JP4923377B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP4923377B2
JP4923377B2 JP2003138270A JP2003138270A JP4923377B2 JP 4923377 B2 JP4923377 B2 JP 4923377B2 JP 2003138270 A JP2003138270 A JP 2003138270A JP 2003138270 A JP2003138270 A JP 2003138270A JP 4923377 B2 JP4923377 B2 JP 4923377B2
Authority
JP
Japan
Prior art keywords
cross
crosspiece
sectional area
crosspieces
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003138270A
Other languages
Japanese (ja)
Other versions
JP2004342477A (en
Inventor
田中  裕幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2003138270A priority Critical patent/JP4923377B2/en
Publication of JP2004342477A publication Critical patent/JP2004342477A/en
Application granted granted Critical
Publication of JP4923377B2 publication Critical patent/JP4923377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、桟が網状に繋がった格子体を極板に用いた電池に関する。
【0002】
【従来の技術】
鉛蓄電池の極板に用いる格子体は、エキスパンド(展開)によって作製される場合がある。このエキスパンドによって格子体を製造する方法の一つであるロータリー方式は、図4に示すように、鉛シート1を長手方向に搬送しながら、まず上下の円板カッタロール2の間を通すことにより、この鉛シート1にスリット1aを千鳥状に多数形成し、次にこの鉛シート1を幅方向に引き広げて展開することにより、多数の桟1bを網状に繋げた格子体を作製するものである。
【0003】
上記各スリット1aは、上下の円板カッタロール2の各円板カッタにより、鉛シート1を幅方向の各段ごとに千鳥状に切り離したものであり、この幅方向に隣接するスリット1a間がそれぞれ桟1bとなる。また、鉛シート1の搬送方向に間欠的に連続するスリット1aと、これに幅方向に隣接するスリット1aとの間で形成される複数の桟1bが同一段上のものとなる。なお、図4に示す例では、鉛シート1の幅方向の中央部には桟1bを形成しないようにして、その両側にそれぞれ多数段にわたって桟1bを形成している。
【0004】
上記鉛シート1は、チェーン展開装置3,3によって展開される。チェーン展開装置3,3は、鉛シート1の幅方向の両側に、搬送方向の下流側ほど間隔が開いた八の字形状に配置され、搬送されて来る鉛シート1の両端部を順次係止することにより、この鉛シート1を幅方向、即ち段の間が広がる方向に引き広げるものである。従って、鉛シート1は、各スリット1aの間が幅方向に広がることにより、各段の桟1bがジグザグ状に折れ曲がり、全体として網状に繋がることになる。
【0005】
このようにして展開された鉛シート1は、搬送方向に沿って所定間隔ごとに切断されると共に、幅方向にも2分割されて、この分割された中央部分に集電用の耳を形成することにより格子体となる。そして、各格子体の網状の桟1bの間に活物質を充填することにより正負極の極板となり、これらの極板を電槽に収納して電解液を注入することにより鉛蓄電池となる。
【0006】
ここで、上記鉛蓄電池の極板では、充填した活物質のみが充放電に関与するので、桟1bの断面積は、できるだけ小さい方が、この極板に占める格子体の容積(重量)を少なくすることができ、電池の容量(重量)密度を高めることができる。しかしながら、鉛蓄電池の極板は、格子体の桟1bを通して集電を行うにもかかわらず、この桟1bは、充放電に伴って電解液による腐食が進行するために、断面積が小さすぎると、この腐食によりさらに断面積が縮小して電気抵抗が増大したり桟切れを生じるおそれがある。そして、このように桟1bが桟切れを起こしたり電池抵抗が増大すると、その桟1bよりも集電を行う耳から遠い位置に充填された活物質の集電を阻害することになり、充放電に関与する活物質が減少することになって、電池容量が低下し電池寿命が短縮されることになる。
【0007】
そこで、鉛シート1の幅方向の両端側の段に形成された桟1bほど断面積が小さくなるようにして、集電を大きく阻害することなく、電池の容量密度を高めることができるようにした発明が従来からなされている(例えば、特許文献1参照。)。この発明では、鉛シート1の幅方向の中央部の段の桟1bは、断面積が大きいので、電池の容量密度を高めることにはならないが、幅方向の両端部の段の桟1bの断面積を小さくすることにより、電池の容量密度を高めることができるようになる。しかも、格子体の集電用の耳に近いために、桟切れ等により集電が大きく阻害される可能性のある中央部の段の桟1bは、断面積が大きいので腐食の影響を受け難くなるが、幅方向の両端部の段の桟1bは、腐食により桟切れ等を起こしたとしても、耳から遠いために、その桟1bよりもさらに遠い位置に充填された活物質の量が少なくなるので、集電を阻害されるようなことがほとんどない。
【0008】
また、、鉛シート1の幅方向の両端側の段に形成された桟1bほど断面積が大きくなるようにした発明も従来からなされている(例えば、特許文献2参照。)。この発明は、鉛シート1の展開時の引っ張り応力等により、幅方向の両端側の段に形成された桟1bほど桟切れが生じ易くなるため、この両端側の段の桟1bの断面積を大きくして機械強度を高めるようにしたものである。
【0009】
【特許文献1】
特開昭58−209066号公報(請求項2)
【特許文献2】
特開2002−117861号公報(請求項2)
【0010】
【発明が解決しようとする課題】
ところが、上記のように、格子体の桟1bの断面積を段に応じて変化させる場合、従来は、桟1bの断面積が等しい段をできるだけ多くして段階的に大まかに変化させていたために、隣接する段間でこの断面積が急激に変化する部分が生じていた。このように桟1bの断面積が等しい段を多くするのは、例えば上記ロータリー方式の場合には、同じ厚さの円板カッタを多数用いることにより部品の共通化を図ることができるようになり、厚さの異なる円板カッタを多数種類用意する必要がなくなるからである。しかしながら、このように段間で桟1bの断面積が急激に変化すると、鉛シート1の展開時に、断面積が急激に変化した段の桟1bに引っ張り応力が集中し、桟切れや亀裂を生じ易くなるという問題が発生する。特に、1箇所の段間でのみ、又は、少数箇所の段間でのみ桟の断面積が1割を超えて大きく変化していた場合に、このような段の桟1bに桟切れや亀裂が生じ易くなることが多い。
