JP3591610B2 - ITO sintered body for forming transparent conductive film - Google Patents

ITO sintered body for forming transparent conductive film Download PDF

Info

Publication number
JP3591610B2
JP3591610B2 JP27199395A JP27199395A JP3591610B2 JP 3591610 B2 JP3591610 B2 JP 3591610B2 JP 27199395 A JP27199395 A JP 27199395A JP 27199395 A JP27199395 A JP 27199395A JP 3591610 B2 JP3591610 B2 JP 3591610B2
Authority
JP
Japan
Prior art keywords
phase
sintered body
film
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27199395A
Other languages
Japanese (ja)
Other versions
JPH08188871A (en
Inventor
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP27199395A priority Critical patent/JP3591610B2/en
Publication of JPH08188871A publication Critical patent/JPH08188871A/en
Application granted granted Critical
Publication of JP3591610B2 publication Critical patent/JP3591610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透明導電膜形成用ITO焼結体に関し、特に低温基板、すなわち200℃以下から室温までの基板温度において低抵抗な透明導電膜を形成するための ITO焼結体に関するものである。
【0002】
【従来の技術】
近年、液晶を中心とする表示デバイスの発展に伴い、透明導電膜の需要が増加している。その透明導電膜には、低い抵抗性と高い透明性を備えているインジウム・スズ酸化物膜(以下ITO膜と称する)が最適とされている。
ITO膜を得る方法としては酸化インジウム粉末と酸化スズ粉末からなる混合粉末を成形、焼結することによりインジウム・スズ酸化物焼結体(以下ITO焼結体と称する)を作製し、それをターゲットとしてITO膜を形成する。ITO膜の形成方法には、スパッタリング法、真空蒸着法、CVD法等があるが、中でもスパッタリング法は、大面積を成膜することが可能でかつ低抵抗膜を再現性良く得られるとの利点から、現在、ITO膜を形成する方法の主流になっている。スパッタリング法はターゲットを不活性ガスイオンによりスパッタリングし、300℃程度に加熱した基板上に成膜する方法である。このようにして得られたI TO膜は、比抵抗が2.0×10−4Ω・cm程度になることが知られている。
【0003】
【発明が解決しようとする課題】
しかし、最近は液晶のカラー化、表示素子の微細化、アクティブマトリックス方式の採用、薄膜トランジスタの導入に伴い、加熱可能温度が200℃以下のフィルム等の樹脂製基板上に低抵抗のITO膜を形成させることが要望され、成膜に用いるターゲットも低温成膜可能なターゲットとする必要が生じてきた。
従来のターゲットの抵抗率は、成膜温度200℃で5×10−4Ω・cmが限界であるが、目的とする液晶用電極として使用するには、成膜温度200℃で4×10−4Ω・cmより低い抵抗率が必要とされている。
したがって、本発明は低温成膜によっても低抵抗なITO膜が得られる透明導電膜形成用ITO焼結体を得ることを目的とする。
【0003】
【課題を解決するための手段】
本発明者等は前記目的を解決するため、種々検討を行った結果、ITO焼結体として、In2O3を主成分とする主相と主相に比べSnO2が多い第2相からなる組織 とし、各相の組成を新規に規定することにより、低温成膜によっても低抵抗な膜が得られるターゲットとすることができることを知見した。
すなわち、本発明の透明導電膜形成用ターゲットは、実質的にIn、Sn、およびOからなるITO焼結体であり、主相とmol比でIn:Sn=1.6:1〜3.0:1 からなる第2相とを有することを特徴とする透明導電膜形成用ITO焼結体である。ただし、主相、第2相以外の相、例えば第3相としてIn:Sn=1.6:1よ りもSnが多い相も、面積比にて第2相より少なければ一部含んでも良い。
本発明において、主相はmol比でIn:Sn=10:1〜86:1とするのが望ましく 、In:Sn=10:1〜22:1とするのがさらに望ましい。また、主相の格子定数は1.0121nm以上とするのが望ましく、1.0121〜1.0140とするのがさらに望ましい。さらに、主相と第2相との面積比は主相:第2相=99.9:0.1〜75:25 であることが望ましく、さらには第2相/第3相>1であることが望ましい。
【0004】
本発明透明導電膜形成用ITO焼結体において、第2相の組成をmol比でIn:Sn=1.6:1〜3.0:1としたのは、低温成膜によっても低抵抗な透明導電膜を得るためである。第2相の組成がIn/Sn<1.6になるとSn量が過剰となり 低抵抗な膜が得られない。また、第2相の組成がIn/Sn>3.0の場合はSn 量が不足し、ITO膜中に酸素欠陥が生じないために充分な低抵抗性が発現しない。なお、主相、第2相以外の第3相(例えば、In/Sn<1.6である相)が 焼結体中に存在したとしても、第2相より少なければ膜特性に与える影響は少なく、許容される。
【0005】
また、本発明において、主相はmol比でIn:Sn=10:1〜86:1とするのが望ましく、In:Sn=10:1〜22:1とするのが特に望ましい。主相の組成がIn/Sn<10になるとSn量が過剰となり低抵抗な膜が得られにくく、主相の組成がIn/Sn>22の場合はSn量が不足し、ITO膜中に酸素欠陥が生じないために充分な低抵抗性が発現しにくい。
さらに、本発明において、主相の格子定数が1.0121nm未満であると酸素欠陥が生じにくく充分な低抵抗性が発現しにくいので1.0121nm以上であることが望ましく、1.0121〜1.0140nmとするのがさらに望ましい。
【0006】
また、主相と第2相との面積比は、主相:第2相=99.9:0.1〜75:25であるこ とが望ましく、(主相/第2相)>(99.9/0.1)の場合はSn量が不足し、( 主相/第2相)<(75/25)場合はSn量が過剰となり、低温成膜において低抵抗な膜が得られにくい。
本発明において、各相の組成はSEM−EDX分析(Scanning electron microscopy−Energy dispersive Xray spectrometer)によってInとSnの組成分析を行うことにより、また、相の面積比はSEM組織写真の、ライトグレーを主相とし 、ダークグレーを第2相とし面積比を求めることにより確認することができる。主相の格子定数はX線回折装置(例えば、リガク RINT1000)により確認することが できる。
【0007】
本発明のターゲットを作製するに際しては、例えば、In2O3粉末とSnO2粉末と を所定の割合で均一に混合し、混合粉末やあるいは固溶体粉末あるいは共沈粉末等の複合粉末を用いてもよい。また、複合粉末を主成分とし、In2O3粉末およびSnO2粉末の一種または二種を混合した混合粉末を用いることもできる。
前記の混合粉末を一軸加圧あるいは静水圧プレス等にて成形し、得られた成形体を酸素濃度が25vol%以上の雰囲気で1300℃〜1700℃の温度で加熱保持する。
【0008】
本発明において、焼結雰囲気を酸素雰囲気中とするのは In2O3やSnO2の分解を抑えるために必要だからであるが、酸素濃度は25%以上、より好ましくは50%以上が望ましい。加圧酸素雰囲気中であれば更に望ましい。焼結温度は、1300℃未満では相対密度85%以上の焼結体が得られず、一方1700℃を越えると酸化スズ、酸化インジウムの分解により密度低下が生ずるので1200〜1700℃とするのが望ましい。また、ITO焼結体を、主相とIn:Sn=1.6:1〜3.0:1からなる第2相とを有する焼結体とするために、1000℃以上での昇温速度を0.5℃/min以上に、さらに冷却時の降温速度を0.5℃/min以上にするのが好ましい。昇温速度を0.5℃/minより小さくするとSnの分解により相対密度85%以上の焼結体が得られにくい。降温速度を0.5℃/minより小さくするとIn/Sn<1.6になり易 くなる。
【0009】
【発明の実施の形態】
(実施例1)
平均粒径50nmのIn2O3粉末と、平均粒径150nmのSnO2粉末とを、所定の比率になるように配合しボールミルによって24時間混合した。
成形は、これらの粉末にポリビニルアルコール(PVA)を1%添加して造粒 し、これを冷間静水圧プレスで成形圧力3000kg/cm2で成形した。この成形体を1550℃、1気圧、70%の酸素雰囲気中で5時間保持し焼結した。試料No.1〜13、18〜20については、1000℃以上での昇温速度2℃/min、冷却時の降温速度2℃/minの焼結条件で焼結を行った。No.14〜17、21については、冷却時の降温速度0.2℃/minの条件で焼結を行った。
得られた焼結体の各相の組成と面積比、格子定数を測定し表1、2に示す。さらに得られた焼結体を研削により直径100mm、厚さ5mmの形状に加工したターゲットを用いて成膜した時の成膜温度200℃でのITO膜の抵抗率を表1,2に示す 。なお、No.1〜13,18〜20は本発明であり、No.14〜17,21は比較例である。
表1のNo.1、No.8、No.15のITO焼結体のミクロ組織を鏡面加工後のSEMに て観察したSEM組織写真を図1、図2、図3に示す。
また、表1、2のNo.1、8、11、14、15の試料について、成膜時の基板温度を変化 させた場合のITO膜の抵抗率(μΩ・cm)を表3に示す。
なお、成膜条件は次の通りである。
スパッタ方式 DCマグネトロンスパッタリング
ターゲット−基板間距離 60mm
スパッタ電力 1.0W/cm2
スパッタガス組成 99%アルゴン+1%酸素の混合ガス
スパッタガス圧 1Pa
膜厚 150nm
基板 コーニング#7059ガラス
【0010】
表1より、第2相の組成をmol比でIn:Sn=1.6:1〜3.0:1とすることにより、低温成膜によっても低抵抗な透明導電膜が得られること、また主相の組成がmol比でIn:Sn=10:1〜22:1の場合特に低抵抗なITO膜が得られることがわかる。
また、表2より、第3相の面積比が第2相より大きくなると、第2相による低抵抗の効果は発現しないことがわかる。なお、No.18〜21の試料に含有された第 3相は、In:Sn=1.5:1の相であった。
さらに、表3に示すように、本発明のターゲットの試料No.1ないし試料No.8,11は比較例のNo.14に較べ、特に、200℃以下の低温成膜において低い抵抗値を示 した。
【0011】
【表1】

Figure 0003591610
【0012】
【表2】
Figure 0003591610
【0013】
【表3】
Figure 0003591610
【発明の効果】
本発明透明導電膜形成用ITO焼結体をターゲットとすれば、低温でのスパッタリングによっても低い抵抗値のITO膜が得ることが可能である。
【図面の簡単な説明】
【図1】本発明ITO焼結体である試料No.1のミクロ金属組織写真である。
【図2】本発明ITO焼結体である試料No.8のミクロ金属組織写真である。
【図3】比較例ITO焼結体である試料No.15のミクロ金属組織写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ITO sintered body for forming a transparent conductive film, and more particularly to an ITO sintered body for forming a low-resistance transparent conductive film at a low-temperature substrate, that is, at a substrate temperature from 200 ° C. or lower to room temperature.
[0002]
[Prior art]
In recent years, with the development of display devices centering on liquid crystals, the demand for transparent conductive films has been increasing. As the transparent conductive film, an indium tin oxide film (hereinafter, referred to as an ITO film) having low resistance and high transparency is optimized.
As a method for obtaining an ITO film, a mixed powder comprising an indium oxide powder and a tin oxide powder is molded and sintered to produce an indium tin oxide sintered body (hereinafter referred to as an ITO sintered body), which is then used as a target. To form an ITO film. Methods of forming the ITO film include a sputtering method, a vacuum evaporation method, and a CVD method. Among them, the sputtering method has an advantage that a large-area film can be formed and a low-resistance film can be obtained with good reproducibility. Therefore, the method of forming an ITO film is currently the mainstream. The sputtering method is a method in which a target is sputtered with inert gas ions to form a film on a substrate heated to about 300 ° C. It is known that the ITO film thus obtained has a specific resistance of about 2.0 × 10 −4 Ω · cm.
[0003]
[Problems to be solved by the invention]
However, recently, with the development of color liquid crystal, miniaturization of display elements, adoption of active matrix method, and introduction of thin film transistors, low-resistance ITO film is formed on a resin substrate such as a film whose heating temperature is 200 ° C or less. Therefore, it has become necessary to use a target capable of forming a film at a low temperature.
The limit of the resistivity of the conventional target is 5 × 10 −4 Ω · cm at a film formation temperature of 200 ° C., but 4 × 10 −4 Ω at a film formation temperature of 200 ° C. to be used as a target liquid crystal electrode. -Resistivity lower than cm is required.
Therefore, an object of the present invention is to obtain an ITO sintered body for forming a transparent conductive film, which can obtain a low-resistance ITO film even by low-temperature film formation.
[0003]
[Means for Solving the Problems]
The present inventors have conducted various studies in order to solve the above-mentioned object. As a result, the ITO sintered body has a main phase mainly composed of In2O3 and a second phase having more SnO2 than the main phase. It has been found that by newly defining the phase composition, it is possible to obtain a target capable of obtaining a low-resistance film even by low-temperature film formation.
That is, the transparent conductive film forming target of the present invention is an ITO sintered body substantially composed of In, Sn, and O, and has a molar ratio of In: Sn = 1.6: 1 to 3.0 to the main phase. 1: a second phase comprising: a sintered body for forming a transparent conductive film; However, a phase other than the main phase and the second phase, for example, a phase having more Sn than In: Sn = 1.6: 1 as the third phase may partially include the phase if the area ratio is smaller than the second phase. .
In the present invention, the molar ratio of the main phase is preferably In: Sn = 10: 1 to 86: 1, and more preferably In: Sn = 10: 1 to 22: 1. The lattice constant of the main phase is desirably 1.0121 nm or more, and more desirably 1.0121 to 1.0140. Further, the area ratio between the main phase and the second phase is desirably main phase: second phase = 99.9: 0.1 to 75:25, and more preferably, second phase / third phase> 1. It is desirable.
[0004]
In the ITO sintered body for forming a transparent conductive film of the present invention, the composition of the second phase is set to be In: Sn = 1.6: 1 to 3.0: 1 by mol ratio because of low resistance even by low-temperature film formation. This is for obtaining a transparent conductive film. If the composition of the second phase becomes In / Sn <1.6, the amount of Sn becomes excessive and a low-resistance film cannot be obtained. Further, when the composition of the second phase is In / Sn> 3.0, the Sn content is insufficient, and oxygen deficiency does not occur in the ITO film, so that sufficient low resistance is not exhibited. Even if a third phase other than the main phase and the second phase (for example, a phase satisfying In / Sn <1.6) is present in the sintered body, the influence on the film properties is not so large as being smaller than the second phase. Less and acceptable.
[0005]
In the present invention, the main phase preferably has a molar ratio of In: Sn = 10: 1 to 86: 1, particularly preferably In: Sn = 10: 1 to 22: 1. When the composition of the main phase is In / Sn <10, the amount of Sn becomes excessive and it is difficult to obtain a low-resistance film. When the composition of the main phase is In / Sn> 22, the amount of Sn becomes insufficient, and oxygen is contained in the ITO film. Sufficient low resistance is hardly developed because no defect occurs.
Furthermore, in the present invention, if the lattice constant of the main phase is less than 1.0121 nm, oxygen vacancies hardly occur and sufficient low resistance is hardly exhibited, so that the lattice constant is desirably 1.0121 nm or more. More preferably, it is set to 0140 nm.
[0006]
The area ratio between the main phase and the second phase is preferably main phase: second phase = 99.9: 0.1 to 75:25, and (main phase / second phase)> (99. In the case of (9 / 0.1), the amount of Sn is insufficient, and in the case of (main phase / second phase) <(75/25), the amount of Sn becomes excessive, and it is difficult to obtain a low-resistance film in low-temperature film formation.
In the present invention, the composition of each phase is determined by performing a composition analysis of In and Sn by SEM-EDX analysis (Scanning electron microscopy-Energy dispersive Xray spectrometer). It can be confirmed by determining the area ratio by using dark gray as the second phase as the main phase. The lattice constant of the main phase can be confirmed by an X-ray diffractometer (for example, Rigaku RINT1000).
[0007]
In producing the target of the present invention, for example, In2O3 powder and SnO2 powder may be uniformly mixed at a predetermined ratio, and a mixed powder or a composite powder such as a solid solution powder or a coprecipitated powder may be used. Alternatively, a mixed powder containing a composite powder as a main component and a mixture of one or two of In2O3 powder and SnO2 powder can be used.
The mixed powder is molded by a uniaxial press or hydrostatic press or the like, and the obtained molded body is heated and held at a temperature of 1300 ° C. to 1700 ° C. in an atmosphere having an oxygen concentration of 25 vol% or more.
[0008]
In the present invention, the sintering atmosphere is set to an oxygen atmosphere because it is necessary to suppress the decomposition of In2O3 and SnO2, and the oxygen concentration is preferably 25% or more, more preferably 50% or more. It is more desirable to be in a pressurized oxygen atmosphere. When the sintering temperature is lower than 1300 ° C., a sintered body having a relative density of 85% or more cannot be obtained. On the other hand, when the sintering temperature exceeds 1700 ° C., the density decreases due to decomposition of tin oxide and indium oxide. desirable. Further, in order to make the ITO sintered body a sintered body having a main phase and a second phase composed of In: Sn = 1.6: 1 to 3.0: 1, the temperature rising rate at 1000 ° C. or higher is used. Is preferably 0.5 ° C./min or more, and the cooling rate during cooling is 0.5 ° C./min or more. If the heating rate is lower than 0.5 ° C./min, it is difficult to obtain a sintered body having a relative density of 85% or more due to decomposition of Sn. If the cooling rate is lower than 0.5 ° C./min, In / Sn <1.6 tends to be satisfied.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
In2O3 powder having an average particle diameter of 50 nm and SnO2 powder having an average particle diameter of 150 nm were blended so as to have a predetermined ratio, and mixed by a ball mill for 24 hours.
Molding was performed by adding 1% of polyvinyl alcohol (PVA) to these powders, granulating the powders, and pressing them with a cold isostatic press at a molding pressure of 3000 kg / cm 2. The compact was sintered at 1550 ° C., 1 atm and 70% oxygen atmosphere for 5 hours. Sample No. About 1-13 and 18-20, sintering was carried out under the sintering conditions of a heating rate of 2 ° C./min above 1000 ° C. and a cooling rate of 2 ° C./min during cooling. No. About 14-17 and 21, sintering was performed on the conditions of 0.2 degree-C / min of the temperature fall rate at the time of cooling.
The composition, area ratio, and lattice constant of each phase of the obtained sintered body were measured, and the results are shown in Tables 1 and 2. Further, Tables 1 and 2 show the resistivity of the ITO film at a film formation temperature of 200 ° C. when the obtained sintered body was formed using a target processed into a shape having a diameter of 100 mm and a thickness of 5 mm by grinding. In addition, No. Nos. 1 to 13 and 18 to 20 are the present invention. 14 to 17, 21 are comparative examples.
No. 1 in Table 1. 1, No. 8, No. FIGS. 1, 2 and 3 show SEM micrographs of the microstructures of the 15 ITO sintered bodies observed by SEM after mirror finishing.
Also, in Tables 1 and 2, Table 3 shows the resistivity (μΩ · cm) of the ITO films of the samples 1, 8, 11, 14, and 15 when the substrate temperature during film formation was changed.
The film forming conditions are as follows.
Sputtering method DC magnetron sputtering target-substrate distance 60mm
Sputtering power 1.0W / cm2
Sputter gas composition 99% argon + 1% oxygen mixed gas Sputter gas pressure 1Pa
150nm thickness
Substrate Corning # 7059 glass [0010]
From Table 1, it can be seen that by setting the composition of the second phase to In: Sn = 1.6: 1 to 3.0: 1 in a molar ratio, a transparent conductive film having low resistance can be obtained even by low-temperature film formation. It can be seen that a particularly low-resistance ITO film can be obtained when the composition of the main phase is In: Sn = 10: 1 to 22: 1 in molar ratio.
Also, from Table 2, it can be seen that when the area ratio of the third phase is larger than that of the second phase, the effect of low resistance by the second phase is not exhibited. In addition, No. The third phase contained in the samples 18 to 21 was a phase of In: Sn = 1.5: 1.
Further, as shown in Table 3, the sample No. of the target of the present invention was used. 1 to Sample No. Nos. 8 and 11 are Nos. Of Comparative Examples. As compared with No. 14, the resistance was particularly low in film formation at a low temperature of 200 ° C. or lower.
[0011]
[Table 1]
Figure 0003591610
[0012]
[Table 2]
Figure 0003591610
[0013]
[Table 3]
Figure 0003591610
【The invention's effect】
By using the ITO sintered body for forming a transparent conductive film of the present invention as a target, an ITO film having a low resistance value can be obtained even by sputtering at a low temperature.
[Brief description of the drawings]
FIG. 1 shows a sample No. which is an ITO sintered body of the present invention. 1 is a photograph of a micro metal structure.
FIG. 2 shows a sample No. which is an ITO sintered body of the present invention. 8 is a micro metallographic photograph of FIG.
FIG. 3 shows a sample No. which is a comparative example ITO sintered body. It is a micro metal structure photograph of No. 15.

Claims (4)

実質的にIn,Sn及びOからなるITO焼結体において主相とmol比でIn:Sn=1.6:1〜3.0:1からなる第2相とを有することを特徴とする透明導電膜形成用ITO焼結体。An ITO sintered body consisting essentially of In, Sn and O having a main phase and a second phase having a molar ratio of In: Sn = 1.6: 1 to 3.0: 1, which is transparent. ITO sintered body for conductive film formation. 主相がmol比でIn:Sn=10:1〜22:1である請求項1に記載の透明導電膜形成用ITO焼結体。2. The ITO sintered body for forming a transparent conductive film according to claim 1, wherein the main phase has a molar ratio of In: Sn = 10: 1 to 22: 1. 主相の格子定数が1.0121nm以上である請求項1または2に記載の透明導電膜形成用ITO焼結体。The ITO sintered body for forming a transparent conductive film according to claim 1 or 2, wherein the lattice constant of the main phase is 1.0121 nm or more. 主相と第2相との面積比が主相:第2相=99.9:0.1〜75:25 であることを特徴とする請求項1ないし3のいづれかに記載の透明導電膜形成用ITO焼結体。The transparent conductive film formation according to any one of claims 1 to 3, wherein the area ratio of the main phase to the second phase is main phase: second phase = 99.9: 0.1 to 75:25. ITO sintered body.
JP27199395A 1994-11-10 1995-09-26 ITO sintered body for forming transparent conductive film Expired - Fee Related JP3591610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27199395A JP3591610B2 (en) 1994-11-10 1995-09-26 ITO sintered body for forming transparent conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-301459 1994-11-10
JP30145994 1994-11-10
JP27199395A JP3591610B2 (en) 1994-11-10 1995-09-26 ITO sintered body for forming transparent conductive film

Publications (2)

Publication Number Publication Date
JPH08188871A JPH08188871A (en) 1996-07-23
JP3591610B2 true JP3591610B2 (en) 2004-11-24

Family

ID=26549977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27199395A Expired - Fee Related JP3591610B2 (en) 1994-11-10 1995-09-26 ITO sintered body for forming transparent conductive film

Country Status (1)

Country Link
JP (1) JP3591610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264307A (en) * 2002-03-11 2003-09-19 Sharp Corp Thin film solar cell and its manufacturing method
US20100127611A1 (en) * 2007-05-22 2010-05-27 Masaaki Imura Transparent electrode
WO2016174877A1 (en) * 2015-04-30 2016-11-03 三井金属鉱業株式会社 Ito sputtering target material

Also Published As

Publication number Publication date
JPH08188871A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
JP3746094B2 (en) Target and manufacturing method thereof
EP2053028A1 (en) Zinc oxide sinter, process for producing the same, and sputtering target
JPH06158308A (en) Target for sputtering for indium-tin oxide film and its production
KR20120052255A (en) Tablet for ion plating, method for producing same, and transparent conductive film
JPH11322332A (en) Zno-based sintered product and its production
EP2220264A1 (en) Refractory metal-doped sputtering targets
JP3215392B2 (en) Metal oxide sintered body and its use
KR20140074163A (en) Sputtering target
JP4403591B2 (en) Conductive metal oxide sintered body and use thereof
JP3591610B2 (en) ITO sintered body for forming transparent conductive film
JP4918738B2 (en) ITO sputtering target and manufacturing method thereof
JPH11171539A (en) Zno-base sintered compact and its production
JPH0570942A (en) High density sintered target material for forming electric conductive transparent thin film by sputtering
JP2002275624A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
JP2003100154A (en) Transparent conductive film, its manufacturing method and its application
JPH08198677A (en) Ito sintered compact for forming transparent electrically conductive film
JP2003239063A (en) Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
KR100628542B1 (en) The sinter of metal oxide compound and use thereof
JP2984581B2 (en) Member composed of indium-tin oxide and method for producing the same
JP2904358B2 (en) Manufacturing method of ITO sintered body
JP2000169219A (en) Metal oxide sintered compact and its use
JP3004518B2 (en) Sputtering target and method for manufacturing the same
JP2003342068A (en) Oxide sintered compact
JP2000185968A (en) Electroconductive metal oxide sintered compact and its use
JP5878045B2 (en) Zinc oxide-based sintered body and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees