JP5092183B2 - Lead acid battery - Google Patents
Lead acid battery Download PDFInfo
- Publication number
- JP5092183B2 JP5092183B2 JP2000307604A JP2000307604A JP5092183B2 JP 5092183 B2 JP5092183 B2 JP 5092183B2 JP 2000307604 A JP2000307604 A JP 2000307604A JP 2000307604 A JP2000307604 A JP 2000307604A JP 5092183 B2 JP5092183 B2 JP 5092183B2
- Authority
- JP
- Japan
- Prior art keywords
- lattice
- node
- expanded
- forehead
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本願発明は、エキスパンド格子を備えた鉛蓄電池に関する。
【0002】
【従来の技術】
従来のエキスパンド展開した正・負極格子では、ロータリー、レシプロといった製造方法の違いはあっても、ノード部の幅及び桟の刻み幅は格子全体に亘ってそれぞれ同じ値で揃えられており、ノード部の体積は、上額、下額から出ている1ヶ所目のノード部を除く全てのノード部において同一であり、上額、下額から出ている1ヶ所目のノード部は半分しかない為、その体積は他のノード部の半分となっていた。
【0003】
【発明が解決しようとする課題】
エキスパンド格子のノード幅や桟の刻み幅を小さくすると、エキスパンド格子の質量密度が小さくなり、電池全体の質量を小さくすることができる。
【0004】
しかしながら、従来のエキスパンド格子では、エキスパンド展開時にかかる応力、振動等に対する機械的強度が弱くなり、製造工程中に桟切れを起こしたり、電池使用に伴う腐蝕によって桟切れを起こしたりすることがあった。
【0005】
本願発明は、このようなエキスパンド格子の強度上の問題を解決し、電池の軽量化を実現することを目的とする。
【0006】
【課題を解決する為の手段】
本願第1の発明は、ロータリー方式によるエキスパンド加工を施したエキスパンド格子を正極格子または負極格子として備え、前記エキスパンド格子は、所定の一方向に延在する上額と、前記一方向に延在し、前記上額と間隔をあけて対向して配置された下額と、前記上額と前記下額とを連結する格子部と、を備え、前記格子部は、前記一方向に延在し、少なくとも2つ以上のノード部を連結する額を有しておらず、前記エキスパンド格子の前記上額及び前記下額からそれぞれ出ている1ヶ所目のノード部の体積が、2ヶ所目のノード部の体積の0.5倍より大きくなっていることを特徴とする鉛蓄電池である。
【0007】
1ヶ所目のノード部の体積を、2ヶ所目のノード部の体積の0.5倍より大きくすることで、一個所目のノード部の機械的強度および耐腐蝕性が高まり、製造工程中の桟切れや電池使用に伴う桟切れを防止できるようになり、エキスパンド格子の他の部分のノード幅や桟の刻み幅を小さくしても、エキスパンド格子の実質的な強度が維持でき、エキスパンド格子の軽量化による鉛蓄電池の軽量化が実現できる。なお、好ましくは、1ヶ所目のノード部の体積は、2ヶ所目のノード部の体積の0.7倍から1倍となっているのが良い。
【0008】
第1の発明においてさらに、桟の太さが、エキスパンド展開中央部に向かうに連れて段階的または連続的に変化し、エキスパンド展開中央部に向かうに連れて段階的または連続的に格子密度が小さくなっていることを特徴とする。
【0009】
本構造によれば、実質的な機械的強度を低下させることなく、エキスパンド格子の軽量化が可能となり、鉛蓄電池の軽量化が実現できる。これは、桟やノード部に及ぼされる振動に伴う応力はエキスパンド展開中央部に向かうに連れ小さくなる為、この方向に向かうに連れて格子密度が小さくなるようにしても、全体として機械的強度を維持できるからである。
【0010】
また、異なる太さの桟が交互に形成されているエキスパンド格子を、正極格子または負極格子として備えてもよい(第1の構造)。
【0011】
本構造によれば、格子全体に亘って機械的強度の低下を抑制しつつ、エキスパンド格子の軽量化が可能となり、鉛蓄電池の軽量化が実現できる。これは、細い部分の強度の低下を太い部分で補うことができるからである。
【0012】
また、上記第2の発明または第1の構造においてさらに、上記エキスパンド格子の上額または下額から出ている1ヶ所目のノード部の体積が、2ヶ所目のノード部の体積の0.5倍より大きくなっているようにすれば、軽量でより機械的強度に優れ、さらに耐腐蝕性にも優れた電池を提供できる(第2の構造)。
【0013】
また、上記本願第1、2の発明、第1、または第2の構造において、桟のノード部からの派生角が桟の太さにより異なり、細い桟の派生角が太い桟の派生角より小さくすれば、上記に加えさらに、細い桟の派生角を太い桟の派生角より小さくすることで、エキスパンド展開時の歪を小さくすることができる(第3の構造)。
【0014】
また、上記本願第1、2の発明、第1、2、または3の構造において、桟の派生角が30〜45°となっているようにすれば、上記に加えさらに、エキスパンド展開時等の桟にかかる引張り応力が抑えられることで、特に鉛、または鉛合金からなるエキスパンド格子の場合にその破損を抑制できる(第4の構造)。
【0015】
さらに上記本願第1、2の発明、第1、2、3、または4の構造において、上記エキスパンド格子において、格子の上額または下額から出ている1ヶ所目のノード部を除く全てのノード部において、ノード部の幅(a)の値とノード部から上下に派生する2本の桟の刻み幅(b11、b22)を足した値との比が一定に保たれているようにすれば、上記に加えさらに、派生角を小さくすることが容易となり、格子強度の向上と生産性の向上を図れる。
【0016】
【発明の実施の形態】
以下実施形態により、本願発明についてさらに詳細に説明する。
【0017】
図1は、本願第1の発明の1実施形態の鉛蓄電池に用いられるエキスパンド格子の構造を示す概略平面図である。
【0018】
エキスパンド格子は、例えば、Pb−Ca−Sn合金の鋳造物を圧延、押出等の塑性加工をし、更に圧延加工を施しシートとし、次にこのシートにエキスパンド加工を施すことにより作製できるが、この加工には、例えば、ロータリー、レシプロ等従来の方法を用いることが出来る。また、格子作製後の電池の作製も、この格子を正・負極格子として活物質を充填し正・負極板を作製する等、従来と同様にして行うことができる。
【0019】
本願発明の特徴は、正極格子または負極格子として用いられるエキスパンド格子の構造にあり、本実施形態の格子では、格子の上額および下額から出ている1ヶ所目のノード部の刻み幅b1、b6が1.4mm、このノードに続くノード部の刻み幅b2、b5が1.4mm、刻み幅b3、b4が1mm、ノード部の幅が10mmとなっており、1ヶ所目のノード部の体積は、2個所目のノード部の体積の0.58倍となっている。
【0020】
また、残りのノード部においては、ノード部から上下に派生する2本の桟の刻み幅は全て1mmとなっており、エキスパンド展開中央部の桟の太さが、外側の桟の太さに比べて小さく、格子密度も小さくなっている。なお、シート厚さは1mmであり、格子ノード部の厚さは1mmである。また、格子密度は単位面積当たりの格子質量をいい、例えば、単位面積に含まれるノード部の数が同じであれば、桟が細い方が格子質量は小さくなり、格子密度も小さくなる。また、格子全体の格子密度を算出する場合には、格子の桟部分(上額、下額、耳を除く)の質量を格子の縦×横で算出される面積(上額、下額、耳を除く)で除すことで求められる。
【0021】
図2はノード部を拡大した概略平面図である。同図に示されるように、aが本願でいうノード部の幅、b11、b22が刻み幅、C1、C2が桟のノード部からの派生角である。本実施形態のエキスパンド格子では、派生角はすべて30°となるようにしている。
【0022】
上記エキスパンド格子を用いて正・負極板を作製し、さらにこれを用いて12V、公称容量52Ahの自動車用液式鉛畜電池を試作した。なお、比較の為に、従来構造のエキスパンド格子を用いて同様に試作を行った。従来構造のエキスパンド格子は2種類で、実施形態のエキスパンド格子に比べて、刻み幅のみが異なり、一つは刻み幅がすべて1mm、もう一つは刻み幅がすべて1.4mmである。従って、いずれも1ヶ所目のノード部の体積は、2個所目のノード部の体積の0.5倍となっている。
【0023】
これら試作の結果、製造工程中の桟切れは本実施形態のもので最も少なく、1mmの従来構造のもので最も多かった。なお、1.4mmのものは1mmのものより桟切れが少なかったが、格子質量が最も大きく軽量化には適していない。
【0024】
次に、これら試作電池でJIS軽負荷寿命試験を行った結果、本実施形態の電池では、10000サイクルの寿命が得られたが、1mmの格子を用いた従来電池では7000サイクルしか得られなかった。1.4mmの格子を用いたものでは本実施形態の電池とほぼ同じサイクル寿命が得られた。
【0025】
このように、エキスパンド格子の上額または下額から出ている1ヶ所目のノード部の体積が、2ヶ所目のノード部の体積の0.5倍より大きくなっている格子を用いることで、軽量でサイクル特性に優れた電池を歩止まり良く製造することが可能となるのであるが、さらに軽量化を行うには、これに加えて、桟の太さがエキスパンド展開中央部に向かうに連れて段階的または連続的に変化し、エキスパンド展開中央部に向かうに連れて段階的または連続的に格子密度が小さくなっているエキスパンド格子を用いれば良い。
【0026】
上記実施形態のエキスパンド格子では、段階的に桟の太さが小さくなっているとも言えるが、刻み幅やノード部の幅を中央部に向かうに連れてより細かく段階的に減少させることにより、より軽量化が図れる。また、この際、派生角の調整により桟切れを抑制でき、派生角は30°〜45°の範囲となるようにするのが良い。
【0027】
また、同様に、さらなる軽量化の方法として、異なる太さの桟が交互に形成されたエキスパンド格子を用いる方法を使用することもできる。この場合も、派生角の調整により桟切れを抑制でき、派生角は30°〜45°の範囲となるようにするのが良い。
【0028】
派生角を小さくして特定の範囲にするには、格子の上額または下額から出ている1ヶ所目のノード部を除く全てのノード部において、ノード部の幅(a)の値とノード部から上下に派生する2本の桟の刻み幅(b1、b2)を足した値との比が一定に保たれているようにするのが良く、さらに、これにより格子強度の向上と生産性の向上が図れる。なお、比を一定にする場合、完全に一定である必要はなく、多少のずれがあっても良い。
