JP4917980B2 - Hot rolling method for wire and bar - Google Patents

Hot rolling method for wire and bar Download PDF

Info

Publication number
JP4917980B2
JP4917980B2 JP2007180253A JP2007180253A JP4917980B2 JP 4917980 B2 JP4917980 B2 JP 4917980B2 JP 2007180253 A JP2007180253 A JP 2007180253A JP 2007180253 A JP2007180253 A JP 2007180253A JP 4917980 B2 JP4917980 B2 JP 4917980B2
Authority
JP
Japan
Prior art keywords
rolled material
hole
type
mold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007180253A
Other languages
Japanese (ja)
Other versions
JP2009012065A (en
Inventor
勇希 室屋
仁 串田
庄司 宮▲崎▼
健 石田
知秀 多比良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007180253A priority Critical patent/JP4917980B2/en
Publication of JP2009012065A publication Critical patent/JP2009012065A/en
Application granted granted Critical
Publication of JP4917980B2 publication Critical patent/JP4917980B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、線材・棒鋼の熱間孔型圧延過程で、孔型内で生じる圧延材の捻れを低減させることによりその表面品質を向上させる圧延方法に関する。   The present invention relates to a rolling method for improving the surface quality of a wire rod and steel bar by reducing the twist of the rolled material generated in the hole die during the hot hole rolling process of the wire rod and the steel bar.

線材・棒鋼の熱間孔型圧延では、通常、加熱した素材ビレットを、粗圧延機列での、菱−角−菱−角の孔型系列または菱−菱−角の孔型系列で、断面積を順次減少させて角孔型で角圧延材として直後のオーバル孔型に噛み込ませて圧延し、丸−オーバルなどの後続の孔型系列により断面積をさらに減少させて圧延材が所要の製品寸法に仕上げられる。この熱間孔型圧延過程では、角孔型出側での、孔型溝底部に接触した圧延材円弧部(頂部)Cの半径rが小さいときに、図14に示すように、圧延材が捻れた状態でオーバル孔型により圧延されると、圧延材自体のねじれ回復力が大きく、孔型出側でのオーバル形状は良好な状態となるが、円弧部(頂部)半径rが小さいために、オーバル孔型内で円弧部近辺の圧延材周方向の圧縮ひずみが大きくなって表面疵が発生する。このような表面疵の発生を抑制するためには、図15に示すように、角孔型出側での圧延材の前記円弧部(頂部)Cの半径rを大きくする方法がある。この円弧部(頂部)半径rが大きい状態で圧延材が捻れた状態でオーバル孔型に噛み込んだとき、前記の円弧部(頂部)半径rが小さい場合に比べて捻れ回復力は小さく、捻れた状態で圧延変形が進行し、オーバル孔型出側での圧延材の断面形状が非対称となり、後続の孔型系列の丸孔型などで圧延する際に、円弧部(頂部)近辺で折れ込みが発生しやすく、表面疵発生原因となる。このため、オーバル孔型出側で、圧延材の断面形状が非対称とならずに適正形状を保ち、かつ表面疵を発生させないためには、角孔型出側での圧延材の円弧部半径rを大きくして、オーバル孔型に適正に噛み込ませる、すなわちオーバル孔型入側での圧延材の捻れを低減させることが重要である。   In hot hole rolling of wire rods and steel bars, the heated material billet is usually cut in a rhombus-horn-rhombus-hole or rhombus-horn-hole pattern in a rough rolling mill row. The area is reduced sequentially and rolled into a square hole type as a rolled material immediately after it is caught in the next oval hole type, and the cross-sectional area is further reduced by the subsequent hole type series such as a round-oval, so that the rolled material is required. Finished with product dimensions. In this hot hole rolling process, when the radius r of the rolled material arc portion (top) C in contact with the bottom of the groove groove on the exit side of the square hole die is small, as shown in FIG. When rolled by an oval hole mold in a twisted state, the torsion recovery force of the rolled material itself is large, and the oval shape on the exit side of the hole mold is in a good state, but the arc portion (top) radius r is small. In the oval hole mold, the compressive strain in the circumferential direction of the rolled material in the vicinity of the arc portion becomes large and surface flaws are generated. In order to suppress the occurrence of such surface flaws, there is a method of increasing the radius r of the arc portion (top portion) C of the rolled material on the exit side of the square hole die as shown in FIG. When the rolled material is twisted in a state where the arc portion (top portion) radius r is large and twisted into the oval hole mold, the torsional recovery force is small compared to the case where the arc portion (top portion) radius r is small, and the twist is twisted. As the rolling deformation progresses in this state, the cross-sectional shape of the rolled material on the outlet side of the oval hole mold becomes asymmetrical, and it is folded near the arc (top) when rolling with the subsequent round hole type. Is likely to cause surface flaws. For this reason, in order to maintain an appropriate shape without causing the cross-sectional shape of the rolled material to be asymmetric at the outlet side of the oval hole mold and to prevent surface flaws, the radius r of the arc portion of the rolled material at the outlet side of the square hole mold It is important to increase the width so that the oval hole mold is properly bitten, that is, to reduce the twist of the rolled material on the entry side of the oval hole mold.

前記オーバル孔型に適正に噛み込ませる手段として、従来から、圧延機のロール孔型入側にローラーガイドを設置し、そのガイドローラーで圧延材を固定支持し、孔型入側で圧延材の捻れを矯正する圧延方法が用いられている。例えば、特許文献1では、棒鋼圧延の仕上げスタンドの一対の垂直ロールの入側に、回転可能に支持されたガイド本体を有するツイスターガイドを設けたガイド装置を設置し、仕上げスタンドから出る製品(棒鋼)に捻じれがあると、それと反対方向に回転を付与することによって製品捻じれを矯正する圧延装置が開示されている。また、本出願人は、特願2006−120898号において、孔型圧延ロールを用いた鋼片の連続圧延において、ツイスターガイドやローラーガイドを使用せずに、孔型圧延ロールをロール軸方向に調整することによって圧延材の捻れを解消する圧延方法を提案した。
特開2000−176529号公報
As means for properly biting into the oval hole mold, conventionally, a roller guide is installed on the roll hole mold entry side of the rolling mill, and the rolling material is fixedly supported by the guide roller, and the rolling material is introduced on the hole mold entry side. A rolling method for correcting twist is used. For example, in Patent Document 1, a guide device provided with a twister guide having a guide body rotatably supported is installed on the entrance side of a pair of vertical rolls of a finishing stand for steel bar rolling, and a product (bar steel) that comes out of the finishing stand. ) Has been disclosed that corrects the product twist by imparting rotation in the opposite direction to the twist. In addition, in the Japanese Patent Application No. 2006-120898, the present applicant adjusts the perforated rolling roll in the roll axial direction without using a twister guide or a roller guide in continuous rolling of the steel slab using the perforated rolling roll. A rolling method was proposed to eliminate twisting of the rolled material.
JP 2000-176529 A

しかし、前記のローラーガイドで圧延材を固定支持する方法では、無理に圧延材を固定支持した場合には、圧延材の捻れによってガイドローラと強く接触することになり、表面疵が発生したり、過度の力が作用することでベアリングが破損してガイドローラーが停止し、焼き付き等の作動不良を引き起こすなどの問題があった。また、ローラーガイドに入るまでに既に大きく捻れていた場合には、ローラーガイド自体を破損することになり、ローラーガイドの設置によって、捻れの問題を根本的に改善することはできない。また、特許文献1に開示された圧延装置では、圧延材がツイスターガイドと接触することによって発生する表面疵は避けられなくなる。一方、本出願人が提案した前記圧延方法によれば、鋼片の連続圧延では鋼片の仕上げ断面形状を損なわずに、またツイスターとの接触や捻じりによる表面疵の発生を回避して鋼片の捻じれを解消することが可能となるが、線材・棒鋼の熱間圧延では、前記オーバル孔型入側で角圧延材が既に捻れた状態で圧延されるときに、オーバル孔型圧延ロールをロール軸方向に調整することにより捻れが低減されたとしても、オーバル孔型出側の圧延材の断面形状が非対称となり、次圧延機以降のロール孔型で表面疵の発生を回避することができない。   However, in the method of fixing and supporting the rolled material with the roller guide described above, if the rolled material is forcibly fixed and supported, it will come into strong contact with the guide roller due to twisting of the rolled material, and surface flaws may occur, Excessive force was applied, causing the bearing to break and the guide roller to stop, causing problems such as seizure. Further, if the roller guide has already been largely twisted before entering the roller guide, the roller guide itself will be damaged, and the twisting problem cannot be fundamentally improved by installing the roller guide. Further, in the rolling apparatus disclosed in Patent Document 1, surface flaws that occur when the rolled material comes into contact with the twister guide cannot be avoided. On the other hand, according to the rolling method proposed by the present applicant, the continuous rolling of the steel slab does not impair the finished cross-sectional shape of the steel slab, and avoids the occurrence of surface flaws due to contact with the twister or twisting. It is possible to eliminate twisting of a piece, but in hot rolling of wire rods and steel bars, an oval hole type rolling roll is used when the rolled material is already twisted on the entrance side of the oval hole mold. Even if the twist is reduced by adjusting the roll axis in the roll axis direction, the cross-sectional shape of the rolled material on the outlet side of the oval hole mold becomes asymmetric, and the occurrence of surface flaws can be avoided in the roll hole mold after the next rolling mill. Can not.

そこで、この発明の課題は、線材・棒鋼の熱間孔型圧延において、ツイスターやローラーガイドで圧延材を支持せずに、角孔型の孔型溝底部と接触した圧延材の円弧部半径が、直後のオーバル孔型で表面疵が発生しない程度に大きい状態で、前記角孔型での圧延変形自体によって捻れを復元させて前記オーバル孔型に適正に噛み込ませる圧延方法を提供することである。   Therefore, the subject of the present invention is that, in hot hole rolling of wire rods and steel bars, the radius of the arc portion of the rolled material that is in contact with the bottom of the square hole type groove groove is not supported by the twister or the roller guide. By providing a rolling method in which the twist is restored by the rolling deformation itself in the square hole mold and the oval hole mold is properly bitten in a state where surface flaws are not generated in the immediately subsequent oval hole mold. is there.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

即ち、請求項1に係る線材・棒鋼の熱間圧延方法は、加熱した素材ビレットから、複数の圧延機のロールに設けた菱−角−菱−角の孔型系列または菱−菱−角の孔型系列とその直後のオーバル孔型によって断面積を順次減少させ、後続の孔型系列により断面積をさらに減少させて圧延材を所要の製品寸法に仕上げる線材・棒鋼の熱間圧延方法であって、前記オーバル孔型の直前の角孔型に噛み込む菱孔型出側の圧延材自由表面の円弧部半径をr、この角孔型での圧下量をaとしたときに、前記菱孔型出側の圧延材の幅寸法Wとその自由表面の円弧部半径rを予め対応づけて、この幅寸法Wから円弧部半径rを予測し、比率r/aが0.1以上0.3以下の範囲に収まるように前記菱−角−菱−角の孔型系列または菱−菱−角の孔型系列のロール隙を調整して、圧延材を前記オーバル孔型に適正に噛み込ませるようにしたことを特徴とする。   That is, the hot rolling method of the wire rod / steel bar according to claim 1 includes a rhomboid-diamond-diamond hole type series or rhomboid-diamond-corner series provided on a roll of a plurality of rolling mills from a heated material billet. This is a hot rolling method for wire rods and bar steels in which the cross-sectional area is sequentially reduced by the hole series and the oval hole form immediately thereafter, and the cross-sectional area is further reduced by the subsequent hole series to finish the rolled material to the required product dimensions. When the radius of the arc portion of the free surface of the rolling material on the exit side of the rhomboid type that bites into the square hole type immediately before the oval hole type is r and the reduction amount in this square hole type is a, the rhomboid The width dimension W of the rolled material on the mold side and the arc radius r of the free surface thereof are associated in advance, and the arc radius r is predicted from the width dimension W, and the ratio r / a is 0.1 or more and 0.3. The rhomboid-diamond-square hole type series or rhomboid-diamond-hole type series low so as to fall within the following range: Adjust the gap, characterized in that the rolled material was such that meshed properly into the oval hole type.

本発明者は、角孔型の頂部(溝底部)半径が大きい状態でも、角孔型の直前の菱孔型出側の圧延材自由表面の円弧部半径を小さくすることにより、角孔型での圧延材の捻れ回復力が増加し、この角孔型内での圧延材の安定性が向上することによって直後のオーバル孔型に適正に噛み込ませる圧延方法に着目した。すなわち、角孔型の直前の菱孔型で圧延された圧延材の孔型壁面と接触していない自由表面の円弧部半径を小さくすることにより、角孔型での捻れ回復力を増加させることに想到した。   The inventor of the present invention has a square hole type by reducing the radius of the arc portion of the free surface of the rolled material on the exit side of the rhombus type immediately before the square hole type even in a state where the top (groove bottom) radius of the square hole type is large. Attention was paid to a rolling method in which the torsional recovery force of the rolled material is increased and the stability of the rolled material in the square hole mold is improved, so that the rolled oval mold is properly bitten. That is, by reducing the radius of the arc of the free surface that is not in contact with the hole wall surface of the rolled material rolled in the rhombus type immediately before the square hole type, the torsional recovery force in the square hole type is increased. I came up with it.

圧延機入側の圧延材が捻れてロール孔型で圧延される場合、図1および図2に示すように、孔型溝底部で圧下を受ける入側圧延材頂部の半径r(直前の孔型出側における圧延材の自由表面の円弧部半径)がロール孔型出側における捻れ回復率Rtに及ぼす影響について、本出願人が開発した変形解析手段(剛塑性3次元フルモデルFEMソフト)を用いて変形解析を行なった。変形解析は、図1に示したように、入側の菱圧延材DSが、対辺寸法Gtが約50mmの角孔型SGで圧延される場合について行ない、前記圧延材頂部の半径rおよび角孔型SGでの圧下量aの定義を図中に示した。変形解析にあたり、圧延材断面内の要素分割数は、図3(a)に示すように、各コーナー部(円弧部)Cを4分割、各面部Pを6分割、対辺間(P−P)を16分割とし、圧延材長手方向の分割数は、図4に示すように、ロール孔型入側部および出側部でそれぞれ5分割、ロールバイト内で10分割とした。また、ロール-圧延材間の摩擦係数μ=0.5とした。ロール孔型入側および出側での圧延材の捻れ角度θ(θ1、θ2)は、図4に示したロール孔型入側および出側の測定位置(L1およびL2)での、図3(b)および(c)に示す角度である。すなわち、入側捻れ角θ1は、図3(b)で、角孔型SGの溝底部の中央C1、C2を結ぶ線分S―Sに対する入側の菱圧延材DSの頂部すなわち自由表面の円弧部の中央C1d、C2dを結ぶ線分D−Dの傾斜角θ1である。また、出側捻れ角θ2は、図3(c)で、前記線分S−Sに対する出側の角圧延材SR頂部(角孔型SGの溝底接触部)の中央C1s−C2sを結ぶ線分の傾斜角θ2である。捻れ回復率Rtは、以下に示す式(1)により算出した。なお、図4に示したように、入側測定位置は、噛み込み開始位置(ロール接触開始部)B0からLd/2(Ld:接触弧長)離れた位置(L1=Ld/2)であり、出側測定位置はロールバイト出側位置B1からLd/2離れた位置(L2=Ld/2)である。上記変形解析では、L1、L2はともに、67〜72mmの範囲に収まっている。
捻れ回復率Rt(%)=((入側捻れ角度θ1(deg)―出側捻れ角度θ2(deg))/入側捻れ角度θ1(deg))×100--------------------------------(1)
When the rolling material on the rolling mill entrance side is twisted and rolled in a roll hole mold, as shown in FIGS. 1 and 2, the radius r of the top portion of the inlet rolling material that receives the rolling at the bottom of the hole groove (the immediately preceding hole mold) Using the deformation analysis means (rigid plastic 3D full model FEM software) developed by the present applicant for the effect of the arc radius of the free surface of the rolled material on the exit side on the twist recovery rate Rt on the exit side of the roll hole mold The deformation analysis was performed. As shown in FIG. 1, the deformation analysis is performed when the entrance-side rhombus DS is rolled with a square hole type SG having an opposite side dimension Gt of about 50 mm. The definition of the reduction amount a in the type SG is shown in the figure. In the deformation analysis, as shown in FIG. 3A, the number of element divisions in the cross section of the rolled material is divided into four for each corner portion (arc portion) C, six for each surface portion P, and between opposite sides (PP). As shown in FIG. 4, the number of divisions in the longitudinal direction of the rolled material was 5 divisions at the entrance side and the exit side portion of the roll hole mold, and 10 divisions within the roll bite. The coefficient of friction between the roll and the rolled material was μ = 0.5. The twist angles θ (θ1, θ2) of the rolled material on the entry side and the exit side of the roll hole mold are shown in FIG. 3 (the measurement positions (L1 and L2) on the entrance side and the exit side of the roll hole mold shown in FIG. The angles shown in b) and (c). That is, in FIG. 3B, the entry side twist angle θ1 is the top of the entrance side diamond rolled material DS with respect to the line segment SS connecting the centers C1 and C2 of the groove bottom part of the square hole type SG, that is, the arc of the free surface. This is the inclination angle θ1 of the line segment DD connecting the centers C1d and C2d. Further, in FIG. 3C, the outgoing twist angle θ2 is a line connecting the centers C1s-C2s of the top of the outgoing rolled corner SR (groove bottom contact portion of the square hole type SG) with respect to the line segment SS. The minute inclination angle θ2. The twist recovery rate Rt was calculated by the following equation (1). As shown in FIG. 4, the entry side measurement position is a position (L1 = Ld / 2) that is separated from the biting start position (roll contact start portion) B0 by Ld / 2 (Ld: contact arc length). The output side measurement position is a position (L2 = Ld / 2) away from the roll bite output side position B1 by Ld / 2. In the deformation analysis, both L1 and L2 are within the range of 67 to 72 mm.
Twist recovery rate Rt (%) = ((input side twist angle θ1 (deg) −output side twist angle θ2 (deg)) / input side twist angle θ1 (deg)) × 100 ---------- ---------------------- (1)

図5は、上記の変形解析結果に基づいて、図1に示した、入側圧延材の頂部半径rと孔型Gでの圧下量aとの比率r/aが捻れ回復率Rtに及ぼす影響を示したものである。入側圧延材の頂部半径rの大きさによって捻れ回復率Rtは異なるが、r/aが0.3以下になると、一定以上すなわち30%以上の捻れ回復率が得られることがわかる。   FIG. 5 shows the effect of the ratio r / a between the top radius r of the entry-side rolled material and the reduction amount a in the hole mold G on the twist recovery rate Rt based on the above deformation analysis result. Is shown. Although the torsion recovery rate Rt varies depending on the size of the top radius r of the entry-side rolled material, it can be seen that when r / a is 0.3 or less, a torsion recovery rate of a certain value, that is, 30% or more is obtained.

図6は、機械加工により一辺が60mm、62mm、65mm、68mmで、コーナー部Rがいずれも12mmの4種類の角形状に仕上げた入側材料(素材、材質:SCM435)を1100℃に加熱した後、ロール直径が490〜430mmの菱孔型−角孔型−オーバル孔型−丸孔型の4つの孔型で、4パスの実験圧延により直径22mmの丸形状の出側材料に仕上げ、この丸形状出側材料の断面における表面疵の発生状況を光学顕微鏡により調査した結果から、比率r/a(r:菱形状入側材料の頂部半径r、a:角孔型における圧下量、図1参照)に対して、後述の製品(仕上げ圧延材)の表面疵深さと同じ基準を用いて、深さ0.02mm以上の表面疵の発生率(%)をプロットしたものである。比率r/aを0.3以下にすることによって、0.02mm以上の表面疵の発生が抑制されているが、比率r/aが0.1以下では、深さ0.02mm以上の表面疵が再び発生していることがわかる。この実験結果から、比率r/aを0.1以上0.3以下に調整することによって、深さ0.02mm以上の表面疵の発生を抑制できることがわかり、このことは、上記4パスの実験圧延で、角孔型出側の角材料が、オーバル孔型に適正に噛み込まれている、すなわちオーバル孔型入側での圧延材の捻れが有効に低減していることを示している。このように、比率r/aが0.3以上で深さ0.02mm以上の表面疵が発生する原因は、入側菱材料の頂部半径rが、角孔型での圧下量aに対して大きいため、角孔型での捻れ回復が十分ではなくオーバル孔型に適正に噛み込まなかったため、オーバル孔型出側での実験圧延材の断面形状が非対称となり、続く丸孔型での圧延で前記表面疵が発生したものと考えられる。また、比率r/aが0.1よりも小さくなると深さ0.02mm以上の表面疵が発生する原因は、入側菱材料の頂部半径rが、角孔型での圧下量aに対して小さいため、図14で示した「角−オーバル」パスにおいて、角圧延材の頂部(円弧部)半径rsが小さい場合と同様の現象、すなわち、角孔型内で入側菱材料の頂部近辺の材料周方向の圧縮ひずみが大きくなって表面疵が発生し、この表面疵が続くオーバル孔型で助長されて丸孔型出側の丸形状の実験圧延材に残存したものと考えられる。   In FIG. 6, the entrance material (material, material: SCM435) finished into four types of square shapes having a side of 60 mm, 62 mm, 65 mm, and 68 mm and a corner portion R of 12 mm by heating is heated to 1100 ° C. After that, four hole types of rhombus type-square hole type-oval hole type-round hole type with a roll diameter of 490 to 430 mm were finished into a round shaped outlet material with a diameter of 22 mm by four-pass experimental rolling. From the result of investigating the occurrence of surface flaws in the cross section of the round shaped exit side material with an optical microscope, the ratio r / a (r: the top radius r of the rhombus shaped entrance side material, a: the amount of reduction in the square hole type, FIG. (Reference)), the incidence (%) of surface flaws having a depth of 0.02 mm or more is plotted using the same standard as the surface flaw depth of a product (finished rolled material) described later. Generation of surface defects of 0.02 mm or more is suppressed by setting the ratio r / a to 0.3 or less. However, when the ratio r / a is 0.1 or less, surface defects having a depth of 0.02 mm or more are suppressed. Can be seen again. From this experimental result, it can be seen that by adjusting the ratio r / a to 0.1 or more and 0.3 or less, it is possible to suppress the generation of surface flaws having a depth of 0.02 mm or more. It shows that the square material on the exit side of the square hole mold is properly bitten into the oval hole mold by rolling, that is, the twist of the rolled material on the entry side of the oval hole mold is effectively reduced. As described above, the reason why surface flaws having a ratio r / a of 0.3 or more and a depth of 0.02 mm or more is generated is that the top radius r of the entrance rhombus material is smaller than the reduction amount a in the square hole type. Because of its large size, the torsional recovery in the square hole type was not sufficient and the oval hole type was not properly bitten. It is thought that the surface flaws occurred. In addition, when the ratio r / a is smaller than 0.1, a surface flaw having a depth of 0.02 mm or more is generated because the apex radius r of the entry side diamond material is smaller than the reduction amount a in the square hole type. 14, in the “square-oval” path shown in FIG. 14, a phenomenon similar to the case where the top (arc portion) radius rs of the square rolled material is small, that is, in the vicinity of the top of the entrance side rhombus material in the square hole mold. It is considered that the compressive strain in the circumferential direction of the material increases and surface flaws are generated, which are promoted by the oval hole mold followed by the surface flaws and remain in the round experimental rolled material on the outlet side of the round hole mold.

したがって、上記のように、前記菱孔型出側の圧延材の幅寸法Wとその自由表面の円弧部半径rを予め対応づけて、この幅寸法Wから円弧部半径rを予測し、比率r/aを0.1以上0.3以下となるようにロール隙を調整して圧延することにより、前記角孔型での圧延変形自体によって圧延材の捻れが復元し、ツイスターガイドやローラーガイドによって圧延材を支持せずに、角孔型の孔型溝底部と接触した圧延材の円弧部半径が、直後のオーバル孔型で表面疵の発生原因を生じない程度に大きい状態で、このオーバル孔型に適正に噛み込ませることが可能となる。   Accordingly, as described above, the width dimension W of the rolled material on the rhomboid-type outlet side and the arc radius r of the free surface thereof are associated in advance, and the arc radius r is predicted from the width dimension W, and the ratio r By rolling the roll gap so that / a is 0.1 or more and 0.3 or less, the twist of the rolled material is restored by the rolling deformation itself in the square hole mold, and the twister guide or the roller guide The oval hole is in a state where the radius of the arc of the rolled material that is in contact with the bottom of the square hole type groove groove without supporting the rolled material is large enough to cause no surface flaws in the immediately subsequent oval hole type. It is possible to properly bite the mold.

請求項2に係る線材・棒鋼の熱間圧延方法は、前記菱孔型出側の圧延材の幅寸法Wとこの菱孔型の直前の孔型ロール隙sとを予め対応付け、圧延中に前記菱孔型出側の圧延材の幅寸法Wを計測(測定)し、この計測した幅寸法Wから、予め対応付けておいた、前記圧延材自由表面の円弧部の半径rを算出し、前記比率r/aが0.1以上0.3以下の範囲にないときに、前記菱孔型直前の孔型ロール隙sを調整して比率r/aを0.1以上0.3以下の範囲に収めるようにしたことを特徴とする請求項1に記載した熱間圧延方法であるIn the hot rolling method for a wire rod / steel bar according to claim 2, the width dimension W of the rolled material on the rhomboid-type outlet side is associated in advance with the hole-shaped roll gap s immediately before the rhomboid-type, and during rolling, Measure (measure) the width dimension W of the rolled material on the exit side of the rhomboid type, and calculate the radius r of the arc portion of the rolled material free surface previously associated with the measured width dimension W, When the ratio r / a is not in the range of 0.1 or more and 0.3 or less, the ratio r / a is adjusted to 0.1 or more and 0.3 or less by adjusting the hole roll gap s immediately before the rhombus type. The hot rolling method according to claim 1, wherein the hot rolling method is performed within a range .

上記菱孔型出側の圧延材自由表面の円弧部の半径r(前述の入側菱材料の頂部半径rに相当する)を、この菱孔型DGのロール隙sdを調節することにより制御する場合、菱孔型出側の圧延材の寸法が変化して、続く角孔型出側の圧延材の寸法精度に大きな影響を及ぼすことになる。このため、菱孔型直前の圧延機のロール孔型FGのロール隙s(図2(a)参照)と菱孔型出側の圧延材DSの幅寸法W(図2(b)参照)を予め対応付けておき、さらに、この菱孔型出側の圧延材の幅寸法Wと菱孔型出側の圧延材自由表面の円弧部半径rとを予め対応付けておく。このように対応付けておくことにより、圧延中に測定した、菱孔型出側の圧延材の幅寸法Wに基づいて、その自由表面の円弧部半径rを算出し、比率r/aが上記範囲外にある場合には、図2(a)に示した菱孔型直前の圧延機のロール隙sを調整することによって、上記範囲に収まるように、前記圧延材自由表面の円弧部半径rを制御することができる。このようにすれば、角孔型直前の菱孔型のロール隙は調整せずに前記円弧部半径rを制御できるため、角孔型出側での圧延材の所要の寸法精度を保持して、角孔型での圧延材の捻れ回復力の増加によりオーバル孔型に適正に噛み込ませることができる。 The radius r (corresponding to the apex radius r of the aforementioned entrance rhombus material) is controlled by adjusting the roll gap sd of the rhombus type DG. In this case, the dimension of the rolling material on the exit side of the rhomboid type changes, and this greatly affects the dimensional accuracy of the rolled material on the exit side of the square hole type. For this reason, the roll gap s (see FIG. 2 (a)) of the roll hole type FG of the rolling mill immediately before the rhombus type and the width dimension W (see FIG. 2 (b)) of the rolled material DS on the exit side of the rhombus type. Further, the width dimension W of the rolled material on the rhombus type outlet side and the arc portion radius r of the free surface of the rolled material on the rhombus type outlet side are associated in advance. By associating in this way, the arc surface radius r of the free surface is calculated based on the width dimension W of the rolling material on the rhomboid-type exit side measured during rolling, and the ratio r / a is the above When it is outside the range, the radius r of the arc of the free surface of the rolled material is adjusted so as to be within the above range by adjusting the roll gap s of the rolling mill immediately before the rhomboid type shown in FIG. Can be controlled. In this way, since the radius r of the arc portion can be controlled without adjusting the rhombus type roll gap immediately before the square hole mold, the required dimensional accuracy of the rolled material on the square hole mold outlet side is maintained. The oval hole mold can be properly bitten by increasing the twist recovery force of the rolled material in the square hole mold.

この発明では、線材・棒鋼の熱間孔型圧延の菱−角−菱−角の孔型系列または菱−菱−角の孔型系列とその直後のオーバル孔型からなる孔型スケジュールの菱孔型−角孔型−オーバル孔型において、前記オーバル孔型の直前の角孔型に噛み込む菱孔型出側の圧延材の幅寸法Wとその自由表面の円弧部半径rを予め対応づけて、この幅寸法Wから円弧部半径rを予測し、前記円弧部半径rと続く角孔型での圧下量aとの比率r/aを0.1以上0.3以下になるようにロール隙を調整して、角孔型での圧延変形によって圧延材の捻れを復元させるようにしたので、角孔型出側で、孔型溝底部に接触した圧延材円弧部(頂部)Cの半径rがオーバル孔型で表面疵の発生原因を生じない程度に大きい状態であっても、ツイスターガイドやローラーガイドによる圧延材の支持を必要とせずに、圧延材をオーバル孔型に適正に噛み込ませる、すなわちオーバル孔型入側での圧延材の捻れを低減させることが可能となる。   According to the present invention, the rhomboid of the hole type schedule comprising the rhomboid-diamond-diamond hole type series or the rhomboid-diamond-square hole type series and the oval hole type immediately after the hot-hole rolling of the wire rod / bar In the mold-square hole type-oval hole type, the width dimension W of the rolled material on the exit side of the rhombus type to be engaged with the square hole type immediately before the oval hole type is associated with the arc radius r of the free surface in advance. The radius r of the arc portion is predicted from the width dimension W, and the roll gap is set so that the ratio r / a between the arc portion radius r and the subsequent roll-down amount a in the square hole mold is 0.1 or more and 0.3 or less. Since the twist of the rolled material is restored by rolling deformation in the square hole mold, the radius r of the rolled material arc portion (top) C that is in contact with the bottom of the groove groove on the exit side of the square hole mold Even if the oval hole type is large enough not to cause surface flaws, the twister guide or roller guide Without the need for support of the rolled material by de so caught properly the rolled material into oval hole type, i.e. it is possible to reduce the twisting of the rolled material in the oval hole type entry side.

また、菱孔型出側の圧延材の幅寸法Wと菱孔型直前の圧延機のロール孔型のロール隙sを予め対応付けておき、圧延中に測定した、前記幅寸法Wに基づいて、菱孔型直前の圧延機のロール隙sを調整することによって、比率r/aが上記所要の範囲に収まるように、前記自由表面の円弧部半径rを制御することができる。それにより、角孔型出側での圧延材の所要の寸法精度を保持して、オーバル孔型に適正に噛み込ませることができ、表面疵の発生を抑制し、圧延材の表面品質の向上に寄与できる。   In addition, the width dimension W of the rolling material on the exit side of the rhomboid mold and the roll gap s of the roll hole mold of the rolling mill immediately before the rhombus mold are associated in advance, and based on the width dimension W measured during rolling. By adjusting the roll gap s of the rolling mill immediately before the rhomboid type, the arc radius r of the free surface can be controlled so that the ratio r / a is within the above-mentioned required range. As a result, the required dimensional accuracy of the rolled material on the exit side of the square hole mold can be maintained, and the oval hole mold can be properly bitten, the occurrence of surface flaws can be suppressed, and the surface quality of the rolled material can be improved. Can contribute.

以下に、この発明の実施形態を、実施例を交えて、図7から図13に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図7は、線材・棒鋼圧延ラインの加熱炉1、粗圧延機列2および中間圧延機列3を模式的に示したものであり、粗圧延機列2および中間圧延機列3には、通常、水平圧延機1H〜(RF−1)Hおよび垂直圧延機2V〜RFVが交互に複数機配置され、加熱炉1で加熱された素材ビレット4(被圧材4a)は、前記各圧延機列2、3の各圧延機間で90°の捩じりを受けずに進行しながら、各ロール孔型で交互に90°異なる方向から圧下されて各ロール孔型内に充満し、その断面積が順次減少するようになっている。粗圧延機列2では、菱−角−菱−角の孔型系列または菱−菱−角の孔型系列が形成されるように、菱孔型または角孔型が加工された孔型ロールが組み込まれており、粗圧延機列2の最終圧延機RFVのロール孔型は角孔型となっている。また、中間圧延機列3では、通常、オーバル(楕円)−丸孔型系列またはオーバル−角孔型系列が形成されるように、オーバル孔型、および丸孔型または角孔型が加工された孔型ロールが組み込まれており、中間圧延機列3の最初(入側)の圧延機RM1のロール孔型はオーバル孔型となっている。このように、粗圧延機列2の出側から中間圧延機列3の入側にかけて、菱孔型−角孔型−オーバル孔型の孔型スケジュールが形成されている。この菱孔型と角孔型の間、すなわち圧延機(RF1−1)HとRFVの間には、菱孔型(RF−1)出側の圧延材の幅寸法Wを実測するための寸法測定器5が設置されている。加熱炉1で加熱された素材ビレット4(被圧材4a)は、粗圧延機列2の入側に設置されたデスケーリング装置(図示省略)によって表面のスケールが除去された後、粗圧延機列2の各圧延機間を進行しながら、各ロール孔型で交互に90°異なる方向から圧下されて各ロール孔型内に充満し、その断面積が順次減少し、最終圧延機RFVの角孔型により、角圧延材4bが形成される。この角圧延材4bは、中間圧延機列3の入側圧延機RM1のオーバル孔型で対辺方向に圧下されて(図14、図15参照)孔型内に充満し、以降この圧延機列3の各圧延機間および後続の圧延機列(図示省略)の孔型系列により、(圧延材)断面積がさらに減少して、所要の製品寸法の線材または棒鋼に仕上げられる。そして、粗圧延機列2の孔型スケジュールに対応して、図8および図9に一例を示すように、前記最終圧延機RFV(角孔型)直前の圧延機(RF−1)Hの菱孔型出側の圧延材幅寸法Wと、その自由表面の円弧部半径rおよびこの菱孔型の直前の圧延機(RF−2)Vの(孔型)ロール隙sとがそれぞれ予め対応付けられ、テーブル値または数式の形式で、圧延工程を制御するプロセスコンピュータの記憶装置に格納されている。なお、前記粗圧延機列2の圧延機の配置は、垂直圧延機−水平圧延機の順に交互に配置することもできる。   FIG. 7 schematically shows a heating furnace 1, a rough rolling mill row 2 and an intermediate rolling mill row 3 of a wire rod and bar rolling line. A plurality of horizontal rolling mills 1H to (RF-1) H and vertical rolling mills 2V to RFV are alternately arranged, and the material billet 4 (pressured material 4a) heated in the heating furnace 1 includes the rolling mill rows. While rolling without twisting 90 ° between the rolling mills 2 and 3, the roll hole molds are alternately pressed down from different directions by 90 ° to fill each roll hole mold, Are gradually decreasing. In the rough rolling mill row 2, a hole-type roll in which a rhombus type or a square hole type is processed so that a rhombus-square-diamond-hole type series or a rhombo-diamond-type hole type series is formed. The roll hole type of the final rolling mill RFV of the rough rolling mill row 2 is a square hole type. Further, in the intermediate rolling mill line 3, the oval hole type, the round hole type, and the round hole type are processed so that an oval (elliptical) -round hole type series or an oval-square hole type series is usually formed. A hole-type roll is incorporated, and the roll hole type of the first rolling mill RM1 in the intermediate rolling mill row 3 is an oval hole type. In this way, a hole schedule of rhombus type-square hole type-oval hole type is formed from the exit side of the rough rolling mill row 2 to the entry side of the intermediate rolling mill row 3. Between this rhombus type and the square hole type, that is, between the rolling mills (RF1-1) H and RFV, a dimension for actually measuring the width dimension W of the rolled material on the exit side of the rhombus type (RF-1). A measuring device 5 is installed. The material billet 4 (pressured material 4a) heated in the heating furnace 1 is subjected to a roughing mill after the surface scale is removed by a descaling device (not shown) installed on the entry side of the roughing mill row 2. While proceeding between the rolling mills in row 2, the roll hole molds are alternately rolled down from different directions by 90 ° to fill the roll hole molds, and the cross-sectional areas thereof are sequentially reduced. The corners of the final rolling mill RFV The square rolled material 4b is formed by the hole mold. This square rolled material 4b is squeezed in the opposite direction by the oval hole type of the entry side rolling mill RM1 of the intermediate rolling mill row 3 (see FIG. 14 and FIG. 15) to fill the hole type, and thereafter this rolling mill row 3 Due to the hole type series between the rolling mills and the subsequent rolling mill row (not shown), the (rolled material) cross-sectional area is further reduced to finish the wire or bar with the required product size. And corresponding to the hole type schedule of the rough rolling mill row 2, as shown in FIG. 8 and FIG. 9 as an example, the diamond of the rolling mill (RF-1) H just before the final rolling mill RFV (square hole type). The rolled material width dimension W on the exit side of the hole mold, the arc radius r of the free surface thereof, and the (hole mold) roll gap s of the rolling mill (RF-2) V immediately before the diamond hole mold are associated in advance. And stored in a storage device of a process computer that controls the rolling process in the form of a table value or a mathematical expression. In addition, the arrangement | positioning of the rolling mill of the said rough rolling mill row | line | column 2 can also be alternately arrange | positioned in order of a vertical rolling mill-a horizontal rolling mill.

図10は、前記比率r/aが0.1以上0.3以下になるようなロール隙調整を、圧延材の先端から後端に至る全長にわたって角孔型での圧延変形によって圧延材の捻れを復元させる作用を得るための、ロール隙設定により行なう形態を示したものである。以下のロール隙設定の各ステップ(S10〜S110)は、前述の圧延工程を制御するプロセスコンピュータにより実行することができる。まず、圧延計画に基づいて、当該圧延材(圧延ロット)について、素材ビレット寸法、製品寸法、孔型スケジュールなどの所要の圧延情報を読み出して(S10)、圧延機RM1(図7参照、以下同様)のオーバル孔型直前の角圧延材の天地寸法、すなわち圧延機RFVの角孔型SGの天地寸法Hsを設定する(図1参照;S20)。次に、この角孔型直前の圧延機(RF−1)Hの菱孔型DG出側の圧延材の幅寸法Wを仮定し(S30)、角孔型SGでの圧下量a(図1参照)を算出する(S40)。そして、テーブル値または数式などの形式で予め対応付けておいた、菱孔型出側圧延材DSの幅寸法Wとその自由表面の円弧部半径rの関係を用いて(S50)、この菱圧延材DSの円弧部半径rを算出する(S60)。比率r/aが0.1〜0.3の範囲に収まっている場合(S70)、テーブル値または数式などの形式で予め対応付けておいた、菱孔型出側圧延材DSの幅寸法Wとこの菱孔型DGのロール隙Sd(図2(b)参照)との関係を用いて(S90)、菱孔型DGのロール隙sdを設定する(S100)。以下、菱孔型DGの直前の圧延機(RF−2)Vの孔型およびその上流側の圧延機の孔型のロール隙を設定する(S110)。比率r/aが0.1〜0.3の範囲に収まっていない場合には、前記菱圧延材DSの幅寸法Wを修正し(S90)、比率r/aが0.1〜0.3の範囲に収まるまで、ステップS40〜S80を繰り返す。このようにして、圧延機RM1のオーバル孔型直前の圧延機RFVの角孔型での比率r/aが0.1〜0.3の範囲に収まるように、菱−角−菱−角の孔型系列または菱−菱−角の孔型系列のロール隙を設定することができる。   FIG. 10 shows that the roll gap is adjusted so that the ratio r / a is 0.1 or more and 0.3 or less, and the rolling material is twisted by rolling deformation in a square hole shape over the entire length from the front end to the rear end of the rolled material. The form performed by the roll clearance setting for obtaining the action of restoring the shape is shown. The following roll gap setting steps (S10 to S110) can be executed by a process computer that controls the rolling process described above. First, based on the rolling plan, necessary rolling information such as material billet dimensions, product dimensions, and hole schedule is read for the rolled material (rolling lot) (S10), and the rolling mill RM1 (see FIG. 7, see below). ) Of the square rolled material immediately before the oval hole mold, that is, the vertical dimension Hs of the square hole SG of the rolling mill RFV (see FIG. 1; S20). Next, the width dimension W of the rolling material on the exit side of the rhomboid DG of the rolling mill (RF-1) H immediately before this square hole mold is assumed (S30), and the reduction amount a (FIG. 1) in the square hole SG. Reference) is calculated (S40). Then, using the relationship between the width dimension W of the rhomboid exit side rolled material DS and the arc radius r of the free surface, which has been associated in advance in the form of a table value or a mathematical formula (S50), this rhombus rolling The arc portion radius r of the material DS is calculated (S60). When the ratio r / a is within the range of 0.1 to 0.3 (S70), the width dimension W of the rhombus type outlet side rolled material DS, which is associated in advance in the form of a table value or a mathematical expression, etc. The roll gap sd of the rhombus type DG is set (S100) using the relationship between the roll gap Sd of the rhombus type DG (see FIG. 2B) (S90). Hereinafter, the roll gap of the rolling mill (RF-2) V immediately before the rhombus type DG and the hole mold of the rolling mill on the upstream side thereof are set (S110). When the ratio r / a is not within the range of 0.1 to 0.3, the width dimension W of the diamond rolled material DS is corrected (S90), and the ratio r / a is 0.1 to 0.3. Steps S40 to S80 are repeated until it falls within the range. In this way, the rhombus-angle-diamond-angle ratio is set so that the ratio r / a in the square hole shape of the rolling mill RFV immediately before the oval hole shape of the rolling mill RM1 falls within the range of 0.1 to 0.3. It is possible to set a roll gap of a hole type series or a rhomboid-square hole type series.

図11は、上述のロール隙設定後の圧延過程で、前記菱圧延材DSの寸法変動が発生した場合に、比率r/aが0.1〜0.3の範囲に収まるように、菱圧延材DSの幅寸法を制御する流れを示したものである。圧延開始後、圧延機(RF−1)H(図7参照、以下同様)の出側に設置された寸法測定器5により菱孔型DG出側の圧延材DSの幅寸法Wを測定する(S10a)。この実測した幅寸法Waを用いて、圧延機RFVの角孔型SGでの実際の圧下量aを算出する(20a)。前述の菱圧延材DSの幅寸法Wとその自由表面の円弧部rの関係を用いて(S30a)、実測幅寸法Waから円弧部半径rを算出する(S40a)。比率r/aが0.1〜0.3の範囲に収まっていない場合(S50a)、予め対応付けておいた圧延機(RF−1)Hの菱孔型DG直前の圧延機(RF−2)Vの孔型のロール隙sと菱孔型DG出側の圧延材の幅寸法Wとの関係を用いて(S60a)、前記菱孔型DG直前の圧延機(RF−2)Vの孔型のロール隙sを調節して(S70a)、比率r/aが0.1〜0.3の範囲に収まるまで、ステップS10a〜S60aを繰り返す。比率r/aが0.1〜0.3の範囲に収まっている場合には、当該圧延材の圧延を継続し(S80a)、当該圧延を終了後、次圧延材の菱圧延材DSの幅寸法Wを制御する(S90a)。このようにして、圧延材の先端から後端にわたって、比率r/aを0.1〜0.3の範囲に収めることができ、角孔型SGでの圧延材の捻れを復元させて、次圧延機RM1のオーバル孔型に適正に噛み込ませることが可能となる。   FIG. 11 shows that the rolling process after setting the above-mentioned roll gap is performed so that the ratio r / a falls within the range of 0.1 to 0.3 when the dimensional variation of the diamond rolling material DS occurs. The flow which controls the width dimension of material DS is shown. After the start of rolling, the width dimension W of the rolling material DS on the exit side of the rhomboid DG is measured by the dimension measuring device 5 installed on the exit side of the rolling mill (RF-1) H (see FIG. 7, the same applies hereinafter) ( S10a). Using this actually measured width dimension Wa, an actual reduction amount a in the square hole type SG of the rolling mill RFV is calculated (20a). Using the relationship between the aforementioned width dimension W of the rolled diamond DS and the arc portion r of the free surface (S30a), the arc portion radius r is calculated from the actually measured width dimension Wa (S40a). When the ratio r / a is not within the range of 0.1 to 0.3 (S50a), the rolling mill (RF-2) immediately before the rhomboid DG of the rolling mill (RF-1) H associated in advance. ) Using the relationship between the V-hole-shaped roll gap s and the width W of the rolled material on the exit side of the rhomboid DG (S60a), the hole of the rolling mill (RF-2) V immediately before the rhomboid-type DG The roll gap s of the mold is adjusted (S70a), and steps S10a to S60a are repeated until the ratio r / a falls within the range of 0.1 to 0.3. When the ratio r / a is within the range of 0.1 to 0.3, the rolling of the rolled material is continued (S80a), and after the rolling is finished, the width of the diamond rolled material DS of the next rolled material The dimension W is controlled (S90a). In this way, the ratio r / a can be kept in the range of 0.1 to 0.3 from the front end to the rear end of the rolled material, and the twist of the rolled material in the square hole type SG is restored. It becomes possible to properly bite the oval hole mold of the rolling mill RM1.

素材として、155mm角のビレット(材質:SCM435)を1100℃に加熱して、図7に示した熱間圧延ラインで、直径10mmの線材に圧延するに際して、まず、製品寸法(Φ10mm)に対応した、粗圧延機列2の最終圧延機RFVの角孔型出側における所要の圧延材寸法(角寸法:50mm角)に対して、表1に示す菱孔型(圧延機(RF−1)H)の幅寸法と自由表面の円弧部半径rとを対応付けたテーブルを用いて、前記角孔型での圧下量aに対する直前(圧延機(RF−1)H)の菱孔型出側の圧延材自由表面の円弧部半径rの比率r/aが0.1以上0.3以下となるように、粗圧延機列2の各ロール隙を設定した後に、圧延を実施した。この圧延過程で、寸法測定器5(図7参照)により、前記菱孔型出側の圧延材の幅寸法Wを実測して、表1のテーブルを用いて、自由表面の円弧部rを算出し、比率r/aが0.1〜0.3の範囲を外れたときに、この範囲に収まるように、表1のテーブルを用いて菱孔型直前の圧延機(RF−2)Vのロール隙sを制御し、製品(Φ10mm線材)の表面疵発生状況を調査した。一方、比率r/aが0.1〜0.3の範囲に収まらないように粗圧延機列2の各ロール隙を設定し、圧延過程で菱孔型直前の圧延機(RF−2)Vのロール隙sを制御せずに圧延した製品(Φ10mm線材)についても表面疵発生状況を調査した。   When a 155 mm square billet (material: SCM435) was heated to 1100 ° C. and rolled into a wire with a diameter of 10 mm in the hot rolling line shown in FIG. 7, first the product dimensions (Φ10 mm) were supported. The rhomboid type shown in Table 1 (Roller (RF-1) H) is shown in Table 1 for the required rolling material dimensions (square dimension: 50 mm square) on the exit side of the square hole mold of the final rolling mill RFV of the rough rolling mill row 2. ) And the arc surface radius r of the free surface in correspondence with each other, the rhomboidal exit side of the rolling hole (RF-1) H immediately before the rolling amount a in the square hole type (rolling machine (RF-1) H). Rolling was carried out after setting each roll gap of the rough rolling mill row 2 so that the ratio r / a of the arc portion radius r of the free surface of the rolled material was 0.1 or more and 0.3 or less. During this rolling process, the dimension measuring instrument 5 (see FIG. 7) is used to measure the width dimension W of the rolled material on the rhomboid exit side and calculate the arc portion r of the free surface using the table in Table 1. When the ratio r / a is out of the range of 0.1 to 0.3, the rolling mill (RF-2) V immediately before the rhomboid type is used by using the table in Table 1 so that the ratio r / a falls within this range. The roll gap s was controlled and the surface flaw occurrence state of the product (Φ10 mm wire) was investigated. On the other hand, each roll gap of the rough rolling mill row 2 is set so that the ratio r / a does not fall within the range of 0.1 to 0.3, and the rolling mill (RF-2) V immediately before the rhombus type in the rolling process. The surface flaw occurrence state was investigated also about the product ((PHI) 10mm wire rod) rolled without controlling the roll gap s.

Figure 0004917980
Figure 0004917980

前記表面疵の発生状況調査は、コイルに巻取った後、コイルの先端側から後端鉱側にかけての10箇所の位置でサンプリングを行い、酸洗いにより表面スケールを除去した後、目視観察により表面疵の発生が認められた部分の断面を顕微鏡観察により疵深さを測定し、総疵個数に対する深さ0.02mm以上の疵個数の比率(%)を求めた。図12に表面疵発生状況の調査結果を示す。図12から、比率r/aが0.1〜0.3の範囲に収まるように調整することによって、深さ0.02mm以上の表面疵の発生が抑制されていることがわかる。一方、比率r/aが0.1〜0.3の範囲に収まっていない場合には、深さ0.02mm以上の表面疵が発生していることがわかる。   The surface flaw occurrence state investigation was conducted by winding the coil, sampling at 10 positions from the front end side of the coil to the rear end side, removing the surface scale by pickling, and then visually observing the surface. The cross-section of the portion where the generation of wrinkles was observed was measured for the wrinkle depth by microscopic observation, and the ratio (%) of the number of wrinkles having a depth of 0.02 mm or more to the total number of wrinkles was obtained. FIG. 12 shows the results of investigation of the surface flaw occurrence state. From FIG. 12, it can be seen that the generation of surface defects having a depth of 0.02 mm or more is suppressed by adjusting the ratio r / a to be within the range of 0.1 to 0.3. On the other hand, when the ratio r / a is not within the range of 0.1 to 0.3, it can be seen that surface defects having a depth of 0.02 mm or more are generated.

なお、本発明は、上記の線材圧延のみならず、製品が棒鋼に圧延される場合にも適用することもできる。また、本発明の技術的思想は、角−オーバル−角の孔型系列にも適用することができる。すなわち、図13に示すように、角−オーバル−角の孔型系列におけるオーバル孔型出側のオーバル圧延材OSの幅寸法Wと自由表面の円弧部半径rを予め対応づけて、幅寸法Wから円弧部半径rを予測し、オーバル孔型直前の角孔型のロール隙を調節することにより、前記比率r/aを所要の範囲に収めて、直後の角孔型SGに適正に噛み込ませるようにすることもできる。   The present invention can be applied not only to the above-described wire rod rolling but also to the case where the product is rolled into a bar steel. The technical idea of the present invention can also be applied to a square-oval-square hole type series. That is, as shown in FIG. 13, the width dimension W of the oval rolled mold exit side oval rolled material OS and the arcuate radius r of the free surface in the square-oval-square hole type series are associated in advance. The radius r of the arc portion is predicted from the above, and the roll gap of the square hole type immediately before the oval hole type is adjusted, so that the ratio r / a is kept within the required range, and the right square hole type SG is properly bitten. You can also make it happen.

菱圧延材の自由表面の頂部半径rと角孔型での圧下量aを示す説明図である。It is explanatory drawing which shows the top part radius r of the free surface of a diamond rolling material, and the amount of reduction a in a square hole type | mold. (a)菱孔型出側の圧延材の幅寸法Wと自由表面の円弧部半径rを示す説明図である。(b)菱孔型の直前の孔型のロール隙sを示す説明図である。(A) It is explanatory drawing which shows the width dimension W of the rolling material of a rhombus type exit side, and the circular arc part radius r of a free surface. (B) It is explanatory drawing which shows the hole-shaped roll gap s immediately before a rhombus type. 変形解析の圧延材横断面内の要素分割を示す説明図である。It is explanatory drawing which shows the element division in the rolling material cross section of a deformation | transformation analysis. 変形解析の圧延材縦断面内の要素分割を示す説明図である。It is explanatory drawing which shows the element division in the rolling material vertical cross section of a deformation | transformation analysis. 入側圧延材の頂部(自由表面円弧部)半径rと孔型での圧下量aとの比率r/aが捻れ回復率Rtに及ぼす影響を示す説明図である。It is explanatory drawing which shows the influence which the ratio r / a of the top part (free surface circular arc part) radius r of a entrance side rolling material and the amount of reduction a in a hole shape has on the twist recovery rate Rt. 角孔型−オーバル孔型−丸孔型の3パスの実験圧延により丸形状出側材料に仕上げたときの、比率r/aに対する表面疵の発生率(%)を示す説明図である。It is explanatory drawing which shows the generation | occurrence | production rate (%) of the surface flaw with respect to ratio r / a when it finishes in a round-shaped exit side material by three-pass experimental rolling of a square hole type-oval hole type-round hole type. 線材・棒鋼圧延ラインの要部を模式的に示す説明図である。It is explanatory drawing which shows typically the principal part of a wire and a bar rolling line. 菱孔型出側の圧延材幅寸法Wとその自由表面の円弧部半径rを対応付けた一例を示す説明図である。It is explanatory drawing which shows an example which matched the rolling material width dimension W of the rhombus type | mold exit side, and the circular arc part radius r of the free surface. 菱孔型直前の孔型のロール隙と菱孔型出側の圧延材幅寸法Wとを対応付けた一例を示す説明図である。It is explanatory drawing which shows an example which matched the roll gap of the hole type just before a rhombus type | mold, and the rolling material width dimension W of the rhombus type exit side. 実施形態におけるロール隙設定の流れを示す説明図である。It is explanatory drawing which shows the flow of the roll clearance setting in embodiment. 実施形態における菱孔型出側の圧延材の幅寸法制御の流れを示す説明図である。It is explanatory drawing which shows the flow of width dimension control of the rolling material of the rhombus type | mold exit side in embodiment. 実機圧延での比率r/aに対する表面疵の発生状況を示す説明図である。It is explanatory drawing which shows the generation | occurrence | production condition of the surface flaw with respect to ratio r / a in actual machine rolling. オーバル圧延材の自由表面の頂部(円弧部)半径rと角孔型での圧下量aを示す説明図である。It is explanatory drawing which shows the top part (arc part) radius r of the free surface of an oval rolling material, and the reduction amount a in a square hole type | mold. 角孔型出側の頂部半径が小さい圧延材がオーバル孔型に捻れた状態で圧延された場合を模式的に示す説明図である。It is explanatory drawing which shows typically the case where the rolling material with a small top radius of a square hole type | mold exit side is rolled in the state twisted by the oval hole type | mold. 角孔型出側の頂部半径が大きい圧延材がオーバル孔型に捻れた状態で圧延された場合を模式的に示す説明図である。It is explanatory drawing which shows typically the case where the rolling material with a large top radius of the square hole type | mold exit side is rolled in the state twisted by the oval hole type | mold.

符号の説明Explanation of symbols

1:加熱炉 2:粗圧延機列 3:中間圧延機列
4:素材ビレット(被圧延材) 5:寸法測定器
DS:菱圧延材 SR:角圧延材 OS:オーバル圧延材
DG:菱孔型孔形 SG:角孔型
1: Heating furnace 2: Rough rolling mill row 3: Intermediate rolling mill row 4: Material billet (rolled material) 5: Dimension measuring device DS: Rhombus rolled material SR: Square rolled material OS: Oval rolled material DG: Rhombus type Hole type SG: Square hole type

Claims (2)

加熱した素材ビレットから、複数の圧延機のロールに設けた菱−角−菱−角の孔型系列または菱−菱−角の孔型系列とその直後のオーバル孔型によって断面積を順次減少させ、後続の孔型系列により断面積をさらに減少させて圧延材を所要の製品寸法に仕上げる線材・棒鋼の熱間圧延方法であって、前記オーバル孔型の直前の角孔型に噛み込む菱孔型出側の圧延材自由表面の円弧部半径をr、この角孔型での圧下量をaとしたときに、前記菱孔型出側の圧延材の幅寸法Wとその自由表面の円弧部半径rを予め対応づけて、この幅寸法Wから円弧部半径rを予測し、比率r/aが0.1以上0.3以下の範囲に収まるように前記菱−角−菱−角の孔型系列または菱−菱−角の孔型系列のロール隙を調整して、圧延材を前記オーバル孔型に適正に噛み込ませるようにしたことを特徴とする線材・棒鋼の熱間圧延方法。   From the heated material billet, the cross-sectional area is sequentially reduced by the rhomboid-diamond-diamond hole type series or rhombo-diamond-square hole type series provided on the rolls of a plurality of rolling mills and the oval hole type immediately thereafter. A hot rolling method for wire rods and steel bars, in which the cross-sectional area is further reduced by the subsequent hole mold series to finish the rolled material to the required product dimensions, and the diamond hole that engages with the square hole mold immediately before the oval hole mold When the radius of the arc portion of the free surface of the rolled material on the mold exit side is r and the amount of reduction in this square hole mold is a, the width dimension W of the rolled material on the exit side of the rhomboid mold and the arc portion of the free surface thereof The radius r is associated in advance, the arc radius r is predicted from the width W, and the rhombus-angle-diamond-angle hole is set so that the ratio r / a falls within the range of 0.1 to 0.3. Adjust the roll gap of the die series or the rhomboid-square hole type series to make the rolled material suitable for the oval hole type. Hot rolling method of wire-bars, characterized in that so as to incorporated seen. 前記菱孔型出側の圧延材の幅寸法Wとこの菱孔型の直前の孔型ロール隙sとを予め対応付け、圧延中に前記菱孔型出側の圧延材の幅寸法Wを測定し、この測定した幅寸法Wから、予め対応付けておいた、前記圧延材自由表面の円弧部の半径rを算出し、前記比率r/aが0.1以上0.3以下の範囲にないときに、前記菱孔型直前の孔型ロール隙sを調整して比率r/aを0.1以上0.3以下の範囲に収めるようにしたことを特徴とする請求項1に記載の線材・棒鋼の熱間圧延方法。 The width dimension W of the rolled material on the exit side of the rhombus type is previously associated with the hole type roll gap s immediately before the rhombus type, and the width dimension W of the rolled material on the exit side of the rhombus type is measured during rolling. Then, the radius r of the arc portion of the free surface of the rolled material, which is associated in advance, is calculated from the measured width dimension W, and the ratio r / a is not in the range of 0.1 to 0.3. 2. The wire rod according to claim 1 , wherein the ratio r / a is adjusted to fall within a range of 0.1 to 0.3 by adjusting the hole roll gap s just before the rhomboid mold. -Hot rolling method for steel bars.
JP2007180253A 2007-07-09 2007-07-09 Hot rolling method for wire and bar Expired - Fee Related JP4917980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180253A JP4917980B2 (en) 2007-07-09 2007-07-09 Hot rolling method for wire and bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180253A JP4917980B2 (en) 2007-07-09 2007-07-09 Hot rolling method for wire and bar

Publications (2)

Publication Number Publication Date
JP2009012065A JP2009012065A (en) 2009-01-22
JP4917980B2 true JP4917980B2 (en) 2012-04-18

Family

ID=40353619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180253A Expired - Fee Related JP4917980B2 (en) 2007-07-09 2007-07-09 Hot rolling method for wire and bar

Country Status (1)

Country Link
JP (1) JP4917980B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20154967A1 (en) * 2015-10-16 2017-04-16 Danieli Off Mecc METHOD AND METAL LAMINATING SYSTEM
TWI763059B (en) * 2020-09-26 2022-05-01 中國鋼鐵股份有限公司 Method for predicting cross-sectional area of formed steel and method for adjusting roll gap in bar steel and rod rolling process
CN115069766B (en) * 2022-07-06 2023-06-13 山东钢铁集团永锋临港有限公司 Hole pattern system for producing phi 18mm hot rolled ribbed steel bar by four-segment rolling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018244B2 (en) * 1981-08-04 1985-05-09 住友金属工業株式会社 Roll for rolling steel bar wire rod
JPS61193702A (en) * 1985-02-21 1986-08-28 Kobe Steel Ltd Tandem rolling method for producing bar and wire having round section
JPS62116253A (en) * 1985-11-15 1987-05-27 Nippon Steel Corp Method for eddy current flaw detection of modified cross-section wire
JPH03133511A (en) * 1990-03-16 1991-06-06 Kawasaki Steel Corp Inlet port guide for flat roll rolling of bar steel/wire rod

Also Published As

Publication number Publication date
JP2009012065A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4917980B2 (en) Hot rolling method for wire and bar
JP2010201492A (en) Forming apparatus of deformed wire material
JP4808068B2 (en) Billet rolling method
JP5338139B2 (en) Method for preventing meandering in hot finish rolling, and method for producing hot-rolled metal plate using the same
JP4130924B2 (en) Hot rolling method for strip
JP5775378B2 (en) Strip rolling method
JP4927008B2 (en) Method for predicting deformation resistance of metal strip and method for setting up cold tandem rolling mill
JP5361454B2 (en) Hot hole rolling method and hot hole rolling equipment for strip steel
JP4456586B2 (en) Hot rolling method for strip
JP3664068B2 (en) Meander suppression method
JP4658884B2 (en) Rolling method for steel strip
JP4721855B2 (en) Method for reducing surface defects in hot rolling
JP3241566B2 (en) Simultaneous control method of camber and wedge in hot rolling
JP4871250B2 (en) Strip rolling method
JP5414398B2 (en) Rolling method for steel strip
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JP3004875B2 (en) Elongator rolling method
JPH10263606A (en) Manufacture of hot rolled steel plate whose surface defect is reduced
JP4849906B2 (en) Method for reducing surface defects in hot rolling
WO2020217725A1 (en) Rolling-straightening machine and method for manufacturing pipe or bar using rolling-straightening machine
CN114939601A (en) Method for rolling bamboo joint bending of small-specification round steel without defect
JP2007061908A (en) Method for hot-rolling bar material
JP2001113306A (en) Manufacturing method for high alloy seamless steel tube and rolling pass used therefor
JP2002035818A (en) Apparatus for rolling seamless tube and method for controlling seamless tube rolling
JP4452260B2 (en) Method for preventing wrinkles in block rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees