JPS61193702A - Tandem rolling method for producing bar and wire having round section - Google Patents

Tandem rolling method for producing bar and wire having round section

Info

Publication number
JPS61193702A
JPS61193702A JP3371085A JP3371085A JPS61193702A JP S61193702 A JPS61193702 A JP S61193702A JP 3371085 A JP3371085 A JP 3371085A JP 3371085 A JP3371085 A JP 3371085A JP S61193702 A JPS61193702 A JP S61193702A
Authority
JP
Japan
Prior art keywords
oval
groove
filling rate
value
round
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3371085A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamaguchi
喜弘 山口
Yoichi Takahashi
洋一 高橋
Mikio Moriga
森賀 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3371085A priority Critical patent/JPS61193702A/en
Publication of JPS61193702A publication Critical patent/JPS61193702A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a product having a round sectional shape with high cost performance by inserting a rolling material without twisting into rolls of oval groove from rolls of diamond groove thereby rolling the material. CONSTITUTION:The coefft. of spread in an equation for predicting the spread is preliminarily determined by experiment. The sectional size of the rolling material on the i-1 pass inlet side, the sectional size of the round section, the permissible filling rate of the oval groove and the permissible filling rate of the round groove are preliminarily determined as initial conditions. The filling rate of the oval groove is determined by using the equation for predicting the spread with the ellipticity of the oval groove and the width of the oval groove as variable. The width of the oval groove is so determined that the difference between the value thus obtd. and the permissible filling rate of the oval groove attains the permissible value or below. The filling rate of the round groove is determined by using the equation for predicting the spread in accordance with such value and the height of the oval groove. The ellipticity of the oval groove is determined in such a manner that the difference between the value thus obtd. and the permissible filling rate of the round groove attains the permissible value or below. Further the shape of the oval groove is determined and the material is inserted between the rolls of oval groove from the rolls of diamond groove, by which the material is rolled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、第(i−2)バスのスタンドにダイヤの孔型
、第(i−1)バスのスタンドにオーバルの孔型、第i
バスに丸の孔型を用いて行う、丸断面の棒・線材を製造
するタンデム圧延方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a diamond hole type for the (i-2)th bus stand, an oval hole type for the (i-1)th bus stand, and an oval hole type for the (i-1)th bus stand.
This invention relates to a tandem rolling method for manufacturing rods and wire rods with a round cross section, which is carried out using a round hole type bus.

(従来技術) 従来、棒・線材を圧延する最新鋭のミルでは、スタンド
間に圧延材をノーツイストで圧延しようとして圧延機を
IIV配列にしている。このツイストをしないことのメ
リットは、圧延中のミスロールの防止、ツイストするこ
とによるキズの発生の防止、ツイストローラー等の備品
かいらないなど種々の利点が挙げられる。
(Prior Art) Conventionally, in state-of-the-art mills for rolling rods and wire rods, the rolling mills are arranged in an IIV arrangement in order to roll the rolled material between stands with no twist. There are various advantages of not twisting, such as prevention of misrolls during rolling, prevention of scratches caused by twisting, and no need for equipment such as twist rollers.

しかし、この最新鋭のミルでも少なくとらl箇所ツイス
トしている。それは丸断面の圧延製品を製造するのに、
角−オーバル−丸と断面形状を変化させろプロセスか存
在するからである。ツイストを行う箇所は、角からオー
バルで角断面の圧延材を45°ツイストしてオーバル孔
型のロールに挿入し、圧延を行っている。
However, even this state-of-the-art mill has at least one twist. It is used to manufacture rolled products with round cross sections.
This is because there is a process to change the cross-sectional shape from square to oval to round. At the location where twisting is performed, a rolled material with a square cross section is twisted by 45° from the corner to an oval, and the rolled material is inserted into an oval hole type roll and rolled.

棒・線材のミルは、製品構成上から少ロット多品種であ
るために、数多くのバススケジュールをもっている。し
たがって、上記のたった1箇所のツイストでも、ツイス
トする箇所が異なり、ツイストローラー等の備品の増加
ならびに圧延作業を煩雑なものにしているという問題が
ある。
Rod and wire rod mills have a large number of bus schedules because they produce small lots and a wide variety of products. Therefore, even when twisting is done at just one location, the twisting locations are different, which poses a problem of increasing the number of equipment such as twist rollers and complicating the rolling operation.

−例として、丸棒を連続ミルで製造する代表的なバスス
ケジュールを第8図(オーバル−内法)および第7図(
菱−内法)を示す。図中には、左側に減面率と矢印でツ
イストを行なう箇所を明記した。
- As an example, a typical bus schedule for manufacturing round bars in a continuous mill is shown in Figure 8 (oval-inner method) and Figure 7 (
Indicates the rhombus (inner method). In the figure, the area reduction rate and the location where the twist is to be performed are clearly indicated with arrows on the left side.

図から、丸への継ぎのバスとして角−オーバルIくスが
両者ともに採用され、かつ、ここで45°ツイストが行
われていることがわかる。
From the figure, it can be seen that in both cases, a square-oval I-bus is used as a connecting bus to a circle, and a 45° twist is performed here.

(発明の目的) 本発明は、上記従来の問題に鑑みてなされたもので、そ
の目的は上述のツイストを全く行わない圧延により、コ
ストパーフォーマンスに優れた丸断面形状の製品を製造
することを可能にした丸断面の棒・線材を製造するタン
デム圧延方法を提供することにある。
(Object of the Invention) The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to manufacture products with a round cross-sectional shape that are excellent in cost performance by rolling without any twisting as described above. An object of the present invention is to provide a tandem rolling method for manufacturing rods and wire rods with a round cross section.

(発明の構成) 本発明は、以上の目的を達成するために、第(i−2)
バスのスタンドにダイヤの孔型、第(i−1)バスのス
タンドにオーバルの孔型、第itクスのスタンドに丸の
孔型を用いて、丸断面の棒・線材を製造するタンデム圧
延方法において、孔型を用いた圧延による圧延材の巾広
がりを求める巾広がりの予測式中の巾広がり係数を実験
により予め求めておき、この値の他に初期条件として第
(i−1)バス入側の圧延材の断面寸法、上記丸断面の
断面寸法、オーバル孔型の許容充満率および丸孔型の許
容充満率を予め決めておくとともに、未知数であるオー
バル孔型の楕円率およびオーバル孔型の巾を変数とし、
上記巾広がりの予測式を使って、オーバル孔型の充満率
を求め、この値と上記オーバル孔型の許容充満率との差
が許容値以下になるように未知数であるオーバル孔型の
巾を決める一方、この値およびこの値と上記オーバル孔
型の楕円率とで表わしたオーバル孔型の高さに基いて、
上記巾広がりの予測式を使って丸孔型の充満率を求め、
この値と上記丸孔型の許容充満率との差が許容値以下に
なるように未知数であるオーバル孔型の楕円率を決め、
この値と上記オーバル孔型の11】とからオーバル孔型
の形状を決めて、圧延材をノーツイストで、ダイヤ孔型
のロールからオーバル孔型のロールに挿入して圧延する
ようにした。
(Structure of the Invention) In order to achieve the above object, the present invention provides the (i-2)
A tandem rolling method for manufacturing rods and wire rods with round cross sections using a diamond hole type for the bus stand, an oval hole type for the (i-1) bus stand, and a round hole type for the IT bus stand. In this method, the width expansion coefficient in the width expansion prediction formula for determining the width expansion of the rolled material by rolling using a groove die is determined in advance by experiment, and in addition to this value, the (i-1)th bus input is set as an initial condition. In addition to determining in advance the cross-sectional dimensions of the side rolled material, the cross-sectional dimensions of the round cross section, the allowable filling rate of the oval hole type, and the allowable filling rate of the round hole type, the ellipticity of the oval hole type and the oval hole type, which are unknown quantities, are determined in advance. Let the width of be a variable,
Using the width spread prediction formula above, find the filling rate of the oval hole type, and calculate the width of the oval hole type, which is an unknown quantity, so that the difference between this value and the allowable filling rate of the oval hole type above is less than the allowable value. While determining, based on this value and the height of the oval hole shape expressed by this value and the ellipticity of the oval hole shape above,
Using the above width spread prediction formula, find the filling rate of the round hole type,
The ellipticity of the oval hole type, which is an unknown quantity, is determined so that the difference between this value and the allowable filling rate of the above round hole type is less than the allowable value,
The shape of the oval groove was determined based on this value and the oval groove shape 11 above, and the rolled material was inserted into the oval groove roll from the diamond groove roll to be rolled with no twist.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

本発明の特徴は、第(i−2)バスのスタンドにダイヤ
の孔型、第(i−1)バスのスタンドにオーバルの孔型
、第iバスのスタンドに丸の孔型を用いて、圧延材をノ
ーツイストでダイヤ孔型のロールからオーバル孔型のロ
ールに挿入して圧延することである。それ故、ダイヤ−
オーバル・バスの圧延を適正に行わなければならない。
The feature of the present invention is that the stand of the (i-2) bus uses a diamond hole type, the stand of the (i-1) bus uses an oval hole type, and the stand of the i-th bus uses a round hole type. Rolling is performed by inserting the rolled material from a diamond hole type roll into an oval hole type roll without twisting. Therefore, diamond
Oval bath rolling must be done properly.

ここで、ダイヤとは頂角が90°以上180°未満の菱
形をいう。
Here, the diamond refers to a diamond shape with an apex angle of 90° or more and less than 180°.

このためには、まずグイヤーオーバルバスの圧延特性の
うち、特に巾広がり特性を知る必要がある。すなわち、
いわゆる篠愈の式として周知の式である巾広がりの予測
式の中の11広がり係数αを、本発明のバススケジュー
ルについて、実験により求めることが課題となる。
For this purpose, it is first necessary to know the rolling characteristics of the Guyer oval bath, especially the width spreading characteristics. That is,
The problem is to find the 11 spread coefficient α in the width spread prediction formula, which is a well-known formula as the so-called Shino Yu's formula, by experiment for the bus schedule of the present invention.

次に、この巾広がりの予測式を記述するための記号を第
2図に示す。図中の各記号の意味は以下の通りである。
Next, FIG. 2 shows symbols for describing the prediction formula for this width spread. The meaning of each symbol in the figure is as follows.

すなわち、 H,、H,:圧延前後の圧延材l断面の高さく添字0が
前で、添字1が後を示す。以下同様)B、、B、:圧延
重複の圧延材lの断面の巾FH:圧延材1が孔型3によ
って排除される面積(図中、クロスハツチノブて示す部
分)Foz圧延府の圧延材1の断面積 B、。  圧延前の圧延材断面の輪郭と孔型3との交点
間の中方向の距離 1(o、H+:距離l3ito間の圧延前後の面積をB
MOで除した値 Rc・ロールlのカラー半径 S 、ロール隙 i−9平均ロール径(R=Rc十s/2  H+/2)
である。
That is, H,, H,: Height of the cross section of the rolled material l before and after rolling. The subscript 0 indicates the front, and the subscript 1 indicates the rear. (Similarly below) B,, B,: Width of the cross section of rolled material 1 with rolling overlap FH: Area where rolled material 1 is removed by groove 3 (portion indicated by a crosshatch knob in the figure) Rolled material in Foz rolling station 1 cross-sectional area B,. The distance in the middle direction between the contour of the cross-section of the rolled material before rolling and the intersection with the groove 3 (o, H+: the area before and after rolling between distance l3ito is B)
Value divided by MO: Rc・collar radius S of roll l, roll gap i-9 average roll diameter (R=Rc 10s/2 H+/2)
It is.

以上の記号を用いて課金の式を表わすと以下のようにな
る。
The billing formula can be expressed using the above symbols as follows.

(B、−BO)/BO−α−(2−、Ed /(■−r
o+2・Bo))−(r;’H/r;’o)   −(
t)ここでidは、平均のロール接触長であり、、Ed
−[・(Ho−t−t、)) と表わされる。
(B, -BO)/BO-α-(2-, Ed/(■-r
o+2・Bo))-(r;'H/r;'o)-(
t) where id is the average roll contact length and Ed
−[・(Ho-t-t, )).

また、αは巾広がり係数を示し、圧延方式毎に固有の値
をとる。そこで、下記の表に示す条件で熱間圧延実験を
行い、28個のデータをとり、これを基に回帰して巾広
がり係数αの値を求めた。
Further, α indicates a width spread coefficient, and takes a unique value for each rolling method. Therefore, a hot rolling experiment was conducted under the conditions shown in the table below, 28 pieces of data were collected, and based on this, the value of the width spread coefficient α was determined by regression.

すなわち、第3図に示すように横軸に(2・ld/Q(
、+ 280)l ・(F o / F o)、縦軸に
(B、/Bo)の6値をとり、ダイヤ−オーバル圧延の
実験の結果得られたデータから上記両数値開の関係を調
べた。その結果、両数値の関係は図示するように回帰直
線で近似され、α=0.96なる値が得られた。また、
本発明のバススケジュールでのオーバル−丸圧延の場合
では、α=1であることら同様に確認できた。
In other words, as shown in Figure 3, (2・ld/Q(
, + 280) l ・(F o / F o), and (B, /Bo) are taken on the vertical axis, and the relationship between the above two values is investigated from the data obtained as a result of the diamond oval rolling experiment. Ta. As a result, the relationship between both numerical values was approximated by a regression line as shown in the figure, and a value of α=0.96 was obtained. Also,
In the case of oval-round rolling according to the bus schedule of the present invention, it was similarly confirmed that α=1.

表 なお、表中各記号の意味は以下の通りである。table The meaning of each symbol in the table is as follows.

すなわち、 比ロール径δ= D o / I(。That is, Specific roll diameter δ= D o / I(.

孔型楕円率mに−HK / B K     ・・・(
2)孔型充満率ξ−B、/BK      ・・・(3
)である。
For the hole ellipticity m -HK/BK...(
2) Pore filling rate ξ-B, /BK...(3
).

ただし、第4図に示すように、 Do  孔型3の溝底部分におけるロール直径HK :
孔型3の溝高さ BK:孔型3から外挿した楕円の巾 を表わす。
However, as shown in Fig. 4, the roll diameter HK at the bottom of the groove 3 is:
Groove height BK of hole pattern 3: represents the width of the ellipse extrapolated from hole pattern 3.

次に、上記のようにして求めたrlJ広がり係数αを用
いて、グイヤーオーバルバスのバス設計を、−例として
第1図に示す手順にしたがって行う。
Next, using the rlJ spread coefficient α obtained as described above, the bus design of the Guyer oval bus is carried out according to the procedure shown in FIG. 1 as an example.

本設計における未知数は、オーバル孔型の形状を与える
孔型楕円率mKと、孔型の大きさを与える孔型の巾Bに
であり、オーバル孔型の形状を決めるためには、この二
つあ値を決める必要がある。
The unknowns in this design are the hole ellipticity mK, which gives the oval hole shape, and the hole width B, which gives the hole size.In order to determine the oval hole shape, these two are necessary. I need to decide on the value.

そこで、まず第1ステツプで、予め第(i−1)バス入
側の圧延材の断面寸法(BO,H8,FG)、製造しよ
うとする丸材の断面寸法、すなわち直径d、第(i −
1)バスのロール2のカラー半径nc、ロール隙S、オ
ーバル孔型の許容充満率ξ  、丸孔VAL 型の許容充満率ξROUNDを決めておく。
Therefore, in the first step, the cross-sectional dimensions (BO, H8, FG) of the rolled material on the (i-1)th bus entry side, the cross-sectional dimensions of the round material to be manufactured, that is, the diameter d, and the (i-th
1) Determine the collar radius nc of the roll 2 of the bus, the roll gap S, the allowable filling rate ξ for the oval hole type, and the allowable filling rate ξROUND for the round hole type VAL.

なお、ここでオーバル孔型の許容充満率ξ。VALは、
鋼種特有の巾広がりを考慮して、過充満を防ぐように決
められる経験値で、通常は0.90〜0.94の範囲に
ある。また、ξ、。UNDは真円度をを保証する範囲で
あり、例えばJIS規格に基いて定められる。
In addition, here is the allowable filling rate ξ of the oval hole type. VAL is
It is an empirical value determined to prevent overfilling, taking into consideration the width spread specific to the steel type, and is usually in the range of 0.90 to 0.94. Also, ξ. UND is a range that guarantees roundness, and is defined based on, for example, the JIS standard.

第2ステツプで、未知数であるオーバル孔型の楕円率m
Kの初期値として、0〜Iの範囲で適宜設定する。
In the second step, the ellipticity m of the oval hole shape, which is an unknown quantity, is
The initial value of K is appropriately set in the range of 0 to I.

第3ステツプで、未知数であるオーバル孔型の巾BKの
初期値として、d−d/mx の範囲で適宜設定する。
In the third step, the initial value of the width BK of the oval hole shape, which is an unknown quantity, is appropriately set within the range of dd/mx.

第4ステツプで、上記(1)式(課金の式)により第(
i−1)バス出側の圧延材lの断面の巾B1を求め、さ
らに(3)式より第(i−1)バスすなわちパルバスで
孔型充満率ξ。、を計算する。
In the fourth step, the above equation (1) (charging equation) is used to calculate the
i-1) Find the width B1 of the cross section of the rolled material l on the exit side of the bus, and further calculate the hole filling rate ξ at the (i-1)th bus, that is, the pulse bus, from equation (3). , calculate.

第5ステツプで、許容充満率ξ。VALと孔型充満率ξ
。7との差が許容値内にあるか否かを判断する。
In the fifth step, allowable filling rate ξ. VAL and pore filling rate ξ
. It is determined whether the difference from 7 is within an allowable value.

この差が許容値を超え、かっξ。、〈ξ。VALの場合
には適宜BKの値を小さくした後、第4ステツプに戻る
一方、許容値を超え、かっ〜〉ξ0VALの場合には適
宜Bにの値を大きくした後、第4ステツプに戻り、上記
同様のステップを繰返す。
This difference exceeds the allowable value, ξ. ,〈ξ. In the case of VAL, the value of BK is appropriately decreased and then the process returns to the fourth step, while in the case of exceeding the allowable value and ξ0VAL, the value of B is appropriately increased and the process returns to the fourth step. Repeat the same steps as above.

そして、差が許容値以下の場合には、次のステップに進
む。
If the difference is less than or equal to the allowable value, proceed to the next step.

第6ステツプで、上記(1)式により第iバス出側の圧
延材lの断面の巾B、を求め、さらに(3)式より第i
バスすなわち丸バスでの孔型充満率ξroを計算する。
In the sixth step, the width B of the cross section of the rolled material l on the exit side of the i-th bus is determined using the above equation (1), and then the width B of the cross-section of the rolled material l on the exit side of the
Calculate the hole filling rate ξro in a bus, that is, a round bus.

第7ステツプで、許容充満率ξ   と孔型充0tlN
D 満車ξrOとの差が許容値内にあるか否かを判断する。
In the seventh step, allowable filling rate ξ and hole type filling 0tlN
D Determine whether the difference from the full vehicle ξrO is within the allowable value.

この差が許容値を超え、かっξro>ξROUNDの場
合には、適宜111にの値を小さくした後、第3ステツ
プに戻る一方、許容値を超え、かつξro<ξROUN
Dの場合には、適宜mKの値を大きくした後、第3ステ
ツプに□戻り、上記同様のステップを繰返す。
If this difference exceeds the allowable value and ξro>ξROUND, the value of 111 is appropriately decreased, and then the process returns to the third step.
In the case of D, after increasing the value of mK as appropriate, return to the third step □ and repeat the same steps as above.

そして、差が許容値以下の場合には、次のステップに進
む。
If the difference is less than or equal to the allowable value, proceed to the next step.

第8ステツプで、上記ステップで求めた孔型楕円率mK
、孔型の巾I3にの値を採用して、第(i −1)バス
のオーバル孔型の形状を決め、ダイヤ−オーバルバスの
バス設計が完了する。
In the eighth step, the hole shape ellipticity mK obtained in the above step is
, the width I3 of the hole shape is adopted, the shape of the oval hole shape of the (i-1)th bus is determined, and the bus design of the diamond-oval bus is completed.

なお、第1図のフローチャートでは、大圧下するような
場合の制約条件である噛込角、圧延荷重については計算
に含んでいないが、通常行われているようなバススケジ
ュールでの減面率(20〜30%)以下では、この両条
件は無視しても問題にならない。
Note that the flowchart in Figure 1 does not include the bite angle and rolling load, which are the constraint conditions for large reductions, in the calculation, but the area reduction rate ( 20-30%), these two conditions can be ignored without any problem.

したがって、上記形状のオーバル孔型を用いることによ
り、圧延材1をノーツイストで第(i−2)バスにつづ
いて第(+−1)バス、第iバスで圧延し、所望の丸断
面形状の棒・線材を製造することができる。
Therefore, by using the oval groove having the above-mentioned shape, the rolled material 1 is rolled without twisting in the (i-2)th bus, followed by the (+-1)th bus, and then the i-th bus to achieve the desired round cross-sectional shape. rods and wires can be manufactured.

以上の方法によるバススケジュールに基いてロール径4
40mmのミルで圧延テストを行ったところ、第5図、
第6図に示すように、断面積1378mm”のダイヤ材
1aから、直径34+n+++の丸材lbを製造するこ
とができた。
Based on the bus schedule according to the above method, roll diameter 4
When a rolling test was conducted with a 40mm mill, the results shown in Figure 5.
As shown in FIG. 6, a round material lb with a diameter of 34+n+++ could be manufactured from a diamond material 1a with a cross-sectional area of 1378 mm.

また、この圧延テストにより、実操業において圧延材を
ガイドする際には、従来のロールガイドで安定な圧延か
行えることが確認できた。
Furthermore, this rolling test confirmed that stable rolling can be performed using conventional roll guides when guiding the rolled material in actual operation.

なお、上記の第iバスは最終バスの場合もあるが、必ず
しもこれに限るものではない。
Note that, although the i-th bus mentioned above may be the final bus, it is not necessarily limited to this.

(発明の効果) 以上の説明より明らかなように、本発明によれば、ダイ
ヤ孔、オーバル孔、丸孔の順序で圧延材を丸断面に圧延
する際のlJ広がりを、巾広がりの予測式を用いて計算
で求め、ダイヤ−オーバルバス間でツイストを考慮する
ことなくオーバル孔型の形状を決めている。
(Effects of the Invention) As is clear from the above explanation, according to the present invention, the width expansion prediction formula The shape of the oval hole is determined without considering the twist between the diamond and the oval bus.

このため、完全ノーツイスト圧延により丸断面の棒・線
材を製造できるようになり、ツイスト工程を省略できる
結果、製品疵の発生を減らすとともに、設備費、メンテ
ナンス費を低減させることができる。
Therefore, it is now possible to manufacture rods and wire rods with a round cross section by completely no-twist rolling, and the twisting process can be omitted, which reduces the occurrence of product defects and reduces equipment costs and maintenance costs.

また、ツイスト工程が不要となることから、スタンド間
距離を短縮でき、この面からも設備費の低減に寄与する
とともに、ブロックミルでも、大火の製品の圧延が可能
となる等の効果を有している。
In addition, since the twisting process is no longer necessary, the distance between stands can be shortened, which also contributes to reducing equipment costs, and has the effect of making it possible to roll products with high heat even in block mills. ing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る方法によりオーバル孔型の形状
を決める手順を示すフローチャート、第2図は記号説明
用の断面図、第3図は角−オーバル圧延の実験データに
基いてB +/ B oと2・!d・F H/ (F 
o ’ (Ho+ 2 Bo))の関係を表わしたグラ
フ、第4図は記号説明用の断面図、第5図。 第6図は本発明に係る方法を用いて圧延した結果を示す
説明用断面図、第7図、第8図は丸棒を連続ミルで製造
する、従来の代表的なバススケジュールを示す説明図で
ある。 1、Ia、lb・・・圧延材、2・・・ロール、3・・
・孔型、H,、H,・・・圧延前後の圧延材断面の高さ
、Bo。 B、・・・圧延前後の圧延材断面の巾、FH・・・圧延
材が孔型によって排除される面積、Fo・・圧延前の圧
延材の断面積、13yo・・圧延前の圧延材断面の輪郭
と孔型との交点間の中方向の距離、Rc・・・ロールの
カラー半径、S・・・ロール隙、mK・・・孔型楕円率
、ξ・・・孔型充満率、Do・・・孔型の溝底部分にお
けろロール直径、HK・・孔型の溝高さ、BK・・・孔
型から外挿した楕円の巾。 特 許 出 願 人  株式会社神戸製鋼所代 理 人
 弁理士  前出 葆 ほか2名第1図 第51!I          第6図第7図    
  第8図
Fig. 1 is a flowchart showing the procedure for determining the shape of an oval hole type by the method according to the present invention, Fig. 2 is a cross-sectional view for explaining symbols, and Fig. 3 is a B + based on experimental data of square-oval rolling. / B o and 2・! d・F H/ (F
o' (Ho+2Bo)), FIG. 4 is a cross-sectional view for symbol explanation, and FIG. 5. FIG. 6 is an explanatory sectional view showing the results of rolling using the method according to the present invention, and FIGS. 7 and 8 are explanatory views showing a typical conventional bus schedule for producing round bars in a continuous mill. It is. 1, Ia, lb...rolled material, 2...roll, 3...
- Hole shape, H,, H,...height of the cross section of the rolled material before and after rolling, Bo. B,...width of the cross section of the rolled material before and after rolling, FH...area where the rolled material is removed by the groove, Fo...cross-sectional area of the rolled material before rolling, 13yo...cross section of the rolled material before rolling Distance in the middle direction between the intersection of the contour and the hole shape, Rc...roll collar radius, S...roll gap, mK...hole shape ellipticity, ξ...hole shape filling rate, Do ...Roll diameter at the bottom of the groove, HK...groove height of the hole, BK...width of the ellipse extrapolated from the hole. Patent Applicant Kobe Steel Co., Ltd. Agent Patent Attorney Mr. Uegi and 2 others Figure 1 Figure 51! I Figure 6 Figure 7
Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)第(i−2)バスのスタンドにダイヤの孔型、第
(i−1)バスのスタンドにオーバルの孔型、第iバス
のスタンドに丸の孔型を用いて、丸断面の棒・線材を製
造するタンデム圧延方法において、孔型を用いた圧延に
よる圧延材の巾広がりを求める巾広がりの予測式中の巾
広がり係数を実験により予め求めておき、この値の他に
初期条件として第(i−1)バス入側の圧延材の断面寸
法、上記丸断面の断面寸法、オーバル孔型の許容充満率
および丸孔型の許容充満率を予め決めておくとともに、
未知数であるオーバル孔型の楕円率およびオーバル孔型
の巾を変数とし、上記巾広がりの予測式を使って、オー
バル孔型の充満率を求め、この値と上記オーバル孔型の
許容充満率との差が許容値以下になるように未知数であ
るオーバル孔型の巾を決める一方、この値およびこの値
と上記オーバル孔型の楕円率とで表わしたオーバル孔型
の高さに基いて、上記巾広がりの予測式を使って丸孔型
の充満率を求め、この値と上記丸孔型の許容充満率との
差が許容値以下になるように未知数であるオーバル孔型
の楕円率を決め、この値と上記オーバル孔型の巾とから
オーバル孔型の形状を決めて、圧延材をノーツイストで
、ダイヤ孔型のロールからオーバル孔型のロールに挿入
して圧延するようにしたことを特徴とする丸断面の棒・
線材を製造するタンデム圧延方法。
(1) A diamond hole type is used for the stand of the (i-2) bus, an oval hole type is used for the stand of the (i-1) bus, and a round hole type is used for the i-th bus stand. In the tandem rolling method for manufacturing rods and wire rods, the width spread coefficient in the width spread prediction formula for determining the width spread of rolled material by rolling using a groove is determined in advance by experiments, and in addition to this value, the initial conditions are As such, the cross-sectional dimensions of the rolled material on the entrance side of the (i-1) bus, the cross-sectional dimensions of the round cross section, the allowable filling rate of the oval hole type, and the allowable filling rate of the round hole type are determined in advance, and
Using the unknown ellipticity of the oval hole shape and the width of the oval hole shape as variables, use the above width spread prediction formula to find the filling rate of the oval hole shape, and calculate this value and the allowable filling rate of the oval hole shape above. While determining the width of the oval hole shape, which is an unknown quantity, so that the difference in Find the filling rate of the round hole type using the width spread prediction formula, and determine the ellipticity of the oval hole type, which is an unknown, so that the difference between this value and the allowable filling rate of the round hole type above is less than the allowable value. The shape of the oval groove was determined from this value and the width of the oval groove described above, and the rolled material was inserted from the diamond groove roll into the oval groove roll and rolled without twisting. Characteristic round cross-section rod・
A tandem rolling method for producing wire rods.
JP3371085A 1985-02-21 1985-02-21 Tandem rolling method for producing bar and wire having round section Pending JPS61193702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3371085A JPS61193702A (en) 1985-02-21 1985-02-21 Tandem rolling method for producing bar and wire having round section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3371085A JPS61193702A (en) 1985-02-21 1985-02-21 Tandem rolling method for producing bar and wire having round section

Publications (1)

Publication Number Publication Date
JPS61193702A true JPS61193702A (en) 1986-08-28

Family

ID=12393963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3371085A Pending JPS61193702A (en) 1985-02-21 1985-02-21 Tandem rolling method for producing bar and wire having round section

Country Status (1)

Country Link
JP (1) JPS61193702A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053809A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Rod rolling apparatus for improving the roundness of tirecord
JP2009012065A (en) * 2007-07-09 2009-01-22 Kobe Steel Ltd Method of hot-rolling wire rod and steel bar
RU170655U1 (en) * 2016-03-04 2017-05-03 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" BILL FOR ROLLING A ROUND VARIETY PROFILE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053809A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Rod rolling apparatus for improving the roundness of tirecord
JP2009012065A (en) * 2007-07-09 2009-01-22 Kobe Steel Ltd Method of hot-rolling wire rod and steel bar
RU170655U1 (en) * 2016-03-04 2017-05-03 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" BILL FOR ROLLING A ROUND VARIETY PROFILE

Similar Documents

Publication Publication Date Title
US9381554B2 (en) Method for producing seamless hot-rolled pipes in continuous pipe rolling mills
JPS61193702A (en) Tandem rolling method for producing bar and wire having round section
JP4103082B2 (en) Manufacturing method for seamless pipes using a three-roll mandrel mill
JP3364814B2 (en) Method for producing martensitic stainless steel wire rod
JP3290933B2 (en) Rolling method for deformed steel bars
JPH071009A (en) Method for cold rolling tube
JPH10137804A (en) Rolling equipment for round bar and wire rod and its rolling method
JPH09174118A (en) Tube rolling mill and method for setting roll position
RU2346762C1 (en) Method for rolling of sectional bars
JP6741192B1 (en) Method for manufacturing seamless rectangular steel pipe
JP2861831B2 (en) Rolling method of constant parallel flange channel steel with external method
Sheu et al. High-Order Groove-Shape Curve Roll Design for Aluminum Alloy 7075 Wire Rolling. Metals 2022, 12, 1071
SU1438868A1 (en) Method of producing cold-drawn tubes
JP2000158005A (en) Manufacture of deformed wire and bar
RU2247611C2 (en) Process for continuous rolling of metallic blank
JP2007229787A (en) Sizing and rolling method of bar steel
JP2897653B2 (en) Tube rolling method
JP4284918B2 (en) Method of manufacturing base material for drawing
SU908434A1 (en) Blooming mill technological tool
JPH012708A (en) Continuous elongation rolling method of pipe and its rolling machine
JP2007061908A (en) Method for hot-rolling bar material
JPS63238901A (en) Kaliber rolling method for wire rod
SU900883A1 (en) Method of manufacturing wire rod and merchant mill products
RU2015770C1 (en) Profile-bending mill
JP3673434B2 (en) Hot finish rolling method for wire and bar