【0029】
【発明の効果】
本願発明によれば、エキスパンド格子の強度上の問題を解決し、電池の軽量化を実現することが可能となる。
【図面の簡単な説明】
【図1】 深放電後の充電受け入れ特性試験
【図2】 トリクル(フロート)寿命試験
【図3】 一体化したシートの総厚みに対する鉛―スズ合金層の厚み比率および鉛―スズ合金層のスズ含有量(質量%)と蓄電池性能との関係
【図4】 図3の試験結果を蓄電池のトリクル寿命が良好である評価基準を高くして再評価した結果を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-acid battery having an expanded lattice.
[0002]
[Prior art]
In the conventional expanded positive and negative grids, the width of the node and the step width of the crosspieces are the same throughout the grid, even though there are differences in the manufacturing methods such as rotary and reciprocating. The volume of is the same in all node parts except the first node part coming out from the upper and lower forehead, and the first node part coming out from the upper and lower part is only half. The volume was half that of the other nodes.
[0003]
[Problems to be solved by the invention]
When the node width of the expanded lattice and the step width of the crosspiece are reduced, the mass density of the expanded lattice is reduced, and the mass of the entire battery can be reduced.
[0004]
However, in the conventional expanded lattice, the mechanical strength against stress, vibration, etc. applied at the time of expanding is weakened, and there is a case where a cross break occurs during the manufacturing process or a cross break occurs due to corrosion caused by battery use. .
[0005]
An object of the present invention is to solve such a problem in the strength of the expanded lattice and to realize a lighter battery.
[0006]
[Means for solving the problems]
The first invention of the present application is provided with an expanded lattice subjected to an expanding process by a rotary method as a positive electrode lattice or a negative electrode lattice, and the expanded lattice extends in a predetermined direction and extends in the one direction. A lower forehead disposed opposite to the upper forehead and a lattice portion connecting the upper forehead and the lower forehead, the lattice portion extending in the one direction, It does not have a forehead connecting at least two or more node parts, and the volume of the first node part from each of the upper and lower foreheads of the expanded lattice is the second node part. is a lead-acid battery of the Turkey is greater than 0.5 times the volume of said.
[0007]
By making the volume of the first node part larger than 0.5 times the volume of the second node part, the mechanical strength and corrosion resistance of the first node part are increased, and the It becomes possible to prevent the crossing of the cross and the use of batteries, and even if the node width of the other part of the expanded lattice and the step size of the cross are reduced, the substantial strength of the expanded lattice can be maintained. Weight reduction of the lead storage battery by weight reduction is realizable. Preferably, the volume of the first node part is 0.7 to 1 times the volume of the second node part.
[0008]
Further in the first invention, the thickness of the crosspiece is stepwise or continuously changes brought toward its et Kisupando development central, stepwise or continuously grid density brought toward its et Kisupando development central portion It shall be the features and Turkey have is reduced.
[0009]
According to this structure, it is possible to reduce the weight of the expanded lattice without reducing the substantial mechanical strength, and it is possible to reduce the weight of the lead storage battery. This is because the stress caused by the vibration exerted on the crosspiece and the node portion becomes smaller toward the center of the expanded deployment, so that the mechanical strength as a whole is reduced even if the lattice density is reduced toward this direction. This is because it can be maintained.
[0010]
Moreover , you may provide the expanded grating | lattice in which the crosspieces of different thickness are formed alternately as a positive electrode grating | lattice or a negative electrode grating | lattice (1st structure).
[0011]
According to this structure, it is possible to reduce the weight of the expanded lattice while suppressing a decrease in mechanical strength over the entire lattice, and it is possible to reduce the weight of the lead storage battery. This is because the thin portion can compensate for the decrease in strength in the thin portion.
[0012]
Also, further in upper Symbol second invention or the first structure, the volume of one place th node portion emanating from the top value or bottom value of the expanded grid, nodes of the two locations th volume 0. 5 times greater than going on way to lever, more excellent in mechanical strength, lightweight, it can provide a better cell in corrosion resistance (second structure).
[0013]
In the first, second, first, or second structures of the present application, the derived angle from the node portion of the beam differs depending on the thickness of the beam, and the derived angle of the thin beam is smaller than the derived angle of the thick beam. Then, in addition to the above, by further reducing the derived angle of the thin beam to be smaller than the derived angle of the thick beam, the distortion at the time of expanding can be reduced (third structure) .
[0014]
Further, the present first and second invention, Oite to the first and second or third structure, to lever as derived angle crosspiece is in the 30-45 °, further to the above, the expanded deployment By suppressing the tensile stress applied to the crosspieces at times, damage can be suppressed particularly in the case of an expanded lattice made of lead or a lead alloy (fourth structure) .
[0015]
Further , in the first, second , second, third, or fourth structures of the present application, in the expanded lattice, all nodes except for the first node portion extending from the upper or lower forehead of the lattice in part, which be such a ratio between a value obtained by adding the two bars of the step size derived from the value and the node portion of the width of the node portion (a) in the vertical (b11, b22) is kept constant For example, in addition to the above, it is easy to reduce the derived angle, so that the lattice strength and productivity can be improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to embodiments.
[0017]
FIG. 1 is a schematic plan view showing the structure of an expanded lattice used in a lead storage battery according to an embodiment of the first invention of the present application.
[0018]
The expanded lattice can be produced, for example, by subjecting a casting of a Pb—Ca—Sn alloy to plastic processing such as rolling and extrusion, further rolling to form a sheet, and then subjecting this sheet to expanding. For processing, for example, a conventional method such as rotary or reciprocating can be used. In addition, the battery after the grid is manufactured can be performed in the same manner as in the past, such as preparing positive / negative electrode plates by filling the active material with the grid as a positive / negative electrode grid.
[0019]
A feature of the present invention is the structure of an expanded lattice used as a positive electrode lattice or a negative electrode lattice. In the lattice of this embodiment, the step width b1 of the first node portion protruding from the upper and lower foreheads of the lattice, b6 is 1.4 mm, the step widths b2 and b5 of the node portion following this node are 1.4 mm, the step widths b3 and b4 are 1 mm, the width of the node portion is 10 mm, and the volume of the first node portion Is 0.58 times the volume of the second node.
[0020]
In the remaining node part, the step widths of the two bars derived from the top and bottom of the node part are all 1 mm, and the width of the middle part of the expanded deployment is larger than the thickness of the outer part. The lattice density is also small. Note that the sheet thickness is 1 mm, and the thickness of the lattice node portion is 1 mm. The lattice density refers to the lattice mass per unit area. For example, if the number of node parts included in the unit area is the same, the thinner the crosspiece, the smaller the lattice mass and the smaller the lattice density. In addition, when calculating the lattice density of the entire lattice, the area (upper forehead, lower forehead, and ears) calculated by the vertical and horizontal dimensions of the lattice is the mass of the crosspieces (excluding the upper forehead, lower forehead and ears) It is calculated by dividing by (except for).
[0021]
FIG. 2 is an enlarged schematic plan view of the node portion. As shown in the figure, a is the width of the node portion in the present application, b11 and b22 are step sizes, and C1 and C2 are the derived angles from the node portion of the crosspiece. In the expanded lattice of this embodiment, the derived angles are all set to 30 °.
[0022]
Positive and negative electrode plates were prepared using the above expanded grid, and a liquid lead acid battery for automobiles having a nominal capacity of 12 V and a nominal capacity of 52 Ah was produced using the positive and negative electrode plates. For comparison, a prototype was similarly made using an expanded lattice having a conventional structure. There are two types of expanded lattices of the conventional structure, and only the step width is different from that of the expanded lattice of the embodiment, one of which has a step width of 1 mm and the other of which has a step width of 1.4 mm. Accordingly, in both cases, the volume of the first node portion is 0.5 times the volume of the second node portion.
[0023]
As a result of these trial manufactures, the number of crosspieces during the manufacturing process was the smallest in this embodiment, and the largest in the conventional structure of 1 mm. In addition, although the 1.4mm thing had fewer crosspieces than the 1mm thing, the lattice mass is the largest and is not suitable for weight reduction.
[0024]
Next, as a result of performing a JIS light load life test on these prototype batteries, the battery of this embodiment obtained a life of 10,000 cycles, but the conventional battery using a 1 mm grid could obtain only 7000 cycles. . In the case of using a 1.4 mm grid, almost the same cycle life as that of the battery of this embodiment was obtained.
[0025]
In this way, by using a lattice in which the volume of the first node portion that is protruding from the upper or lower forehead of the expanded lattice is larger than 0.5 times the volume of the second node portion, It is possible to manufacture batteries that are lightweight and have excellent cycle characteristics with good yield, but in order to further reduce weight, in addition to this, as the thickness of the crosspiece moves toward the center of the expanded deployment, An expanded lattice that changes stepwise or continuously and has a lattice density that decreases stepwise or continuously toward the center of the expanded expansion may be used.
[0026]
In the expanded lattice of the above embodiment, it can be said that the thickness of the crosspiece is gradually reduced, but by decreasing the step width and the width of the node portion more finely and gradually toward the center portion, Weight can be reduced. At this time, it is preferable to adjust the derivation angle so that the crossing can be suppressed, and the derivation angle is preferably in the range of 30 ° to 45 °.
[0027]
Similarly, as a method for further reducing the weight, a method using an expanded lattice in which bars having different thicknesses are alternately formed can be used. Also in this case, it is preferable that the crossing can be suppressed by adjusting the derived angle, and the derived angle is preferably in the range of 30 ° to 45 °.
[0028]
In order to reduce the derived angle to a specific range, the value of the width (a) of the node part and the node in all the node parts except the first node part from the upper or lower forehead of the grid It is better to maintain a constant ratio with the value obtained by adding the step widths (b1, b2) of the two bars that are derived from the top and bottom of the section. Can be improved. In addition, when making ratio constant, it is not necessary to be completely constant, and there may be some deviation.
[0029]
【Effect of the invention】
According to the present invention, it is possible to solve the problem of the strength of the expanded lattice and to realize a reduction in the weight of the battery.
[Brief description of the drawings]
[Fig. 1] Charge acceptance characteristics test after deep discharge [Fig. 2] Trickle (float) life test [Fig. 3] Thickness ratio of lead-tin alloy layer to total thickness of integrated sheet and tin of lead-tin alloy layer Relationship between content (mass%) and storage battery performance FIG. 4 is a diagram showing a result of re-evaluation of the test result of FIG. 3 with a higher evaluation criterion that the trickle life of the storage battery is good.
Claims (2)
前記エキスパンド格子は、
所定の一方向に延在する上額と、
前記一方向に延在し、前記上額と間隔をあけて対向して配置された下額と、
前記上額と前記下額とを連結する格子部と、を備え、
前記格子部は、前記一方向に延在し、少なくとも2つ以上のノード部を連結する額を有しておらず、
前記エキスパンド格子の前記上額及び前記下額からそれぞれ出ている1ヶ所目のノード部の体積が、2ヶ所目のノード部の体積の0.5倍より大きくなっていることを特徴とする鉛蓄電池。 Equipped with an expanded grid that has been expanded by a rotary method as a positive grid or negative grid,
The expanded lattice is
An upper amount extending in one predetermined direction;
A lower forehead extending in the one direction and disposed opposite to the upper forehead,
A lattice portion connecting the upper forehead and the lower forehead,
The lattice portion does not have a forehead extending in the one direction and connecting at least two or more node portions,
The volume of the upper value and the node of one place eyes emanating from each of the lower amount of the expanding lattice, characterized and Turkey is greater than 0.5 times the volume of the node portion of the two places th Lead acid battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000307604A JP5092183B2 (en) | 2000-10-06 | 2000-10-06 | Lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000307604A JP5092183B2 (en) | 2000-10-06 | 2000-10-06 | Lead acid battery |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002117861A JP2002117861A (en) | 2002-04-19 |
JP2002117861A5 JP2002117861A5 (en) | 2007-11-15 |
JP5092183B2 true JP5092183B2 (en) | 2012-12-05 |
Family
ID=18788090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000307604A Expired - Lifetime JP5092183B2 (en) | 2000-10-06 | 2000-10-06 | Lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5092183B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56159065A (en) * | 1980-05-13 | 1981-12-08 | Yuasa Battery Co Ltd | Grid for lead acid battery |
JPS58209066A (en) * | 1982-05-27 | 1983-12-05 | Yuasa Battery Co Ltd | Expanded grid for lead-acid battery and its manufacture |
JPS6010560A (en) * | 1983-06-29 | 1985-01-19 | Furukawa Battery Co Ltd:The | Substrate for lead storage battery plate |
JP4375521B2 (en) * | 2001-11-21 | 2009-12-02 | 株式会社ジーエス・ユアサコーポレーション | Storage battery and manufacturing method thereof |
-
2000
- 2000-10-06 JP JP2000307604A patent/JP5092183B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002117861A (en) | 2002-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2679909C (en) | Negative grid for battery | |
EP3203572B1 (en) | Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery | |
JP5230845B2 (en) | Electrode plate group for lead-acid battery, lead-acid battery, and method for producing electrode plate group for lead-acid battery | |
JP5521503B2 (en) | Lead acid battery | |
JP5092183B2 (en) | Lead acid battery | |
JP4385441B2 (en) | Lead acid battery | |
JP5119586B2 (en) | Lead-acid battery grid | |
JP2560770B2 (en) | Expanded grid for lead-acid battery and manufacturing method thereof | |
JP4092816B2 (en) | Lattice body for lead acid battery and method for manufacturing the same | |
JP4923377B2 (en) | battery | |
JP4224756B2 (en) | Lead acid battery | |
JP2003178760A (en) | Lattice body for lead-acid storage battery | |
JPS6010560A (en) | Substrate for lead storage battery plate | |
JPH048610Y2 (en) | ||
JPH09289025A (en) | Grid for lead-acid battery | |
JP2002075380A (en) | Expand grid body for lead-acid battery | |
JP2001291527A (en) | Lead-acid battery | |
JPH0152863B2 (en) | ||
JPH07320743A (en) | Electrode plate for lead-acid battery | |
JP2000215898A5 (en) | ||
JP2000215898A (en) | Lead-acid battery grid body | |
JPH09223502A (en) | Sealed lead-acid battery | |
JPS6116152B2 (en) | ||
JPH0360156B2 (en) | ||
JP2004192990A (en) | Expanded lattice body for battery, and battery and lead-acid battery using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071002 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071002 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120821 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5092183 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |