JPH08198677A - Ito sintered compact for forming transparent electrically conductive film - Google Patents

Ito sintered compact for forming transparent electrically conductive film

Info

Publication number
JPH08198677A
JPH08198677A JP7021221A JP2122195A JPH08198677A JP H08198677 A JPH08198677 A JP H08198677A JP 7021221 A JP7021221 A JP 7021221A JP 2122195 A JP2122195 A JP 2122195A JP H08198677 A JPH08198677 A JP H08198677A
Authority
JP
Japan
Prior art keywords
film
sintered body
powder
ito sintered
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7021221A
Other languages
Japanese (ja)
Inventor
Hideko Fukushima
英子 福島
Nobuyuki Yamada
信行 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7021221A priority Critical patent/JPH08198677A/en
Publication of JPH08198677A publication Critical patent/JPH08198677A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an ITO sintered compact capable of giving a low resistance ITO film by sputtering at a low temp. by compacting a mixture of In2 O3 powder with SnO2 powder and firing the resultant compact in an oxygen-contg. atmosphere. CONSTITUTION: A powdery mixture prepd. by uniformly mixing In2 O3 powder with >=7wt.% SnO2 powder is compacted by uniaxial pressing, isostatic pressing or other method and the resultant compact is heated to 1,300-1,700 deg.C at >=0.5 deg.C/min heating rate in the temp. range of >=1,000 deg.C in an atmosphere having >=25vol.% concn. of oxygen. After holding at the temp., the compact is cooled at >=0.5 deg.C/min cooling rate to obtain the objective ITO sintered compact. contg. >=80% by area of a principal phase in which the molar ratio of In:Sn is 10:1 to 22:1. The principal phase has 3-50μm average grain diameter, >=1.0121nm lattice constant and >=6.5g/cm<3> density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明導電膜形成用IT
O焼結体に関し、特に低温基板、すなわち200℃以下か
ら室温までの基板温度において低抵抗な透明導電膜を形
成するためのITO焼結体に関するものである。
The present invention relates to an IT for forming a transparent conductive film.
More particularly, the present invention relates to a low temperature substrate, that is, an ITO sintered body for forming a transparent conductive film having a low resistance at a substrate temperature of 200 ° C. or lower to room temperature.

【0002】[0002]

【従来の技術】近年、液晶を中心とする表示デバイスの
発展に伴い、透明導電膜の需要が増加している。その透
明導電膜には、低い抵抗性と高い透明性を備えているイ
ンジウム・スズ酸化物膜(以下ITO膜と称する)が最
適とされている。ITO膜を得る方法としては酸化イン
ジウム粉末と酸化スズ粉末からなる混合粉末を成形、焼
結することによりインジウム・スズ酸化物焼結体(以下
ITO焼結体と称する)を作製し、それをターゲットと
してITO膜を形成する。ITO膜の形成方法には、ス
パッタリング法、真空蒸着法、CVD法等があるが、中
でもスパッタリング法は、大面積を成膜することが可能
でかつ低抵抗膜を再現性良く得られるとの利点から、現
在、ITO膜を形成する方法の主流になっている。スパ
ッタリング法はターゲットを不活性ガスイオンによりス
パッタリングし、300℃程度に加熱した基板上に成膜す
る方法である。このようにして得られたITO膜は、抵
抗率が2.0×10-4Ω・cm程度になることが知られている。
2. Description of the Related Art In recent years, the demand for transparent conductive films has increased with the development of display devices centered on liquid crystals. For the transparent conductive film, an indium tin oxide film (hereinafter referred to as an ITO film) having low resistance and high transparency is optimal. As a method for obtaining an ITO film, a mixed powder of indium oxide powder and tin oxide powder is molded and sintered to produce an indium / tin oxide sintered body (hereinafter referred to as ITO sintered body), which is used as a target. As an ITO film is formed. The ITO film formation method includes a sputtering method, a vacuum deposition method, a CVD method, and the like. Among them, the sputtering method has an advantage that a large area can be formed and a low resistance film can be obtained with good reproducibility. Therefore, the method of forming the ITO film is currently the mainstream. The sputtering method is a method in which a target is sputtered with an inert gas ion and a film is formed on a substrate heated to about 300 ° C. It is known that the ITO film thus obtained has a resistivity of about 2.0 × 10 −4 Ω · cm.

【0003】[0003]

【発明が解決しようとする課題】しかし、最近は液晶の
カラー化、表示素子の微細化、アクティフ゛マトリックス方式の採
用、薄膜トランシ゛スタの導入に伴い、加熱可能温度が200℃以
下のフィルム等の樹脂製基板上に低抵抗のITO膜を形
成させることが要望され、成膜に用いるターゲットも低
温成膜可能なターゲットとする必要が生じてきた。従来
のターケ゛ットは、主相がIn:Sn=23:1〜98:1の組成
を有し、抵抗率は、成膜温度200℃で5×10-4Ω・cmが限
界であるが、目的とする液晶用電極として使用するに
は、成膜温度200℃で4×10-4Ω・cmより低い抵抗率が必
要とされている。したがって、本発明は低温成膜によっ
ても低抵抗なITO膜が得られる透明導電膜形成用IT
O焼結体を得ることを目的とする。
However, recently, due to colorization of liquid crystals, miniaturization of display elements, adoption of an active matrix system, and introduction of a thin film transistor, a resin substrate such as a film having a heatable temperature of 200 ° C. or less. It is desired to form an ITO film having a low resistance on the above, and it has become necessary to use a target that can be used for film formation at a low temperature. In the conventional target, the main phase has a composition of In: Sn = 23: 1 to 98: 1, and the resistivity has a limit of 5 × 10 −4 Ω · cm at a film forming temperature of 200 ° C. In order to use it as a liquid crystal electrode, a resistivity of less than 4 × 10 −4 Ω · cm is required at a film forming temperature of 200 ° C. Therefore, the present invention is an IT for forming a transparent conductive film that can obtain an ITO film having a low resistance even by low-temperature film formation.
The purpose is to obtain an O sintered body.

【0003】[0003]

【課題を解決するための手段】本発明者等は前記目的を
解決するため、種々検討を行った結果、In2O3を主成分
とする主相と主相に比べSnO2が多い相を有するITO焼
結体において、主相の組成を新規に規定することによ
り、低温成膜によっても低抵抗な膜が得られるターゲッ
トとすることができることを知見した。すなわち、本発
明の透明導電膜形成用ターゲットは、実質的にIn,S
nおよびOからなるITO焼結体においてmol比でI
n:Sn=10:1〜22:1からなる主相を面積率で80%以
上含有することを特徴とする。本発明において、主相の
平均結晶粒径は3〜50μmであるのが望ましい。ま
た、主相の格子定数は1.0121nm以上であることが望まし
い。さらに、密度が6.5g/cm3以上であることが望ま
しい。さらにITO焼結体のSnO2量は7wt%以下
であることが望ましい。
Means for Solving the Problems The inventors of the present invention have conducted various studies in order to solve the above-mentioned object, and as a result, have found that an ITO sintering having a main phase containing In2O3 as a main component and a phase containing more SnO2 than the main phase. It has been found that, by newly defining the composition of the main phase in the body, it can be used as a target that can obtain a low-resistance film even by low-temperature film formation. That is, the transparent conductive film forming target of the present invention is substantially composed of In, S
In an ITO sintered body composed of n and O, the molar ratio is I
It is characterized in that the main phase composed of n: Sn = 10: 1 to 22: 1 is contained in an area ratio of 80% or more. In the present invention, the average crystal grain size of the main phase is preferably 3 to 50 μm. Further, the lattice constant of the main phase is preferably 1.0121 nm or more. Furthermore, it is desirable that the density is 6.5 g / cm3 or more. Further, it is desirable that the amount of SnO2 in the ITO sintered body is 7 wt% or less.

【0004】[0004]

【作用】本発明において、主相はmol比でIn:Sn
=10:1〜22:1としたのは、主相の組成がIn/Sn<10
になるとSn量が過剰となり低抵抗な膜が得られず、主
相の組成がIn/Sn>22の場合はSn量が不足し、I
TO膜中に酸素欠陥が生じないために充分な低抵抗性が
発現しないからである。また、In:Sn=14:1〜
21:1とすることにより膜の抵抗変化率がより小さく
なり安定してスパッタリングが行え、18:1〜21:
1とすることがより好ましい。また、mol比でIn:
Sn=10:1〜22:1なる主相が面積率で80%未満である
と、主相以外の相の存在により低抵抗な膜が得られなく
なる。主相の面積率は、高いほど望ましく、実質的に主
相面積率100%であってもよい。本発明ITO焼結体
は、主相以外の相を面積率で20%未満含んでもよく、
例えば、主相以外の相として主相よりSn量が多い相を
含みうる。また、焼結体のSnO2量が7wt%以下で
あると主相以外の相を最小限に抑えることができるので
望ましい。
In the present invention, the main phase is In: Sn in molar ratio.
= 10: 1 to 22: 1 is because the composition of the main phase is In / Sn <10
When the composition of the main phase is In / Sn> 22, the Sn content becomes insufficient, and the Sn content becomes insufficient.
This is because oxygen resistance is not generated in the TO film, so that sufficient low resistance is not exhibited. In addition, In: Sn = 14: 1 to
By setting the ratio to 21: 1, the rate of resistance change of the film becomes smaller and stable sputtering can be performed, and 18: 1 to 21:
More preferably, it is 1. In addition, In:
When the area ratio of the main phase of Sn = 10: 1 to 22: 1 is less than 80%, a low resistance film cannot be obtained due to the existence of phases other than the main phase. The area ratio of the main phase is preferably as high as possible, and may be substantially 100% of the main phase area ratio. The ITO sintered body of the present invention may contain a phase other than the main phase in an area ratio of less than 20%,
For example, a phase having a larger Sn content than the main phase may be included as a phase other than the main phase. Further, if the SnO2 content of the sintered body is 7 wt% or less, the phases other than the main phase can be minimized, which is desirable.

【0005】本発明のITO焼結体は、安定した膜抵抗
率を得るために、主相の平均結晶粒径が3〜50μmで
あることが望ましく、密度が6.5g/cm3以上であるこ
とが望ましい。さらに、本発明において、主相の格子定
数が1.0121nm未満であると酸素欠陥が生じにくく充分な
低抵抗性が発現しにくいので1.0121nm以上であることが
望ましく、1.0121〜1.0140nmとするのがさらに望まし
い。
In order to obtain a stable film resistivity, the ITO sintered body of the present invention preferably has an average crystal grain size of the main phase of 3 to 50 μm and a density of 6.5 g / cm 3 or more. Is desirable. Further, in the present invention, if the lattice constant of the main phase is less than 1.0121 nm, oxygen defects are less likely to occur and sufficient low resistance is difficult to develop, so 1.0121 nm or more is desirable, and it is 1.0121 to 1.0140 nm. More desirable.

【0006】本発明において、各相の組成およびバルク
の組成はSEM−EDX分析(Scanning electron micr
oscopy-Energy dispersive Xray spectrometer)によっ
てInとSnの組成分析を行うことにより、また、相の
面積比はSEM組織写真の、ライトク゛レーを主相とし、タ゛ークク
゛レーを第2相とし面積比を求めることにより確認するこ
とができる。主相の格子定数はX線回折装置(例えば、
リガク RINT1000の格子定数の精密化)により確認する
ことができる。
In the present invention, the composition of each phase and the composition of the bulk are determined by SEM-EDX analysis (Scanning electron micr
oscopy-Energy dispersive Xray spectrometer) to analyze the composition of In and Sn, and the area ratio of the phases is determined by determining the area ratio of the SEM micrograph with light gray as the main phase and dark gray as the second phase. You can check. The lattice constant of the main phase is determined by an X-ray diffractometer (for example,
It can be confirmed by refining the lattice constant of Rigaku RINT1000).

【0007】本発明のターゲットを作製するに際して
は、例えば、In2O3粉末とSnO2粉末とを所定の割合で均
一に混合し、混合粉末やあるいは固溶体粉末、共沈粉末
等の複合粉末を用いてもよい。また、複合粉末を主成分
とし、In2O3粉末およびSnO2粉末の一種または二種を混
合した混合粉末を用いることもできる。前記の混合粉末
を一軸加圧あるいは静水圧プレス等にて成形し、得られ
た成形体を酸素濃度が25vol%以上の雰囲気で1300℃〜17
00℃の温度で加熱保持する。
In producing the target of the present invention, for example, In2O3 powder and SnO2 powder may be uniformly mixed at a predetermined ratio, and a mixed powder or a composite powder such as a solid solution powder or a coprecipitated powder may be used. . It is also possible to use a mixed powder in which one or two kinds of In2O3 powder and SnO2 powder are mixed with the composite powder as the main component. The mixed powder is molded by uniaxial pressing or hydrostatic pressing, etc., and the obtained molded product is heated at 1300 ° C to 17 ° C in an atmosphere having an oxygen concentration of 25 vol% or more.
Keep heating at a temperature of 00 ° C.

【0008】本発明において、焼結雰囲気を酸素雰囲気
中とするのは In2O3やSnO2の分解を抑えるために必要だ
からであるが、酸素濃度は25%以上、より好ましくは
50%以上が望ましい。加圧酸素雰囲気中であれば更に
望ましい。焼結温度は、1300℃未満では相対密度85%以
上の焼結体が得られず、一方1700℃を越えると酸化ス
ズ、酸化インジウムの分解により密度低下が生ずるので
1200〜1700℃とするのが望ましい。また、ITO焼結体
を、In:Sn=10:1〜22:1からなる主相を面積率で8
0%以上含む焼結体とするために、1000℃以上での昇温
速度を0.5℃/min以上に、さらに冷却時の降温速度を0.
5℃/min以上にするのが好ましい。
In the present invention, the sintering atmosphere is set to the oxygen atmosphere because it is necessary to suppress the decomposition of In2O3 and SnO2, but the oxygen concentration is preferably 25% or more, more preferably 50% or more. It is more desirable to be in a pressurized oxygen atmosphere. If the sintering temperature is less than 1300 ° C, a sintered body with a relative density of 85% or more cannot be obtained, while if it exceeds 1700 ° C, the density decreases due to the decomposition of tin oxide and indium oxide.
It is desirable to set the temperature to 1200-1700 ℃. In addition, the ITO sintered body is composed of a main phase composed of In: Sn = 10: 1 to 22: 1 at an area ratio of 8
In order to obtain a sintered body containing 0% or more, the temperature rising rate at 1000 ° C or higher is 0.5 ° C / min or more, and the cooling rate at cooling is 0.
It is preferably set to 5 ° C / min or more.

【0009】[0009]

【実施例】【Example】

(実施例1)平均粒径50nmのIn2O3粉末と、平均粒径
150nmのSnO2粉末とを、所定の比率になるように配合
しボールミルによって24時間混合した。成形は、これら
の粉末にポリビニルアルコール(PVA)を1%添加し
て造粒し、これを冷間静水圧プレスで成形圧力3000kg/c
m2で成形した。この成形体を1550℃、1気圧、70%の酸
素雰囲気中で5時間保持し焼結した。試料No.1〜11につ
いては、1000℃以上での昇温速度2℃/min、冷却時の
降温速度2℃/minの焼結条件で焼結を行った。No.12〜
16については、冷却時の降温速度0.2℃/minの条件
で焼結を行った。得られた焼結体の平均結晶粒径は、5
〜30μmの範囲にあり、密度は6.5g/cm3以上であ
った。得られた焼結体の各相の組成と面積比、格子定数
を測定し表1に示す。さらに得られた焼結体を研削によ
り直径100mm、厚さ5mmの形状に加工したターゲットを用
いて成膜した時の抵抗率および抵抗変化率を表1に示
す。抵抗率は基板温度200℃で2時間スパッタリング後
の膜の抵抗率である。抵抗変化率は2時間経過後の膜の
抵抗(a)に対する30時間後の膜の抵抗(b)の変化
率(b−a)×100/aである。なお、表1におい
て、No.1〜11は本発明であり、No.12〜16は比較例であ
る。表1のNo.3、No.5、No.12のITO焼結体のミクロ組
織を鏡面加工後のSEMにて観察したSEM組織写真を
図1、図2、図3に示す。また、表1のNo.1、8、12、14、1
6の試料について、成膜時の基板温度を変化させた場合
のITO膜の抵抗率(μΩ・cm)を表2に示す。さら
に、表1のNo.3の試料と焼結条件以外同様に作製した試
料について、焼結条件を変えて平均結晶粒径および密度
を制御した場合に得られるITO膜の膜抵抗率(基板温
度200℃)を表3に示す。なお、成膜条件は次の通りで
ある。スハ゜ッタ 方式 DCマク゛ネトロンスハ゜ッタリンク゛ターケ゛ット −基板間距離 60mm スパッタ電力 1.0W/cm2 スパッタガス組成 99%アルゴン+1%酸素の混合
ガス スパッタガス圧 1Pa 膜厚 150nm 基板 コーニンク゛#7059カ゛ラス
(Example 1) In2O3 powder having an average particle size of 50 nm and an average particle size
150 nm SnO2 powder was blended in a predetermined ratio and mixed by a ball mill for 24 hours. Molding is carried out by adding 1% of polyvinyl alcohol (PVA) to these powders and granulating them, and molding pressure with a cold isostatic press at 3000 kg / c.
Molded at m2. The compact was sintered by holding it at 1550 ° C., 1 atm and 70% oxygen atmosphere for 5 hours. Sample Nos. 1 to 11 were sintered under the sintering conditions of a temperature rising rate of 2 ° C./min at 1000 ° C. or higher and a cooling rate of 2 ° C./min during cooling. No.12 ~
For No. 16, sintering was performed under the condition of the temperature decreasing rate during cooling of 0.2 ° C./min. The average crystal grain size of the obtained sintered body is 5
The density was 6.5 g / cm @ 3 or more. The composition, area ratio and lattice constant of each phase of the obtained sintered body were measured and are shown in Table 1. Table 1 shows the resistivity and the rate of change in resistance when the obtained sintered body was formed into a film by using a target processed into a shape having a diameter of 100 mm and a thickness of 5 mm. The resistivity is the resistivity of the film after sputtering for 2 hours at a substrate temperature of 200 ° C. The rate of change in resistance is the rate of change (ba) in the resistance (b) of the film after 30 hours with respect to the resistance (a) of the film after 2 hours (ba) x 100 / a. In Table 1, Nos. 1 to 11 are the present invention, and Nos. 12 to 16 are comparative examples. 1, 2, and 3 are SEM microstructure photographs of the microstructures of the No. 3, No. 5, and No. 12 ITO sintered bodies in Table 1 observed by SEM after mirror finishing. In addition, No. 1, 8, 12, 14, 1 in Table 1
Table 2 shows the resistivity (μΩ · cm) of the ITO film when the substrate temperature during film formation was changed for the 6 samples. Furthermore, for the sample prepared in the same manner as the sample No. 3 in Table 1 except for the sintering conditions, the film resistivity (substrate temperature) of the ITO film obtained when the average crystal grain size and density were controlled by changing the sintering conditions. 200 ° C) is shown in Table 3. The film forming conditions are as follows. Spatter method DC magnetron spattering target-distance between substrates 60mm Sputtering power 1.0W / cm2 Sputtering gas composition 99% Argon + 1% Oxygen mixed gas Sputtering gas pressure 1Pa Film thickness 150nm Substrate Corning # 7059 glass

【0010】表1より、mol比でIn:Sn=10:1〜
22:1からなる主相を面積率で80%以上とすることによ
り、低温成膜によっても低抵抗な透明導電膜が得られる
ことがわかる。また、膜の抵抗変化率が少ないことか
ら、安定したスパッタリングが可能である。表2に示す
ように、本発明のターゲットの試料No.1ないし試料No.8
は比較例のNo.11、14に較べ、特に、200℃以下の低温成
膜において低い抵抗値を示した。表3に示すように、平
均結晶粒径が5〜30μm、密度6.5g/cm3以上のと
き、低い膜抵抗率が得られることがわかる。
From Table 1, the molar ratio of In: Sn = 10: 1
It can be seen that by setting the area ratio of the main phase composed of 22: 1 to 80% or more, a transparent conductive film having a low resistance can be obtained even by low temperature film formation. Further, since the resistance change rate of the film is small, stable sputtering is possible. As shown in Table 2, sample No. 1 to sample No. 8 of the target of the present invention
Compared with Nos. 11 and 14 of Comparative Example, showed a lower resistance value especially in low temperature film formation at 200 ° C. or lower. As shown in Table 3, when the average crystal grain size is 5 to 30 μm and the density is 6.5 g / cm 3 or more, low film resistivity is obtained.

【0011】[0011]

【発明の効果】本発明透明導電膜形成用ITO焼結体を
ターゲットとすれば、低温でのスパッタリングによって
も低い抵抗値のITO膜が得ることが可能である。
By using the ITO sintered body for forming a transparent conductive film of the present invention as a target, it is possible to obtain an ITO film having a low resistance value even by sputtering at a low temperature.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明ITO焼結体である試料No.3のミクロ金
属組織写真である。
FIG. 1 is a photograph of a micro metallographic structure of Sample No. 3, which is an ITO sintered body of the present invention.

【図2】本発明ITO焼結体である試料No.5のミクロ金
属組織写真である。
FIG. 2 is a photograph of the micro metallographic structure of Sample No. 5, which is an ITO sintered body of the present invention.

【図3】比較例ITO焼結体である試料No.12のミクロ
金属組織写真である。
FIG. 3 is a photograph of a micro metallographic structure of Sample No. 12, which is an ITO sintered body of a comparative example.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 503 Z // H01B 5/14 A Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location H01B 13/00 503 Z // H01B 5/14 A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 実質的にIn,SnおよびOからなるI
TO焼結体においてmol比でIn:Sn=10:1〜22:1
からなる主相を面積率で80%以上含有することを特徴
とする透明導電膜形成用ITO焼結体。
1. I consisting essentially of In, Sn and O
In To Sn sintered body, molar ratio of In: Sn = 10: 1 to 22: 1
An ITO sintered body for forming a transparent conductive film, comprising the main phase consisting of 80% or more in area ratio.
【請求項2】 主相の平均結晶粒径が3〜50μmであ
る請求項1に記載の透明導電膜形成用ITO焼結体。
2. The ITO sintered body for forming a transparent conductive film according to claim 1, wherein the main phase has an average crystal grain size of 3 to 50 μm.
【請求項3】 主相の格子定数が1.0121nm以上である請
求項1または2に記載の透明導電膜形成用ITO焼結
体。
3. The ITO sintered body for forming a transparent conductive film according to claim 1, wherein the main phase has a lattice constant of 1.0121 nm or more.
【請求項4】 密度が6.5g/cm3以上である請求項1
ないし3のいづれかに記載の透明導電膜形成用ITO焼
結体。
4. The density is 6.5 g / cm3 or more.
4. The ITO sintered body for forming a transparent conductive film according to any one of 1 to 3.
【請求項5】 ITO焼結体のSnO2量が7wt%以
下である請求項1ないし4のいづれかに記載の透明導電
膜形成用ITO焼結体。
5. The ITO sintered body for forming a transparent conductive film according to claim 1, wherein the amount of SnO 2 in the ITO sintered body is 7 wt% or less.
JP7021221A 1995-01-13 1995-01-13 Ito sintered compact for forming transparent electrically conductive film Pending JPH08198677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7021221A JPH08198677A (en) 1995-01-13 1995-01-13 Ito sintered compact for forming transparent electrically conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7021221A JPH08198677A (en) 1995-01-13 1995-01-13 Ito sintered compact for forming transparent electrically conductive film

Publications (1)

Publication Number Publication Date
JPH08198677A true JPH08198677A (en) 1996-08-06

Family

ID=12048968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021221A Pending JPH08198677A (en) 1995-01-13 1995-01-13 Ito sintered compact for forming transparent electrically conductive film

Country Status (1)

Country Link
JP (1) JPH08198677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012970A1 (en) * 2006-07-27 2008-01-31 Nippon Mining & Metals Co., Ltd. Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012970A1 (en) * 2006-07-27 2008-01-31 Nippon Mining & Metals Co., Ltd. Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery

Similar Documents

Publication Publication Date Title
JP4797712B2 (en) ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film
JPH0971860A (en) Target and its production
CN105439541A (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
WO2009055678A1 (en) Refractory metal-doped sputtering targets
JPH062130A (en) Zinc oxide-based target for sputtering
JP3215392B2 (en) Metal oxide sintered body and its use
JP4403591B2 (en) Conductive metal oxide sintered body and use thereof
JP4918738B2 (en) ITO sputtering target and manufacturing method thereof
JPH0570943A (en) High density sintered target material for forming electric conductive transparent thin film by sputtering
JP3591610B2 (en) ITO sintered body for forming transparent conductive film
JPH08198677A (en) Ito sintered compact for forming transparent electrically conductive film
JPH0570942A (en) High density sintered target material for forming electric conductive transparent thin film by sputtering
JP2570832B2 (en) Method for producing sintered body of good conductive indium oxide
KR100628542B1 (en) The sinter of metal oxide compound and use thereof
JP2904358B2 (en) Manufacturing method of ITO sintered body
JPS6065760A (en) Manufacture of highly electroconductive tin oxide film material
JP2984581B2 (en) Member composed of indium-tin oxide and method for producing the same
JP3189782B2 (en) Conductive metal oxide sintered body and use thereof
JP2007231381A (en) Ito sputtering target and production method therefor
JP2000169219A (en) Metal oxide sintered compact and its use
JPWO2019187269A1 (en) Oxide sintered body, sputtering target and transparent conductive film
JPH05112866A (en) Ito target for low temperature film forming
JPH06247765A (en) Ito sintered compact, ito target and ito film
JP3004518B2 (en) Sputtering target and method for manufacturing the same
JP2004353044A (en) Method for manufacturing sputtering target