分、超純水による洗い流しを5分行い、乾燥機で乾燥させた。
(B)脂肪酸アルカノールアミド型の非イオン系界面活性剤を用い、浸漬洗浄時間を40分にした以外は(A)と同様の方法で洗浄を行った。
(C)ポリオキシエチレンアルキルエーテル型の非イオン系界面活性剤を用い、浸漬洗浄時間を20分にした以外は(A)と同様の方法で洗浄を行った。
(D)キシレン系の芳香族炭化水素系化合物および脂肪酸アルカノールアミド型の非イオン系界面活性剤を2:1で混合した洗浄剤を用い、浸漬洗浄時間を30分にした以外は(A)と同様の方法で洗浄を行った。
(E)直鎖アルキルベンゼン系の陰イオン系界面活性剤を用い、浸漬洗浄時間を30分にした以外は(A)と同様の方法で洗浄を行った。
Cleaning after processing was performed using the following method. These are respectively (A) to (E).
(A) After ultrasonic cleaning with methanol for 10 minutes, immersion cleaning was performed for 30 minutes with a cleaning liquid using a xylene-based aromatic hydrocarbon compound. Next, immersion cleaning with methanol was performed for 30 minutes, nitric acid (2%) cleaning was performed for 1 minute, flushing with ultrapure water was performed for 5 minutes, and drying was performed with a dryer.
(B) Using a fatty acid alkanolamide type nonionic surfactant, cleaning was performed in the same manner as in (A) except that the immersion cleaning time was 40 minutes.
(C) Using a polyoxyethylene alkyl ether type nonionic surfactant, cleaning was performed in the same manner as in (A) except that the immersion cleaning time was 20 minutes.
(D) (A) except that a cleaning agent in which a xylene-based aromatic hydrocarbon compound and a fatty acid alkanolamide type nonionic surfactant were mixed at a ratio of 2: 1 was used and the immersion cleaning time was 30 minutes. Washing was performed in the same manner.
(E) Cleaning was carried out in the same manner as in (A) except that a linear alkylbenzene anionic surfactant was used and the immersion cleaning time was 30 minutes.

上記洗浄後、加熱処理を行い、ESCAによる試料表面から5μm以深の炭素量の測定を行った。
さらに、Siウエハを置いた真空チャンバー内に入れ、Siウエハへの汚染度を測定した。即ち、試料を、真空チャンバー内のセラミックス製ヒータの上に置き、試料の横にはSiウエハを置いた。この状態で、試料とSiウエハを、真空度1×10-1Paで200℃、6hr加熱し、処理したSiウエハ表面をESCAで分析し、吸着有機物由来の炭素量を測定した。減圧状態の半導体製造工程を模擬したものである。なお、Siウエハ表面に付着した炭素量についても表面から5nm以深で評価し、比較として未処理のベアウエハの測定も行った。炭素量の測定は、試料およびウエハについて、それぞれ10ヶ所測定し、平均を算出した。ウエハに付着した有機物の評価はベアウエハの炭素量を1としたときの相対値で、1以上3未満を○、3以上10未満を△、10以上を×とした。
After the washing, heat treatment was performed, and the carbon content of 5 μm or more from the sample surface was measured by ESCA.
Furthermore, it put in the vacuum chamber which set | placed Si wafer, and measured the contamination degree to Si wafer. That is, the sample was placed on a ceramic heater in a vacuum chamber, and a Si wafer was placed beside the sample. In this state, the sample and the Si wafer were heated at 200 ° C. for 6 hours at a vacuum degree of 1 × 10 −1 Pa, and the treated Si wafer surface was analyzed by ESCA to measure the amount of carbon derived from the adsorbed organic matter. This is a simulation of a semiconductor manufacturing process under reduced pressure. The amount of carbon adhering to the Si wafer surface was also evaluated at a depth of 5 nm or more from the surface, and an untreated bare wafer was measured as a comparison. The carbon amount was measured at 10 points for each of the sample and the wafer, and the average was calculated. The evaluation of the organic matter adhered to the wafer was a relative value when the carbon amount of the bare wafer was 1, and 1 or more and less than 3 was evaluated as ◯, 3 or more and less than 10 as Δ, and 10 or more as ×.