【0011】
本発明は、かかる事情に対処するためになされたものであり、格子体の桟の断面積の変化の比を90%以上110%以下の範囲内とすることにより、展開時に桟切れや亀裂の生じ難い格子体を極板に用いた電池を提供することを目的としている。
【0012】
【課題を解決するための手段】
請求項1の発明は、金属シートを、中央部に格子体の上額部が形成され、両端部に格子体の下額部が形成されるようにロータリー式エキスパンド加工によって段ごとに千鳥状に切り離して桟を形成するとともに段の間が広がる方向に展開することにより各桟を網状に繋げた格子体を極板に用いた電池において、各段の桟の断面積が0.30mm以上、1.60mm 以下の範囲内で、上額部および下額部に繋がる最も両端側の段の桟とこの両端側の桟に繋がる段の桟を除く桟を、その断面積とこれに隣接する段の桟の断面積との比が90%以上110%以下の範囲内になるように、1段以上ごとに変化させたことを特徴とする。
【0013】
請求項1の発明によれば、格子体の各桟の断面積が最小でも0.30mm以上、最大でも1.60mm以下の範囲内で、極端に小さくなったり大きくなったりするようなことがないと共に、格子体の段間での桟の断面積の変化がいずれも1割以内となるので、展開時に特定の段の桟に応力が特に集中するようなことがなくなり、桟切れや亀裂の発生を防止することができるようになる。桟の断面積が0.30mm未満になると、桟が細くなりすぎて、他の段の桟の断面積の大きさにかかわりなく展開時に桟切れが頻発するようになる。また、桟の断面積が1.60mmを超えると、桟1bとして太すぎるために、電池の容量密度が低下しすぎる。桟の断面積が1段ごとに変化する場合には、全ての隣接する段の桟の断面積が相違することになり、これら全ての桟の断面積の比が100±10%の範囲内となる。また、桟の断面積が2段以上ごとに変化する場合には、桟の断面積が等しく比が100%となる段が2段以上連続し、かつ、この桟の断面積が変化する段でも、これら隣接する段の桟の断面積の比が100±10%の範囲内となる。この桟の断面積の比は、一部の段では1段ごとに変化し、他の段では2段以上ごとに変化してもよい。また、この桟の断面積は、通常は段の並び方向に沿って徐々に小さくなるか大きくなる単調な変化であるが、例えば徐々に小さくなっていた断面積が端部でのみ再び大きくなるように変化してもよい。
【0014】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0015】
図1は本発明の一実施形態を示すものであって、ロータリー方式によって製造された展開後の鉛シートの部分平面図である。なお、図4に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。
【0016】
本実施形態は、従来例と同様に、ロータリー方式によって作製された格子体を極板に用いた鉛蓄電池について説明する。従って、この鉛蓄電池の極板の格子体は、図4に示したように、鉛シート1を長手方向に搬送しながら、まず上下の円板カッタロール2の間を通すことにより、この鉛シート1にスリット1aを千鳥状に多数形成し、次にこの鉛シート1を幅方向に引き広げて展開することにより、多数の桟1bを網状に繋げて作製される。
【0017】
上記格子体は、図1に示すように、各段の桟1bの桟幅W(iは1〜12の段数)が段に応じて変化するように作製されている。そして、本実施形態では、シート厚が均一な鉛シート1を用いるので、各段の桟1bの断面積は、これらの桟幅Wと鉛シート1のシート厚との積となり、この各段の桟1bの桟幅Wの変化に比例して断面積も変化することになる。ただし、これら各段の桟1bの断面積は、最小でも0.30mm以上、最大でも1.60mm以下の範囲内となるように制限している。桟1bの断面積が0.30mm未満になると、この桟1bが細くなりすぎるために、他の段の桟1bの断面積の大きさにかかわりなく、展開時の応力により桟切れが頻発するようになるからである。また、桟1bの断面積が1.60mmを超えると、たとえ一部の段の桟1bだけであっても、桟1bとして太すぎるために、他の段の桟1bを多少細くしたとしても、電池の容量密度が低下しすぎるからである。しかも、このような太い桟1bは、他の段の桟1bの断面積の大きさに影響されて桟切れが生じ易くなったり亀裂が発生するようなこともなくなる。
【0018】
ここで、格子体の段とは、一般的には、展開前の桟1bが展開方向とはほぼ直交する方向にほぼ1列に並んだその並びをいい、鉛シート1には、このような桟1bの段が展開方向、即ち幅方向に多数段にわたって形成される。また、極板に用いられる格子体は、上方の上額部と下方の下額部との間に、上方から下方に掛けて多数段の桟1bを網状に繋げてたものであり、上額部からさらに上方に向けて集電用の耳を突設している。そして、本実施形態の鉛シート1は、中央部に集電用の耳を形成して格子体を切り出すので、この中央部が各格子体の上額部となり両端部が下額部となって、この上額部となる中央部から両端側に掛けて、桟1bが多数段にわたって対称的に形成されることになる。
【0019】
上記各段の桟1bの桟幅Wは、中央部の桟幅Wから両端部の桟幅W11に掛けてほぼ2段ごとに細くなるように形成され、これによって特許文献1の発明と同様に極板の容量密度を高めるようにしている。ただし、下額部に繋がる最も両端側の段の桟1bの桟幅W12は、展開時の引っ張り応力が最初に大きく加わるために、その内側の桟幅W11よりも少し太くなるように形成して、この下額部での桟切れの発生を防止している。このように各段の桟1bの桟幅Wを変化させるには、図4に示した円板カッタロール2の各円板カッタの厚さを変化させればよい。
【0020】
また、上記各段の桟1bの断面積は、隣接する段の桟1bの断面積との比が90%以上110%以下の範囲内となっている。即ち、各段の桟1bの断面積は、その桟1bの桟幅Wに比例するので、全ての隣接する段での桟幅Wの比、即ちW/Wj+1(j=1〜11)とW/Wk−1(k=2〜12)が共に0.9以上1.1以下の範囲内となる。本実施形態の場合、上額から下額にかけて桟1bの桟幅Wが細くなるのは、2段目から3段目、4段目から5段目、6段目から7段目及び8段目から9段目であり、太くなるのは11段目から12段目なので、W/WとW/WとW/WとW/WとW11/W12及びこれらの逆数が全て0.9以上1.1以下の範囲内となり、他の全ての段間ではほぼ1.0となる。
【0021】
上記構成によれば、格子体の段間での桟1bの断面積の変化がいずれも1割以内となるので、この断面積が特定の段間で急激に変化するようなことがなくなり、展開方向(幅方向)の各段で徐々に大きくなったり小さくなる。従って、展開時に特定の段の桟1bに応力が特に集中するようなことがなくなるので、このような桟1bに桟切れが発生したり亀裂が生じるのを防止することができるようになり、格子体の作製時の製造不良を減少させると共に、この格子体を極板に用いた鉛蓄電池の寿命性能を向上させることができるようになる。
【0022】
なお、上記実施形態では、シート厚が均一な鉛シート1を用いたので、桟1bの桟幅を変えることにより断面積を変化させていたが、シート厚が異なる鉛シート1を用いた場合には、桟1bの桟幅を変えることなく断面積を変化させることができるようになる。例えば幅方向の中央部で最も厚く、両端側ほど薄くなるようにすると共に、両端部の端だけ再び少し厚くなるような鉛シート1を用いれば、桟1bの桟幅を均一にしても、この桟1bの断面積に上記実施形態のような段に応じた変化を付けることができる。もっとも、この鉛シート1のシート厚を変えると共に、桟1bの桟幅も変えることにより、この桟1bの断面積を変化させるようにしてもよい。鉛シート1のシート厚が幅方向にのみ変化する場合には、各桟1bの断面積はこの桟1bの長さ方向のどの部分でもほぼ一定となるが、このシート厚が長手方向(搬送方向)でも変化する場合には、各桟1bの断面積が一定しない。また、各桟1bを切り離すためのスリット1aが完全に長手方向に沿わずに僅かに傾斜していて、桟幅がこの桟1bの長さ方向で異なるようになっている場合にも、各桟1bの断面積が一定しない。ただし、このような桟1bの断面積の変化は僅かであるため、これらの断面積の平均値をその桟1bの断面積とする。
【0023】
また、上記実施形態では、各段の桟1bの断面積をほぼ2段ごとに変化させていたが、この断面積の変化が1割を超えない範囲内であれば、もっと多数の段ごとに変化させることができ、逆に1段ごとに変化させることもできる。鉛シート1のシート厚が段ごとではなく徐々に連続的に変わる場合には、桟1bの桟幅が均一であれば、断面積は1段ごとに変化することになる。ただし、桟1bの桟幅を変えて断面積を変化させる場合には、この断面積を2段ごとに変化させることにより、上下の円板カッタロール2で同じ厚さの円板カッタを1組ずつ用いることができるが(実際には中央部で対称となるため両側にも同じ厚さの円板カッタが用いられる)、1段ごとに変化させると、上下の円板カッタロール2でも、少しずつ厚さの異なる円板カッタを用いる必要が生じ、使用する円板カッタの種類が増加する。
【0025】
また、上記実施形態では、鉛シート1をロータリー式エキスパンド加工によって作製した格子体を極板に用いる鉛蓄電池について説明したが、このように作製した格子体を極板に用いる電池であれば、他の種類の電池も同様に実施可能であり、鉛シート1以外の金属シートを用いて格子体を作製することもできる。
【0026】
【実施例】
従来例と実施例の格子体について、図2及び図3に基づき、桟1bの断面積の比を比較する。この従来例と実施例の格子体では、桟1bが21段にわたって形成され、上記実施形態と同様に、上額に最も近い桟1bの断面積を最大として、下額に近付くほど1段以上ごとに断面積が小さくなり、最も下額に近い桟1bの断面積のみ少し大きくした格子体について示す。
【0027】
図2及び図3では、上記従来例と実施例の格子体の各段の桟1bの断面積の変化を、「最大の断面積に対する比」(細い破線で示す)、即ち上額に最も近い桟1bの断面積を100%としたときの各段の桟1bの断面積の比(%)と、「隣接する段の断面積の比」(太い実線で示す)、即ち上額側に隣接する段の桟1bの断面積を100%としたときの各段の桟1bの断面積の比(%)とを示している。
【0028】
従来例の格子体の各桟1bの最大の断面積に対する比は、図2の細い破線で示すように、上額側から各桟1bの断面積を3段ごとに3段階にわたって、それぞれ10%を超えて小さくすると共に、下額に最も近い桟1bの断面積を10%を超えて大きくしている。また、10段目〜20段目の多数段にわたって、各桟1bの断面積を等しくして最小の大きさとしている。従って、各桟1bの「隣接する段の断面積の比」は、図2の太い実線で示すように、断面積が変化する段の全てで90%よりも低くなり、最も変化の大きい10段目の桟1bでは85%近くまで低下する。また、下額に最も近い21段目の桟1bも、117%程度まで大きく変化する。
【0029】
これに対して、実施例の格子体の各桟1bの「最大の断面積に対する比」は、図3の細い破線で示すように、上額側から各桟1bの断面積をまず2段ごとに4段階にわたって5%前後ずつ小さくし、次に4段ごとに2段階にわたって5%前後ずつ小さくすると共に、下額に最も近い桟1bの断面積を4%程度大きくしている。また、桟1bの断面積が最も小さい17段目〜20段目も4段だけとなる。従って、各桟1bの「隣接する段の断面積の比」は、図3の太い実線で示すように、断面積が変化する段のほとんどで95%を僅かに下回る程度であり、最も変化の大きい13段目の桟1bでも93%程度までしか低下しない。また、下額に最も近い21段目の桟1bも、106%程度までしか変化しない。
【0030】
この結果、従来例の格子体では、各段の桟1bの断面積とこれに隣接する段の桟1bの断面積との比が、この断面積が変化する全ての段で、90%以上110%以下の範囲(図2のドットハッチングで示す領域)を超えることとなり、このために展開時にこれらの桟1bで桟切れや亀裂が生じ易くなっていた。しかしながら、実施例の格子体では、各段の桟1bの断面積とこれに隣接する段の桟1bの断面積との比が、いずれの段でも、90%以上110%以下の範囲(図3のドットハッチングで示す領域)内となり、これによって展開時にこれらの桟1bで桟切れや亀裂が生じ難くなった。
【0031】
【発明の効果】
以上の説明から明らかなように、本発明の電池によれば、極板に用いる格子体の段間での桟の断面積の変化が1割以内となるので、この格子体の製造時の展開工程で特定の段の桟に応力が特に集中するようなことがなくなり、桟切れや亀裂の発生を防止して、製造不良による歩留りの低下や電池の寿命性能の低下をなくすことができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すものであって、ロータリー方式によって製造された展開後の鉛シートの部分平面図である。
【図2】従来例を示すものであって、格子体の各段の桟の断面積の変化を示すグラフである。
【図3】実施例を示すものであって、格子体の各段の桟の断面積の変化を示すグラフである。
【図4】ロータリー方式による格子体の製造方法を説明するための平面図である。
【符号の説明】
1 鉛シート
1b 桟
〜W12 桟幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery using a grid body in which bars are connected in a net shape as an electrode plate.
[0002]
[Prior art]
The lattice used for the electrode plate of a lead storage battery may be produced by expanding (developing). As shown in FIG. 4, the rotary method, which is one of the methods for manufacturing a lattice body by using this expand, first passes between the upper and lower disk cutter rolls 2 while conveying the lead sheet 1 in the longitudinal direction. In this lead sheet 1, a large number of slits 1a are formed in a staggered manner, and then the lead sheet 1 is expanded in the width direction and expanded to produce a lattice body in which a large number of bars 1b are connected in a net shape. is there.
[0003]
Each of the slits 1a is obtained by separating the lead sheets 1 in a zigzag manner for each step in the width direction by the disk cutters of the upper and lower disk cutter rolls 2, and between the adjacent slits 1a in the width direction. Each becomes a cross 1b. A plurality of bars 1b formed between the slit 1a intermittently continuous in the conveying direction of the lead sheet 1 and the slit 1a adjacent thereto in the width direction are on the same stage. In addition, in the example shown in FIG. 4, the crosspiece 1b is formed in the center part of the width direction of the lead sheet 1 so that it may not form the crosspiece 1b over both sides, respectively.
[0004]
The lead sheet 1 is developed by the chain unfolding devices 3 and 3. The chain unfolding devices 3 and 3 are arranged in an eight-letter shape on both sides in the width direction of the lead sheet 1 and spaced apart toward the downstream side in the transport direction, and sequentially lock both ends of the lead sheet 1 being transported. By doing so, this lead sheet 1 is expanded in the width direction, that is, the direction in which the space between the steps widens. Therefore, in the lead sheet 1, when the space between the slits 1a spreads in the width direction, the crosspieces 1b of each step are bent in a zigzag shape, and connected as a net as a whole.
[0005]
The lead sheet 1 developed in this way is cut at predetermined intervals along the conveying direction, and is also divided into two in the width direction to form current collecting ears in the divided central portion. Thus, a lattice body is obtained. Then, positive and negative electrode plates are formed by filling the active material between the grid-like bars 1b of each grid, and a lead storage battery is formed by storing these electrode plates in a battery case and injecting an electrolyte.
[0006]
Here, in the electrode plate of the lead storage battery, only the filled active material is involved in charging / discharging. Therefore, the smaller the cross-sectional area of the crosspiece 1b, the smaller the volume (weight) of the grid body occupied in the electrode plate. Battery capacity (weight) density can be increased. However, even though the electrode plate of the lead storage battery collects current through the grid bars 1b, the cross section of the bars 1b is too small because corrosion due to the electrolytic solution proceeds with charge / discharge. This corrosion may further reduce the cross-sectional area and increase the electrical resistance or cause crossing. When the crosspiece 1b breaks out or the battery resistance increases in this way, current collection from a position farther from the ear that collects the current than the crosspiece 1b is obstructed, and charging / discharging As a result, the active material involved in the battery is reduced, so that the battery capacity is lowered and the battery life is shortened.
[0007]
Therefore, the cross-sectional area of the crosspieces 1b formed at the steps on both ends in the width direction of the lead sheet 1 is made smaller so that the capacity density of the battery can be increased without significantly hindering current collection. The invention has been made conventionally (see, for example, Patent Document 1). In the present invention, the crosspiece 1b in the central portion in the width direction of the lead sheet 1 has a large cross-sectional area, so that the capacity density of the battery is not increased. By reducing the area, the capacity density of the battery can be increased. Moreover, since the grid is close to the current collecting ears, the central crosspiece 1b, which is likely to interfere with current collection due to a crosspiece or the like, has a large cross-sectional area and is not easily affected by corrosion. However, even if the crosspieces 1b at both ends in the width direction are cut off due to corrosion, they are far from the ears, so that the amount of the active material filled at a position farther than the crosspieces 1b is small. As a result, current collection is hardly inhibited.
[0008]
In addition, an invention in which the cross-sectional area of the crosspiece 1b formed in the steps on both ends in the width direction of the lead sheet 1 has been conventionally made (see, for example, Patent Document 2). In the present invention, the crosspieces 1b formed at the steps on both ends in the width direction are more likely to be broken due to tensile stress or the like when the lead sheet 1 is deployed. It is made larger to increase the mechanical strength.
[0009]
[Patent Document 1]
JP 58-209066 A (Claim 2)
[Patent Document 2]
JP 2002-117861 A (Claim 2)
[0010]
[Problems to be solved by the invention]
However, as described above, when the cross-sectional area of the crosspiece 1b of the lattice body is changed according to the level, conventionally, the number of steps with the same cross-sectional area of the crosspiece 1b is increased as much as possible, so that it is roughly changed stepwise. In other words, there was a portion where the cross-sectional area suddenly changed between adjacent steps. In this way, the number of steps having the same cross-sectional area of the crosspiece 1b is increased, for example, in the case of the rotary system, it is possible to achieve common parts by using a large number of disc cutters having the same thickness. This is because it is not necessary to prepare many kinds of disc cutters having different thicknesses. However, if the cross-sectional area of the crosspiece 1b changes abruptly between the steps in this way, when the lead sheet 1 is deployed, tensile stress concentrates on the crosspiece 1b of the step where the cross-sectional area changes abruptly, resulting in a crosspiece or crack. The problem that it becomes easy occurs. In particular, when the cross-sectional area of the crosspieces is greatly changed by more than 10% only at one stage or only between a few stages, the crosspieces or cracks are formed on the crosspiece 1b. Often it tends to occur.
[0011]
The present invention has been made in order to cope with such a situation. By setting the ratio of the change in the cross-sectional area of the crosspieces of the lattice in the range of 90% or more and 110% or less, the crosspieces and cracks at the time of deployment can be obtained. An object of the present invention is to provide a battery using a grid that hardly occurs as an electrode plate.
[0012]
[Means for Solving the Problems]
In the invention of claim 1, the metal sheet is staggered for each step by rotary expansion so that the upper frame portion of the lattice body is formed at the center and the lower frame portion of the lattice body is formed at both ends. In a battery using a grid body that is formed by separating and forming the crosspieces and expanding in the direction in which the steps spread, the crosspieces of the crosspieces of each step being 0.30 mm 2 or more, 1. Within the range of 60 mm 2 or less, the cross-sectional area and the crosspieces of the crosspieces excluding the crosspieces at the most ends connected to the upper and lower forehead parts and the crosspieces connected to the crosspieces at both ends are adjacent to the cross section. It is characterized in that it is changed for each step or more so that the ratio of the cross-sectional area of the step crosspieces is in the range of 90% to 110%.
[0013]
According to the present invention, the cross-sectional area of each bar of the grid body is 0.30 mm 2 or more at a minimum, in the range of 1.60 mm 2 or less at maximum, it as or become extremely small becomes or larger In addition, there is no change in cross-sectional area of the crosspieces between the steps of the grid body within 10%. Can be prevented. When the cross-sectional area of the crosspiece is less than 0.30 mm 2 , the crosspiece becomes too thin, and crosspieces frequently occur during deployment regardless of the size of the cross-sectional area of the crosspieces at other stages. On the other hand, when the cross-sectional area of the crosspiece exceeds 1.60 mm 2 , the capacity density of the battery is too low because the crosspiece 1b is too thick. If the cross-sectional area of the crosspieces changes every stage, the cross-sectional areas of all adjacent crosspieces will be different, and the ratio of the cross-sectional areas of all these crosspieces will be within the range of 100 ± 10%. Become. Also, when the cross-sectional area of the crosspiece changes every two or more stages, even if the cross-sectional area of the crosspieces is equal to 100% and the cross-sectional area of this crosspiece changes even if two or more stages are continuous. The ratio of the cross-sectional areas of these adjacent steps is within a range of 100 ± 10%. The ratio of the cross-sectional areas of the crosspieces may change for each stage in some stages, and may change for every two or more stages in other stages. In addition, the cross-sectional area of the crosspiece is normally a monotonous change that gradually decreases or increases along the step arrangement direction. For example, the cross-sectional area that has gradually decreased is increased only at the end. It may change to.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0015]
FIG. 1 shows an embodiment of the present invention and is a partial plan view of a developed lead sheet manufactured by a rotary method. In addition, the same number is attached | subjected to the structural member which has the function similar to the prior art example shown in FIG.
[0016]
In the present embodiment, as in the conventional example, a lead storage battery using a grid body produced by a rotary method as an electrode plate will be described. Therefore, as shown in FIG. 4, the grid body of the electrode plate of the lead storage battery first passes the lead sheet 1 between the upper and lower disk cutter rolls 2 while conveying the lead sheet 1 in the longitudinal direction. A large number of slits 1a are formed in a staggered pattern in 1 and then the lead sheet 1 is expanded and expanded in the width direction, whereby a large number of bars 1b are connected in a net shape.
[0017]
As shown in FIG. 1, the lattice body is manufactured such that the crosspiece width W i (i is the number of stages of 1 to 12) of the crosspiece 1 b of each stage changes according to the stage. In the present embodiment, since the sheet thickness using a uniform lead sheet 1, the cross-sectional area of the crosspiece 1b of each stage becomes these桟幅W i and the sheet thickness Metropolitan product of lead sheet 1, the respective stages also it changed the cross-sectional area in proportion to the change in桟幅W i of the crosspiece 1b. However, these cross-sectional area of the crosspiece 1b of each stage, minimum 0.30 mm 2 or more are also limits such that 1.60 mm 2 within the range at the maximum. When the cross-sectional area of the crosspiece 1b is less than 0.30 mm 2 , the crosspiece 1b becomes too thin, so that the crosspieces frequently break due to the stress at the time of deployment regardless of the size of the cross-sectional area of the crosspiece 1b at the other stage. Because it becomes like this. Further, when the cross-sectional area of the crosspiece 1b exceeds 1.60 mm 2, even if only if crosspiece 1b of some stages, because too large a crosspiece 1b, also the crosspiece 1b of the other stages though somewhat thinner This is because the capacity density of the battery is too low. Moreover, such a thick beam 1b is not affected by the size of the cross-sectional area of the beam 1b at the other stage, so that the beam is not easily cut or cracked.
[0018]
Here, the step of the grid body generally refers to an arrangement in which the crosspieces 1b before development are arranged in almost one row in a direction substantially orthogonal to the development direction. The steps of the crosspiece 1b are formed over a number of steps in the developing direction, that is, in the width direction. In addition, the grid used for the electrode plate is formed by connecting a plurality of crosspieces 1b in a net-like manner from the upper part to the lower part between the upper part of the upper frame and the lower part of the lower part. Ears for current collection project from the section further upward. And since the lead sheet 1 of this embodiment forms the ear | edge for current collection in a center part and cuts out a grid body, this center part becomes an upper frame part of each grid body, and both ends serve as a lower frame part. The crosspieces 1b are formed symmetrically over a number of stages from the central portion, which is the upper frame portion, to both ends.
[0019]
桟幅W i crosspiece 1b of each stage is formed so thin approximately every two steps over the桟幅W 1 of the central portion to桟幅W 11 at both ends, the invention of Patent Document 1 by which In the same manner as described above, the capacity density of the electrode plate is increased. However,桟幅W 12 of crosspiece 1b of the most both ends stages leading to the lower frame part is formed as to tensile stress during expansion is applied initially increased, is slightly thicker than桟幅W 11 of the inner Thus, the crossing of the lower forehead is prevented. Thus in order to change the桟幅W i crosspiece 1b of each stage, it is sufficient to vary the thickness of each disc cutter disc cutter roll 2 shown in FIG.
[0020]
Moreover, the cross-sectional area of the crosspiece 1b of each step is within the range of 90% or more and 110% or less with respect to the cross-sectional area of the adjacent crosspiece 1b. That is, the cross-sectional area of the crosspiece 1b of each stage is proportional to桟幅W i of the crosspiece 1b, the ratio of桟幅W i for all the adjacent stages, i.e. W j / W j + 1 ( j = 1~ 11) and W k / W k-1 (k = 2 to 12) are both in the range of 0.9 to 1.1. In the case of the present embodiment, the width W i of the crosspiece 1b becomes narrower from the upper forehead to the lower forehead because the second to third, fourth to fifth, sixth to seventh, and eighth steps. a ninth stage from stage, since become thick is a 12 stage from 11 stage, W 2 / W 3 and W 4 / W 5 and W 6 / W 7 and W 8 / W 9 and W 11 / W 12 and their reciprocals are all in the range of 0.9 to 1.1, and are almost 1.0 between all other stages.
[0021]
According to the above configuration, since the change in the cross-sectional area of the crosspiece 1b between the steps of the lattice body is within 10%, this cross-sectional area does not change suddenly between specific steps, and the expansion It gradually increases or decreases at each step in the direction (width direction). Accordingly, since stress is not particularly concentrated on the cross-section 1b at the time of deployment, it is possible to prevent cross-cuts or cracks from occurring on the cross-section 1b. In addition to reducing manufacturing defects during the production of the body, it is possible to improve the life performance of a lead storage battery using this grid body as an electrode plate.
[0022]
In the above embodiment, since the lead sheet 1 having a uniform sheet thickness is used, the cross-sectional area is changed by changing the crosspiece width of the crosspiece 1b. However, when the lead sheet 1 having a different sheet thickness is used. The cross-sectional area can be changed without changing the crosspiece width of the crosspiece 1b. For example, by using a lead sheet 1 that is thickest at the center in the width direction and becomes thinner toward both ends, and the edges of both ends are slightly thickened again, The cross-sectional area of the crosspiece 1b can be changed according to the step as in the above embodiment. However, the cross-sectional area of the crosspiece 1b may be changed by changing the sheet thickness of the lead sheet 1 and also changing the crosspiece width of the crosspiece 1b. When the sheet thickness of the lead sheet 1 changes only in the width direction, the cross-sectional area of each crosspiece 1b is substantially constant in any part in the lengthwise direction of the crosspiece 1b. ), However, the cross-sectional area of each crosspiece 1b is not constant. Also, when the slits 1a for separating the bars 1b are slightly inclined without being completely along the longitudinal direction, and the width of the bars is different in the length direction of the bars 1b, The cross-sectional area of 1b is not constant. However, since the change in the cross-sectional area of the crosspiece 1b is slight, the average value of these cross-sectional areas is taken as the cross-sectional area of the crosspiece 1b.
[0023]
Moreover, in the said embodiment, although the cross-sectional area of the crosspiece 1b of each step was changed about every two steps, if the change of this cross-sectional area is in the range which does not exceed 10%, every more steps. It can be changed, and conversely, it can be changed for each stage. In the case where the sheet thickness of the lead sheet 1 changes gradually instead of every step, the cross-sectional area changes every step if the crosspiece 1b has a uniform crosspiece width. However, when the cross-sectional area is changed by changing the cross-piece width of the cross-piece 1b, one set of disc cutters having the same thickness is formed by the upper and lower disc cutter rolls 2 by changing the cross-sectional area every two steps. Can be used one by one (actually, the disk cutters of the same thickness are used on both sides because they are symmetrical at the center). It becomes necessary to use disc cutters having different thicknesses, and the types of disc cutters to be used increase.
[0025]
Moreover, in the said embodiment, although the lead storage battery using the grid body which produced the lead sheet 1 by the rotary type expansion process for an electrode plate was demonstrated, if it is a battery which uses the grid body produced in this way for an electrode plate, other This type of battery can also be implemented in the same manner, and a lattice body can be produced using a metal sheet other than the lead sheet 1.
[0026]
【Example】
The cross-sectional area ratio of the crosspiece 1b is compared based on FIGS. 2 and 3 for the lattice bodies of the conventional example and the example. In the lattices of the conventional example and the example, the crosspieces 1b are formed in 21 steps. As in the above embodiment, the cross-sectional area of the crosspiece 1b closest to the upper frame is maximized, and as the lower frame is approached, every step or more Fig. 5 shows a lattice body in which the cross-sectional area is reduced and only the cross-sectional area of the crosspiece 1b closest to the lower frame is slightly increased.
[0027]
2 and 3, the change in the cross-sectional area of the crosspiece 1b of each stage of the lattice body in the above-described conventional example and the embodiment is expressed as "the ratio to the maximum cross-sectional area" (indicated by a thin broken line), that is, closest to the upper forehead. The ratio (%) of the cross-sectional area of the crosspiece 1b at each step when the cross-sectional area of the crosspiece 1b is 100% and the "ratio of the cross-sectional area of adjacent steps" (indicated by a thick solid line), that is, adjacent to the upper forehead The ratio (%) of the cross-sectional area of the crosspiece 1b at each stage when the cross-sectional area of the crosspiece 1b is 100% is shown.
[0028]
The ratio of the grid body of the conventional example to the maximum cross-sectional area of each crosspiece 1b is 10% over the three steps of the cross-sectional area of each crosspiece 1b from the upper forehead side, as shown by the thin broken line in FIG. The cross-sectional area of the crosspiece 1b closest to the lower forehead is increased by more than 10%. Moreover, the cross-sectional area of each crosspiece 1b is made equal to the minimum size over the 10th to 20th stages. Therefore, the “ratio of cross-sectional areas of adjacent steps” of each crosspiece 1b is lower than 90% in all the steps where the cross-sectional area changes, as indicated by the thick solid line in FIG. It drops to nearly 85% at the eye 1b. Further, the 21st-stage crosspiece 1b closest to the lower forehead greatly changes to about 117%.
[0029]
On the other hand, the “ratio to the maximum cross-sectional area” of each crosspiece 1b of the grid body of the embodiment is as follows. As shown by the thin broken line in FIG. In addition, the width is reduced by about 5% over four steps, then is reduced by about 5% over two steps every four steps, and the cross-sectional area of the crosspiece 1b closest to the lower frame is increased by about 4%. Further, the 17th to 20th stages having the smallest cross-sectional area of the crosspiece 1b are only four stages. Therefore, the “ratio of the cross-sectional area of the adjacent steps” of each crosspiece 1b is slightly less than 95% in most of the steps where the cross-sectional area changes, as indicated by the thick solid line in FIG. Even the large 13th crosspiece 1b is reduced only to about 93%. Moreover, the 21st-stage crosspiece 1b closest to the lower frame also changes only to about 106%.
[0030]
As a result, in the lattice body of the conventional example, the ratio of the cross-sectional area of the crosspiece 1b of each stage to the cross-sectional area of the crosspiece 1b of the adjacent stage is 90% or more and 110% in all stages where the cross-sectional area changes. % Range (area indicated by dot hatching in FIG. 2), and for this reason, the crosspieces 1b are liable to be cut off or cracked during development. However, in the lattice body of the example, the ratio of the cross-sectional area of the crosspiece 1b at each stage to the cross-sectional area of the crosspiece 1b at the adjacent stage is in the range of 90% to 110% at any stage (FIG. 3). This is within the area indicated by dot hatching), which makes it difficult for crosspieces and cracks to occur in the crosspieces 1b during development.
[0031]
【Effect of the invention】
As is clear from the above description, according to the battery of the present invention, the change in the cross-sectional area of the crosspieces between the steps of the grid used for the electrode plate is within 10%. In the process, stress is not particularly concentrated on the crosspiece at a specific stage, and it is possible to prevent the occurrence of crosspieces and cracks and to eliminate the decrease in yield and battery life performance due to manufacturing defects. Become.
[Brief description of the drawings]
FIG. 1 is a partial plan view of a developed lead sheet produced by a rotary method according to an embodiment of the present invention.
FIG. 2 is a graph showing a conventional example and showing a change in cross-sectional area of a crosspiece at each stage of a lattice.
FIG. 3 is a graph showing an embodiment and showing a change in cross-sectional area of a crosspiece at each stage of the lattice body.
FIG. 4 is a plan view for explaining a method of manufacturing a lattice body by a rotary method.
[Explanation of symbols]
1 Lead sheet 1b pier W 1 to W 12 Width

Claims (1)

金属シートを、中央部に格子体の上額部が形成され、両端部に格子体の下額部が形成されるようにロータリー式エキスパンド加工によって段ごとに千鳥状に切り離して桟を形成するとともに段の間が広がる方向に展開することにより各桟を網状に繋げた格子体を極板に用いた電池において各段の桟の断面積が0.30mm以上、1.60mm 以下の範囲内で、上額部および下額部に繋がる最も両端側の段の桟とこの両端側の桟に繋がる段の桟を除く桟を、その断面積とこれに隣接する段の桟の断面積との比が90%以上110%以下の範囲内になるように、1段以上ごとに変化させたことを特徴とする電池。A metal sheet is formed in a zigzag manner for each stage by rotary expansion so that the upper frame part of the grid is formed at the center and the lower frame part of the grid is formed at both ends , and a crosspiece is formed . in cells each crosspiece was used to plate a grid obtained by connecting the network by developing in a direction between the stage spreads, the cross-sectional area of the respective stages bars is 0.30 mm 2 or more, 1.60 mm 2 or less in the range The cross-sectional area of the crosspieces of the steps and the crosspieces of the steps adjacent to the crosspieces excluding the crosspieces of the steps connected to the upper and lower foreheads and the crosspieces connected to the crosspieces of both ends The battery is characterized in that it is changed for each stage or more so that the ratio of the ratio is in the range of 90% to 110%.
JP2003138270A 2003-05-16 2003-05-16 battery Expired - Fee Related JP4923377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138270A JP4923377B2 (en) 2003-05-16 2003-05-16 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138270A JP4923377B2 (en) 2003-05-16 2003-05-16 battery

Publications (2)

Publication Number Publication Date
JP2004342477A JP2004342477A (en) 2004-12-02
JP4923377B2 true JP4923377B2 (en) 2012-04-25

Family

ID=33527689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138270A Expired - Fee Related JP4923377B2 (en) 2003-05-16 2003-05-16 battery

Country Status (1)

Country Link
JP (1) JP4923377B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155547A2 (en) * 2007-06-19 2008-12-24 Eh Europe Gmbh An electrode plate
CN107024371A (en) * 2017-02-28 2017-08-08 卧龙电气集团股份有限公司 The quick method of testing for judging the disconnected muscle of grid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157236A (en) * 1978-06-02 1979-12-12 Yuasa Battery Co Ltd Grid body for lead storage battery
JPS6010560A (en) * 1983-06-29 1985-01-19 Furukawa Battery Co Ltd:The Substrate for lead storage battery plate
JP2560770B2 (en) * 1988-02-09 1996-12-04 新神戸電機株式会社 Expanded grid for lead-acid battery and manufacturing method thereof
JP4385557B2 (en) * 2001-10-24 2009-12-16 パナソニック株式会社 Expanded grid for battery and lead-acid battery using the same

Also Published As

Publication number Publication date
JP2004342477A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US7976588B2 (en) Storage battery with expanded grid
RU2477549C2 (en) Accumulator negative grid manufacture method
CN103959521A (en) Storage battery grid, method of manufacturing storage battery grid, and storage battery using storage battery grid
JP4923377B2 (en) battery
JP4599940B2 (en) Lead acid battery
JP5521503B2 (en) Lead acid battery
JP4385441B2 (en) Lead acid battery
JPS6021883Y2 (en) storage battery board
JP2011181491A (en) Electrode plate for lead storage battery, and lead storage battery using the same
JP5119586B2 (en) Lead-acid battery grid
JPH11233119A (en) Grating for lead-acid battery
JP4375521B2 (en) Storage battery and manufacturing method thereof
JP4380184B2 (en) Storage battery grid and lead storage battery using the same
JP2000357518A (en) Grid for lead-acid battery and its manufacture
JP2003163008A (en) Lead storage battery
JP5092183B2 (en) Lead acid battery
JPH07320743A (en) Electrode plate for lead-acid battery
JP4834912B2 (en) Manufacturing method of storage battery grid and manufacturing method of lead storage battery using storage battery grid manufactured by the manufacturing method
JP2002075380A (en) Expand grid body for lead-acid battery
JP2004146179A (en) Lead acid storage battery
JP2000215898A (en) Lead-acid battery grid body
JP2007258088A (en) Electrode plate for lead-acid storage battery
JP4069674B2 (en) Manufacturing method of expanded grid for lead-acid battery
JP5594039B2 (en) Lead plate for lead-acid battery and lead-acid battery using the same
JPH0495346A (en) Grid body for lead accumulator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees