JP4918738B2 - ITO sputtering target and manufacturing method thereof - Google Patents

ITO sputtering target and manufacturing method thereof Download PDF

Info

Publication number
JP4918738B2
JP4918738B2 JP2001108686A JP2001108686A JP4918738B2 JP 4918738 B2 JP4918738 B2 JP 4918738B2 JP 2001108686 A JP2001108686 A JP 2001108686A JP 2001108686 A JP2001108686 A JP 2001108686A JP 4918738 B2 JP4918738 B2 JP 4918738B2
Authority
JP
Japan
Prior art keywords
sputtering target
sintered body
ito
intermediate compound
indium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001108686A
Other languages
Japanese (ja)
Other versions
JP2002302761A (en
Inventor
健太郎 内海
裕一 長崎
秀樹 寺岡
聡 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2001108686A priority Critical patent/JP4918738B2/en
Priority to TW091106366A priority patent/TWI254083B/en
Priority to KR1020020018055A priority patent/KR20020079422A/en
Publication of JP2002302761A publication Critical patent/JP2002302761A/en
Application granted granted Critical
Publication of JP4918738B2 publication Critical patent/JP4918738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ITO透明導電膜形成用のスパッタリングターゲットおよびその製造方法に関する。
【0002】
【従来の技術】
透明導電膜であるITO(Indium Tin Oxide)薄膜の製造方法はスプレー熱分解法、CVD法等の化学的成膜法と電子ビーム蒸着法、スパッタリング法等の物理的成膜法に大別することができる。なかでもITOターゲットを用いたスパッタリング法は、大面積化が容易で、得られる膜の抵抗値および透過率の経時変化が少なく、また、成膜条件のコントロールが容易であるため、様々な分野で使用されている。
【0003】
ITO薄膜は高導電性、高透過率といった特徴を有し、更に微細加工も容易に行えることから、フラットパネルディスプレイ用表示電極、太陽電池用窓材、帯電防止膜等の広範囲な分野に渡って用いられている。特に液晶表示装置を始めとしたフラットパネルディスプレイ分野では近年大型化および高精細化が進んでおり、その表示用電極であるITO薄膜に対して低パーティクル化の要求が高まっている。
【0004】
基板へのパーティクル付着量は、スパッタリング中のアーキング発生頻度と深く係わっており、パーティクルの低減には、アーキングを低減させることが有効である。
【0005】
アーキングの低減には、スパッタリングターゲットに用いるITO焼結体の密度向上が有効であり、密度向上の手法として、例えば、特開平3−207858号等のように酸素加圧焼結を行う方法や、特開平9−25567号等のように微細酸化スズ粉末を用いる方法などが知られている。
【0006】
また、高密度化させた上で焼結体中の中間化合物相(酸化インジウムと酸化スズの複合酸化物相であり、スズが固溶した酸化インジウム相とは異なる)を低減させる方法も開示されている。例えば、特開平06−158308号公報および特開平07−166341号公報には、相対密度が90%以上で単相構造(SnO2相および中間化合物相が面積比で10%以下)を有し、比抵抗を1×10-3Ω・cm以下とするしたITOスパッタリングターゲットが開示されている。
【0007】
このターゲットは、アーキングによる膜特性の均一性悪化の防止と、アーキングを原因として形成されるターゲット表面の黒化による薄膜抵抗の増加防止を目的としており、スズ量を2〜6重量%と低減し、平均粒径0.1μm以下の酸化インジウム−酸化スズ複合粉末をプレス成形した後、1〜10気圧の加圧酸素雰囲気中1500〜1700℃で焼結することにより得られる。
【0008】
【発明が解決しようとする課題】
しかしながら、ITO薄膜に要求される性能は日々高まり、かつ、コスト低減要求も強まるなか、更なる改良が必要とされているのが現状である。
【0009】
【課題を解決するための手段】
本発明者らは、相対密度99%以上の焼結体からなるITOスパッタリングターゲットのアーキング発生頻度の低減策について鋭意検討を行い、アーキング発生頻度は、該中間化合物相の形状と強く相関しており、任意の断面を走査型電子顕微鏡(SEM)を用いて観察される中間化合物粒子の楕円長短軸比を2.1以上にすることにより、またその形状が、凹面を含む多角形状とすることにより発生頻度を低減できることを見出した。
【0010】
即ち、本発明は、酸化インジウム粉末と酸化スズ粉末を混合、成形、焼成して得られるITO焼結体からなるスパッタリングターゲットであって、その相対密度が99%以上で、焼結体が立方晶系酸化インジウムからなる母相と、酸化インジウムと酸化スズの中間化合物相の2相構造からなり、▲1▼焼結体の任意の断面をSEMを用いて観察される中間化合物粒子の楕円長短軸比が2.1以上であるITOスパッタリングターゲット、または、▲2▼焼結体の任意の断面をSEMを用いて観察される中間化合物粒子の80%以上が凹面を含む多角形状であるITOスパッタリングターゲット、および▲3▼酸化インジウム粉末と酸化スズ粉末とを、混合、成形し、1550℃以上、1650℃未満の純酸素気流中で焼結した後、焼結保持温度から少なくとも1300℃までの降温速度を、200℃/時間以上としたことを特徴とするITOスパッタリングターゲットの製造方法に関する。
【0011】
以下、本発明を詳細に説明する。
【0012】
本発明のITOスパッタリングターゲットは、例えば、以下の方法で製造することができる。はじめに、酸化インジウム粉末と酸化スズ粉末とを所望の割合でボールミル用ポットに投入し、乾式あるいは湿式混合して混合粉末を調製する。使用する粉末の平均粒径は、1.5μm以下であることが好ましく、更に好ましくは0.1μmを越え1.5μm以下である。このような粉末を使用することにより、焼結体の密度増加効果が得られる。
【0013】
本発明では、混合粉末中の酸化スズの含有量は、SnO2/(In23+SnO2)で8重量%以上、15重量%未満とすることが好ましい。こうすることにより、スパッタリング法により製膜したときに得られる薄膜の抵抗率が低下する。
【0014】
こうして得られた粉末をプレス法あるいは鋳込法などの成形法により成形してITO成形体を製造する。プレス成形により成形体を製造する場合には所定の大きさの金型に混合粉末を充填した後、プレス機を用いて100〜300kg/cm2の圧力でプレスを行い成形体とする。この際、必要に応じてPVA等のバインダーを添加しても良い。一方、鋳込法により成形体を製造する場合には、混合粉末を水、バインダーおよび分散剤とともに混合してスラリー化し、こうして得られた50〜5000センチポイズの粘度を持つスラリーを鋳込み成形用の型に注入して成形体を製造する。
【0015】
次に、こうして得られた成形体は、必要に応じて冷間等方圧プレス(CIP)による処理を行う。この際、CIPの圧力は十分な圧密効果を得るため1ton/cm2以上、好ましくは2〜5ton/cm2であることが望ましい。
【0016】
成形を鋳込法により行った場合には、CIP後の成形体中に残存する水分およびバインダー等の有機物を除去するため300〜500℃の温度で5〜20時間程度の乾燥処理および脱バインダー処理を施すことが好ましい。また、成形をプレス法により行った場合でも、成形時にバインダーを使用したときには、同様の脱バインダー処理を行うことが好ましい。
【0017】
次に、このようにして得られた成形体の焼結を行う。昇温速度については特に限定されないが、焼結時間の短縮と割れ防止の観点から、10〜400℃/時間とするのが好ましい。
【0018】
本発明においては、この後の温度プロファイルが重要となる。
【0019】
焼結保持温度は、1550℃以上、1650℃未満、好ましくは、1580℃以上1620℃以下とする。こうすることにより、酸化インジウム格子中への酸化スズの固溶が、低温での固溶限界を超えて促進される。
【0020】
保持時間は5時間以上、好ましくは5〜30時間であることが望ましい。こうすることにより、高密度の焼結体が得やすくなる。
【0021】
降温は、少なくとも1300℃までは、200℃/時間以上の降温速度で降温する。好ましくは250℃/時間以上、さらに好ましくは300℃/時間以上とする。なお、ここでいう降温速度は焼結時の炉の温度パターンの設定値ではなく、炉内温度を示す。降温速度の上限値については特に規定されないが、焼結体の割れ防止を考慮すると、500℃/時間以下が好ましい。高温領域で低温での固溶限界以上に固溶していた酸化スズはこの降温過程で析出し中間化合物を形成するが、上記のような降温速度に設定することにより、析出量を低減させると共に、任意の断面をSEMで観察した際に観察される中間化合物相粒子の楕円長短軸比が2.1以上で、凹面を含む多角形状となる。
【0022】
本発明のITOスパッタリングターゲットの表面構造をSEMにより調べた結果を図1に、このSEM像から中間化合物粒子に相当する部分を黒く抜き出したものを図2に示す。本発明でいう凹面を含む粒子とは、図1および図2に示すように粒子の輪郭線の少なくとも一部に凹面を含んでいることを意味する。また、本発明の凹面を含む多角形状であるITOスパッタリングターゲットとは、中間化合物粒子のうち80%(個数換算)以上が凹面を含んでいることを意味する。
【0023】
中間化合物相をこのような形状とすることにより、効果的にスパッタリング中のアーキングを抑制が可能となる。このような現象のメカニズムについては明らかになっていないが、上記のように高温で焼成した後、急激に冷却し、上記の形状の中間化合物相を形成することにより再現性良くアーキングを抑制することが可能となる。
【0024】
1550℃以上で焼結を行わない場合には、SEMにより観察される中間化合物の形状は、円形に近く凹面を持たないものが主となり、楕円長短軸比も2.1より小さい値となる。また、200℃/時間以上の急冷を行わなかった場合には、楕円長短軸比が2.1以上で凹面を持つ中間化合物が主とはならず、また中間化合物相の析出量が多くなるとともに中間化合物粒子の平均断面積が5μm2を越えてしまうため、アーキング低減効果が得られない。
【0025】
1300℃未満となった後の降温速度は、焼結体の割れを防止するため、100℃/時間以下とするのが好ましい。1200℃以下となった後に降温速度を遅くするとより好ましい。降温速度を遅くする温度の設定および降温速度の選択は、焼結炉の容量、焼結体サイズおよび形状、割れ易さなどを考慮して適宜決定すればよい。
【0026】
焼結時の雰囲気は、酸素気流中とし、焼結時に炉内に酸素を導入する際の酸素流量(L/min)と成形体仕込量(kg)の比(仕込重量/酸素流量)を、1.0以下とする。こうすることにより、高密度の焼結体を得やすくなる。
【0027】
本発明に係わる中間化合物粒子の楕円長短軸比、形状および平均断面積の測定方法は、例えば、次の通りに行えばよい。まずITO焼結体を適当な大きさに切断した後、表面研磨を行う。FE(Field Emission)−SEM等を用いて焼結体表面の写真を撮るとともに、ひとつひとつの粒子の定量分析を行い、Snが固溶した酸化インジウム相と中間化合物相に分類する。
【0028】
次に、結晶相の分類されたSEM像をコンピューターに取り込み画像解析を行う。本発明では、Media Cybernetics社製、ソフト名「Image−Pro Plus」を用いて測定を行った。
【0029】
中間化合物相の楕円長短軸比は、測定対称粒子の相当楕円(対称粒子と同面積でかつ物理学で言う1次および2次モーメントが等しい楕円)の長軸長と短軸長の比率(長軸/短軸)により求めた。
【0030】
凹面を含む多角形状については、定量分析の結果、中間化合物と同定された粒子の形状をSEM写真上、目視により観察した。
【0031】
平均断面積は、定量分析の結果、中間化合物と同定された粒子の面積の和(S)を粒子の数(n)で除して求めた。
【0032】
本発明では、相対密度は高いほどアーキング低減効果が得られるため、99.5%以上が好ましい。より好ましくは99.7%以上で、特に好ましくは99.8%以上である。
【0033】
なお、本発明でいう相対密度(D)とは、In23とSnO2の真密度の相加平均から求められる理論密度(d)に対する相対値を示している。相加平均から求められる理論密度(d)とは、ターゲット組成において、In23とSnO2粉末の混合量をa,b(g)とした時、それぞれの真密度7.18、6.95(g/cm3)を用いて、
d=(a+b)/((a/7.18)+(b/6.95))
により求められる。焼結体の測定密度をd1とすると、その相対密度は、
式:D=d1/d×100(%)
で求められる。
【0034】
次に、得られた焼結体を所望の形状に研削加工した後、必要に応じて無酸素銅等からなるバッキングプレートにインジウム半田等を用いて接合することにより、本発明のITOスパッタリングターゲットを得ることができる。
【0035】
得られたターゲットをスパッタリング装置内に設置し、アルゴンなどの不活性ガスと必要に応じて酸素ガスをスパッタリングガスとして用いて、dc或いはrf電界を印加してスパッタリングを行うことにより、所望の基板上にITO薄膜を形成することができ、この際アーキング発生量が低減されるという本発明の効果が発現される。
【0036】
【実施例】
(実施例1)
平均粒径0.5μmの酸化インジウム粉末90重量部と平均粒径0.5μmの酸化スズ粉末10重量部とをポリエチレン製のポットに入れ、乾式ボールミルにより72時間混合し、混合粉末を調製した。前記混合粉末のタップ密度を測定したところ2.0g/cm3であった。
【0037】
この混合粉末を金型に入れ、300kg/cm2の圧力でプレスして成形体とした。この成形体を3ton/cm2の圧力でCIPによる処理を行った。次にこの成形体を純酸素雰囲気焼結炉内に設置して、以下の条件で焼結した。
(焼結条件)
昇温速度:100℃/時間、焼結温度:1600℃、焼結時間:6時間、雰囲気:昇温時800℃から降温時400℃まで純酸素ガスを炉内に、(仕込重量/酸素流量)=0.8で導入、降温速度:1600℃から1200℃までは、400℃/時間、以降50℃/時間
得られた焼結体の密度をアルキメデス法で測定した。結果を表1に示す。
【0038】
この焼結体から湿式加工により5×7インチ厚さ6mmのターゲット用焼結体とSEM分析用のサンプルを切り出した。
【0039】
このサンプルの表面構造をSEMにより測定した結果を図1に、図1における中間化合物部分を黒く示したものを図2に示す。また、密度、中間化合物粒子の楕円長短軸比、形状および平均断面積を測定した結果を表1に示す。
【0040】
一方、ターゲット用焼結体をインジウム半田を用いて無酸素銅製のバッキングプレートにボンディングしてターゲットとした。このターゲットを以下のスパッタリング条件で連続放電させてアーキング発生量を調べた。
(スパッタリング条件)
DC電力:300W、ガス圧:7.0mTorr、スパッタリングガス:Ar+酸素、スパッタリングガス中の酸素ガス濃度(O2/Ar):0.05%、放電時間:66時間(ターゲットの残厚は約1mm)ここで、酸素ガス濃度は、得られる薄膜の抵抗率が最も低下する値に設定した。
【0041】
66時間連続放電した際の積算アーキング発生回数を表1に示す。積算アーキング発生回数は僅かであった。
【0042】
(実施例2)
1600℃から1200℃までの降温速度を、350℃/時間とした以外は、実施例1と同様の方法で、ITOターゲットと分析用サンプルを作製した。
【0043】
密度、中間化合物粒子の楕円長短軸比、形状および平均断面積を測定した結果を表1に示す。
また、実施例1と同様の連続放電試験を実施した結果を表1に示す。積算アーキング発生回数は僅かであった。
【0044】
(実施例3)
1600℃から1200℃までの降温速度を、300℃/時間とした以外は、実施例1と同様の方法で、ITOターゲットと分析用サンプルを作製した。
【0045】
密度と中間化合物粒子の楕円長短軸比、形状および平均断面積を測定した結果を表1に示す。
また、実施例1と同様の連続放電試験を実施した結果を表1に示す。積算アーキング発生回数は僅かであった。
【0046】
(実施例4)
1600℃から1200℃までの降温速度を、200℃/時間とした以外は、実施例1と同様の方法で、ITOターゲットと分析用サンプルを作製した。
【0047】
密度、中間化合物粒子の楕円長短軸比、形状および平均断面積を測定した結果を表1に示す。
また、実施例1と同様の連続放電試験を実施した結果を表1に示す。積算アーキング発生回数は僅かであった。
【0048】
(実施例5)
1600℃から1300℃までの降温速度を、400℃/時間、以降50℃/時間とした以外は、実施例1と同様の方法で、ITOターゲットと分析用サンプルを作製した。
【0049】
密度、中間化合物粒子の楕円長短軸比、形状および平均断面積を測定した結果を表1に示す。
また、実施例1と同様の連続放電試験を実施した結果を表1に示す。積算アーキング発生回数は僅かであった。
【0050】
(比較例1)
焼結温度を1500℃、1500℃から1200℃までの降温速度を400℃/時間とした以外は、実施例1と同様の方法で、ITOターゲットと分析用サンプルを作製した。
【0051】
この分析用サンプルの表面構造をSEMにより測定した結果を図3に、図3における中間化合物部分を黒く示したものを図4に示す。また、密度、中間化合物粒子の楕円長短軸比、形状および平均断面積を測定した結果を表1に示す。更に実施例1と同様の連続放電試験を実施した結果を表1に示す。多くのアーキングが発生した。
【0052】
(比較例2)
1600℃から1200℃までの降温速度を100℃/時間とした以外は、実施例1と同様の方法で、ITOターゲットと分析用サンプルを作製した。
【0053】
密度、中間化合物粒子の楕円長短軸比、形状および平均断面積を測定した結果を表1に示す。また、実施例1と同様の連続放電試験を実施した結果を表1に示す。多くのアーキングが発生した。
【0054】
(比較例3)
焼結温度を1500℃、1500℃から1200℃までの降温速度を100℃/時間とした以外は、実施例1と同様の方法で、ITOターゲットと分析用サンプルを作製した。
【0055】
密度、中間化合物粒子の楕円長短軸比、形状および平均断面積を測定した結果を表1に示す。また、実施例1と同様の連続放電試験を実施した結果を表1に示す。多くのアーキングが発生した。
【0056】
【表1】

Figure 0004918738
【発明の効果】
本発明により、アーキング発生が少なく、基板上へのパーティクルの付着が少なくなるITOスパッタリングターゲットを提供することができる。
【図面の簡単な説明】
【図1】 実施例1で得られたITOスパッタリングターゲットの表面構造を示す図である。
【図2】 図1における中間化合物粒子に相当する部分を黒く示した図である。
【図3】 比較例1で得られたITOスパッタリングターゲットの表面構造を示す図である。
【図4】 図3における中間化合物粒子に相当する部分を黒く示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sputtering target for forming an ITO transparent conductive film and a method for producing the same.
[0002]
[Prior art]
The manufacturing method of ITO (Indium Tin Oxide) thin film, which is a transparent conductive film, is roughly divided into chemical film-forming methods such as spray pyrolysis and CVD, and physical film-forming methods such as electron beam evaporation and sputtering. Can do. In particular, the sputtering method using an ITO target is easy to increase in area, has little change over time in the resistance value and transmittance of the obtained film, and can easily control the film formation conditions in various fields. in use.
[0003]
The ITO thin film has characteristics such as high conductivity and high transmittance, and can be easily finely processed. Therefore, it covers a wide range of fields such as display electrodes for flat panel displays, window materials for solar cells, and antistatic films. It is used. In particular, in the field of flat panel displays such as liquid crystal display devices, the increase in size and definition has progressed in recent years, and there is an increasing demand for lower particles in the ITO thin film that is the display electrode.
[0004]
The amount of particles adhering to the substrate is deeply related to the frequency of arcing during sputtering, and it is effective to reduce arcing to reduce particles.
[0005]
For reducing arcing, it is effective to improve the density of the ITO sintered body used for the sputtering target, and as a method for improving the density, for example, a method of performing oxygen pressure sintering such as JP-A-3-207858, A method using fine tin oxide powder is known as disclosed in JP-A- 9-25567 .
[0006]
Also disclosed is a method for reducing the intermediate compound phase (a complex oxide phase of indium oxide and tin oxide, which is different from the indium oxide phase in which tin is dissolved) after being densified. ing. For example, Japanese Patent Laid-Open Nos. 06-158308 and 07-166341 have a relative density of 90% or more and a single-phase structure (the SnO 2 phase and the intermediate compound phase are 10% or less in area ratio), An ITO sputtering target having a specific resistance of 1 × 10 −3 Ω · cm or less is disclosed.
[0007]
This target is aimed at preventing deterioration of film property uniformity due to arcing and preventing increase in thin film resistance due to blackening of the target surface formed due to arcing. The amount of tin is reduced to 2 to 6% by weight. It is obtained by press-molding an indium oxide-tin oxide composite powder having an average particle size of 0.1 μm or less and then sintering at 1500 to 1700 ° C. in a pressurized oxygen atmosphere of 1 to 10 atm.
[0008]
[Problems to be solved by the invention]
However, the performance required for the ITO thin film is increasing day by day, and further improvement is required as the cost reduction requirement becomes stronger.
[0009]
[Means for Solving the Problems]
The present inventors have intensively studied measures for reducing the arcing frequency of an ITO sputtering target composed of a sintered body having a relative density of 99% or more, and the arcing frequency is strongly correlated with the shape of the intermediate compound phase. By making the elliptical long / short axis ratio of the intermediate compound particles observed with a scanning electron microscope (SEM) an arbitrary cross section of 2.1 or more, and making the shape a polygonal shape including a concave surface It has been found that the frequency of occurrence can be reduced.
[0010]
That is, the present invention is a sputtering target made of an ITO sintered body obtained by mixing, molding and firing indium oxide powder and tin oxide powder, the relative density of which is 99% or more, and the sintered body is cubic. (1) Ellipse long and short axes of intermediate compound particles observed with an SEM in an arbitrary cross section of a sintered body comprising a two-phase structure of a parent phase composed of indium oxide and an intermediate compound phase of indium oxide and tin oxide An ITO sputtering target having a ratio of 2.1 or more, or (2) an ITO sputtering target in which 80% or more of intermediate compound particles observed using an SEM on an arbitrary cross section of the sintered body have a polygonal shape including a concave surface And (3) Indium oxide powder and tin oxide powder are mixed and molded, sintered in a pure oxygen stream at 1550 ° C. or higher and lower than 1650 ° C., and then held at a sintering holding temperature. From the cooling rate of up to at least 1300 ° C., a method of manufacturing an ITO sputtering target characterized in that a 200 ° C. / time or more.
[0011]
Hereinafter, the present invention will be described in detail.
[0012]
The ITO sputtering target of this invention can be manufactured with the following method, for example. First, indium oxide powder and tin oxide powder are put into a ball mill pot at a desired ratio, and dry or wet mixed to prepare a mixed powder. The average particle size of the powder used is preferably 1.5 μm or less, more preferably more than 0.1 μm and 1.5 μm or less. By using such a powder, the effect of increasing the density of the sintered body can be obtained.
[0013]
In the present invention, the content of tin oxide in the mixed powder is preferably 8 wt% or more and less than 15 wt% in SnO 2 / (In 2 O 3 + SnO 2 ). By doing so, the resistivity of the thin film obtained when the film is formed by the sputtering method is lowered.
[0014]
The powder thus obtained is molded by a molding method such as a pressing method or a casting method to produce an ITO molded body. In the case of producing a molded body by press molding, the mixed powder is filled into a mold having a predetermined size, and then pressed at a pressure of 100 to 300 kg / cm 2 using a press machine to obtain a molded body. At this time, a binder such as PVA may be added as necessary. On the other hand, when a molded body is produced by a casting method, the mixed powder is mixed with water, a binder, and a dispersing agent to form a slurry, and the slurry having a viscosity of 50 to 5000 centipoise thus obtained is cast for molding. To form a molded body.
[0015]
Next, the molded body thus obtained is treated by cold isostatic pressing (CIP) as necessary. At this time, since the pressure of the CIP to obtain a sufficient compaction effect 1 ton / cm 2 or more, it is desirable that preferably is 2~5ton / cm 2.
[0016]
When molding is performed by a casting method, a drying process and a debinding process are performed at a temperature of 300 to 500 ° C. for about 5 to 20 hours in order to remove moisture and organic substances such as a binder remaining in the molded body after CIP. It is preferable to apply. Even when the molding is performed by the press method, it is preferable to perform the same debinding process when a binder is used during the molding.
[0017]
Next, the molded body thus obtained is sintered. The temperature raising rate is not particularly limited, but is preferably 10 to 400 ° C./hour from the viewpoint of shortening the sintering time and preventing cracking.
[0018]
In the present invention, the subsequent temperature profile is important.
[0019]
The sintering holding temperature is 1550 ° C. or higher and lower than 1650 ° C., preferably 1580 ° C. or higher and 1620 ° C. or lower. By doing so, the solid solution of tin oxide in the indium oxide lattice is promoted beyond the solid solution limit at low temperature.
[0020]
The holding time is 5 hours or more, preferably 5 to 30 hours. By doing so, it becomes easy to obtain a high-density sintered body.
[0021]
The temperature is decreased at a temperature decrease rate of 200 ° C./hour or more until at least 1300 ° C. Preferably it is 250 degreeC / hour or more, More preferably, it is 300 degreeC / hour or more. The rate of temperature decrease here is not the set value of the temperature pattern of the furnace during sintering, but the temperature in the furnace. The upper limit of the temperature lowering rate is not particularly defined, but is preferably 500 ° C./hour or less in consideration of prevention of cracking of the sintered body. Tin oxide, which has been dissolved in the high temperature range above the solid solution limit at low temperature, precipitates during this temperature lowering process to form an intermediate compound. By setting the temperature decreasing rate as described above, the amount of precipitation is reduced. The intermediate compound phase particles observed when an arbitrary cross section is observed with an SEM has an elliptical major axis ratio of 2.1 or more, and has a polygonal shape including a concave surface.
[0022]
The result of examining the surface structure of the ITO sputtering target of the present invention by SEM is shown in FIG. 1, and the portion corresponding to the intermediate compound particles extracted from the SEM image in black is shown in FIG. The particle | grains containing the concave surface as used in this invention mean that the concave surface is included in at least one part of the outline of particle | grains, as shown in FIG.1 and FIG.2. The ITO sputtering target having a polygonal shape including a concave surface of the present invention means that 80% (number conversion) or more of intermediate compound particles include a concave surface.
[0023]
By making the intermediate compound phase into such a shape, it is possible to effectively suppress arcing during sputtering. Although the mechanism of this phenomenon has not been clarified, it is possible to suppress arcing with good reproducibility by firing rapidly at a high temperature as described above and then rapidly cooling to form an intermediate compound phase of the above shape. Is possible.
[0024]
When sintering is not performed at 1550 ° C. or higher, the shape of the intermediate compound observed by SEM is mainly circular and has no concave surface, and the ellipse major axis ratio is also smaller than 2.1. In addition, in the case where rapid cooling at 200 ° C./hour or more is not performed, the intermediate compound having a concave surface with an elliptical major axis ratio of 2.1 or more is not main, and the amount of precipitation of the intermediate compound phase increases. Since the average cross-sectional area of the intermediate compound particles exceeds 5 μm 2 , the effect of reducing arcing cannot be obtained.
[0025]
The temperature lowering rate after the temperature becomes less than 1300 ° C. is preferably 100 ° C./hour or less in order to prevent cracking of the sintered body. It is more preferable to lower the temperature lowering rate after the temperature becomes 1200 ° C. or lower. The setting of the temperature for lowering the temperature decrease rate and the selection of the temperature decrease rate may be appropriately determined in consideration of the capacity of the sintering furnace, the size and shape of the sintered body, the ease of cracking, and the like.
[0026]
The atmosphere during sintering is in an oxygen stream, and the ratio of the oxygen flow rate (L / min) and the charged amount of the compact (kg) when introducing oxygen into the furnace during sintering (charge weight / oxygen flow rate), 1.0 or less. By doing so, it becomes easy to obtain a high-density sintered body.
[0027]
The method for measuring the ellipse major axis minor axis ratio, shape and average cross-sectional area of the intermediate compound particles according to the present invention may be performed, for example, as follows. First, the ITO sintered body is cut to an appropriate size, and then surface polishing is performed. While taking a photograph of the surface of the sintered body using FE (Field Emission) -SEM or the like, each individual particle is quantitatively analyzed and classified into an indium oxide phase in which Sn is dissolved and an intermediate compound phase.
[0028]
Next, the SEM image with the crystal phase classified is taken into a computer and image analysis is performed. In the present invention, the measurement was performed using the software name “Image-Pro Plus” manufactured by Media Cybernetics.
[0029]
The ratio of the major axis to the minor axis of the intermediate compound phase is the ratio of the major axis length to the minor axis length of the corresponding ellipse of the measured symmetric particle (the ellipse having the same area as the symmetric particle and equal to the first and second moments in physics). (Axis / short axis).
[0030]
As for the polygonal shape including the concave surface, the shape of the particles identified as the intermediate compound as a result of quantitative analysis was visually observed on the SEM photograph.
[0031]
The average cross-sectional area was obtained by dividing the sum (S) of the areas of particles identified as intermediate compounds by the number of particles (n) as a result of quantitative analysis.
[0032]
In the present invention, as the relative density is higher, the effect of reducing arcing is obtained, so 99.5% or more is preferable. More preferably, it is 99.7% or more, and particularly preferably 99.8% or more.
[0033]
The relative density in the present invention and (D) shows the relative values with respect to the theoretical calculated from the true density of the arithmetic mean of In 2 O 3 and SnO 2 Density (d). The theoretical density (d) obtained from the arithmetic mean is the true density of 7.18 and 6.g when the mixing amount of In 2 O 3 and SnO 2 powder is a and b (g) in the target composition. 95 (g / cm 3 )
d = (a + b) / ((a / 7.18) + (b / 6.95))
Is required. When the measured density of the sintered body is d1, the relative density is
Formula: D = d1 / d × 100 (%)
Is required.
[0034]
Next, after grinding the obtained sintered body into a desired shape, the ITO sputtering target of the present invention is bonded to a backing plate made of oxygen-free copper or the like using indium solder or the like as necessary. Obtainable.
[0035]
The obtained target is placed in a sputtering apparatus, and sputtering is performed by applying a dc or rf electric field using an inert gas such as argon and, if necessary, an oxygen gas as a sputtering gas. In this case, an ITO thin film can be formed. At this time, the effect of the present invention that the amount of arcing is reduced is exhibited.
[0036]
【Example】
Example 1
90 parts by weight of indium oxide powder having an average particle diameter of 0.5 μm and 10 parts by weight of tin oxide powder having an average particle diameter of 0.5 μm were placed in a polyethylene pot and mixed by a dry ball mill for 72 hours to prepare a mixed powder. The tap density of the mixed powder was measured and found to be 2.0 g / cm 3 .
[0037]
This mixed powder was put into a mold and pressed at a pressure of 300 kg / cm 2 to obtain a molded body. This molded body was treated with CIP at a pressure of 3 ton / cm 2 . Next, this compact was placed in a pure oxygen atmosphere sintering furnace and sintered under the following conditions.
(Sintering conditions)
Temperature increase rate: 100 ° C./hour, sintering temperature: 1600 ° C., sintering time: 6 hours, atmosphere: pure oxygen gas in the furnace from 800 ° C. during temperature increase to 400 ° C. during temperature decrease (feed weight / oxygen flow rate) ) = 0.8, temperature drop rate: From 1600 ° C. to 1200 ° C., the density of the sintered body obtained by 400 ° C./hour and thereafter 50 ° C./hour was measured by Archimedes method. The results are shown in Table 1.
[0038]
From this sintered body, a 5 × 7 inch 6 mm thick target sintered body and a sample for SEM analysis were cut out by wet processing.
[0039]
The result of measuring the surface structure of this sample by SEM is shown in FIG. 1, and the intermediate compound portion in FIG. 1 shown in black is shown in FIG. Table 1 shows the results of measuring the density, the elliptical long / short axis ratio, the shape, and the average cross-sectional area of the intermediate compound particles.
[0040]
On the other hand, the target sintered body was bonded to an oxygen-free copper backing plate using indium solder to obtain a target. This target was continuously discharged under the following sputtering conditions to examine the amount of arcing.
(Sputtering conditions)
DC power: 300 W, gas pressure: 7.0 mTorr, sputtering gas: Ar + oxygen, oxygen gas concentration in sputtering gas (O 2 / Ar): 0.05%, discharge time: 66 hours (remaining target thickness is about 1 mm) ) Here, the oxygen gas concentration was set to a value at which the resistivity of the obtained thin film was most reduced.
[0041]
Table 1 shows the total number of arcing occurrences when the battery is continuously discharged for 66 hours. The cumulative number of arcing occurrences was very small.
[0042]
(Example 2)
An ITO target and a sample for analysis were prepared in the same manner as in Example 1 except that the cooling rate from 1600 ° C. to 1200 ° C. was 350 ° C./hour.
[0043]
Table 1 shows the results of measurement of the density, the ellipse major axis ratio, the shape, and the average cross-sectional area of the intermediate compound particles.
In addition, Table 1 shows the results of conducting a continuous discharge test similar to Example 1. The cumulative number of arcing occurrences was very small.
[0044]
(Example 3)
An ITO target and a sample for analysis were prepared in the same manner as in Example 1 except that the rate of temperature decrease from 1600 ° C. to 1200 ° C. was set to 300 ° C./hour.
[0045]
Table 1 shows the results of measurement of the density, the elliptical long / short axis ratio, the shape, and the average cross-sectional area of the intermediate compound particles.
In addition, Table 1 shows the results of conducting a continuous discharge test similar to Example 1. The cumulative number of arcing occurrences was very small.
[0046]
Example 4
An ITO target and a sample for analysis were prepared in the same manner as in Example 1 except that the temperature lowering rate from 1600 ° C. to 1200 ° C. was 200 ° C./hour.
[0047]
Table 1 shows the results of measurement of the density, the ellipse major axis ratio, the shape, and the average cross-sectional area of the intermediate compound particles.
In addition, Table 1 shows the results of conducting a continuous discharge test similar to Example 1. The cumulative number of arcing occurrences was very small.
[0048]
(Example 5)
An ITO target and an analytical sample were produced in the same manner as in Example 1 except that the temperature lowering rate from 1600 ° C. to 1300 ° C. was changed to 400 ° C./hour and thereafter 50 ° C./hour.
[0049]
Table 1 shows the results of measurement of the density, the ellipse major axis ratio, the shape, and the average cross-sectional area of the intermediate compound particles.
In addition, Table 1 shows the results of conducting a continuous discharge test similar to Example 1. The cumulative number of arcing occurrences was very small.
[0050]
(Comparative Example 1)
An ITO target and an analytical sample were produced in the same manner as in Example 1 except that the sintering temperature was 1500 ° C., and the temperature decrease rate from 1500 ° C. to 1200 ° C. was 400 ° C./hour.
[0051]
The result of measuring the surface structure of this analytical sample by SEM is shown in FIG. 3, and the intermediate compound portion in FIG. 3 shown in black is shown in FIG. Table 1 shows the results of measuring the density, the elliptical long / short axis ratio, the shape, and the average cross-sectional area of the intermediate compound particles. Further, Table 1 shows the results of carrying out a continuous discharge test similar to that in Example 1. A lot of arcing occurred.
[0052]
(Comparative Example 2)
An ITO target and a sample for analysis were prepared in the same manner as in Example 1 except that the rate of temperature decrease from 1600 ° C. to 1200 ° C. was set to 100 ° C./hour.
[0053]
Table 1 shows the results of measurement of the density, the ellipse major axis ratio, the shape, and the average cross-sectional area of the intermediate compound particles. In addition, Table 1 shows the results of conducting a continuous discharge test similar to Example 1. A lot of arcing occurred.
[0054]
(Comparative Example 3)
An ITO target and an analytical sample were produced in the same manner as in Example 1 except that the sintering temperature was 1500 ° C., and the temperature decrease rate from 1500 ° C. to 1200 ° C. was 100 ° C./hour.
[0055]
Table 1 shows the results of measurement of the density, the ellipse major axis ratio, the shape, and the average cross-sectional area of the intermediate compound particles. In addition, Table 1 shows the results of conducting a continuous discharge test similar to Example 1. A lot of arcing occurred.
[0056]
[Table 1]
Figure 0004918738
【Effect of the invention】
According to the present invention, it is possible to provide an ITO sputtering target with less arcing and less adhesion of particles on the substrate.
[Brief description of the drawings]
1 is a view showing the surface structure of an ITO sputtering target obtained in Example 1. FIG.
FIG. 2 is a diagram in which a portion corresponding to intermediate compound particles in FIG. 1 is shown in black.
3 is a view showing a surface structure of an ITO sputtering target obtained in Comparative Example 1. FIG.
FIG. 4 is a diagram in which a portion corresponding to intermediate compound particles in FIG. 3 is shown in black.

Claims (7)

酸化インジウム粉末と酸化スズ粉末とを混合、成形、焼成して得られるITO焼結体からなるスパッタリングターゲットであって、その相対密度が99%以上で、焼結体が立方晶系酸化インジウムからなる母相と、酸化インジウムと酸化スズとの中間化合物相との2相構造からなり、焼結体の任意の断面を走査型電子顕微鏡を用いて観察される前記中間化合物相粒子の楕円長短軸比が2.1以上であることを特徴とするITOスパッタリングターゲット。A sputtering target made of an ITO sintered body obtained by mixing, molding and firing indium oxide powder and tin oxide powder, the relative density of which is 99% or more, and the sintered body is made of cubic indium oxide An ellipse major axis ratio of the intermediate compound phase particles having a two-phase structure consisting of a matrix phase and an intermediate compound phase of indium oxide and tin oxide, and an arbitrary cross section of the sintered body observed using a scanning electron microscope Is an ITO sputtering target characterized by being 2.1 or more. 酸化インジウム粉末と酸化スズ粉末とを混合、成形、焼成して得られるITO焼結体からなるスパッタリングターゲットであって、その相対密度が99%以上で、焼結体が立方晶系酸化インジウムからなる母相と、酸化インジウムと酸化スズとの中間化合物相との2相構造からなり、焼結体の任意の断面を走査型電子顕微鏡を用いて観察される前記中間化合物相粒子個数の80%以上が、凹面を含む多角形状であることを特徴とするITOスパッタリングターゲット。A sputtering target made of an ITO sintered body obtained by mixing, molding and firing indium oxide powder and tin oxide powder, the relative density of which is 99% or more, and the sintered body is made of cubic indium oxide 80% or more of the number of particles of the intermediate compound phase, which has a two-phase structure of a parent phase and an intermediate compound phase of indium oxide and tin oxide, and is observed with a scanning electron microscope in an arbitrary cross section of the sintered body Is a polygonal shape including a concave surface. 前記中間化合物相粒子の平均断面積が、5μm以下であることを特徴とする請求項1または請求項2に記載のITOスパッタリングターゲット。3. The ITO sputtering target according to claim 1, wherein an average cross-sectional area of the intermediate compound phase particles is 5 μm 2 or less. 焼結体中のスズ含有量が、Sn/(In+Sn)×100%で、7.7重量%以上14.重量%未満であることを特徴とする請求項1〜3のいずれか1項に記載のスパッタリングターゲット。The tin content in the sintered body was Sn / (In + Sn) × 100%, and 7.7 wt% or more 14. The sputtering target according to claim 1, wherein the sputtering target is less than 3 % by weight. 酸化インジウム粉末と酸化スズ粉末とを、混合、成形し、1550℃以上1650℃未満の純酸素気流中で焼結した後、焼結保持温度から少なくとも1300℃までの降温速度を、200℃/時間以上としたことを特徴とするITOスパッタリングターゲットの製造方法。Indium oxide powder and tin oxide powder are mixed and molded, sintered in a pure oxygen stream at 1550 ° C. or higher and lower than 1650 ° C., and then the temperature decreasing rate from the sintering holding temperature to at least 1300 ° C. is 200 ° C./hour. The manufacturing method of the ITO sputtering target characterized by the above. 酸化インジウム粉末と酸化スズ粉末とを、酸化物換算で酸化スズが8重量%以上15重量%未満となる比率で混合することを特徴とする請求項5に記載のITOスパッタリングターゲットの製造方法。6. The method for producing an ITO sputtering target according to claim 5, wherein the indium oxide powder and the tin oxide powder are mixed at a ratio such that tin oxide is 8 wt% or more and less than 15 wt% in terms of oxide. 焼結時に炉内に酸素を導入する際の酸素流量(L/min)と成形体仕込量(kg)の比(仕込重量/酸素流量)が、1.0以下であることを特徴とする請求項5または請求項6に記載のITOスパッタリングターゲットの製造方法。The ratio (charge weight / oxygen flow rate) of the oxygen flow rate (L / min) and the charged amount of the compact (kg) when introducing oxygen into the furnace during sintering is 1.0 or less. The manufacturing method of the ITO sputtering target of Claim 5 or Claim 6.
JP2001108686A 2001-04-06 2001-04-06 ITO sputtering target and manufacturing method thereof Expired - Fee Related JP4918738B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001108686A JP4918738B2 (en) 2001-04-06 2001-04-06 ITO sputtering target and manufacturing method thereof
TW091106366A TWI254083B (en) 2001-04-06 2002-03-29 ITO sputtering target and production method therefor
KR1020020018055A KR20020079422A (en) 2001-04-06 2002-04-02 ITO sputtering target and the method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108686A JP4918738B2 (en) 2001-04-06 2001-04-06 ITO sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002302761A JP2002302761A (en) 2002-10-18
JP4918738B2 true JP4918738B2 (en) 2012-04-18

Family

ID=18960776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108686A Expired - Fee Related JP4918738B2 (en) 2001-04-06 2001-04-06 ITO sputtering target and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP4918738B2 (en)
KR (1) KR20020079422A (en)
TW (1) TWI254083B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601539B2 (en) * 2005-11-11 2010-12-22 中国電力株式会社 Method for producing coal ash sintered body using coal ash powder as raw material
JP4562664B2 (en) * 2006-02-07 2010-10-13 三井金属鉱業株式会社 ITO sintered body and ITO sputtering target
JP2007231381A (en) * 2006-03-01 2007-09-13 Tosoh Corp Ito sputtering target and production method therefor
JP5091414B2 (en) 2006-03-14 2012-12-05 三井金属鉱業株式会社 ITO sintered body, sputtering target material, sputtering target, and method for producing sputtering target material
JP4686776B2 (en) * 2006-08-28 2011-05-25 Dowaエレクトロニクス株式会社 ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film
KR100787635B1 (en) * 2007-01-22 2007-12-21 삼성코닝 주식회사 Indium tin oxide target, method of manufacturing the same and transparent electrode manufactured by using the same
JP5309975B2 (en) * 2008-12-25 2013-10-09 東ソー株式会社 Sintered body for transparent conductive film, sputtering target and method for producing the same
KR20170011772A (en) 2015-07-24 2017-02-02 희성금속 주식회사 Preparation method of ito sputtering target and the ito sputtering target prepared thereby
KR102001051B1 (en) 2016-11-04 2019-07-17 엘티메탈 주식회사 Preparation method of igzo sputtering target and igzo sputtering target prepared thereby
CN113735565B (en) * 2021-08-30 2022-11-15 深圳市众诚达应用材料科技有限公司 Low-tin-content ITO sputtering target material, preparation method and thin-film solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3134405B2 (en) * 1991-09-17 2001-02-13 東ソー株式会社 Method for producing indium oxide / tin oxide sintered body
JPH0776772A (en) * 1993-09-10 1995-03-20 Tosoh Corp Production of ito sintered body
JP3693191B2 (en) * 1995-10-30 2005-09-07 日立金属株式会社 Indium oxide-based sintered body, method for producing the same, and indium oxide-based target
JPH10147861A (en) * 1996-11-15 1998-06-02 Sumitomo Metal Mining Co Ltd Production of indium oxide-tin oxide sintered body

Also Published As

Publication number Publication date
TWI254083B (en) 2006-05-01
JP2002302761A (en) 2002-10-18
KR20020079422A (en) 2002-10-19

Similar Documents

Publication Publication Date Title
JP4850378B2 (en) Sputtering target, transparent conductive oxide, and method for producing sputtering target
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
JP4918738B2 (en) ITO sputtering target and manufacturing method thereof
JPWO2007066490A1 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
JP4022676B2 (en) High-density ITO sintered body, method for producing the same, and sputtering target
TWI644867B (en) Target for forming transparent conductive film and manufacturing method thereof, transparent conductive film and manufacturing method thereof
CN112626469B (en) Indium tin nickel oxide target material and manufacturing method thereof
JP4403591B2 (en) Conductive metal oxide sintered body and use thereof
JP4457669B2 (en) Sputtering target and manufacturing method thereof
JP4813182B2 (en) ITO sputtering target
JP7158102B2 (en) ITO sputtering target, manufacturing method thereof, ITO transparent conductive film, and manufacturing method of ITO transparent conductive film
JP2007231381A (en) Ito sputtering target and production method therefor
JP4918737B2 (en) Oxide sintered body and sputtering target
JP4917725B2 (en) Transparent conductive film, method for producing the same, and use thereof
JP2002030429A (en) Ito sputtering target and manufacturing method
JP3870446B2 (en) ITO sintered body manufacturing method and sputtering target
JP2003002749A (en) Indium oxide powder and method for manufacturing ito sputtering target
JP3917671B2 (en) ITO sintered body and sputtering target
JP3591610B2 (en) ITO sintered body for forming transparent conductive film
JP4934926B2 (en) ITO sputtering target and manufacturing method thereof
JP2004339607A (en) Transparent electroconductive film and sputtering target
JP4923358B2 (en) ITO target and manufacturing method thereof
JP3662168B2 (en) SnO2-Sb2O3 sintered sputtering target and method for producing the same
JP2000185968A (en) Electroconductive metal oxide sintered compact and its use
JP2000256842A (en) Ito sputtering target, and production of ito sintered compact and transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R151 Written notification of patent or utility model registration

Ref document number: 4918738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees