JP5119586B2 - Lead-acid battery grid - Google Patents

Lead-acid battery grid Download PDF

Info

Publication number
JP5119586B2
JP5119586B2 JP2005314863A JP2005314863A JP5119586B2 JP 5119586 B2 JP5119586 B2 JP 5119586B2 JP 2005314863 A JP2005314863 A JP 2005314863A JP 2005314863 A JP2005314863 A JP 2005314863A JP 5119586 B2 JP5119586 B2 JP 5119586B2
Authority
JP
Japan
Prior art keywords
samples
crosspiece
mesh
sample
mass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005314863A
Other languages
Japanese (ja)
Other versions
JP2007123105A (en
Inventor
義臣 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2005314863A priority Critical patent/JP5119586B2/en
Publication of JP2007123105A publication Critical patent/JP2007123105A/en
Application granted granted Critical
Publication of JP5119586B2 publication Critical patent/JP5119586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、エキスパンド方式により作製された鉛蓄電池の格子体に関するものである。   The present invention relates to a grid for a lead-acid battery produced by an expanding method.

鉛蓄電池の極板は、鉛又は鉛合金からなる格子体の網目部に活物質を充填したものである。格子体は、鉛又は鉛合金の鋳造によって網目部を形成する他に、生産性向上を目的として、鉛又は鉛合金からなるシート材をエキスパンド方式により網目状に展開して網目部を形成する作製方法がある。また、このエキスパンド方式には、ダイスカッタの上下運動によってシート材の両端部から順に網目部を展開するレシプロ方式と、円盤状カッタの回転によってシート材に形成した千鳥状のスリットを両側から引き広げることにより網目部を展開するロータリ方式とがある。そして、このロータリ方式は、レスプロ方式に比べて、さらに生産性に優れると共に、網目部の各桟が展開時にねじれを生じるので、この網目部に活物質が保持されやすくなるという利点も有している。   An electrode plate of a lead storage battery is obtained by filling an active material in a mesh part of a lattice body made of lead or a lead alloy. In addition to forming the mesh part by casting lead or lead alloy, the lattice body is produced by expanding the sheet material made of lead or lead alloy into a mesh form by the expanding method for the purpose of improving productivity. There is a way. In addition, in this expanding method, the reciprocating method that expands the mesh part sequentially from both ends of the sheet material by the vertical movement of the die cutter, and the staggered slits formed in the sheet material by rotating the disk-shaped cutter are extended from both sides. There is a rotary system in which the mesh portion is developed. And this rotary method is more productive than the Les Pro method, and has the advantage that the active material is easily held in the mesh portion because each bar of the mesh portion is twisted when deployed. Yes.

上記ロータリ方式による格子体の作製方法は、シート材にスリットを形成するスリット形成工程と、このスリットを展開して網目部を形成する展開工程との2工程を経て格子体を作製する。スリット形成工程では、図4に示すように、鉛又は鉛合金からなる長尺なシート材1を長手方向に搬送しながら、上下の円盤状カッタローラ2、2の間を通すことにより、図4の平面図Aに示すように、このシート材1にスリット1aを千鳥状に多数形成する。各円盤状カッタローラ2は、図5に示すように、多数の円盤状カッタ3をスペーサを介して同軸上に重ね合わせてローラ状としたものである。各円盤状カッタ3は、円板状の工具鋼板からなり、周縁部には、所定半径の円周に沿った所定幅の円周面3aを介して、この円周面3aよりも外周側に突出した所定幅の凸部3bが多数形成されている。また、各円周面3aには、図4の拡大図Bに示すように、円盤状カッタ3の円板面の表裏交互に、この円板面から窪んだ溝状の凹部3cが形成されている。なお、この拡大図Bでは、図面を分かりやすくするために、本来円盤状カッタ3の円周上に配置されている円周面3aや凸部3bを直線上に配置して示している。   The above-described method for manufacturing a lattice body by the rotary method prepares a lattice body through two processes, a slit forming process for forming slits in a sheet material and a developing process for expanding the slits to form a mesh portion. In the slit forming step, as shown in FIG. 4, the long sheet material 1 made of lead or a lead alloy is passed between the upper and lower disk-shaped cutter rollers 2 and 2 while being conveyed in the longitudinal direction. As shown in the plan view A, a large number of slits 1a are formed in the sheet material 1 in a staggered manner. As shown in FIG. 5, each disk-shaped cutter roller 2 is a roller having a large number of disk-shaped cutters 3 stacked on the same axis via a spacer. Each disk-shaped cutter 3 is made of a disk-shaped tool steel plate, and has a circumferential portion 3a with a predetermined width along the circumference of a predetermined radius at the outer peripheral side of the circumferential surface 3a. A number of protruding protrusions 3b having a predetermined width are formed. Further, as shown in an enlarged view B of FIG. 4, groove-like recesses 3 c that are recessed from the disk surface are formed on each circumferential surface 3 a alternately on the front and back of the disk surface of the disk-shaped cutter 3. Yes. In addition, in this enlarged view B, for easy understanding of the drawing, the circumferential surface 3a and the convex portion 3b that are originally arranged on the circumference of the disc-like cutter 3 are shown in a straight line.

上下の円盤状カッタローラ2、2は、上方の円盤状カッタローラ2の円盤状カッタ3の円周面3aの下端と、下方の円盤状カッタローラ2の円盤状カッタ3の円周面3aの上端とがほぼ同じ高さ位置に達するような上下位置に配置される。また、上下の円盤状カッタローラ2、2は、それぞれの円盤状カッタ3、3の凸部3b、3bが上下他方の円盤状カッタローラ2の円盤状カッタ3の間に嵌入するように幅方向にずらして配置される。   The upper and lower disk-shaped cutter rollers 2 and 2 are provided at the lower end of the circumferential surface 3 a of the disk-shaped cutter 3 of the upper disk-shaped cutter roller 2 and the circumferential surface 3 a of the disk-shaped cutter 3 of the lower disk-shaped cutter roller 2. The upper and lower positions are arranged so that the upper end reaches almost the same height. Further, the upper and lower disk-shaped cutter rollers 2 and 2 are arranged in the width direction so that the convex portions 3 b and 3 b of the respective disk-shaped cutters 3 and 3 are fitted between the disk-shaped cutters 3 of the upper and lower disk-shaped cutter rollers 2. It is arranged to shift to.

上記上下の円盤状カッタローラ2、2の間にシート材1を通すと、図4の平面図Aに示すように、シート材1に長手方向に沿った所定長さごとの間歇的なスリット1aが、幅方向に隣接するものと交互に長手方向にずれて千鳥状に多数形成される。また、幅方向に隣接する各スリット1a、1aの間は、図4に示すように、上記円盤状カッタ3の凸部3bの押圧により上方又は下方に引き延ばされてシート材1の上下に膨らんだ状態となる。   When the sheet material 1 is passed between the upper and lower disk-shaped cutter rollers 2 and 2, as shown in a plan view A of FIG. 4, intermittent slits 1 a are formed in the sheet material 1 every predetermined length along the longitudinal direction. Are formed in a staggered pattern alternately shifted in the longitudinal direction from those adjacent in the width direction. Further, between the slits 1 a and 1 a adjacent in the width direction, as shown in FIG. 4, the slits 1 a and 1 a are stretched upward or downward by the pressing of the convex portion 3 b of the disk-shaped cutter 3, so It becomes inflated.

展開工程では、図5に示すように、上記スリット1aを形成したシート材1を、両側方に斜めに配置したチェーン展開装置4、4によって幅方向に引き広げることにより、各スリット1aの隙間を広げて展開し網目状とする。そして、このように網目状に展開したシート材1を長手方向の所定長さごとに切断すると共に、幅方向にも中央部で2つに分割することにより、図6に示すような格子体5が作製される。なお、この格子体5での上方は、シート材1上では幅方向の両端から中央に向かう方向であり、格子体5での下方は、シート材1上では幅方向の中央から両端に向かう方向となる。   In the unfolding step, as shown in FIG. 5, the sheet material 1 on which the slits 1a are formed is stretched in the width direction by the chain unfolding devices 4 and 4 that are arranged obliquely on both sides, thereby forming the gaps between the slits 1a. Expand and unfold to form a mesh. And the sheet | seat material 1 expand | deployed in this mesh | network shape is cut | disconnected for every predetermined length of a longitudinal direction, and also is divided | segmented into two by the center part also in the width direction, and the grid | lattice body 5 as shown in FIG. Is produced. The upper side of the grid body 5 is a direction from the both ends in the width direction toward the center on the sheet material 1, and the lower side of the grid body 5 is a direction from the center in the width direction to both ends on the sheet material 1. It becomes.

上記のようにして作製された格子体5は、網目状に展開された網目部5aの上下に上額部5bと下額部5cが形成されている。また、上額部5bの一方の端部からは、さらに上方に突出する耳部5dが形成されている。なお、この耳部5dは、格子体5を流れる充放電電流の集電を行うためのものであり、電解液よりも上方に突出する必要があるために、格子体5の最上部に配置されることになる。これら上額部5bと下額部5cと耳部5dは、シート材1におけるスリット1aが形成されなかった部分を所定形状にカットすることにより形成されたものである。網目部5aは、シート材1の千鳥状のスリット1aを展開した部分であるため、このシート材1の長手方向に隣接する各スリット1aの間が網目状のノードに該当する結節部5eとなり、幅方向に隣接する各スリット1aの間が展開時に斜め方向に引き延ばされて、これらの結節部5eを繋ぐ桟5fとなる。   The lattice body 5 manufactured as described above has an upper frame portion 5b and a lower frame portion 5c formed above and below a mesh portion 5a developed in a mesh shape. Further, from one end portion of the upper frame portion 5b, an ear portion 5d that protrudes further upward is formed. In addition, this ear | edge part 5d is for collecting the charging / discharging electric current which flows through the grid | lattice body 5, and since it needs to protrude upwards from electrolyte solution, it is arrange | positioned at the uppermost part of the grid | lattice body 5. FIG. Will be. The upper forehead portion 5b, the lower forehead portion 5c, and the ear portion 5d are formed by cutting a portion of the sheet material 1 where the slit 1a is not formed into a predetermined shape. Since the mesh part 5a is a part where the staggered slits 1a of the sheet material 1 are developed, a space between the slits 1a adjacent to each other in the longitudinal direction of the sheet material 1 becomes a knot part 5e corresponding to the mesh-like node, Between the slits 1a adjacent to each other in the width direction, the slits 1a are extended in an oblique direction at the time of deployment, thereby forming a crosspiece 5f that connects these knot portions 5e.

上記格子体5は、活物質ペーストを充填した後に、熟成乾燥工程を経て鉛蓄電池の極板となる。なお、実際の製造工程では、展開工程で展開されたシート材1に活物質ペーストを充填し、その後に図6に示す格子体5の形状に切断する場合もある。   The lattice body 5 becomes an electrode plate of a lead storage battery through an aging drying process after being filled with an active material paste. In the actual manufacturing process, the sheet material 1 developed in the development process may be filled with the active material paste, and then cut into the shape of the lattice 5 shown in FIG.

ところが、従来の格子体5は、網目部5aの上部ほど大きな充放電電流が流れるにもかかわらず、図6に示すように、この網目部5aにおける結節部5eと桟5fに囲まれた各網目の形状や桟5fの断面積が均一に形成され、各桟5fの電気抵抗がほぼ等しくなっていたために、上部の桟5fでのジュール熱による発熱が大きくなって腐食等による劣化が激しくなり、電池寿命性能を十分に向上させることができないという問題があった。特に、最近では、自動車のコンパクト化に伴い、鉛蓄電池が狭いエンジンコンパートメント内に搭載され、高温環境で使用されることが多くなって来ているために、このような格子体5の劣化による電池寿命性能の低下が大きな問題となっている。   However, in the conventional grid 5, as shown in FIG. 6, although a large charge / discharge current flows toward the upper part of the mesh part 5 a, each mesh part surrounded by the knot part 5 e and the crosspiece 5 f in the mesh part 5 a is shown. And the cross-sectional area of the crosspieces 5f are formed uniformly, and the electric resistance of each crosspiece 5f is almost equal, heat generation due to Joule heat in the upper crosspieces 5f increases, and deterioration due to corrosion or the like becomes severe, There was a problem that the battery life performance could not be sufficiently improved. In particular, recently, with the downsizing of automobiles, lead-acid batteries are mounted in narrow engine compartments and are often used in high-temperature environments. Deterioration of life performance is a big problem.

また、従来の格子体5には、上額部5bに近い上部の桟5fほど断面積を大きくする(実際にはこの桟5fの幅を太くする)ことにより、大きな充放電電流が流れるこの上部の桟5fの腐食等による劣化を防止して、電池寿命性能の向上を図るものもあった(例えば、特許文献1参照。)。しかしながら、この特許文献1の段落0010にも記載されているように、桟5fの断面積が上部と下部で急激に変化すると、ロータリ方式による展開時に、断面積が小さい方の桟5fに引っ張り応力が集中し、この桟5fに桟切れや亀裂が生じやすくなる。   In addition, in the conventional grid 5, the upper crosspiece 5 f closer to the upper frame portion 5 b has a larger cross-sectional area (actually the width of the crosspiece 5 f is increased) so that a large charge / discharge current flows. In some cases, deterioration of the crosspiece 5f due to corrosion or the like is prevented to improve battery life performance (see, for example, Patent Document 1). However, as described in paragraph 0010 of Patent Document 1, if the cross-sectional area of the crosspiece 5f changes abruptly between the upper part and the lower part, a tensile stress is applied to the crosspiece 5f having a smaller cross-sectional area when deployed by the rotary method. As a result, the crosspieces 5f are likely to break or crack.

ここで、上部ほど大きな充放電電流が流れる格子体5の網目部5aの各桟5fでの発熱を均一化にするには、上部の桟5fほど電気抵抗が小さくなるようにすればよく、このためには桟5fの長さを短くしたり断面積を大きくすればよい。そして、左右方向の網目のピッチが一定である格子体5において、上方の桟5fほど長さを短くしたり断面積を大きくすると、この網目部5aの質量が上部ほど大きくなる。従って、図6における格子体5の網目部5aの全体の高さをHとし、この網目部5aを高さH/2の上側半分と下側半分に分けて、網目部5a全体の質量に対するこの上側半分の質量の比を50%よりも十分に大きくすれば、各桟5fでの発熱を均一化することができる。しかしながら、上側半分の質量の比を50%よりも十分に大きくするために、網目部5aの各桟5fの断面積だけを上下で変化させたのでは、下部の桟5fの断面積が急激に小さくなり細くなるので、この桟5fに桟切れや亀裂が生じやすくなる。
特開2004−342477公報
Here, in order to make uniform the heat generation at each crosspiece 5f of the mesh portion 5a of the grid 5 through which a larger charge / discharge current flows in the upper part, the electric resistance may be made smaller in the upper crosspiece 5f. For this purpose, the length of the crosspiece 5f may be shortened or the cross-sectional area may be increased. Then, in the lattice body 5 in which the pitch of the mesh in the left-right direction is constant, if the length is shortened or the cross-sectional area is increased as the upper crosspiece 5f, the mass of the mesh portion 5a becomes larger as the upper portion. Accordingly, the total height of the mesh portion 5a of the lattice 5 in FIG. 6 is set to H, and the mesh portion 5a is divided into an upper half and a lower half of the height H / 2, and this relative to the mass of the entire mesh portion 5a. If the ratio of the mass of the upper half is sufficiently larger than 50%, the heat generation at each crosspiece 5f can be made uniform. However, in order to make the mass ratio of the upper half sufficiently larger than 50%, if only the cross-sectional area of each crosspiece 5f of the mesh portion 5a is changed up and down, the cross-sectional area of the lower crosspiece 5f is abruptly changed. Since it becomes smaller and thinner, the crosspieces 5f are likely to be cut off or cracked.
JP 2004-342477 A

本発明は、網目部の上側半分の質量比を所定範囲内で十分に大きくすることにより、電池寿命性能を確実に向上させることができる鉛蓄電池の格子体を提供しようとするものである。   The present invention seeks to provide a lead-acid battery grid that can reliably improve battery life performance by sufficiently increasing the mass ratio of the upper half of the mesh portion within a predetermined range.

請求項1の鉛蓄電池の格子体は、鉛又は鉛合金のシート材に所定の一方向に沿ったスリットを千鳥状に多数形成し、このシート材を前記一方向と交差する方向に引き広げてスリットを展開し網目部を形成した格子体であって、この網目部の上方に、集電のための耳部を突設した上額部が配置された鉛蓄電池の格子体において、前記網目部の上側半分の質量が前記網目部全体の54%以上、62%以下であり、前記網目部における前記上額部に直接繋がる最上部の桟の断面積Sが、この上額部の厚さtに対して、1.00t ≦S≦1.30t の範囲内にあることを特徴とする。
Grid of lead-acid battery of claim 1, a slit along one predetermined direction to the sheet material of the lead or lead alloy and a number formed in a zigzag shape, spread pulling the sheet material in a direction intersecting the one direction a grid which forms the shape of the mesh portion to expand the slit, the above mesh portion, the grid of the lead-acid battery upper frame part which projects the ears are disposed for the current collector, wherein the upper half of the mass of the mesh portion is the mesh portion overall 54% or more state, and are less 62%, the cross-sectional area S of the top of the bars directly connected to the upper frame part of the mesh portion, of the upper frame part The thickness t is in the range of 1.00t 2 ≦ S ≦ 1.30t 2 .

請求項1の発明によれば、、網目部の全体に対する上側半分の質量比を54%以上、62%以下の範囲内で十分に大きくすることにより、この網目部の上下の桟での発熱を均一化するので、格子体の劣化を防止して電池寿命性能を確実に向上させることができるようになる。網目部の上側半分の桟の長さを下側半分よりも短くして網目の上下の幅を狭くすれば、網目部の全体に対する上側半分に含まれる網目の数が下側半分よりも多くなるので、これによって網目部の上側半分の質量比を大きくすることができる。そして、桟の長さが短いと電気抵抗も小さくなるので、長い桟よりも大きな電流が流れても発熱を均一化することができる。また、網目部の上側半分の質量比を大きくするためには、この上側半分の断面積を大きくすることも好ましい。即ち、桟の断面積が大きくなれば、電気抵抗も小さくなるので、細い桟よりも大きな電流が流れても発熱を均一化することができる。   According to the first aspect of the present invention, the mass ratio of the upper half with respect to the entire mesh portion is sufficiently increased within the range of 54% or more and 62% or less, so that the heat generated at the upper and lower bars of the mesh portion is increased. Since it is made uniform, the deterioration of the lattice can be prevented and the battery life performance can be reliably improved. If the length of the upper half of the mesh part is made shorter than the lower half and the upper and lower widths of the mesh are made narrower, the number of meshes contained in the upper half of the entire mesh part will be larger than that of the lower half. Therefore, this can increase the mass ratio of the upper half of the mesh portion. And if the length of the crosspiece is short, the electric resistance is also reduced, so that heat generation can be made uniform even if a larger current flows than the long crosspiece. In order to increase the mass ratio of the upper half of the mesh part, it is also preferable to increase the cross-sectional area of the upper half. That is, as the cross-sectional area of the crosspiece increases, the electrical resistance also decreases, so that heat generation can be made uniform even when a larger current flows than a thin crosspiece.

また、この上額部に直接繋がる最上部の桟の断面積を十分に大きい所定範囲内とするので、電池寿命性能を確実に高めることができるようになる。
Moreover , since the cross-sectional area of the uppermost crosspiece directly connected to the upper forehead portion is within a sufficiently large predetermined range, the battery life performance can be reliably improved.

以下、本発明の最良の実施形態について図1〜図2を参照して説明する。なお、これらの図においても、図4〜図6に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。   Hereinafter, the best embodiment of the present invention will be described with reference to FIGS. In these drawings, the same reference numerals are given to constituent members having the same functions as those of the conventional example shown in FIGS.

本実施形態の鉛蓄電池の格子体5も、従来例と同様に、鉛又は鉛合金からなるシート材1に図4に示したスリット形成工程により千鳥状のスリット1aを多数形成すると共に、図5に示した展開工程によりこれらのスリット1aを展開して網目部5aを形成し、このシート材1を所定形状にカットすることにより作製される。また、網目部5aの上下に上額部5bと下額部5cが形成されると共に、この上額部5bの一方の端部からは、さらに上方に突出する耳部5dが形成される。また、網目部5aでは、スリット1aが展開されることにより多数の結節部5eと桟5fが形成され、これらの結節部5eと桟5fで囲まれた空間が各網目となる。なお、網目部5aとは、シート材1に千鳥状に形成されたスリット1aの最上部(図5に示すシート材1では最も中央寄りの部分)のものと最下部(図5に示すシート材1では最も両側寄りの部分)のものとの間が展開後に網目状となった部分をいう。   Similarly to the conventional example, the grid 5 of the lead storage battery according to the present embodiment forms a large number of staggered slits 1a in the sheet material 1 made of lead or a lead alloy by the slit forming step shown in FIG. These slits 1a are developed by the development process shown in FIG. 5 to form a mesh portion 5a, and the sheet material 1 is cut into a predetermined shape. Further, an upper frame portion 5b and a lower frame portion 5c are formed above and below the mesh portion 5a, and an ear portion 5d protruding further upward is formed from one end portion of the upper frame portion 5b. Further, in the mesh portion 5a, a large number of knot portions 5e and crosspieces 5f are formed by expanding the slit 1a, and a space surrounded by the knot portion 5e and the crosspieces 5f is each mesh. Note that the mesh portion 5a includes the uppermost portion (the portion closest to the center in the sheet material 1 shown in FIG. 5) and the lowermost portion (the sheet material shown in FIG. 5). 1 is the part that is mesh-like after unfolding.

本実施形態の格子体5は、図1に示すように、網目部5aの全体の高さをHとし、この網目部5aを高さH/2の上側半分と下側半分に分けて、網目部5a全体の質量に対するこの上側半分の質量の比が54%以上、62%以下となるように作製される。   As shown in FIG. 1, the lattice body 5 of the present embodiment has an overall height of the mesh portion 5a as H, and the mesh portion 5a is divided into an upper half and a lower half of the height H / 2. It is fabricated so that the ratio of the mass of the upper half to the mass of the entire portion 5a is 54% or more and 62% or less.

網目部5aの上側半分の質量比をこのように所定範囲内で大きくするには、この網目部5aの上側半分の桟5fの長さが下半分の桟5fよりも短いものを多くして、網目の上下の幅を狭くすればよい。そして、このように桟5fの長さを短くするには、図4で示した円盤状カッタローラ2における円盤状カッタ3の凸部3bの外周沿面を短くすればよい。即ち、例えば図2に示すように、この円盤状カッタ3の凸部3bの突出形状が、頂部にアールを設けたほぼ三角形状である場合に、図2(a)に示すように、この凸部3bの外周側への突出量Pが大きいよりも、図2(b)に示すように、この凸部3bの外周側への突出量Pが小さい方が、シート材1にスリット1aを形成した際に、幅方向に隣接する各スリット1a、1aの間(展開により桟5fとなる部分)を押圧する押圧量が小さくなり膨らみも小さくなるので、桟5fの長さも短くなる。なお、この図2においても、図面を分かりやすくするために、円盤状カッタ3の円周面3aや凸部3bを直線上に配置して示している。 In order to increase the mass ratio of the upper half of the mesh part 5a within the predetermined range as described above, the length of the upper half beam 5f of the mesh part 5a is shorter than the lower half beam 5f, The upper and lower widths of the mesh may be narrowed. And in order to shorten the length of the crosspiece 5f in this way, the outer peripheral creeping surface of the convex portion 3b of the disc-like cutter 3 in the disc-like cutter roller 2 shown in FIG. That is, for example, as shown in FIG. 2, when the projecting shape of the projecting portion 3b of the disc-like cutter 3 is a substantially triangular shape with a round at the top, as shown in FIG. than the projection amount P 1 of the outer peripheral side is large parts 3b, as shown in FIG. 2 (b), towards the protrusion amount P 2 of the outer peripheral side of the projecting portion 3b is small, slit 1a on the sheet material 1 Is formed, the pressing amount for pressing between the slits 1a, 1a adjacent in the width direction (the portion that becomes the crosspiece 5f by development) is reduced and the swelling is reduced, so that the length of the crosspiece 5f is also reduced. In FIG. 2 also, for easy understanding of the drawing, the circumferential surface 3a and the convex portion 3b of the disc-like cutter 3 are shown in a straight line.

上記のような短い桟5fの網目を展開すると、図1の網目部5aの上部に示したように、この網目形状の上下の幅が狭くなる。これは、各桟5fの長さは、スリット形成工程のスリット1a形成時にほぼ決まり、展開工程の展開時には桟5fがさらに引き延ばされるようなことがほとんどないからである。逆に、この展開時の加わる応力が大きすぎるために桟5fがさらに引き延ばされるようなことがあると、結節部5eとの間に桟切れや亀裂が生じることになるおそれが生じる。   When the mesh of the short bar 5f as described above is developed, as shown in the upper part of the mesh portion 5a in FIG. This is because the length of each crosspiece 5f is almost determined when the slit 1a is formed in the slit forming process, and the crosspiece 5f is hardly extended further during the development process. On the contrary, if the crosspiece 5f is further extended because the stress applied at the time of development is too large, there is a possibility that a crosspiece or a crack may be formed between the cross section 5e.

また、網目部5aの上側半分の質量比を所定範囲内で大きくするには、上記のように上側半分の桟5fの長さを短くすることに加えて、この上側半分の桟5fの断面積を大きくしてもよく、このためには、桟5fの幅を太くすればよい。そして、このように桟5fの幅を太くするには、図4で示した円盤状カッタローラ2における円盤状カッタ3の厚さを厚くすればよい。即ち、円盤状カッタ3が厚くなれば、図2(a)(b)に示す凸部3bの幅Wも広がるので、シート材1にスリット1aを形成する際に、幅方向に隣接する各スリット1a、1aの間も広くなり、桟5fの幅が太くなる。   In order to increase the mass ratio of the upper half of the mesh portion 5a within a predetermined range, in addition to shortening the length of the upper half beam 5f as described above, the cross-sectional area of the upper half beam 5f is also shown. In order to achieve this, the width of the crosspiece 5f may be increased. In order to increase the width of the crosspiece 5f in this way, the thickness of the disk-shaped cutter 3 in the disk-shaped cutter roller 2 shown in FIG. 4 may be increased. That is, as the disc-like cutter 3 becomes thicker, the width W of the convex portion 3b shown in FIGS. 2 (a) and 2 (b) also increases. Therefore, when the slit 1a is formed in the sheet material 1, each slit adjacent in the width direction is formed. The space between 1a and 1a is widened, and the width of the crosspiece 5f is increased.

本実施形態の格子体5は、図1に示すように、網目部5aの各桟5fの長さが上部ほど短くなるように形成することにより、上部の網目ほど上下の幅が狭くなるようにしている。なお、実際には、全ての桟5fが下側の桟5fよりも短くなっている必要はなく、部分的には下側の桟5fと同じ長さであるものがあってもよい。また、網目部5aの各桟5fの幅も上部ほど太くなるように形成することにより、上部の桟5fほど断面積が大きくなるようにしている。なお、実際の各桟5fの太さの差は、最大でも1.5倍に達しない程度なので、この図1では、桟5fの太さの相違は省略し、全て同じ太さで示している。   As shown in FIG. 1, the grid body 5 of the present embodiment is formed such that the length of each bar 5f of the mesh part 5a is shortened toward the upper part so that the upper and lower meshes are narrowed in the vertical direction. ing. Actually, it is not necessary for all the crosspieces 5f to be shorter than the lower crosspieces 5f, and some of them may be partially the same length as the lower crosspieces 5f. Further, by forming the crosspieces 5f of the mesh part 5a so as to be thicker toward the upper part, the cross-sectional area becomes larger as the upper crosspieces 5f. In addition, since the difference in the thickness of each crosspiece 5f does not reach 1.5 times at the maximum, in this FIG. 1, the difference in the thickness of the crosspiece 5f is omitted, and all are shown by the same thickness. .

上記構成によれば、、格子体5における網目部5a全体に対する上側半分の質量比を54%以上、62%以下の範囲内で十分に大きくしているので、この網目部5aの上下の桟5fでの発熱を均一化させることができ、この格子体5を極板として使用した場合の劣化を防止して鉛蓄電池の寿命性能を確実に向上させることができるようになる。   According to the above configuration, since the mass ratio of the upper half of the lattice body 5 with respect to the entire mesh portion 5a is sufficiently large within a range of 54% or more and 62% or less, the crosspieces 5f above and below the mesh portion 5a. The heat generated in the lead can be made uniform, the deterioration when the grid 5 is used as an electrode plate can be prevented, and the life performance of the lead storage battery can be improved reliably.

以下、本発明の実施例について説明する。ここでは、網目部5a全体に対する上側半分の質量が45%から70%までの12種類の質量比の格子体5を試料としてそれぞれ所定枚数ずつ作製した。また、これら12種類の格子体5は、上額部5bに直接繋がる最上部の桟5fの断面積Sが、この上額部5bの厚さtに対して0.98tから1.32tまでのものを5組作製した(試料101〜112、試料201〜212、試料301〜312、試料401〜412及び試料501〜512)。従って、各組の試料において、上側半分の質量比が54%から62%までの5種類ずつの試料105〜109、試料205〜209、試料305〜309、試料405〜409及び試料505〜509が請求項1の実施例となり、これらのうちで最上部の桟5fの断面積Sが1.00tから1.30tまでの3組の試料205〜209、試料305〜309及び試料405〜409が請求項2の実施例となる。 Examples of the present invention will be described below. Here, a predetermined number of each of the lattice bodies 5 having 12 kinds of mass ratios in which the mass of the upper half with respect to the entire mesh portion 5a is 45% to 70% was prepared. Further, in these 12 types of lattice bodies 5, the cross-sectional area S of the uppermost crosspiece 5f directly connected to the upper frame portion 5b is 0.98t 2 to 1.32t 2 with respect to the thickness t of the upper frame portion 5b. 5 sets were made (samples 101 to 112, samples 201 to 212, samples 301 to 312, samples 401 to 412 and samples 501 to 512). Accordingly, in each set of samples, five types of samples 105 to 109, samples 205 to 209, samples 305 to 309, samples 405 to 409, and samples 505 to 509 having a mass ratio of the upper half of 54% to 62% are obtained. become example claim 1, three sets of samples 205 to 209 of the cross-sectional area S of the top crosspiece 5f from 1.00T 2 to 1.30 T 2 of these, samples from 305 to 309 and sample 405 to 409 Is an embodiment of claim 2.

なお、上記試料とは別に、比較対象として、共に網目部5aの各網目が均一、即ち上側半分の質量比が50%であり、かつ、最上部の桟5fの断面積Sに限らず、全ての桟5fの断面積が0.85tと1.36tである2種類の格子体5もそれぞれ所定枚数ずつ作製した(試料001と試料002)。 In addition to the sample, as a comparison object, each mesh of the mesh part 5a is uniform, that is, the mass ratio of the upper half is 50%, and not only the cross-sectional area S of the uppermost crosspiece 5f, but all Two types of lattice bodies 5 having cross-sectional areas of 0.85t 2 and 1.36t 2 of the crosspieces 5f were also prepared (Sample 001 and Sample 002).

上記格子体5の全ての試料は、合金組成がPb−0.06質量%Ca−1.3質量%Snの鉛合金からなり、厚さが1.0mmのシート材1を用いて作製した。ただし、シート材1の鉛合金の組成は、Ca量を0.03〜0.08質量%の範囲で変化させた場合や、Sn量を0.5〜2.0質量%の範囲で変化させた場合にも、下記と同様の結果が得られることが確認されている。また、これら全ての試料は、格子体5の網目部5a全体の質量が全て同じになるようにするために、円盤状カッタローラ2に円盤状カッタ3を配置してシート材1に千鳥状のスリット1aを形成する部分の幅を25.2mmに統一した。さらに、電池寿命性能の比較を平等に行うために、展開後の格子体5の網目部5aの全体の高さHも104mmに統一した。なお、図5に示すロータリ方式の製造工程では、千鳥状にスリット1aを形成する部分がシート材1の幅方向の両側に2箇所設けられる。   All the samples of the lattice body 5 were made of a sheet material 1 made of a lead alloy having an alloy composition of Pb-0.06 mass% Ca-1.3 mass% Sn and having a thickness of 1.0 mm. However, the composition of the lead alloy of the sheet material 1 is such that the amount of Ca is changed in the range of 0.03 to 0.08 mass%, or the amount of Sn is changed in the range of 0.5 to 2.0 mass%. In this case, it has been confirmed that the same results as below can be obtained. In addition, all these samples are arranged in a staggered manner on the sheet material 1 by disposing the disc-like cutter 3 on the disc-like cutter roller 2 so that the entire mass of the mesh portion 5a of the lattice 5 is the same. The width of the portion where the slit 1a is formed was unified to 25.2 mm. Furthermore, in order to compare the battery life performance equally, the overall height H of the mesh portion 5a of the grid body 5 after unfolding was unified to 104 mm. In the rotary manufacturing process shown in FIG. 5, two portions where the slits 1 a are formed in a staggered manner are provided on both sides in the width direction of the sheet material 1.

上記各試料の格子体5の上側半分の質量比は、それぞれ試料ごとに余分に作製した格子体5の網目部5aのみを切り出して質量を測定した後に、さらにこの網目部5aを高さH/2の位置で切断し、上側半分のものの質量を測定して、これらの質量比を計算することにより確認した。また、桟5fの断面積Sは、この余分に作製した格子体5のいくつかの桟5fについて、中央付近をこの桟5fの長手方向に垂直な面で切断し研磨した断面の面積を顕微鏡により測定することで確認した。   The mass ratio of the upper half of the lattice body 5 of each sample was determined by cutting out only the mesh portion 5a of the lattice body 5 prepared for each sample and measuring the mass. It cut | disconnected in the position of 2, measured the mass of the thing of the upper half, and confirmed by calculating these mass ratios. The cross-sectional area S of the crosspieces 5f is determined by measuring the area of a cross section obtained by cutting and polishing the vicinity of the center of the crosspieces 5f of the extra grid member 5 by a plane perpendicular to the longitudinal direction of the crosspieces 5f. Confirmed by measuring.

上記各試料の格子体5は、それぞれ活物質を充填し熟成乾燥を行って正極板とした。また、これらの各試料ごとに、当該試料の正極板に負極板とセパレータを組み合わせて、それぞれ自動車用の鉛蓄電池(55D23形)を作製し、所定比重・所定量の希硫酸を注入し化成を行った。ここで、負極板は、従来からの常法により作製したものを用い、セパレータも、従来から一般的に用いられている微孔性のポリエチレンを主体としたものを用いた。   The lattice 5 of each sample was filled with an active material and aged and dried to form a positive electrode plate. In addition, for each of these samples, a positive electrode plate of the sample is combined with a negative electrode plate and a separator to produce a lead storage battery (55D23 type) for automobiles, and a predetermined specific gravity and a predetermined amount of dilute sulfuric acid are injected to form a chemical. went. Here, the negative electrode plate was prepared by a conventional method, and the separator was also mainly composed of microporous polyethylene which has been generally used conventionally.

上記のようにして作製された各試料ごとの鉛蓄電池は、JISD5301の軽負荷寿命試験を75℃の水槽中で行うことにより電池寿命性能を測定した。この軽負荷寿命試験は、放電電流が25Aで4分間のサイクル放電と、充電電圧が14.4V(最大電流25A)で10分間のサイクル充電とを480サイクル繰り返した後に56時間放置するサイクル試験によって行った。そして、このサイクル試験を経た鉛蓄電池について、放電電流が356Aで30秒間の判定放電と、充電電圧が14.8V(最大電流25A)で10分間の充電とを繰り返し、各判定放電の30秒間が経過した時の鉛蓄電池の端子電圧が7.2V以上を維持し続けた回数を電池寿命性能として判定した。   The lead-acid battery for each sample produced as described above was measured for battery life performance by performing a light load life test of JIS D5301 in a 75 ° C. water tank. This light load life test is a cycle test in which the discharge current is 25 A for 4 minutes and the charge voltage is 14.4 V (maximum current 25 A) for 10 minutes and the cycle charge is repeated for 480 cycles and then left for 56 hours. went. And about the lead storage battery which passed this cycle test, the discharge discharge is 356A, 30 seconds of determination discharge, and the charge voltage is 14.8V (maximum current 25A) 10 minutes of charge, and 30 seconds of each determination discharge. The number of times that the terminal voltage of the lead storage battery continued to be 7.2 V or higher when it passed was determined as the battery life performance.

表1に、試料001と試料002の格子体5を用いた鉛蓄電池の電池寿命性能の判定結果を示す。   Table 1 shows the determination result of the battery life performance of the lead storage battery using the grid body 5 of the sample 001 and the sample 002.

Figure 0005119586
Figure 0005119586

試料001は、従来例と同様に、網目部5aの上側半分の質量比を50%とし、全ての桟5fの断面積を均一に0.85tとして、電池寿命性能の比較の基準とするために作製したものである。従って、表1では、この試料001の格子体5を用いた鉛蓄電池の電池寿命性能の判定結果を100とし、以降の全ての試料の電池寿命性能はこの従来例の試料001に対する割合として示した。このような試料001の格子体5は、厚さ(凸部3bの幅W)が全て0.9mmで凸部3bの形状も全て同じ円盤状カッタ3を28枚積層した円盤状カッタローラ2(この円盤状カッタローラ2は実際には両側に円盤状カッタ3を28枚ずつ積層していて、以下も同じである)を用いて作成した。 In the sample 001, as in the conventional example, the mass ratio of the upper half of the mesh portion 5a is set to 50%, and the cross-sectional area of all the crosspieces 5f is uniformly set to 0.85t 2 to serve as a reference for comparison of battery life performance. It was produced. Therefore, in Table 1, the determination result of the battery life performance of the lead storage battery using the grid body 5 of the sample 001 is 100, and the battery life performance of all the subsequent samples is shown as a ratio to the sample 001 of this conventional example. . The lattice body 5 of such a sample 001 has a disk-shaped cutter roller 2 (a stack of 28 disk-shaped cutters 3 each having a thickness (width W of the convex portion 3b) of 0.9 mm and the same convex portion 3b). This disk-shaped cutter roller 2 was actually prepared using 28 disk-shaped cutters 3 stacked on both sides, and the same applies to the following.

試料002は、網目部5aの上側半分の質量比は従来例と同様の50%とするが、全ての桟5fを太くして、断面積を均一に1.36tとしたものである。このような試料002の格子体5は、厚さが全て1.4mmで凸部3bの形状も全て同じ円盤状カッタ3を18枚積層した円盤状カッタローラ2を用いて作成した。 Sample 002, the weight ratio of the upper half of the mesh portion 5a is 50% similar to the conventional example, but thickened all crosspiece 5f, is obtained by the cross-sectional area as uniformly 1.36t 2. Such a lattice body 5 of the sample 002 was prepared by using a disk-shaped cutter roller 2 in which 18 disk-shaped cutters 3 each having a thickness of 1.4 mm and the same convex portions 3b were laminated.

この試料002は、従来例の格子体5の桟5fの幅だけを太くしたものである。一般に桟5fを太くすれば、電気抵抗が小さくなり電流容量を高めて発熱を小さくし腐食等による劣化を防止できるので、電池寿命性能も向上するものと思われるが、実際に判定した電池寿命性能は試料001とほとんど同等の101にすぎなかった。これは、桟5fを全体に太くすることにより網目部5aの網目の数(上下方向の段数)が少なくなったために、展開時にこの網目部5aの高さHを、網目の数が多い試料001と同じになるまで引き広げた際の各桟5fに加わる応力が過大になって亀裂等が生じた結果であると考えられる。本発明でも、電流容量を考慮して、桟5fを上部ほど太くすることが好ましいが、それだけではなく、桟5fの長さも上部ほど短くすることにより、網目の上下の幅が上部ほど狭くなるようにして、各桟5fに過大な応力が加わることを防止している。   This sample 002 is obtained by thickening only the width of the crosspiece 5f of the lattice 5 of the conventional example. In general, if the crosspiece 5f is thickened, the electric resistance is reduced, the current capacity is increased, the heat generation is reduced, and deterioration due to corrosion or the like can be prevented, so that the battery life performance is also improved. Was 101, almost equivalent to Sample 001. This is because the number of meshes in the mesh part 5a (the number of steps in the vertical direction) is reduced by making the crosspieces 5f thick as a whole, so that the height H of the mesh part 5a at the time of unfolding is set to a sample 001 with a large number of meshes. It can be considered that this is a result of excessive stress applied to each of the crosspieces 5f when the sheet is expanded until it becomes the same as the above, resulting in cracks and the like. Even in the present invention, it is preferable to make the crosspiece 5f thicker in consideration of the current capacity. However, not only that, but also the length of the crosspiece 5f is made shorter toward the upper portion so that the upper and lower widths of the mesh become narrower toward the upper portion. Thus, an excessive stress is prevented from being applied to each crosspiece 5f.

以下に、試料101〜112、試料201〜212、試料301〜312、試料401〜412及び試料501〜512の5組12種類ずつの格子体5を用いた鉛蓄電池の電池寿命性能の判定結果を示す。これらの5組の試料101〜112、試料201〜212、試料301〜312、試料401〜412及び試料501〜512は、それぞれ網目部5aの上側半分の質量比が45%、50%、52%、53%、54%、56%、58%、60%、62%、64%、66%及び70%となるように作製した12種類ずつの格子体5である。また、全ての試料101〜512は、他の条件を等しくするために、いずれも20枚の円盤状カッタ3を積層した円盤状カッタローラ2を用いて作製した。   Below, the judgment result of the battery life performance of the lead storage battery using 5 sets of 12 types of lattice bodies 5 of Samples 101 to 112, Samples 201 to 212, Samples 301 to 321, Samples 401 to 412 and Samples 501 to 512 is shown. Show. These five sets of Samples 101 to 112, Samples 201 to 212, Samples 301 to 321, Samples 401 to 412 and Samples 501 to 512 have a mass ratio of 45%, 50% and 52% in the upper half of the mesh portion 5a, respectively. 53%, 54%, 56%, 58%, 60%, 62%, 64%, 66%, and 70% of the 12 types of lattice bodies 5 manufactured. Moreover, all the samples 101-512 were produced using the disk-shaped cutter roller 2 in which 20 disk-shaped cutters 3 were laminated in order to make other conditions equal.

表2に、試料101〜112の格子体5を用いた鉛蓄電池の電池寿命性能の判定結果を示す。   Table 2 shows the determination results of the battery life performance of the lead storage battery using the grid bodies 5 of the samples 101 to 112.

Figure 0005119586
Figure 0005119586

これらの試料101〜112は、上額部5bに直接繋がる最上部の桟5fの断面積Sが、この上額部5bの厚さtに対して0.98tとなるようにしている。このような格子体5は、最上部の桟5fに対応する最も中央寄りの円盤状カッタ3の厚さを1.15mmとし、他の円盤状カッタ3の厚さ(凸部3bの幅W)と凸部3bの突出量Pを適宜調整することにより、網目部5aの上側半分の質量比がそれぞれ45〜70%の各値となるように作製した。即ち、質量比が52%以上のものについては、円盤状カッタ3の厚さを上部側の桟5fに対応するものほど厚くなるようにすると共に(隣接する円盤状カッタ3の厚さは同じとなる場合もある)、これらの円盤状カッタ3の凸部3bの突出量Pも、上部側の桟5fに対応するものほど少なくなるようにした(隣接する円盤状カッタ3の凸部3bの突出量Pは同じとなる場合もある)。また、質量比が45%のものについては、これらの円盤状カッタ3の厚さと凸部3bの突出量Pが逆に配置されるように調整した。さらに、質量比が50%のものについては、これらの円盤状カッタ3の厚さと凸部3bの突出量Pをほぼ同じにした。 These samples 101-112, the cross-sectional area S of the top crosspiece 5f connected directly to the upper frame part 5b has made to be 0.98T 2 with respect to the thickness t of the upper frame part 5b. In such a lattice body 5, the thickness of the disc-shaped cutter 3 closest to the center corresponding to the uppermost crosspiece 5 f is 1.15 mm, and the thickness of the other disc-shaped cutter 3 (width W of the convex portion 3 b). By adjusting the protrusion amount P of the convex portion 3b as appropriate, the mass ratio of the upper half of the mesh portion 5a was set to 45 to 70%, respectively. That is, when the mass ratio is 52% or more, the thickness of the disc-shaped cutter 3 is made thicker as the thickness corresponding to the upper crosspiece 5f (the thickness of the adjacent disc-shaped cutters 3 is the same). The projecting amount P of the convex portion 3b of the disc-shaped cutter 3 is also made smaller as it corresponds to the upper-side beam 5f (the projecting portion 3b of the adjacent disc-shaped cutter 3 is projected). The amount P may be the same). For those having a mass ratio of 45%, the thickness of the disc-shaped cutter 3 and the protruding amount P of the convex portion 3b were adjusted to be reversed. Further, for those having a mass ratio of 50%, the thickness of the disc-like cutter 3 and the protruding amount P of the convex portion 3b were made substantially the same.

これらの試料101〜112の電池寿命性能は、表2及び図3に示すように、質量比が54%以上、62%以下の試料105〜109(請求項1の実施例)については、従来例の試料001と同等かわずかに向上してるが、質量比が54%未満の試料101〜104と、質量比が62%を超えた試料110〜112については、従来例の試料001よりも低下している。これは、例えば質量比が50%の試料102の場合、最上部の桟5fの断面積Sが0.98tであるのに対して、それより下部の全ての桟5fの断面積Sがこれよりも太くなるので、展開時の応力が最上部の桟5fに集中し亀裂等が生じやすくなると共に、充放電の電流による発熱もこの最上部の桟5fで最大となり、このために従来例の試料001よりも電池寿命性能が低下したためであると考えられる。従って、このように最上部の桟5fの断面積Sを細くした場合には、もともと従来例の試料001よりも電池寿命性能が低下することになるが、質量比を54%以上、62%以下とした試料105〜109については、この電池寿命性能の低下を防止することができたことになる。 As shown in Table 2 and FIG. 3, the battery life performance of these samples 101 to 112 is the conventional example for samples 105 to 109 (example of claim 1) having a mass ratio of 54% or more and 62% or less. The samples 101 to 104 having a mass ratio of less than 54% and the samples 110 to 112 having a mass ratio exceeding 62% are lower than the sample 001 of the conventional example. ing. This, for example, when the mass ratio is 50% of the sample 102, while the cross-sectional area S of the top crosspiece 5f is 0.98T 2, the cross-sectional area S of all the bars 5f of the lower than it which Therefore, the stress at the time of deployment concentrates on the uppermost beam 5f, and cracks and the like easily occur, and the heat generated by the charge / discharge current is also maximized in the uppermost beam 5f. This is considered to be because the battery life performance was lower than that of the sample 001. Therefore, when the cross-sectional area S of the uppermost crosspiece 5f is reduced in this way, the battery life performance is originally lower than that of the conventional sample 001, but the mass ratio is 54% or more and 62% or less. As for Samples 105 to 109, this decrease in battery life performance could be prevented.

表3に、試料201〜212の格子体5を用いた鉛蓄電池の電池寿命性能の判定結果を示す。   In Table 3, the determination result of the battery life performance of the lead storage battery using the grid body 5 of the samples 201 to 212 is shown.

Figure 0005119586
Figure 0005119586

これらの試料201〜212は、上額部5bに直接繋がる最上部の桟5fの断面積Sが、この上額部5bの厚さtに対して1.00tとなるようにしている。このような格子体5は、最上部の桟5fに対応する最も中央寄りの円盤状カッタ3の厚さを1.20mmとし、他の円盤状カッタ3については、表2に示した試料101〜112の場合と同様に、これらの円盤状カッタ3の厚さと凸部3bの突出量Pを適宜調整することにより、網目部5aの上側半分の質量比がそれぞれ45〜70%の各値となるように作製した。 These samples 201 to 212, the sectional area S of the top crosspiece 5f connected directly to the upper frame part 5b has made to be 1.00T 2 with respect to the thickness t of the upper frame part 5b. In such a lattice body 5, the thickness of the disc-shaped cutter 3 closest to the center corresponding to the uppermost crosspiece 5 f is 1.20 mm, and the other disc-shaped cutters 3 are the samples 101 to 101 shown in Table 2. As in the case of 112, the mass ratio of the upper half of the mesh portion 5a becomes each value of 45 to 70% by appropriately adjusting the thickness of the disc-shaped cutter 3 and the protruding amount P of the convex portion 3b. It produced as follows.

これらの試料201〜212の電池寿命性能は、表3及び図3に示すように、質量比が50%の試料202が従来例の試料001と同等であり、質量比が52%以上の試料203〜212については、全て従来例の試料001よりも向上してる。しかも、質量比が54%以上、62%以下の試料205〜209(請求項1及び請求項2の実施例)については、電池寿命性能が突出して向上し、従来例の試料001よりも約10〜15%高くなっている。これは、最上部の桟5fの断面積Sが1.00tとなることにより、質量比が50%の試料202の場合に、それより下部の全ての桟5fの断面積Sとの差がわずかとなって、従来例の試料001と同等の電池寿命性能を得ることができたため、さらに質量比を54%以上としたものでは、網目部5aの上下の桟5fでの発熱が均一化され格子体5の劣化が確実に防止されるので、電池寿命性能が急激に向上したものと考えられる。ただし、この質量比が62%を超えた試料210〜212で電池寿命性能が急激に低下したのは、上部の短く太い桟5fと下部の長く細い桟5fとの長さや太さの差が大きくなりすぎるために、この下部の長く細い桟5fの電気抵抗が大きくなるだけでなく、展開時の応力もこの下部の桟5fに過大に加わり亀裂等が生じやすくなって、早期に充放電電流が流れ難くなるためであると考えられる。 As shown in Table 3 and FIG. 3, the battery life performance of these samples 201 to 212 is that the sample 202 having a mass ratio of 50% is equivalent to the sample 001 of the conventional example, and the sample 203 having a mass ratio of 52% or more. About -212, all are improving rather than the sample 001 of a prior art example. In addition, for the samples 205 to 209 (examples of claims 1 and 2) having a mass ratio of 54% or more and 62% or less, the battery life performance is remarkably improved, which is about 10 times that of the sample 001 of the conventional example. ~ 15% higher. This is because the cross-sectional area S of the top crosspiece 5f is 1.00T 2, when the mass ratio is 50% of the sample 202, the difference between the cross-sectional area S of all the bars 5f lower than Since the battery life performance equivalent to that of the sample 001 of the conventional example was obtained, the heat generation at the upper and lower bars 5f above and below the mesh portion 5a was made uniform when the mass ratio was 54% or more. It is considered that the battery life performance has been drastically improved since the deterioration of the lattice 5 is reliably prevented. However, in the samples 210 to 212 in which the mass ratio exceeded 62%, the battery life performance sharply decreased because of the large difference in length and thickness between the upper, short, thick beam 5f and the lower, long, thin beam 5f. Therefore, not only the electrical resistance of the long and thin beam 5f in the lower part is increased, but also the stress at the time of deployment is excessively applied to the beam 5f in the lower part, and cracks are easily generated, so that the charging / discharging current is quickly generated. This is thought to be because it becomes difficult to flow.

表4に、試料301〜312の格子体5を用いた鉛蓄電池の電池寿命性能の判定結果を示す。   In Table 4, the determination result of the battery life performance of the lead storage battery using the grid body 5 of the samples 301 to 312 is shown.

Figure 0005119586
Figure 0005119586

これらの試料301〜312は、上額部5bに直接繋がる最上部の桟5fの断面積Sが、この上額部5bの厚さtに対して1.15tとなるようにしている。このような格子体5は、最上部の桟5fに対応する最も中央寄りの円盤状カッタ3の厚さを1.30mmとし、他の円盤状カッタ3については、表2に示した試料101〜112の場合と同様に、これらの円盤状カッタ3の厚さと凸部3bの突出量Pを適宜調整することにより、網目部5aの上側半分の質量比がそれぞれ45〜70%の各値となるように作製した。 In these samples 301 to 312, the cross-sectional area S of the uppermost crosspiece 5 f directly connected to the upper frame portion 5 b is set to 1.15 t 2 with respect to the thickness t of the upper frame portion 5 b. In such a lattice body 5, the thickness of the disc-shaped cutter 3 closest to the center corresponding to the uppermost crosspiece 5 f is 1.30 mm, and the other disc-shaped cutters 3 are the samples 101 to 101 shown in Table 2. As in the case of 112, the mass ratio of the upper half of the mesh portion 5a becomes each value of 45 to 70% by appropriately adjusting the thickness of the disc-shaped cutter 3 and the protruding amount P of the convex portion 3b. It produced as follows.

これらの試料301〜312の電池寿命性能は、表4及び図3に示すように、質量比が50%の試料302が従来例の試料001とほぼ同等であり、質量比が52%以上の試料303〜312については、全て従来例の試料001よりも向上してる。しかも、質量比が54%以上、62%以下の試料305〜309(請求項1及び請求項2の実施例)については、電池寿命性能が突出して向上し、従来例の試料001よりも約10〜20%高くなっている。これは、最上部の桟5fの断面積Sが1.15tとなることにより、質量比が50%の試料302の場合に、それより下部の全ての桟5fの断面積Sとほぼ同じになって、従来例の試料001と同等の電池寿命性能を得ることができたため、さらに質量比を54%以上としたものでは、網目部5aの上下の桟5fでの発熱が均一化され格子体5の劣化が確実に防止されるので、電池寿命性能が急激に向上したものと考えられる。しかも、特に質量比が56%以上、60%以下の試料306〜308の電池寿命性能が突出し、従来例の試料001よりも20%以上高くなったのは、表3に示した試料206〜208の場合よりも最上部の桟5fの断面積Sが十分に太くなることにより、この部分での発熱を確実に抑制し、この最上部の桟5fも含めた全ての桟5fでの発熱を均一化することができたためであると考えられる。 As shown in Table 4 and FIG. 3, the battery life performance of these samples 301 to 312 is that the sample 302 with a mass ratio of 50% is almost equivalent to the sample 001 of the conventional example, and the sample with a mass ratio of 52% or more. About 303-312, all are improving rather than the sample 001 of a prior art example. In addition, with respect to the samples 305 to 309 (examples of claims 1 and 2) having a mass ratio of 54% or more and 62% or less, the battery life performance is remarkably improved, which is about 10 times that of the conventional sample 001. ~ 20% higher. This is because the cross-sectional area S of the top crosspiece 5f is 1.15T 2, when the mass ratio is 50% of the sample 302, it more nearly equal to the cross-sectional area S of all the bars 5f of the lower Thus, the battery life performance equivalent to that of the sample 001 of the conventional example could be obtained. Therefore, when the mass ratio was 54% or more, the heat generation at the upper and lower crosspieces 5f of the mesh portion 5a was made uniform, and the lattice body Therefore, it is considered that the battery life performance has been drastically improved. In addition, the battery life performance of the samples 306 to 308 having a mass ratio of 56% or more and 60% or less is prominent and is 20% or more higher than that of the conventional sample 001. The samples 206 to 208 shown in Table 3 are used. Since the cross-sectional area S of the uppermost crosspiece 5f is sufficiently thicker than in the case of, the heat generation in this portion is surely suppressed, and the heat generation in all the crosspieces 5f including the uppermost crosspiece 5f is uniform. This is thought to be due to the fact that

なお、質量比が62%を超えた試料310〜312で電池寿命性能が急激に低下したのは、表3に示した試料210〜212の場合と同じ理由であると考えられる。また、このように質量比が54%以上、62%以下の試料305〜309で特に電池寿命性能の向上が著しい場合でも、質量比が45%の試料301での電池寿命性能は、表2の試料101や表3の試料201と大差なく、従来例の試料001よりも5%程度低下しているのは、最上部の桟5fを除いて、充放電電流が大きくなる上部の桟5fほど長く細くなるので、これらの上部の桟5fに展開時の応力が加わって亀裂等が生じやすくなる上に、充放電電流による発熱が集中することにより腐食等による劣化が特に激しくなるからであると考えられる。   In addition, it is thought that it is the same reason as the case of the samples 210-212 shown in Table 3 that the battery life performance sharply decreased in the samples 310 to 312 where the mass ratio exceeded 62%. Further, even when the improvement in battery life performance is particularly remarkable in the samples 305 to 309 having the mass ratio of 54% or more and 62% or less, the battery life performance in the sample 301 having the mass ratio of 45% is shown in Table 2. The difference between the sample 101 and the sample 201 in Table 3 is about 5% lower than the sample 001 of the conventional example, except for the uppermost beam 5f, which is longer as the upper beam 5f where the charge / discharge current increases. Since it becomes thinner, stress at the time of expansion is applied to these upper crosspieces 5f, and cracks and the like are likely to occur, and further, deterioration due to corrosion and the like becomes particularly severe due to concentration of heat generated by charge / discharge current. It is done.

表5に、試料401〜412の格子体5を用いた鉛蓄電池の電池寿命性能の判定結果を示す。   In Table 5, the determination result of the battery life performance of the lead storage battery using the grid body 5 of the samples 401 to 412 is shown.

Figure 0005119586
Figure 0005119586

これらの試料401〜412は、上額部5bに直接繋がる最上部の桟5fの断面積Sが、この上額部5bの厚さtに対して1.30tとなるようにしている。このような格子体5は、最上部の桟5fに対応する最も中央寄りの円盤状カッタ3の厚さを1.35mmとし、他の円盤状カッタ3については、表2に示した試料101〜112の場合と同様に、これらの円盤状カッタ3の厚さと凸部3bの突出量Pを適宜調整することにより、網目部5aの上側半分の質量比がそれぞれ45〜70%の各値となるように作製した。 These samples 401 to 412 are set such that the cross-sectional area S of the uppermost crosspiece 5f directly connected to the upper frame portion 5b is 1.30t 2 with respect to the thickness t of the upper frame portion 5b. In such a lattice body 5, the thickness of the disc-shaped cutter 3 closest to the center corresponding to the uppermost crosspiece 5 f is 1.35 mm, and the other disc-shaped cutters 3 have the samples 101 to 101 shown in Table 2. As in the case of 112, the mass ratio of the upper half of the mesh portion 5a becomes each value of 45 to 70% by appropriately adjusting the thickness of the disc-shaped cutter 3 and the protruding amount P of the convex portion 3b. It produced as follows.

これらの試料401〜412の電池寿命性能は、表5及び図3に示すように、質量比が50%の試料402が従来例の試料001とほぼ同等であり、この質量比が50%以上の全ての試料402〜412が従来例の試料001よりも向上してる。しかも、質量比が54%以上、62%以下の試料405〜409(請求項1及び請求項2の実施例)については、電池寿命性能が突出して向上し、従来例の試料001よりも約10〜15%高くなっている。これは、表3に示した試料205〜209の場合と同様の理由によるものと考えられる。ただし、表4に示した試料305〜309の電池寿命性能ほどには著しい向上がなかったのは、最上部の桟5fの断面積Sが太くなりすぎることにより、展開時の応力が他の桟5fに多く加わって亀裂等が多少生じやすくなったためであると考えられる。また、質量比が62%を超えた試料410〜412で電池寿命性能が急激に低下したのは、表3に示した試料210〜212の場合と同じ理由であると考えられる。   As shown in Table 5 and FIG. 3, the battery life performance of these samples 401 to 412 is that the sample 402 having a mass ratio of 50% is substantially equivalent to the sample 001 of the conventional example, and this mass ratio is 50% or more. All the samples 402 to 412 are improved from the sample 001 of the conventional example. In addition, for the samples 405 to 409 having the mass ratio of 54% or more and 62% or less (Examples of Claims 1 and 2), the battery life performance is remarkably improved, which is about 10 times that of the sample 001 of the conventional example. ~ 15% higher. This is considered to be due to the same reason as in the case of Samples 205 to 209 shown in Table 3. However, the battery life performance of the samples 305 to 309 shown in Table 4 was not significantly improved because the cross-sectional area S of the uppermost crosspiece 5f was too thick, so that the stress at the time of deployment was different from that of the other crosspieces. It is thought that this is because cracks and the like are more likely to occur due to the addition of 5f. In addition, it is considered that the battery life performance sharply decreased in the samples 410 to 412 having a mass ratio exceeding 62% for the same reason as in the samples 210 to 212 shown in Table 3.

表6に、試料501〜512の格子体5を用いた鉛蓄電池の電池寿命性能の判定結果を示す。   In Table 6, the determination result of the battery life performance of the lead storage battery using the grid body 5 of the samples 501 to 512 is shown.

Figure 0005119586
Figure 0005119586

これらの試料501〜512は、上額部5bに直接繋がる最上部の桟5fの断面積Sが、この上額部5bの厚さtに対して1.32tとなるようにしている。このような格子体5は、最上部の桟5fに対応する最も中央寄りの円盤状カッタ3の厚さを1.40mmとし、他の円盤状カッタ3については、表2に示した試料101〜112の場合と同様に、これらの円盤状カッタ3の厚さと凸部3bの突出量Pを適宜調整することにより、網目部5aの上側半分の質量比がそれぞれ45〜70%の各値となるように作製した。 These samples 501 to 512 are configured such that the cross-sectional area S of the uppermost crosspiece 5f directly connected to the upper frame portion 5b is 1.32t 2 with respect to the thickness t of the upper frame portion 5b. In such a lattice body 5, the thickness of the disc-shaped cutter 3 closest to the center corresponding to the uppermost crosspiece 5 f is 1.40 mm, and the other disc-shaped cutters 3 are the samples 101 to 101 shown in Table 2. As in the case of 112, the mass ratio of the upper half of the mesh portion 5a becomes each value of 45 to 70% by appropriately adjusting the thickness of the disc-shaped cutter 3 and the protruding amount P of the convex portion 3b. It produced as follows.

これらの試料501〜512の電池寿命性能は、表6及び図3に示すように、質量比が54%以上、62%以下の試料505〜509(請求項1の実施例)については、従来例の試料001と同等かわずかに向上してるが、質量比が54%未満の試料501〜504と、質量比が62%を超えた試料510〜512については、従来例の試料001よりも低下している。これは、例えば質量比が50%の試料502の場合、最上部の桟5fの断面積Sが1.32tであるのに対して、それより下部の全ての桟5fの断面積Sが細くなるので、展開時の応力が最上部の直ぐ下方の桟5fに集中し亀裂等が生じやすくなると共に、充放電電流による発熱もこの最上部の直ぐ下方の桟5fで最大となり、このために従来例の試料001よりも電池寿命性能が低下したためであると考えられる。従って、このように最上部の桟5fの断面積Sを極端に太くした場合にも、従来例の試料001よりも電池寿命性能が低下することになるが、質量比を54%以上、62%以下とした試料505〜509については、最上部の桟5fとその直ぐ下方の桟5fとの断面積Sの差が小さくなるので、この電池寿命性能の低下を防止することができた。なお、質量比が62%を超えた試料510〜512については、最上部の桟5fとその直ぐ下方の桟5fとの断面積Sの差がより小さくなるが、さらに下方での上部と下部の桟5fの長さや太さの差が大きくなりすぎるために、表3に示した試料210〜212の場合と同じ理由で電池寿命性能が低下したと考えられる。 As shown in Table 6 and FIG. 3, the battery life performance of these samples 501 to 512 is the conventional example for samples 505 to 509 (the embodiment of claim 1) having a mass ratio of 54% or more and 62% or less. The samples 501 to 504 having a mass ratio of less than 54% and the samples 510 to 512 having a mass ratio of more than 62% are lower than the sample 001 of the conventional example. ing. This, for example, when the mass ratio is 50% of the sample 502, while the cross-sectional area S of the top crosspiece 5f is 1.32T 2, it more narrow cross-sectional area S of all the bars 5f of the lower As a result, the stress at the time of deployment concentrates on the beam 5f immediately below the uppermost part, and cracks and the like are likely to occur, and the heat generated by the charge / discharge current is maximized at the beam 5f immediately below the uppermost part. This is probably because the battery life performance was lower than that of the sample 001 in the example. Therefore, even when the cross-sectional area S of the uppermost crosspiece 5f is extremely thick as described above, the battery life performance is lowered as compared with the sample 001 of the conventional example, but the mass ratio is 54% or more and 62%. In the samples 505 to 509 described below, the difference in the cross-sectional area S between the uppermost crosspiece 5f and the crosspiece 5f immediately below it is small, and this deterioration of the battery life performance can be prevented. For samples 510 to 512 having a mass ratio exceeding 62%, the difference in cross-sectional area S between the uppermost beam 5f and the beam 5f immediately below it is smaller. It is considered that the battery life performance was lowered for the same reason as the samples 210 to 212 shown in Table 3 because the difference in the length and thickness of the crosspiece 5f becomes too large.

本発明の一実施形態を示すものであって、鉛蓄電池の極板の格子体の構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an embodiment of the present invention and is a diagram illustrating a configuration of a grid of electrode plates of a lead storage battery. 本発明の一実施形態を示すものであって、円盤状カッタの凸部の突出量の相違を示す部分拡大斜視図である。FIG. 3 is a partially enlarged perspective view showing an embodiment of the present invention and showing a difference in protrusion amount of a convex portion of a disk-shaped cutter. 本発明の実施例を示すものであって、試料の格子体における網目部の上側半分の質量比と寿命性能との関係を示すグラフである。FIG. 4 is a graph showing an example of the present invention and showing the relationship between the mass ratio of the upper half of the mesh portion in the lattice of the sample and the life performance. 従来例を示すものであって、格子体を作製するためのロータリ方式のスリット形成工程を示す側面図である。It is a side view which shows a prior art example and shows the slit formation process of the rotary system for producing a lattice. 従来例を示すものであって、格子体を作製するためのロータリ方式の展開工程を示す平面図である。It is a top view which shows a prior art example and shows the expansion | deployment process of the rotary system for producing a lattice. 従来例を示すものであって、鉛蓄電池の極板の格子体の構成を示す図である。It is a figure which shows a prior art example and is a figure which shows the structure of the grid | lattice body of the electrode plate of a lead storage battery.

符号の説明Explanation of symbols

1 シート材
1a スリット
3 円盤状カッタ
3a 円周面
3b 凸部
3c 凹部
4 チェーン展開装置
5 格子体
5a 網目部
5b 上額部
5d 耳部
5f 桟
DESCRIPTION OF SYMBOLS 1 Sheet material 1a Slit 3 Disc shaped cutter 3a Circumferential surface 3b Convex part 3c Concave part 4 Chain deployment apparatus 5 Grid 5a Net part 5b Upper frame part 5d Ear part 5f Crosspiece

Claims (1)

鉛又は鉛合金のシート材に所定の一方向に沿ったスリットを千鳥状に多数形成し、このシート材を前記一方向と交差する方向に引き広げてスリットを展開し網目部を形成した格子体であって、この網目部の上方に、集電のための耳部を突設した上額部が配置された鉛蓄電池の格子体において、
前記網目部の上側半分の質量が前記網目部全体の54%以上、62%以下であり、
前記網目部における前記上額部に直接繋がる最上部の桟の断面積Sが、この上額部の厚さtに対して、1.00t ≦S≦1.30t の範囲内にあることを特徴とする鉛蓄電池の格子体。
Lead or lead alloy slit along one predetermined direction to the sheet material of a large number formed in a zigzag shape, and form the shape of the mesh portion to expand the slit spread pulling the sheet material in a direction intersecting the one direction In the lattice body of the lead storage battery in which the upper frame portion with protruding ears for current collection is arranged above the mesh portion,
The upper half of the mass of the mesh portion is the mesh portion overall 54% or more state, and are less 62%,
The sectional area S of the top crosspiece connected directly to the upper frame part of the mesh portion, the thickness t of the upper frame part, is in the range of 1.00t 2 ≦ S ≦ 1.30t 2 A lead-acid battery grid.
JP2005314863A 2005-10-28 2005-10-28 Lead-acid battery grid Active JP5119586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314863A JP5119586B2 (en) 2005-10-28 2005-10-28 Lead-acid battery grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314863A JP5119586B2 (en) 2005-10-28 2005-10-28 Lead-acid battery grid

Publications (2)

Publication Number Publication Date
JP2007123105A JP2007123105A (en) 2007-05-17
JP5119586B2 true JP5119586B2 (en) 2013-01-16

Family

ID=38146716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314863A Active JP5119586B2 (en) 2005-10-28 2005-10-28 Lead-acid battery grid

Country Status (1)

Country Link
JP (1) JP5119586B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136089B2 (en) * 2008-01-29 2013-02-06 パナソニック株式会社 Lead acid battery
JP5630716B2 (en) * 2011-09-21 2014-11-26 株式会社Gsユアサ Lead acid battery
WO2014087565A1 (en) * 2012-12-03 2014-06-12 パナソニック株式会社 Lead-acid storage battery grid and lead-acid storage battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159065A (en) * 1980-05-13 1981-12-08 Yuasa Battery Co Ltd Grid for lead acid battery
JPS58209066A (en) * 1982-05-27 1983-12-05 Yuasa Battery Co Ltd Expanded grid for lead-acid battery and its manufacture
JP2560770B2 (en) * 1988-02-09 1996-12-04 新神戸電機株式会社 Expanded grid for lead-acid battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007123105A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
RU2477549C2 (en) Accumulator negative grid manufacture method
US7976588B2 (en) Storage battery with expanded grid
JP6162136B2 (en) Battery grid with altered corrosion resistance
JP5119586B2 (en) Lead-acid battery grid
JP5230845B2 (en) Electrode plate group for lead-acid battery, lead-acid battery, and method for producing electrode plate group for lead-acid battery
EP3203572B1 (en) Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery
JP2000173575A (en) Lead-acid battery
JP4385441B2 (en) Lead acid battery
JPS6021883Y2 (en) storage battery board
JP4923485B2 (en) Expanded grid for lead-acid battery and lead-acid battery using the expanded grid
JP4092816B2 (en) Lattice body for lead acid battery and method for manufacturing the same
JP4380184B2 (en) Storage battery grid and lead storage battery using the same
JP4375521B2 (en) Storage battery and manufacturing method thereof
JP4385557B2 (en) Expanded grid for battery and lead-acid battery using the same
JP4834912B2 (en) Manufacturing method of storage battery grid and manufacturing method of lead storage battery using storage battery grid manufactured by the manufacturing method
JP4224756B2 (en) Lead acid battery
JP2000340235A (en) Lead-acid battery
JP4923377B2 (en) battery
JP3637603B2 (en) Lead acid battery
JP7105218B2 (en) lead acid battery
JP2004220927A (en) Lead-acid storage battery
JP4904632B2 (en) Lead acid battery
JP5092183B2 (en) Lead acid battery
JP2002075380A (en) Expand grid body for lead-acid battery
JP2000215898A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150