JP4284918B2 - Method of manufacturing base material for drawing - Google Patents

Method of manufacturing base material for drawing Download PDF

Info

Publication number
JP4284918B2
JP4284918B2 JP2002091931A JP2002091931A JP4284918B2 JP 4284918 B2 JP4284918 B2 JP 4284918B2 JP 2002091931 A JP2002091931 A JP 2002091931A JP 2002091931 A JP2002091931 A JP 2002091931A JP 4284918 B2 JP4284918 B2 JP 4284918B2
Authority
JP
Japan
Prior art keywords
base material
dimension
steel
manufacturing
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002091931A
Other languages
Japanese (ja)
Other versions
JP2003290803A (en
Inventor
萩原  浩
啓造 田岡
貴司 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002091931A priority Critical patent/JP4284918B2/en
Publication of JP2003290803A publication Critical patent/JP2003290803A/en
Application granted granted Critical
Publication of JP4284918B2 publication Critical patent/JP4284918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、異形断面の線材・棒鋼を製造する際の母材の製造方法に関する。
【0002】
【発明が解決しようとする課題】
一般に複雑な断面形状の鋼材を引き抜き加工により製造することが行われている。この引き抜き加工では、丸断面または正方形断面の母材を異形断面鋼材へ引き抜くことが行われるが、母材の断面形状と引き抜き加工後の断面形状とに大きな差がある場合には、2〜4回程度の引き抜き加工が行われ、かつ、引き抜き加工のパス間で鋼の軟化のための熱処理が行われている。
【0003】
一方、引き抜き加工用の母材となる線材・棒鋼の製造には、2ロール圧延機による圧延方法が多く使用さている。この2ロ一ル圧延機による圧延方法では、ロールで拘束されていない面の寸法及び形状を精度良くコントロールできないので、圧延材の寸法精度に限界がある。
また、2ロール圧延機を用いて圧延するにあたり、ロールの円周方向に所定の寸法・形状の孔型の加工を施して、引き抜き加工後の形状に近い孔型を有するロ一ルにて圧延を行って前記母材を製造し、引き抜き加工時の加工率を小さくすることで引き抜き加工回数の削減、熱処理の省略を行うことが可能である。しかしながら、小ロット生産を行う際、母材毎に専用の孔型を有するロールを準備する必要があり、ロール費用が大幅に増大する。逆に、大ロット生産を行う場合であっても、ロール摩耗が早期に発生して孔型の形状が変化しやすいので、ロール替えを頻繁に行う必要があり、製造コストが増大しやすい。
【0004】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたものであり、異形断面(複雑な断面形状)へと引き抜き加工する場合であっても、製造コスト及び設備費を抑えることができる引き抜き加工用母材およびその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、4ロール圧延機による圧延では、母材断面の周方向において90°毎に寸法制御が可能であり、2ロール圧延機による圧延方法と比較して、4ロール圧延機による圧延方法のほうが母材の全周の断面寸法をきめ細かく制御できることに着目した。
【0006】
【課題を解決するための手段】
本発明は、以上の知見に基づいて完成されたものであり、本発明の請求項1記載の引き抜き加工用母材の製造方法は、1回の引き抜き加工により異形断面の鋼材を製造する際の母材の製造方法であって、前記鋼材の縦寸法に対する前記母材の縦寸法の比率、および、前記鋼材の横寸法に対する前記母材の横寸法の比率の両者が、それぞれ102%〜120%とするとともに、前記母材に対する前記鋼材の縦寸法の寸法減少率と、前記母材に対する前記鋼材の横寸法の寸法減少率との差6%以内として、前記母材を圧延により製造することを特徴とする。
【0007】
また、本発明の請求項2記載の引き抜き加工用母材の製造方法は、1回の引き抜き加工により異形断面の鋼材を製造する際の母材の製造方法であって、前記鋼材の縦寸法に対する前記母材の縦寸法の比率、および、前記鋼材の横寸法に対する前記母材の横寸法の比率の両者を、それぞれ102%〜120%とするとともに、前記母材に対する前記鋼材の縦寸法の寸法減少率と、前記母材に対する前記鋼材の横寸法の寸法減少率との差を6%以内として、前記母材を4ロール圧延機により圧延して製造することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明に係る引き抜き加工用母材およびその製造方法について、図面を参照して説明する。