Figure 0004928354
Figure 0004928354

洗浄方法としてA〜Dを用い、500℃で加熱処理した試験例では、アルミナ、炭化珪素、窒化アルミニウム、酸化イットリウム、YAGのいずれにおいても、炭素量が少なく、ウエハの汚染も少なかった。洗浄方法Eを用いた試験例では、炭素量が比較的多く、ウエハが汚染されていた。洗浄方法にDを用い、焼成温度400℃、700℃とした試験例では、400℃では、500℃に比べて、炭素量がやや多く、非汚染性は十分でなかった。700℃処理では、炭素量が少なく、ウエハの汚染も少なかった。 In the test examples in which A to D were used as cleaning methods and heat-treated at 500 ° C., the amount of carbon was small and the contamination of the wafer was small in any of alumina, silicon carbide, aluminum nitride, yttrium oxide, and YAG. In the test example using the cleaning method E, the amount of carbon was relatively large and the wafer was contaminated. In the test example in which D was used as the cleaning method and the firing temperatures were 400 ° C. and 700 ° C., the amount of carbon was slightly higher at 400 ° C. than at 500 ° C., and the non-contamination property was not sufficient. In the 700 ° C. treatment, the amount of carbon was small and the contamination of the wafer was small.

次に、上記試験により良好な評価が得られたもののうち、試験例4、11、18、25、32の洗浄、加熱工程を経たものについて、保管、開封試験を行った。洗浄、加熱処理を行った後、(イ)窒素ガスを封入した密閉容器中で保管した後、クラス1000以上、温度が19〜25℃、湿度が65%以下の清浄度を有するクリーンルームで開封したもの、(ロ)温度湿度を制御していない室内環境で開封した以外は(イ)と同様のもの、(ハ)温度湿度を制御していない室内環境に放置したもの、の三通り(表2において、それぞれ開封条件イ〜ハと表記)で開封した後、表1に示したESCA測定と同様にして炭素量の測定を行った。なお、保管または放置時間は10日間とした。 Next, among those for which good evaluation was obtained by the above test, those subjected to the washing and heating steps of Test Examples 4, 11, 18, 25 and 32 were subjected to storage and opening tests. After washing and heat treatment, (a) after being stored in a sealed container filled with nitrogen gas, it was opened in a clean room having a cleanness of class 1000 or higher, temperature 19 to 25 ° C. and humidity 65% or lower. (B) Same as (a) except that it is opened in an indoor environment where temperature and humidity are not controlled, and (c) It is left in an indoor environment where temperature and humidity are not controlled (Table 2) In FIG. 2, the carbon content was measured in the same manner as the ESCA measurement shown in Table 1. The storage or leaving time was 10 days.

Figure 0004928354
Figure 0004928354

密閉容器に試料を入れ、窒素ガスを封入して保管した後、クリーンルームで開封した条件イの試料については、アルミナ、炭化珪素、窒化アルミニウム、酸化イットリウム、YAGのいずれでも炭素量が少なく保持されており、ウエハを汚染しなかった。条件ロおよびハでは、いずれも炭素量も多く、特に室内に放置した条件ハではウエハの汚染が著しかった。 After the sample is put in a sealed container, nitrogen gas is sealed and stored, the sample of condition (i) opened in a clean room has a low carbon content in any of alumina, silicon carbide, aluminum nitride, yttrium oxide, and YAG. And did not contaminate the wafer. Conditions B and C both had a large amount of carbon, and wafer contamination was particularly severe in Condition C left indoors.

本発明は、減圧環境下で利用される半導体製造用セラミックス部品の製造方法及び装着方法に好適である。   The present invention is suitable for a manufacturing method and a mounting method of a ceramic component for semiconductor manufacturing used under a reduced pressure environment.

Claims (2)

焼結体密度98%以上のセラミックス焼結体からなり、少なくとも半導体製造装置の処理室内で暴露される主面の表面粗さがRa1μm以下である半導体製造装置用非汚染性セラミックス部品の製造方法であって、
芳香族炭化水素系化合物及び非イオン系界面活性剤のうち少なくとも一方を含む洗浄液であって、芳香族炭化水素系化合物の濃度が5〜10質量%の範囲にあり、非イオン系界面活性剤の濃度が10〜20質量%である洗浄液に前記セラミックス部品を浸漬することにより、前記セラミックス部品の表面を洗浄する洗浄工程と、
400〜700℃の温度範囲で前記セラミックス部品を加熱処理する工程と、
X線光電子分光法によって前記セラミックス部品の表面から5nm以深での深さで検出される炭素量5mass%以下であることを確認する工程と、を含むことを特徴とする半導体製造装置用非汚染性セラミックス部品の製造方法。
A method for producing a non-contaminating ceramic component for a semiconductor manufacturing apparatus, comprising a ceramic sintered body having a sintered body density of 98% or more and having a surface roughness Ra of 1 μm or less at least on a main surface exposed in a processing chamber of a semiconductor manufacturing apparatus. There,
A cleaning liquid containing at least one of an aromatic hydrocarbon compound and a nonionic surfactant, wherein the concentration of the aromatic hydrocarbon compound is in the range of 5 to 10% by mass, and the nonionic surfactant A cleaning step of cleaning the surface of the ceramic component by immersing the ceramic component in a cleaning solution having a concentration of 10 to 20% by mass ;
Heating the ceramic component in a temperature range of 400 to 700 ° C .;
The semiconductor manufacturing apparatus characterized by comprising a step of confirming that the amount of carbon detected by the depth from the surface in 5nm deeper of the ceramic component I by the X-ray photoelectron spectroscopy is less than 5 mass%, the For manufacturing non-contaminating ceramic parts.
焼結体密度98%以上のセラミックス焼結体からなり、少なくとも半導体製造装置の処理室内で暴露される主面の表面粗さがRa1μm以下である半導体製造装置用非汚染性セラミックス部品の装着方法であって、
芳香族炭化水素系化合物及び非イオン系界面活性剤のうち少なくとも一方を含む洗浄液であって、芳香族炭化水素系化合物の濃度が5〜10質量%の範囲にあり、非イオン系界面活性剤の濃度が10〜20質量%である洗浄液に前記セラミックス部品を浸漬することにより、前記セラミックス部品の表面を洗浄する洗浄工程と、
400〜700℃の温度範囲で前記セラミックス部品を加熱処理する工程と、
真空中または不活性ガスを充填した密閉容器内で前記セラミックス部品を保存する工程と、
クラス1000以上の清浄度を有するクリーンルームで前記容器を開封する工程と
X線光電子分光法によって前記セラミックス部品の表面から5nm以深での深さで検出される炭素量5mass%以下であることを確認した上で前記セラミックス部品を半導体製造装置に装着する工程と、を含んでいることを特徴とする半導体製造装置用非汚染性セラミックス部品の装着方法。
A method for mounting a non-contaminating ceramic component for a semiconductor manufacturing apparatus, comprising a ceramic sintered body having a sintered body density of 98% or more and having a surface roughness Ra of 1 μm or less at least on a main surface exposed in a processing chamber of the semiconductor manufacturing apparatus. There,
A cleaning liquid containing at least one of an aromatic hydrocarbon compound and a nonionic surfactant, wherein the concentration of the aromatic hydrocarbon compound is in the range of 5 to 10% by mass, and the nonionic surfactant A cleaning step of cleaning the surface of the ceramic component by immersing the ceramic component in a cleaning solution having a concentration of 10 to 20% by mass ;
Heating the ceramic component in a temperature range of 400 to 700 ° C .;
Storing the ceramic parts in a vacuum or in an airtight container filled with an inert gas;
Opening the container in a clean room having a cleanliness of class 1000 or higher ;
Step in which the carbon amount detected at a depth of the surface from 5nm deeper of the ceramic component I by the X-ray photoelectron spectroscopy is attached to the semiconductor manufacturing apparatus the ceramic component after confirming that or less 5 mass% And a method for mounting a non-contaminating ceramic component for a semiconductor manufacturing apparatus.
JP2007142479A 2007-05-29 2007-05-29 Manufacturing method and mounting method of ceramic parts for semiconductor manufacturing Active JP4928354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142479A JP4928354B2 (en) 2007-05-29 2007-05-29 Manufacturing method and mounting method of ceramic parts for semiconductor manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142479A JP4928354B2 (en) 2007-05-29 2007-05-29 Manufacturing method and mounting method of ceramic parts for semiconductor manufacturing

Publications (2)

Publication Number Publication Date
JP2008297136A JP2008297136A (en) 2008-12-11
JP4928354B2 true JP4928354B2 (en) 2012-05-09

Family

ID=40171006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142479A Active JP4928354B2 (en) 2007-05-29 2007-05-29 Manufacturing method and mounting method of ceramic parts for semiconductor manufacturing

Country Status (1)

Country Link
JP (1) JP4928354B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218986A (en) * 2011-04-11 2012-11-12 Taiheiyo Cement Corp Method for storing composite ceramic member
WO2016052010A1 (en) * 2014-09-29 2016-04-07 住友大阪セメント株式会社 Corrosion-resistant member, member for electrostatic chuck, and process for producing corrosion-resistant member
JP6156446B2 (en) * 2014-09-29 2017-07-05 住友大阪セメント株式会社 Corrosion-resistant member, electrostatic chuck member, and method of manufacturing corrosion-resistant member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319965A (en) * 1992-05-20 1993-12-03 Hitachi Metals Ltd Method for metallizing base of sintered material of aluminum nitride
JP3469952B2 (en) * 1994-11-15 2003-11-25 信越化学工業株式会社 Storage method of high-temperature high-vacuum container and jig
JPH11176917A (en) * 1997-12-09 1999-07-02 Tokin Corp Wafer holding jig and chemical vapor deposition device
JP2002241177A (en) * 2001-02-13 2002-08-28 Nihon Ceratec Co Ltd Aluminum nitride sintered body having excellent degassing property
JP2004277227A (en) * 2003-03-17 2004-10-07 Toshiba Ceramics Co Ltd Washing method for aluminum nitride ceramics member, and aluminum nitride ceramics member
JP2005083599A (en) * 2003-09-04 2005-03-31 Trecenti Technologies Inc Clean room and its control method
KR20090085049A (en) * 2006-10-06 2009-08-06 아사히 테크 가부시끼가이샤 Corrosion-resistant member and method for producing the same

Also Published As

Publication number Publication date
JP2008297136A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
TWI376275B (en) Wet cleaning of electrostatic chucks
JP5363992B2 (en) Extending the lifetime of yttrium oxide as a plasma chamber material
JP2010523300A (en) Method for cleaning surface metal contamination from electrode assemblies
JP4928354B2 (en) Manufacturing method and mounting method of ceramic parts for semiconductor manufacturing
JP3103646B2 (en) Alumina veljer
JP2008016709A (en) Electrostatic chuck and manufacturing method therefor
JP4813321B2 (en) Cleaning method for electrostatic chuck
US8347744B2 (en) Sample holder, sample suction device using the same, and sample processing method
KR20190039946A (en) Sticky structure
Yushin et al. Study of fusion bonding of diamond to silicon for silicon-on-diamond technology
JP4903322B2 (en) Yttrium oxide material
KR100618533B1 (en) Ceramic susceptor and a method of cleaning the same
JP6855298B2 (en) Transport fixing jig
JP3962756B1 (en) Inspection method of ceramic parts
WO2007119648A1 (en) Gas purifying apparatus and semiconductor manufacturing apparatus
JP2000169246A (en) Silicon carbide sintered compact
JP2004200620A (en) Electrostatic chuck and its manufacturing method
JP2010135744A (en) Suction carrier member and substrate carrier device using the same
US20080257380A1 (en) Process of cleaning a substrate for microelectronic applications including directing mechanical energy through a fluid bath and apparatus of same
KR20180102571A (en) Absence of wit
TWI798859B (en) Clamping jig, manufacturing method of clamping jig, and cleaning apparatus
JP7514947B2 (en) Clamping fixture and cleaning device
KR20180102572A (en) Absence of wit
Salim Contamination and Wettability: Rare Earth Oxides
WO2002067312A1 (en) Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250