図1は、本発明に係る引き抜き加工用母材を製造するのに好適な4ロール圧延機2を示すものであり、この4ロール圧延機2は、一対の水平ロール4,6及び一対の垂直ロール8,10を備えている。水平ロール4,6と垂直ロ一ル8,10とはその圧下方向が90°異なっている。
【0009】
そして、本実施形態では、図2に示すように、4ロール圧延機2に向けて進行してきた被圧延材12を、4ロール圧延機2による圧延工程で、鋼棒等の断面四角形状に圧延しており、この圧延により引き抜き加工用の母材が製造される。
ここで、引き抜き加工後の異形断面鋼材の縦寸法目標値A1、横寸法目標値B1に対して、前記母材、すなわち、4ロール圧延機による圧延後の縦寸法A0および横寸法B0がそれぞれ下記(1)式、(2)式を満たすように設定される。
【0010】
1.02×A1≦A0≦1.20×A1 ………(1)
1.02×B1≦B0≦1.20×B1 ………(2)
さらに、下記(3)式で定義される前記母材に対する前記異形断面鋼材の縦寸法の寸法減少率と前記母材に対する前記異形断面鋼材の横寸法の寸法減少率との差Sが6%以下となるように縦寸法A0および横寸法B0が設定される。
【0011】
S=|[(A0−A1)/A0−(B0−B1)/B0]×100| ……(3)
4ロール圧延機では、圧延時に被圧延材の断面の縦方向と横方向とを同時に拘束して圧延が行われるため、上記(1)式と上記(2)式との両方を満たす圧延が精度良く実施できる。
ここで、母材の縦寸法A0および横寸法B0の下限値を、それぞれ異形断面鋼材の縦寸法目標値A1、横寸法目標値B1の1.02倍としたのは、1.02倍未満であると、引き抜き加工による加工が不十分となって、加工後の鋼材の上下面あるいは左右面の表面肌が滑らかにならないだけでなく、引き抜き加工後の鋼材のコーナー部に十分にメタルフロ一が起こらず、断面四角形状を呈しない。
【0012】
また、母材の縦寸法A0および横寸法B0の上限値を、それぞれ異形断面鋼材の縦寸法目標値A1、横寸法目標値B1の1.20倍としたのは、1.20倍を超えると1回の引き抜き加工で引き抜き加工鋼材の製造を行うことが困難となり、引き抜き加工回数が多くなるとともに、引き抜き加工パス間において熱処理を行う必要も生じてくる。
【0013】
さらに、上記(3)式で定義される縦寸法の寸法減少率と横寸法の寸法減少率との差Sが6%を超えると、寸法減少率の少ない方(縦あるいは横)の面が十分に充満せず、形状不良や表面肌荒れの問題が生じてしまう。
具体的な数値を示して母材12及び引き抜き加工後の鋼材14の形状および寸法の例について説明すると、図3に示す母材12は、縦寸法が33.0mm、横寸法が37.5mmの矩形断面を有している。また、図4は引き抜き加工後の鋼材14の形状と寸法を示すものであり、断面四角形状を呈し、縦の目標寸法最大値が30.0mm、縦の目標寸法最小値が28.2mm、縦寸法の平均値が29.1mm、横の目標寸法が34.5mmであり、さらに上面が曲率半径83mmの曲面形状となっている。
【0014】
したがって、母材12の縦寸法(33.0mm)は、引き抜き加工後の鋼材14(以下、引き抜き加工製品14と称する)の縦寸法平均値の1.134倍、縦寸法最大値(30.0mm)の1.087倍、引き抜き加工製品14の縦寸法最小値の1.173倍となっており、また、母材12の横寸法(37.5mm)は引き抜き加工製品14の横寸法(34.5mm)の1.100倍となっている。さらに、母材12に対する引き抜き加工製品14の縦寸法の寸法減少率は最小で8.0%であり、最大で14.6%である。また、母材12に対する引き抜き加工製品14の横寸法の寸法減少率は9.1%である。よって、縦寸法の寸法減少率と横寸法の寸法減少率との差は最小で1.1%、最大で5.5%である。以上説明した、母材12の断面形状および寸法と引き抜き加工製品14の断面形状および寸法では、上記(1)式および(2)式を満たしているとともに、前記母材に対する前記異形断面鋼材の縦寸法の寸法減少率と前記母材に対する前記異形断面鋼材の横寸法の寸法減少率との差Sが6%以下となっているので、引き抜き加工製品14は、上下表面および左右表面ともに滑らかな表面肌となり、さらに、コーナー部にも十分にメタルフローが起こり目標形状に対して高精度なものとなる。
【0015】
なお、本実施形態では、引き抜き加工製品14の形状が上面を曲面とした略矩形断面を有しているが、本発明の要旨がこれに限定されるものではなく、例えば、断面が台形状等の多角形状の引き抜き加工鋼材や、溝付きの多角形状の引き抜き加工鋼材であっても、同様の効果を奏することができる。
【0016】
【実施例】
図4に示す断面形状および断面寸法を有する引き抜き加工材を製造するにあたり、その母材を4ロール圧延機を用いて、表1に示す縦寸法および横寸法に圧延することにより製造した。表1には、母材寸法の引き抜き加工後の寸法(製品寸法)に対する百分率:母材寸法/製品寸法×100の値、および、引き抜き加工による寸法減少率:(母材寸法−製品寸法)/母材寸法×100の値を、それぞれ縦横寸法について併せて示す。
【0017】
また、縦横寸法減少率差についても併せて示す。なお、縦寸法については、引き抜き加工後の縦寸法の最大値が30mmであり、最小値が28.2mmであるため、母材寸法/製品寸法xl00の値および寸法減少率については、最大値と最小値を示した。
【0018】
【表1】

Figure 0004284918
【0019】
No.1〜4の発明例では、製品(引き抜き加工製品14)の上下表面、左右表面ともに滑らかな表面肌をしており、更に、図4に示した目標寸法に対して寸法精度の良い製品が得られた。また、4ロール圧延機により母材を製造するにあたっても1回の圧延により製造が可能であった。
これに対して、No.5の比較例では、母材の縦寸法が製品の縦寸法に対して大き過ぎるため、1回の引き抜き加工では目標の製品形状に仕上げられなかった。
【0020】
また、No.6の比較例では、縦横寸法減少率差が大きすぎる、すなわち、横寸法の寸法減少率が、縦寸法の寸法減少率に対して小さすぎるため、製品の左右表面に表面荒れが認められた。
さらに、No.7の比較例では、母材の縦寸法が製品の縦寸法に対して小さ過ぎるため、製品の寸法精度が著しく劣っていた。また、上下表面に表面荒れが認められた。
【0021】
また、No.8の比較例では、母材の横寸法が製品の横寸法に対して大き過ぎるため、1回の引き抜き加工では目標の製品形状に仕上げられなかった。
【0022】
【発明の効果】
以上説明したように、本発明の請求項1記載の引き抜き加工用母材の製造方法によると、1回の引き抜き加工により異形断面の鋼材を製造する際の母材の製造方法であって、前記鋼材の縦寸法に対する前記母材の縦寸法の比率、および、前記鋼材の横寸法に対する前記母材の横寸法の比率の両者が、それぞれ102%〜120%とするとともに、前記母材に対する前記鋼材の縦寸法の寸法減少率と、前記母材に対する前記鋼材の横寸法の寸法減少率との差6%以内であるため、引き抜き加工を複数回行ったり、引き抜き加工パス間で熱処理を行ったりすることがないので、引き抜き加工を高能率、且つ低コストで実施できる。また、高い寸法精度、高品質での引き抜き加工鋼材を製造できる。
【0023】
さらに、本発明の請求項2記載の引き抜き加工用母材の製造方法によると、4ロール圧延機を用いて母材の圧延を行うため、縦横寸法を同時に高精度に調整した母村の製造が可能となり、引き抜き加工鋼材の縦寸法に対する母材の縦寸法の比率、および、引き抜き加工鋼材の横寸法に対する母材の横寸法の比率の両者を102%〜120%にすることが可能となり、高能率、高い寸法精度、高品質の引き抜き加工が低コストで行える母材の製造が可能となる。
【図面の簡単な説明】
【図1】本発明に係る引き抜き加工用母材の圧延方法を示す図である。
【図2】引き抜き加工用母材を4ロール圧延機により製造する方法を概略的に示した図である。
【図3】引き抜き加工用母材の断面形状及び寸法を示す図である。
【図4】引き抜き加工後の鋼材の断面形状及び寸法を示す図である。
【符号の説明】
2 4ロール圧延機
4,6 水平ロール
8,10 垂直ロール
12 被圧延材(母材)
14 引き抜き加工鋼材(引き抜き加工製品)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a base material when manufacturing a wire / bar with a deformed cross section.
[0002]
[Problems to be solved by the invention]
In general, a steel material having a complicated cross-sectional shape is manufactured by drawing. In this drawing process, a base material having a round or square cross section is drawn into a deformed cross-section steel material. If there is a large difference between the cross-sectional shape of the base material and the cross-sectional shape after the drawing process, 2-4. A number of times of drawing is performed, and heat treatment for softening the steel is performed between passes of the drawing.
[0003]
On the other hand, many rolling methods using a two-roll rolling mill are used for the production of wire rods and steel bars used as a base material for drawing. In the rolling method using this two-roll mill, the size and shape of the surface that is not constrained by the roll cannot be controlled with high accuracy, and there is a limit to the dimensional accuracy of the rolled material.
In addition, when rolling using a two-roll rolling mill, a hole having a predetermined size and shape is processed in the circumferential direction of the roll, and rolled with a roll having a hole shape close to the shape after drawing. It is possible to reduce the number of drawing processes and omit the heat treatment by manufacturing the base material by reducing the processing rate during the drawing process. However, when carrying out small lot production, it is necessary to prepare a roll having a dedicated hole shape for each base material, and the roll cost is greatly increased. On the contrary, even when large-lot production is performed, roll wear occurs early and the shape of the hole shape is likely to change. Therefore, it is necessary to frequently change rolls, which tends to increase manufacturing costs.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and even when a drawing process into a deformed cross section (complex cross-sectional shape) is performed, a drawing base material capable of suppressing manufacturing costs and equipment costs, and It aims at providing the manufacturing method.
[0005]
[Means for Solving the Problems]
The present inventors can control the size every 90 ° in the circumferential direction of the cross section of the base material in rolling by a 4-roll rolling mill, and rolling by a 4-roll rolling mill as compared with a rolling method by a 2-roll rolling mill. It was noted that the method can control the cross-sectional dimensions of the entire circumference of the base material more finely.
[0006]
[Means for Solving the Problems]
The present invention has been completed on the basis of the above knowledge, and the method for producing a base material for drawing according to claim 1 of the present invention is a method for producing a steel material having an irregular cross-section by a single drawing process. It is a manufacturing method of a base material, Comprising: Both the ratio of the vertical dimension of the said base material with respect to the vertical dimension of the said steel material, and the ratio of the horizontal dimension of the said base material with respect to the horizontal dimension of the said steel material are 102%-120%, respectively. to together, the size reduction rate of the vertical dimension of the steel relative to the base material, as within 6% of the difference between the size reduction rate of the lateral dimension of the steel relative to the base material, be produced by rolling the base material and It is characterized by.
[0007]
Moreover, the manufacturing method of the base material for drawing of Claim 2 of this invention is a manufacturing method of the base material at the time of manufacturing the steel material of an irregular cross section by one drawing, Comprising: With respect to the vertical dimension of the said steel material Both the ratio of the vertical dimension of the base material and the ratio of the horizontal dimension of the base material to the horizontal dimension of the steel material are 102% to 120%, respectively, and the dimension of the vertical dimension of the steel material to the base material The difference between the reduction rate and the dimensional reduction rate of the transverse dimension of the steel material relative to the base material is within 6%, and the base material is rolled and manufactured by a four-roll rolling mill.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a drawing base material and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
FIG. 1 shows a four-roll rolling mill 2 suitable for manufacturing a base material for drawing according to the present invention. The four-roll rolling mill 2 includes a pair of horizontal rolls 4 and 6 and a pair of vertical rolls. Rolls 8 and 10 are provided. The horizontal rolls 4 and 6 and the vertical rolls 8 and 10 are 90 ° different from each other in the rolling direction.
[0009]
And in this embodiment, as shown in FIG. 2, the to-be-rolled material 12 which has progressed toward the 4-roll rolling mill 2 is rolled into a quadrangular cross section such as a steel bar in the rolling process by the 4-roll rolling mill 2. The base material for drawing is manufactured by this rolling.
Here, with respect to the longitudinal dimension target value A1 and the lateral dimension target value B1 of the deformed cross-section steel material after the drawing, the base material, that is, the longitudinal dimension A0 and the lateral dimension B0 after rolling by a four-roll rolling mill are as follows. It is set so as to satisfy the expressions (1) and (2).
[0010]
1.02 × A1 ≦ A0 ≦ 1.20 × A1 (1)
1.02 × B1 ≦ B0 ≦ 1.20 × B1 (2)
Furthermore, the difference S between the dimension reduction rate of the vertical dimension of the modified cross-section steel material relative to the base material defined by the following formula (3) and the dimension reduction rate of the horizontal dimension of the irregular cross-section steel material relative to the base material is 6% or less. The vertical dimension A0 and the horizontal dimension B0 are set so that
[0011]
S = | [(A0−A1) / A0− (B0−B1) / B0] × 100 | (3)
In a 4-roll rolling mill, rolling is performed while simultaneously restraining the longitudinal direction and the transverse direction of the cross section of the material to be rolled during rolling, so that rolling that satisfies both the above formulas (1) and (2) is accurate. Can be implemented well.
Here, the lower limit values of the vertical dimension A0 and the horizontal dimension B0 of the base material are set to 1.02 times the vertical dimension target value A1 and the horizontal dimension target value B1 of the modified cross-section steel material, respectively. In such a case, not only the processing by the drawing process becomes insufficient, the surface surface of the steel material after processing does not become smooth, but also the metal flow sufficiently occurs at the corner of the steel material after the drawing process. In addition, it does not exhibit a square cross section.
[0012]
In addition, the upper limit values of the vertical dimension A0 and the horizontal dimension B0 of the base material are 1.20 times the vertical dimension target value A1 and the horizontal dimension target value B1 of the modified cross-section steel material, respectively. It becomes difficult to produce a drawn steel material by a single drawing process, the number of drawing processes increases, and a heat treatment needs to be performed between the drawing passes.
[0013]
Further, if the difference S between the vertical dimension reduction ratio and the horizontal dimension reduction ratio defined by the above equation (3) exceeds 6%, the surface with the smaller dimension reduction ratio (vertical or horizontal) is sufficient. The problem of shape defect and rough surface occurs.
An example of the shape and dimensions of the base material 12 and the steel material 14 after drawing will be described with specific numerical values. The base material 12 shown in FIG. 3 has a longitudinal dimension of 33.0 mm and a lateral dimension of 37.5 mm. It has a rectangular cross section. FIG. 4 shows the shape and dimensions of the steel material 14 after the drawing process. The steel material 14 has a quadrangular cross section, the vertical target dimension maximum value is 30.0 mm, the vertical target dimension minimum value is 28.2 mm, The average value of the dimensions is 29.1 mm, the horizontal target dimension is 34.5 mm, and the upper surface has a curved surface shape with a curvature radius of 83 mm.
[0014]
Therefore, the vertical dimension (33.0 mm) of the base material 12 is 1.134 times the average vertical dimension value of the steel material 14 after the drawing process (hereinafter referred to as the drawn product 14), and the maximum vertical dimension value (30.0 mm). ) And 1.173 times the minimum vertical dimension of the drawn product 14, and the lateral dimension (37.5 mm) of the base material 12 is the lateral dimension (34. It is 1.100 times that of 5 mm). Further, the vertical dimension reduction rate of the drawn product 14 relative to the base material 12 is a minimum of 8.0% and a maximum of 14.6%. Further, the dimensional reduction rate of the lateral dimension of the drawn product 14 with respect to the base material 12 is 9.1%. Therefore, the difference between the vertical dimension reduction ratio and the horizontal dimension reduction ratio is 1.1% at the minimum and 5.5% at the maximum. In the cross-sectional shape and size of the base material 12 and the cross-sectional shape and size of the drawn product 14 described above, the above formulas (1) and (2) are satisfied, and the length of the deformed cross-section steel material relative to the base material is vertical. Since the difference S between the dimension reduction rate of the dimension and the dimension reduction rate of the transverse dimension of the deformed cross-section steel with respect to the base material is 6% or less, the drawn product 14 has a smooth surface on both the upper and lower surfaces and the left and right surfaces. In addition, the metal flow sufficiently occurs in the corner portion and becomes highly accurate with respect to the target shape.
[0015]
In the present embodiment, the shape of the drawn product 14 has a substantially rectangular cross section with the curved upper surface. However, the gist of the present invention is not limited to this, and the cross section has a trapezoidal shape, for example. The same effect can be achieved even with a polygonal drawn steel material or a polygonal drawn steel material with grooves.
[0016]
【Example】
In producing the drawn material having the cross-sectional shape and cross-sectional dimensions shown in FIG. 4, the base material was produced by rolling to a vertical dimension and a horizontal dimension shown in Table 1 using a 4-roll rolling mill. Table 1 shows the percentage of the base material dimension after drawing (product dimension): the value of base material dimension / product dimension × 100, and the dimension reduction rate due to drawing: (base material dimension−product dimension) / The value of base material size × 100 is also shown for each of the vertical and horizontal dimensions.
[0017]
In addition, the vertical / horizontal dimension reduction rate difference is also shown. Regarding the vertical dimension, the maximum value of the vertical dimension after drawing is 30 mm, and the minimum value is 28.2 mm. Therefore, the value of the base material dimension / product dimension xl00 and the dimension reduction rate are the maximum value. The minimum value was shown.
[0018]
[Table 1]
Figure 0004284918
[0019]
No. In the invention examples 1 to 4, the upper and lower surfaces and the left and right surfaces of the product (drawn product 14) have smooth surface skins, and a product with good dimensional accuracy with respect to the target dimension shown in FIG. 4 is obtained. It was. Further, when the base material was manufactured with a four-roll rolling mill, it could be manufactured by one rolling.
In contrast, no. In Comparative Example 5, the vertical dimension of the base material was too large with respect to the vertical dimension of the product, so that the target product shape could not be finished by one drawing process.
[0020]
No. In Comparative Example 6, the vertical and horizontal dimension reduction rate difference was too large, that is, the horizontal dimension reduction rate was too small with respect to the vertical dimension reduction rate, and surface roughness was observed on the left and right surfaces of the product.
Furthermore, no. In Comparative Example 7, the dimensional accuracy of the product was extremely inferior because the vertical dimension of the base material was too small relative to the vertical dimension of the product. Moreover, surface roughness was recognized on the upper and lower surfaces.
[0021]
No. In Comparative Example 8, the horizontal dimension of the base material was too large with respect to the horizontal dimension of the product, so that the target product shape could not be finished by one drawing process.
[0022]
【The invention's effect】
As described above, according to the manufacturing method of the drawing process for the base material according to the first aspect of the present invention, there is provided a method for producing a base material in the production of steel of modified cross-section by drawing in one, the Both the ratio of the vertical dimension of the base material to the vertical dimension of the steel material and the ratio of the horizontal dimension of the base material to the horizontal dimension of the steel material are 102% to 120%, respectively, and the steel material to the base material a size reduction rate vertical dimension of, for the is within 6% difference between the size reduction rate of the lateral dimension of the steel for the base material, and go and go several times drawing, a heat treatment between drawing path Therefore, the drawing process can be performed with high efficiency and at a low cost. Moreover, it is possible to manufacture a drawn steel material with high dimensional accuracy and high quality.
[0023]
Furthermore, according to the method for manufacturing a base material for drawing according to claim 2 of the present invention, since the base material is rolled using a four-roll rolling mill , the manufacturing of the base village in which the vertical and horizontal dimensions are simultaneously adjusted with high accuracy can be performed. The ratio of the vertical dimension of the base material to the vertical dimension of the drawn steel material and the ratio of the horizontal dimension of the base material to the horizontal dimension of the drawn steel material can both be 102% to 120%. It is possible to manufacture a base material that can perform drawing with high efficiency, high dimensional accuracy, and high quality at low cost.
[Brief description of the drawings]
FIG. 1 is a view showing a rolling method of a base material for drawing according to the present invention.
FIG. 2 is a view schematically showing a method of manufacturing a base material for drawing using a four-roll rolling mill.
FIG. 3 is a diagram showing a cross-sectional shape and dimensions of a drawing base material.
FIG. 4 is a diagram showing a cross-sectional shape and dimensions of a steel material after drawing.
[Explanation of symbols]
2 4 Rolling mills 4, 6 Horizontal rolls 8, 10 Vertical rolls 12 Rolled material (base material)
14 Drawing steel (drawing products)

Claims (2)

1回の引き抜き加工により異形断面の鋼材を製造する際の母材の製造方法であって、
前記鋼材の縦寸法に対する前記母材の縦寸法の比率、および、前記鋼材の横寸法に対する前記母材の横寸法の比率の両者が、それぞれ102%〜120%とするとともに、
前記母材に対する前記鋼材の縦寸法の寸法減少率と、前記母材に対する前記鋼材の横寸法の寸法減少率との差6%以内として、前記母材を圧延により製造することを特徴とする引き抜き加工用母材の製造方法
A manufacturing method of a base material when manufacturing a steel material having an irregular cross-section by a single drawing process,
The ratio of the longitudinal dimension of the base material with respect to the longitudinal dimension of the steel, and, both the ratio of the transverse dimension of the base material with respect to the lateral dimensions of the steel product, as well as 102% to 120%, respectively,
A size reduction ratio of the longitudinal dimension of the steel relative to the base material, as within 6% of the difference between the size reduction rate of the lateral dimension of the steel relative to the base material, characterized in that produced by rolling the base material A method of manufacturing a base material for drawing.
1回の引き抜き加工により異形断面の鋼材を製造する際の母材の製造方法であって、
前記鋼材の縦寸法に対する前記母材の縦寸法の比率、および、前記鋼材の横寸法に対する前記母材の横寸法の比率の両者を、それぞれ102%〜120%とするとともに、
前記母材に対する前記鋼材の縦寸法の寸法減少率と、前記母材に対する前記鋼材の横寸法の寸法減少率との差を6%以内として、前記母材を4ロール圧延機により圧延して製造することを特徴とする引き抜き加工用母材の製造方法。
A manufacturing method of a base material when manufacturing a steel material having an irregular cross-section by a single drawing process,
Both the ratio of the vertical dimension of the base material to the vertical dimension of the steel material, and the ratio of the horizontal dimension of the base material to the horizontal dimension of the steel material are 102% to 120%, respectively.
Manufactured by rolling the base material with a 4-roll rolling mill with a difference between the vertical dimension reduction rate of the steel material relative to the base material and the horizontal dimension reduction rate of the steel material relative to the base material within 6%. A method for producing a base material for drawing, characterized in that:
JP2002091931A 2002-03-28 2002-03-28 Method of manufacturing base material for drawing Expired - Fee Related JP4284918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091931A JP4284918B2 (en) 2002-03-28 2002-03-28 Method of manufacturing base material for drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091931A JP4284918B2 (en) 2002-03-28 2002-03-28 Method of manufacturing base material for drawing

Publications (2)

Publication Number Publication Date
JP2003290803A JP2003290803A (en) 2003-10-14
JP4284918B2 true JP4284918B2 (en) 2009-06-24

Family

ID=29236898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091931A Expired - Fee Related JP4284918B2 (en) 2002-03-28 2002-03-28 Method of manufacturing base material for drawing

Country Status (1)

Country Link
JP (1) JP4284918B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092853A (en) * 2005-09-28 2007-04-12 Nippon Brake Kogyo Kk Method for manufacturing ring-shaped brake shoe

Also Published As

Publication number Publication date
JP2003290803A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP4283856B2 (en) Manufacturing method of flat wire for ring gear
JP3678003B2 (en) Rolling method of rough steel slab
JP4284918B2 (en) Method of manufacturing base material for drawing
JP4130924B2 (en) Hot rolling method for strip
GB2105626A (en) Method for producing beam blank for universal beam
JP6417991B2 (en) Shaped steel edger rolling mill with flange
JP4946557B2 (en) Billet and manufacturing method thereof
JP5614219B2 (en) Cold rolled steel sheet manufacturing method
JP3339466B2 (en) H-section steel and its rolling method
JP4930384B2 (en) H-section steel rolling method and rolling apparatus
JPH10137804A (en) Rolling equipment for round bar and wire rod and its rolling method
JP2007061908A (en) Method for hot-rolling bar material
JP2006289465A (en) Method and apparatus for manufacturing steel plate using universal mill
JP2004322105A (en) Method for manufacturing wide flange shape and grooved roll
JP5155741B2 (en) Manufacturing method of round steel bar
JP3606825B2 (en) Precision rolling method for steel bars and wire rods
JP3716763B2 (en) Mandrel mill rolling method for seamless steel pipe
JP2009262157A (en) Rolling method of shape steel having flange
JP2010005659A (en) Method of manufacturing magnesium sheet
JP2003205302A (en) Method for hot-rolling bar steel and wire rod
JP4556744B2 (en) Manufacturing method of unequal side unequal thickness angle steel
JPH11104711A (en) Production method for seamless square shaped steel pipe
JP5929542B2 (en) Rolling method and rolling equipment for channel steel
JP3473558B2 (en) Rolling method for H-section steel
JP3606249B2 (en) Rolling method of shape steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees