JP5775378B2 - Strip rolling method - Google Patents

Strip rolling method Download PDF

Info

Publication number
JP5775378B2
JP5775378B2 JP2011139650A JP2011139650A JP5775378B2 JP 5775378 B2 JP5775378 B2 JP 5775378B2 JP 2011139650 A JP2011139650 A JP 2011139650A JP 2011139650 A JP2011139650 A JP 2011139650A JP 5775378 B2 JP5775378 B2 JP 5775378B2
Authority
JP
Japan
Prior art keywords
rolled
rolling
mill
moving speed
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011139650A
Other languages
Japanese (ja)
Other versions
JP2013006190A (en
Inventor
串田 仁
仁 串田
吉彦 久保田
吉彦 久保田
清良 土居
清良 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011139650A priority Critical patent/JP5775378B2/en
Publication of JP2013006190A publication Critical patent/JP2013006190A/en
Application granted granted Critical
Publication of JP5775378B2 publication Critical patent/JP5775378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、条鋼の連続圧延におけるフリーサイズ圧延に関するものであって、ロール孔型替えを行うことなく広い範囲の製品寸法の条鋼を成形するための圧延技術に関する発明である。   The present invention relates to free size rolling in continuous rolling of strips, and is an invention related to rolling technology for forming strips having a wide range of product dimensions without changing the roll hole shape.

従来、条鋼すなわち線材、棒鋼の熱間圧延では、加熱炉で所定の長さを有する素材(ビレット)を目標温度まで加熱した後、順次抽出し、1本毎に圧延されていた。このような従来の圧延では、以下のような問題点がある。
(1)線材の圧延では、最終仕上げ圧延速度は100m/s以上に達しており、圧延材の先端部が、圧延機入側のガイド等に突っかけることによるミスロールが発生する場合がある。この突っかけによるミスロールは、圧延材の先端がある限り発生する可能性があり、また圧延速度が大きくなるほど発生し易くなるため、生産性の向上にも限界がある。
(2)表面スケールや材質を制御するために、圧延材は仕上げ圧延後に水冷されるが、特に圧延材の先端部では、冷却水の抵抗により発生するミスロールを防止する観点から非水冷部が設定されている。このため、圧延材先端の非水冷部は切り捨てられており、圧延歩留まりの向上に限界がある。
(3)一般に最終仕上げ圧延機にはブロックミルが用いられており、このブロックミルのロールスタンド間で圧延材に張力を付加した圧延が行なわれている。この張力圧延では、圧延材の先端部と後端部には、圧延機(ロールスタンド)間で張力がかからない状態にあるため、製品寸法が変動する。このため、上記(2)とあわせて、製品寸法の観点からも先端部と後端部は切り捨てられている。
Conventionally, in hot rolling of steel bars, that is, wire rods and bar steels, a raw material (billet) having a predetermined length is heated to a target temperature in a heating furnace and then sequentially extracted and rolled one by one. Such conventional rolling has the following problems.
(1) In the rolling of a wire rod, the final finish rolling speed reaches 100 m / s or more, and a misroll may occur due to the tip of the rolled material striking a guide or the like on the entrance side of the rolling mill. The misroll due to this stagnation may occur as long as there is a tip of the rolled material, and is more likely to occur as the rolling speed increases, and thus there is a limit to improving the productivity.
(2) In order to control the surface scale and material, the rolled material is water-cooled after finish rolling, but a non-water-cooled part is set from the viewpoint of preventing misrolling caused by the resistance of the cooling water, particularly at the tip of the rolled material. Has been. For this reason, the non-water-cooled portion at the tip of the rolled material is discarded, and there is a limit to improving the rolling yield.
(3) Generally, a block mill is used in the final finish rolling mill, and rolling is performed by applying tension to the rolled material between roll stands of the block mill. In this tension rolling, since the tension is not applied between the rolling mills (roll stands) at the leading end and the trailing end of the rolled material, the product dimensions vary. For this reason, together with the above (2), the front end portion and the rear end portion are cut off from the viewpoint of product dimensions.

近年、これらの問題点を解決する手段として、例えば特許文献1に記載されているように、条鋼の圧延においても、圧延を開始した先行圧延材の後端と、加熱炉から抽出した後行圧延材の先端を順次接合し、エンドレスで圧延を実施する連続圧延法が開発されてきている。この連続圧延方法を採用することで、先端の通材回数が低下し、またミスロールの発生率も低下し、圧延材先端部および後端部の切捨て量も減少し、生産性や歩留まりが向上する。   In recent years, as a means for solving these problems, for example, as described in Patent Document 1, also in the rolling of strip steel, the trailing end of the preceding rolled material that has started rolling, and the subsequent rolling extracted from the heating furnace A continuous rolling method has been developed in which the tips of the materials are sequentially joined and rolled endlessly. By adopting this continuous rolling method, the number of passes through the tip is reduced, the rate of misrolling is reduced, the amount of cut off at the tip and rear ends of the rolled material is reduced, and productivity and yield are improved. .

特開2000-5802号公報JP 2000-5802 A

しかし、孔型ロールによって線材や棒鋼に成形する条鋼圧延では、目標製品寸法毎に異なる形状の孔型ロールが必要となり、また1製品寸法毎の圧延量が比較的少量である場合が多いため、連続圧延を実施したとしても製品寸法毎にロール替えが必要となる。このロール替え時間による生産損失は、連続圧延を実施しても避けることができず、連続圧延による生産性向上の効果を十分にあげることができないという問題があった。また、ロール隙の変更のみで目標板厚を制御することが可能である板圧延の場合と異なり、条鋼の圧延では、ロール隙の変化のみで目標寸法の製品に成形するには、従来のサイジング圧延によるフリーサイズ圧延技術を用いても限界があった。   However, in the strip rolling that is formed into a wire rod or steel bar with a hole roll, a hole roll having a different shape is required for each target product dimension, and the rolling amount for each product dimension is often relatively small. Even if continuous rolling is performed, it is necessary to change rolls for each product dimension. This production loss due to the roll change time cannot be avoided even if continuous rolling is performed, and there is a problem that the effect of improving the productivity by continuous rolling cannot be sufficiently achieved. Also, unlike the case of plate rolling, where the target plate thickness can be controlled only by changing the roll gap, in the case of strip rolling, the conventional sizing can be used to form a product with the target dimensions only by changing the roll gap. There was a limit even if the free size rolling technology by rolling was used.

そこで、この発明の課題は、連続圧延の利点である圧延材先後端部の歩留まり向上、およびミスロールの減少を実現した上で、製品直径変更に伴うロール替えによる生産損失を軽減する技術を確立することである。 Therefore, the object of the present invention is to establish a technique for reducing the production loss due to roll change accompanying the product diameter change after realizing the yield improvement at the leading and trailing ends of the rolled material and the reduction of misroll, which are the advantages of continuous rolling. That is.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

請求項1に係る条鋼の圧延方法は、加熱炉から抽出されたビレットの先行材と後行材を接合して被圧延材とし、圧延を止めることなく連続して圧延する条鋼の圧延方法において、圧延を止めずに目標製品直径を変更して、最終仕上げ圧延機とその上流側圧延機間の圧延材に100MPa未満の所定の張力を付加するとともに、最終仕上げ圧延機のロール隙を基準隙から所定量だけ低下させ、前記目標製品直径に応じて圧延中に製品直径を変化させることを特徴とする。 The rolling method of the bar steel according to claim 1 is a rolling method of the bar steel which continuously rolls without stopping rolling by joining the preceding material and the succeeding material of the billet extracted from the heating furnace as the material to be rolled. The target product diameter is changed without stopping the rolling, and a predetermined tension of less than 100 MPa is applied to the rolled material between the final finish rolling mill and its upstream rolling mill, and the roll clearance of the final finish rolling mill is changed from the reference gap. The product diameter is lowered by a predetermined amount, and the product diameter is changed during rolling in accordance with the target product diameter .

近年の線材工場のレイアウトでは、図1にその一例を示すように、仕上げ圧延機として設置されるブロックミル5の後段側に、最終圧延機として、数台程度の圧延機からなり、主に寸法精度の向上を目的とした低減面率の圧延機であるサイジングミル6が設置されている。   In recent layouts of wire rod factories, as shown in FIG. 1, for example, there are several rolling mills as final rolling mills on the rear stage side of a block mill 5 installed as a finishing rolling mill. A sizing mill 6, which is a rolling mill with a reduced surface area for the purpose of improving accuracy, is installed.

一般に、ブロックミル内では、圧延機(ロール)間隔が短いためループを形成して無張力状態にできないため、主に、圧延材のたくれ等によるミスロールを防止する観点から、圧延材にはスタンド(ロール)間張力が付与されている。圧延機の入側、出側に張力が付加されると、圧延後の幅広がり(圧延後の幅寸法−圧延前幅寸法)は減少する。2つの圧延機において圧延機間に張力が付加されている場合、尾端が1つ目の圧延機を抜けると圧延機間張力が0となるため、幅寸法は増大する。従って、線材棒鋼の圧延では製品の寸法変動を防止するために、圧延機間の張力を極力無張力に近いように調整する。一方、ブロックミル−サイジングミル間では、圧延材に張力が作用していると、圧延材の尾端がブロックミルを抜けた瞬間に、圧延材の幅寸法が大きくなり、目標とする製品寸法精度を実現することができなくなる。このため、ブロックミル−サイジングミル間では、圧延材に極力張力が作用しないように、ミルモータの回転数を調整している。   In general, in a block mill, since the rolling mill (roll) interval is short, loops cannot be formed and no tension can be obtained. (Roll) tension is applied. When tension is applied to the entry side and the exit side of the rolling mill, the breadth after rolling (width dimension after rolling-width dimension before rolling) decreases. When tension is added between the rolling mills in the two rolling mills, the width dimension increases because the tension between the rolling mills becomes zero when the tail end passes through the first rolling mill. Therefore, in rolling wire rods, the tension between rolling mills is adjusted as close to no tension as possible in order to prevent dimensional fluctuations of the product. On the other hand, between the block mill and the sizing mill, if tension is applied to the rolled material, the width of the rolled material increases as soon as the tail end of the rolled material passes through the block mill, and the target product dimensional accuracy Cannot be realized. For this reason, the rotation speed of the mill motor is adjusted between the block mill and the sizing mill so that tension does not act on the rolled material as much as possible.

前記サイジングミルでは、通常、最後の2スタンドでは、いずれも軽減面率の「丸」ロール孔型が用いられ、同じロール孔型で、ロール隙の変更のみで比較的広い範囲の製品寸法が圧延できる(フリーサイズ圧延)利点がある。標準孔型寸法よりも小さい直径の製品を成形するには、4スタンド(あるいは最終2スタンド)のロール隙を小さくすることで対応できるが、ロール隙を小さくするほど、すなわち減面率を大きくするほど幅広がりは増大するため、圧延材は孔型からはみ出すことになり、圧延可能な製品寸法範囲にも限界が生じる。   In the sizing mill, the last two stands usually use a “round” roll hole type with a reduced surface ratio, and the same roll hole type can be rolled over a relatively wide range of product dimensions only by changing the roll gap. There is an advantage that can be done (free size rolling). Molding a product with a diameter smaller than the standard hole mold size can be achieved by reducing the roll gap of the 4 stands (or the final 2 stands), but the smaller the roll gap, that is, the larger the area reduction ratio. As the width increases, the rolled material protrudes from the hole mold, and there is a limit to the product size range that can be rolled.

上記のように、加熱炉から抽出されたビレットの先行材と後行材を接合して圧延する連続圧延では、連続圧延が終了するまで圧延材の尾端はないため、最終製品寸法さえ保証できれば、上記ブロックミル−サイジングミル間で圧延材に張力が付加されていても、個々のビレット尾端で幅寸法が大きくなるという問題はなくなる。また、サイジングミル入側の張力が変化すると、この張力はサイジングミル内の各スタンド間張力に伝搬し、サイジングミルの各スタンドでの幅広がり率が低下することから(非特許文献1参照)、最終仕上げ圧延機のロール隙を圧下して小さくしても、圧延材の孔型からの噛みだしなく目標形状に成形でき、圧延可能な製品寸法範囲、すなわちフリーサイズ圧延範囲を広げることができる。   As described above, in continuous rolling in which the preceding and succeeding materials of the billet extracted from the heating furnace are joined and rolled, there is no tail end of the rolled material until the end of continuous rolling. Even if tension is applied to the rolled material between the block mill and the sizing mill, the problem that the width dimension increases at the tail end of each billet is eliminated. In addition, when the tension on the entry side of the sizing mill changes, this tension propagates to the tension between the stands in the sizing mill, and the width spread rate at each stand of the sizing mill decreases (see Non-Patent Document 1). Even if the roll gap of the final finish rolling mill is reduced and reduced, it can be formed into a target shape without biting the rolled material from the hole mold, and the product size range that can be rolled, that is, the free size rolling range can be expanded.

串田ほか:R&D 神戸製鋼技報/Vol.56,No.3(Dec.2006),P.16Kushida et al .: R & D Kobe Steel Engineering Reports / Vol.56, No.3 (Dec.2006), P.16

請求項2に係る条鋼の圧延方法は、前記最終仕上げ圧延機と上流側圧延機の間に、被圧延材の移動速度を計測するための移動速度計測装置を設けて、前記被圧延材の先端部が前記上流側圧延機を出て、前記最終仕上げ圧延機に噛み込むまでの被圧延材の先端部の移動速度をV0、および前記被圧延材の先端部が前記最終仕上げ圧延機に噛み込んだ後、この被圧延材の後端部が前記上流側圧延機を抜けるまでの被圧延材の中間部の移動速度をV1としたとき、前記最終仕上げ圧延機を出た後の被圧延材の全長にわたって、その寸法が均一となる移動速度比R=(V1−V0)/V0×100を予め求めておき、実操業において前記移動速度計測装置で計測した移動速度V0mと前記移動速度比Rを用いて、式(1)により、
V1a=V0m+V0m×R/100 ---------(1)
前記被圧延材の先端部が前記最終仕上げ圧延機に噛み込んだ後、この被圧延材の後端部が前記上流側圧延機を抜けるまでの被圧延材の中間部の目標移動速度V1aを求め、前記被圧延材の移動速度V1が目標移動速度V1aとなるように、前記最終仕上げ圧延機の駆動モータの回転数を制御することによって、前記最終仕上げ圧延機と上流側圧延機間の被圧延材に所定の張力を付加することを特徴とする。
The rolling method of the strip according to claim 2 is provided with a moving speed measuring device for measuring the moving speed of the material to be rolled between the final finish rolling mill and the upstream rolling mill, and the tip of the material to be rolled V0 is the moving speed of the tip of the material to be rolled until it exits the upstream rolling mill and bites into the final finish rolling mill, and the tip of the rolled material bites into the final finishing mill. After that, when the moving speed of the intermediate portion of the material to be rolled until the rear end portion of the material to be rolled passes through the upstream rolling mill is V1, the material to be rolled after leaving the final finish rolling mill A movement speed ratio R = (V1−V0) / V0 × 100 is obtained in advance over the entire length, and the movement speed ratio V0m and the movement speed ratio R measured by the movement speed measuring device in actual operation are obtained. Using the equation (1)
V1a = V0m + V0m × R / 100 --------- (1)
After the front end of the material to be rolled is caught in the final finish rolling mill, the target moving speed V1a of the intermediate portion of the material to be rolled until the rear end of the material to be rolled passes through the upstream rolling mill is obtained. The rolling between the final finishing mill and the upstream rolling mill is controlled by controlling the rotational speed of the drive motor of the final finishing mill so that the moving speed V1 of the material to be rolled becomes the target moving speed V1a. A predetermined tension is applied to the material.

本願発明者らが特許文献2で開示したように、最終仕上げ圧延機を出た後の圧延材の全長にわたって、その寸法が均一となる移動速度比Rを予め実験などにより求めておき、計測した圧延材先端部の移動速度V0mと前記移動速度比Rを用いて、前記目標移動速度V1aを求めることにより、簡単な演算処理により、圧延材先端が最終仕上げ圧延機に咬み込まれた瞬間か端部にら、最終仕上げ圧延機の駆動モータ制御が可能となるので、従来技術に比べて先未制御部分が生じず、製品全長にわたって、寸法変動が無く、また、高精度の寸法制御が可能となる。   As disclosed in Patent Document 2 by the inventors of the present application, the moving speed ratio R at which the dimensions are uniform over the entire length of the rolled material after leaving the final finish rolling mill is obtained in advance by experiments and measured. By calculating the target moving speed V1a using the moving speed V0m of the rolling material tip and the moving speed ratio R, the end of the rolling material is bitten into the final finish rolling mill by a simple calculation process. As a result, it is possible to control the drive motor of the final finish rolling mill, so there is no uncontrolled part compared to the conventional technology, there is no dimensional variation over the entire length of the product, and high-precision dimensional control is possible. Become.

特開2004−66263号公報JP 2004-66263 A

請求項3に係る条鋼の圧延方法は、前記移動速度計測装置がドップラー速度計であることを特徴とする。   The strip rolling method according to claim 3 is characterized in that the moving speed measuring device is a Doppler speedometer.

この発明では、条鋼の連続圧延において、最終仕上げ圧延機であるサイジングミルとその上流側圧延機であるブロックミル間の圧延材に張力を付加するとともに、最終仕上げ圧延機のロール隙を圧下するようにしたので、最終仕上げ圧延機のロール隙を圧下して小さくしても、圧延材の孔型からの噛みだしなく目標形状に成形でき、フリーサイズ圧延範囲を広げることができる。   In this invention, in continuous rolling of the bar steel, tension is applied to the rolled material between the sizing mill as the final finish rolling mill and the block mill as the upstream rolling mill, and the roll gap of the final finish rolling mill is reduced. Therefore, even if the roll gap of the final finish rolling mill is reduced and reduced, the rolled material can be formed into a target shape without biting from the hole mold, and the free size rolling range can be expanded.

また、最終仕上げ圧延機を出た後の圧延材の全長にわたって、その寸法が均一となる移動速度比Rを予め実験などにより求めておき、計測した圧延材先端部の移動速度V0mと前記移動速度比Rを用いて、前記目標移動速度V1aを求めることにより、簡単な演算処理によって圧延材先端が最終仕上げ圧延機に咬み込まれた瞬間から、最終仕上げ圧延機の駆動モータ制御が可能となるので、従来技術に比べて先端部に未制御部分が生じず、製品全長にわたって寸法変動が無く、かつ高精度の寸法制御が可能となる。   Further, a moving speed ratio R at which the dimension becomes uniform over the entire length of the rolled material after leaving the final finish rolling mill is obtained in advance by experiments or the like, and the measured moving speed V0m of the rolled material tip and the moving speed are obtained. By determining the target moving speed V1a using the ratio R, the drive motor control of the final finishing mill can be performed from the moment when the end of the rolled material is bitten into the final finishing mill by a simple calculation process. Compared with the prior art, an uncontrolled portion does not occur at the tip, and there is no dimensional variation over the entire length of the product, and highly accurate dimensional control is possible.

線材工場のレイアウトの一例を示す説明図である。It is explanatory drawing which shows an example of a layout of a wire rod factory. (a)サイジングミル各スタンド出側の圧延材の断面形状を示す説明図である(基準条件)。(b)同上(本発明例)(c)同上(本発明例)(d)同上(比較例)(A) It is explanatory drawing which shows the cross-sectional shape of the rolling material of each sizing mill stand exit side (reference conditions). (B) Same as above (Example of the present invention) (c) Same as above (Example of the present invention) (d) Same as above (Comparative example)

以下に、この発明の実施形態を添付の図1および図2に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1に線材工場のレイアウトの一例を示したように、被圧延素材であるビレットは、加熱炉1で所要の熱間圧延温度にまで加熱された後抽出され、粗圧延機列2および中間圧延機列3、4で順次圧延され、水冷帯8での水冷により仕上げ圧延開始温度が調節され、ブロックミル5で仕上げ圧延される。そして、仕上げ圧延により温度上昇した被圧延材11は、水冷帯9で水冷されて圧延開始温度が調節され、寸法精度の向上等を目的としてサイジングミル6で最終圧延された後、水冷帯10での調整冷却により巻取り温度が調節されて巻取り機7で巻取られ、所要の調整冷却が施された後コイル状に集束されて製品となる。   As shown in FIG. 1 as an example of the layout of the wire factory, the billet as the material to be rolled is extracted after being heated to the required hot rolling temperature in the heating furnace 1, and the rough rolling mill row 2 and intermediate rolling are extracted. The rolling is sequentially performed in the machine trains 3 and 4, the finish rolling start temperature is adjusted by water cooling in the water cooling zone 8, and finish rolling is performed in the block mill 5. And the to-be-rolled material 11 which raised the temperature by finish rolling is water-cooled by the water-cooling zone 9, the rolling start temperature is adjusted, and after final rolling by the sizing mill 6 for the purpose of improving dimensional accuracy, etc., The winding temperature is adjusted by the adjustment cooling, and the winding is taken up by the winder 7, and after necessary adjustment cooling is performed, the coil is converged into a coil shape to obtain a product.

前記圧延素材のビレットは、加熱炉1の出側で、接合装置(図示省略)により溶接され、ビレットは、1つの製品寸法D0に対応する基準孔型により、例えば、鋼種や受注量毎などロット単位で連続圧延される。次に、受注量により、製品寸法をD0からD1に変更するときには、ブロックミル5−サイジングミル6間で、被圧延材11に作用する張力が予め設定した値となるように、ブロックミル5およびその上流側の圧延機のロール回転数を一律に低下させる。このロール回転数調整と同時に、サイジングミル6のロール隙を予め設定した値に変更することにより、孔型替えをしなくても、製品寸法D0に対応する基準孔型を用いて、寸法D1の製品を、鋼種や受注量毎などロット単位で連続圧延することができる。前記製品寸法D0からD1への目標製品寸法の移行は圧延を止めずに進行するため、移行する製品寸法D1として、基準孔型を用いる製品寸法D0に近い寸法を選択すれば、寸法移行に伴うブロックミル5−サイジングミル6間の張力設定の変更時、およびサイジングミル6におけるロール隙変更時の製品の寸法変動を、寸法公差内に吸収することができる。   The billet of the rolled material is welded by a joining device (not shown) on the exit side of the heating furnace 1, and the billet is a lot such as a steel type or an order quantity, for example, by a reference hole mold corresponding to one product dimension D0. Rolled continuously in units. Next, when the product dimension is changed from D0 to D1 depending on the order quantity, the block mill 5 and the block mill 5 and the sizing mill 6 are set so that the tension acting on the material to be rolled 11 becomes a preset value. The roll rotation speed of the upstream rolling mill is uniformly reduced. Simultaneously with the adjustment of the roll rotational speed, the roll gap of the sizing mill 6 is changed to a preset value, so that the reference hole mold corresponding to the product dimension D0 can be used without changing the hole mold. Products can be rolled continuously in lot units such as steel grades and orders. Since the transition of the target product dimension from the product dimension D0 to D1 proceeds without stopping rolling, if a dimension close to the product dimension D0 using the reference hole mold is selected as the transitioned product dimension D1, it is accompanied by the dimension transition. The dimensional variation of the product when the tension setting between the block mill 5 and the sizing mill 6 is changed and when the roll gap is changed in the sizing mill 6 can be absorbed within the dimensional tolerance.

前記張力およびロール隙変更時の寸法変動距離、すなわち寸法変動が生じる圧延材の長さをできるだけ短くするために、寸法移行時に全圧延機の回転数を一律に調整して、最終圧延速度を遅くしてもよい。この回転数の一律調整は、となり合う圧延機でロール径×ロール回転数の比が一定になるように、圧延機のモータ回転数を変更することにより、行なうことができる。また、前記製品寸法移行時は、サイジングミル6の出側に設置したオンライン寸法測定器(図示省略)で計測した製品の実績幅寸法と、目標幅寸法の差に基づいて、ブロックミル5−サイジングミル6間の回転数比、すなわちこの間の圧延材に作用する張力をフィードバック制御してもよい。この回転数比の制御は、サイジングミル6の方のモータ回転数を調節することにより、行なうことが望ましい。   In order to shorten the length of the rolled material in which the dimensional variation occurs when the tension and the roll gap are changed, that is, to reduce the length of the rolled material as much as possible, the final rolling speed is decreased by uniformly adjusting the number of rotations of all rolling mills during the dimensional transition. May be. This uniform adjustment of the rotation speed can be performed by changing the motor rotation speed of the rolling mill so that the ratio of roll diameter × roll rotation speed is constant in the adjacent rolling mills. At the time of the product dimension transition, the block mill 5-sizing is performed based on the difference between the actual width dimension of the product measured by an online dimension measuring device (not shown) installed on the exit side of the sizing mill 6 and the target width dimension. You may feedback-control the rotation speed ratio between the mills 6, ie, the tension | tensile_strength which acts on the rolling material in the meantime. It is desirable to control the rotation speed ratio by adjusting the motor rotation speed of the sizing mill 6.

前記ブロックミル5−サイジングミル6間の張力については、特許文献2に記載したように、被圧延材の先端がサイジングミル(最終仕上げ圧延機)6に噛み込むまでの、この被圧延材の先端部の移動速度(V0)と、圧延材の先端がサイジングミル6に噛み込んだ後、この被圧延材の後端部がブロックミル(上流側圧延機)を抜けるまでの被圧延材の中間部の移動速度(V1)を、ブロックミル−サイジングミル間に設置した、例えば、ドップラー速度計などの移動速度計測装置(図示省略)で計測し、移動速度比R=(V1-V0)/V0を用いて制御することもできる。すなわち、サイジングミル(最終仕上げ圧延機)6を出た後の圧延材の全長にわたって、その寸法が均一となる移動速度比R=(V1−V0)/V0×100を予め求めておき、実操業において前記移動速度計測装置で計測した被圧延材トップ部の移動速度V0mと前記移動速度比Rを用いて、式(1)により、
V1a=V0m+V0m×R/100 ---------(1)
圧延材の先端部がサイジングミル(最終仕上げ圧延機)に噛み込んだ後の被圧延材の目標移動速度V1aを求め、前記被圧延材の移動速度V1が目標移動速度V1aとなるように、サイジングミル(最終仕上げ圧延機)の駆動モータの回転数を制御することによって、サイジングミル(最終仕上げ圧延機)とブロックミル(上流側圧延機)5間の被圧延材に作用する張力を制御することができる。なお、本発明者らが実施した数値解析および実機実験の結果から、ブロックミルーサイジングミル間の圧延機間張力が120MPaを超えると、圧延材が断線する場合があった。この断線は、張力のほかに圧延材の鋼種や温度にも依存するが、前記解析および実験結果から、ブロックミル5−サイジングミル6間の張力は100MPa未満とすることが好ましい。
As to the tension between the block mill 5 and the sizing mill 6, as described in Patent Document 2, the tip of the material to be rolled until the tip of the material to be rolled bites into the sizing mill (final finishing rolling mill) 6. Part moving speed (V0) and the intermediate part of the material to be rolled until the trailing edge of the material to be rolled passes through the block mill (upstream rolling mill) after the tip of the material has been caught in the sizing mill 6 The moving speed (V1) is measured with a moving speed measuring device (not shown) such as a Doppler speedometer installed between the block mill and the sizing mill, and the moving speed ratio R = (V1-V0) / V0 is calculated. Can also be used to control. That is, a moving speed ratio R = (V1−V0) / V0 × 100 at which the dimension becomes uniform over the entire length of the rolled material after leaving the sizing mill (final finish rolling mill) 6 is obtained in advance. Using the moving speed V0m of the material to be rolled measured by the moving speed measuring device and the moving speed ratio R, according to the equation (1),
V1a = V0m + V0m × R / 100 --------- (1)
The target moving speed V1a of the material to be rolled after the leading end of the rolled material is caught in a sizing mill (final finishing rolling mill) is obtained, and sizing is performed so that the moving speed V1 of the material to be rolled becomes the target moving speed V1a Controlling the tension acting on the material to be rolled between the sizing mill (final finishing rolling mill) and the block mill (upstream rolling mill) 5 by controlling the rotational speed of the drive motor of the mill (final finishing rolling mill). Can do. From the results of numerical analysis and actual machine experiments conducted by the present inventors, when the tension between rolling mills between the block mill and the sizing mill exceeded 120 MPa, the rolled material was sometimes disconnected. Although this disconnection depends on the steel type and temperature of the rolled material in addition to the tension, the tension between the block mill 5 and the sizing mill 6 is preferably less than 100 MPa from the above analysis and experimental results.

製品寸法Φ11.5mmを基準製品寸法とし、サイジングミルでの圧延条件を表1としたときの、数値解析によるサイジングミル各スタンド(#1(No.1std)〜#4(No.4std))出側の圧延材の断面形状を図2(a)〜(d)に、製品寸法およびサイジングミルにおけるスタンド間張力の解析結果を表2に示す。   Each sizing mill stand (# 1 (No.1std) to # 4 (No.4std)) by numerical analysis when the product dimension Φ11.5mm is the standard product dimension and the rolling conditions in the sizing mill are as shown in Table 1. 2A to 2D show the cross-sectional shape of the rolled material on the side, and Table 2 shows the analysis results of the product dimensions and the tension between stands in the sizing mill.

Figure 0005775378
Figure 0005775378

Figure 0005775378
Figure 0005775378

表1(No.1)に示したように、製品直径が11.5mmの場合の圧延条件、すなわちブロックミル−サイジングミル間張力(=0)、サイジングミル各スタンドのロール隙を基準圧延条件とした。この基準圧延条件では、図2(a)に示すように、被圧延材11は各スタンド(#1〜#4)の孔型12a〜12dに適正充満している(被圧延材11a〜11d)。この基準圧延条件の孔型12a〜12dを用いて製品寸法を変化させる場合、例えば、No.4(比較例)のように製品直径を11.0mmに変化させる場合には、各スタンド(#1〜#4)のロール隙を基準ロール隙(基準隙)から0.5mm低下させている。この条件で圧延した場合、製品寸法は寸法公差、偏径差ともに良好となるが(表2、No.4)、図2(d)に示すように、#1で、孔型12aからの噛みだしが生じる(矢印指示部位)。この被圧延材11aの噛み出しが生じた場合、次のスタンド(#2)の孔型12bでこの噛み出し部分が押さえ込まれて、被圧延材11bに折れ込み疵が発生することになる。また、サイジングミル#1(1std)〜#2(2std)間で負のスタンド間張力すなわち圧縮力が作用し、ミスロールやスタンド間の振動の発生が懸念される。当然、これよりも小さい寸法を目標製品直径とした場合、上記の現象がさらに顕著となる。   As shown in Table 1 (No. 1), the rolling conditions when the product diameter is 11.5 mm, that is, the tension between the block mill and the sizing mill (= 0), and the roll gap of each sizing mill stand were used as the standard rolling conditions. . In this reference rolling condition, as shown in FIG. 2A, the material to be rolled 11 is properly filled in the hole molds 12a to 12d of the respective stands (# 1 to # 4) (the materials to be rolled 11a to 11d). . When changing the product dimensions using the cavities 12a to 12d under the standard rolling conditions, for example, when changing the product diameter to 11.0 mm as in No. 4 (comparative example), each stand (# 1 to # 1) is used. The roll gap of # 4) is lowered by 0.5 mm from the reference roll gap (reference gap). When rolled under these conditions, the product dimensions are good in both dimensional tolerance and deviation (Table 2, No. 4), but as shown in FIG. 2 (d), the bite from the hole mold 12a is # 1. Dashi occurs (arrow pointing part). When biting of the material to be rolled 11a occurs, the biting portion is pressed by the hole mold 12b of the next stand (# 2), and folding flaws are generated in the material to be rolled 11b. In addition, a negative inter-stand tension, that is, a compressive force acts between the sizing mills # 1 (1std) to # 2 (2std), and there is a concern about occurrence of misroll or vibration between the stands. Naturally, when the target product diameter is a smaller dimension, the above phenomenon becomes more remarkable.

一方、No.2の本発明例では、製品直径を11.0mmに変化させるために、No.4の比較例の場合と同様に、各スタンド(#1(No.1std)〜#4(No.4std))のロール隙を0.5mm低下させている。しかし、本発明例の場合には、表1(No,2)に示したように、最終仕上げ圧延機と上流側圧延機間、すなわちブロックミル−サイジングミル間(=サイジングミルNo.1std入側)に、前述の100MPa以下の適正な張力を作用させているため、図2(b)に示すように、#1の孔型12aで噛み出しを生じることなく、被圧延材は各スタンド(#1〜#4)に適正に充満し(被圧延材11a〜11d)、また#1〜#4の各スタンド間には、いずれも張力が作用し、圧縮力は作用していない。このように、圧延中に製品寸法を変化させても、折れ込み疵やミスロールの発生などの問題もなく、サイジングミルによる高寸法精度の圧延を実現することができる。   On the other hand, in the inventive example No. 2, in order to change the product diameter to 11.0 mm, each stand (# 1 (No. 1std) to # 4 (No. 1) is used as in the comparative example No. 4. 4std)) is reduced by 0.5mm. However, in the case of the present invention example, as shown in Table 1 (No, 2), between the final finish rolling mill and the upstream rolling mill, that is, between the block mill and the sizing mill (= the sizing mill No. 1std inlet side) ), The above-mentioned appropriate tension of 100 MPa or less is applied. Therefore, as shown in FIG. 2 (b), the material to be rolled is placed on each stand (# 1 to # 4) are properly filled (rolled materials 11a to 11d), and tension is applied between the stands of # 1 to # 4, and no compression force is applied. Thus, even if the product dimensions are changed during rolling, there is no problem such as the occurrence of folding wrinkles or misrolls, and it is possible to realize rolling with high dimensional accuracy using a sizing mill.

また、No.3の本発明例では、目標製品直径を10.5mmとするために、各スタンド(#1(No.1std)〜#4(No.4std))のロール隙を、基準ロール隙(基準隙)から0.7〜1.0mm低下させている。このように、目標製品直径をさらに小さくしても、サイジングミル#1入側に100MPa以下の適正な張力が作用しているため、図2(c)に示すように、#1の孔型12aで噛み出しや断線を生じることなく、被圧延材は各スタンド(#1〜#4)の孔型12a〜12dに適正に充満し(被圧延材11a〜11d)、また#1〜#4の各スタンド間には、いずれも張力が作用し、圧縮力は作用していなく、No.2の本発明例の場合と同様に、サイジングミルによる高寸法精度の圧延を実現することができる。なお、上記実施例は、最終仕上げ圧延機がサイジングミルの場合の解析結果であるが、最終仕上げ圧延機がブロックミルの場合でも、本発明を適用し、同様の効果が得られる。   Further, in the present invention No. 3, in order to set the target product diameter to 10.5 mm, the roll gap of each stand (# 1 (No.1std) to # 4 (No.4std)) is changed to the reference roll gap ( It is reduced by 0.7 to 1.0 mm from the reference gap). Thus, even if the target product diameter is further reduced, an appropriate tension of 100 MPa or less is applied to the entry side of the sizing mill # 1, so as shown in FIG. The material to be rolled properly fills the hole molds 12a to 12d of the stands (# 1 to # 4) (rolled materials 11a to 11d) without causing biting or disconnection in the process. No tension is applied between the stands and no compressive force is applied, and high-dimensional precision rolling by a sizing mill can be realized as in the case of the No. 2 invention example. In addition, although the said Example is an analysis result in case a final finish rolling mill is a sizing mill, even if a final finish rolling mill is a block mill, the present invention is applied and the same effect is acquired.

1:加熱炉 2:粗圧延機列 3、4:中間圧延機列
5:ブロックミル 6:サイジングミル 7:巻取り機
8、9.10:水冷帯 11、11a〜11d:被圧延材
12a〜12d:孔型















1: Heating furnace 2: Rough rolling mill row 3, 4: Intermediate rolling mill row 5: Block mill 6: Sizing mill 7: Winding machine 8, 9.10: Water cooling zone 11, 11a to 11d: Rolled material 12a to 12d: Hole type















Claims (3)

加熱炉から抽出されたビレットの先行材と後行材を接合して被圧延材とし、圧延を止めることなく連続して圧延する条鋼の圧延方法において、
圧延を止めずに目標製品直径を変更して、最終仕上げ圧延機とその上流側圧延機間の圧延材に100MPa未満の所定の張力を付加するとともに、
最終仕上げ圧延機のロール隙を基準隙から所定量だけ低下させ、前記目標製品直径に応じて圧延中に製品直径を変化させることを特徴とする条鋼の圧延方法。
In the rolling method of the bar steel which joins the preceding material and the subsequent material of the billet extracted from the heating furnace to be a material to be rolled, and continuously rolls without stopping rolling,
The target product diameter is changed without stopping rolling, and a predetermined tension of less than 100 MPa is applied to the rolled material between the final finish rolling mill and its upstream rolling mill,
A rolling method for steel bars, wherein a roll gap of a final finish rolling mill is lowered from a reference gap by a predetermined amount, and a product diameter is changed during rolling in accordance with the target product diameter .
前記最終仕上げ圧延機と上流側圧延機の間に、被圧延材の移動速度を計測するための移動速度計測装置を設けて、前記被圧延材の先端部が前記上流側圧延機を出て、前記最終仕上げ圧延機に噛み込むまでの被圧延材の先端部の移動速度をV0、および前記被圧延材の先端部が前記最終仕上げ圧延機に噛み込んだ後、この被圧延材の後端部が前記上流側圧延機を抜けるまでの被圧延材の中間部の移動速度をV1としたとき、前記最終仕上げ圧延機を出た後の被圧延材の全長にわたって、その寸法が均一となる移動速度比R=(V1−V0)/V0×100を予め求めておき、前記移動速度計測装置で計測した移動速度V0mと前記移動速度比Rを用いて、式(1)により、
V1a=V0m+V0m×R/100 ---------(1)
前記被圧延材の先端部が前記最終仕上げ圧延機に噛み込んだ後、この被圧延材の後端部が前記上流側圧延機を抜けるまでの被圧延材の中間部の目標移動速度V1aを求め、前記被圧延材の移動速度V1が目標移動速度V1aとなるように、前記最終仕上げ圧延機の駆動モータの回転数を制御することによって、前記最終仕上げ圧延機と上流側圧延機間の被圧延材に所定の張力を付加することを特徴とする請求項1に記載の条鋼の圧延方法。
Between the final finish rolling mill and the upstream rolling mill, a moving speed measuring device for measuring the moving speed of the material to be rolled is provided, and the tip of the material to be rolled leaves the upstream rolling mill, The moving speed of the leading end of the material to be rolled until it is caught in the final finish rolling mill is V0, and the trailing end of the rolled material after the leading end of the rolled material is bitten in the final finishing rolling mill. Is the moving speed at which the dimension is uniform over the entire length of the material to be rolled after leaving the final finishing mill, where V1 is the moving speed of the intermediate portion of the material to be rolled until it exits the upstream rolling mill. A ratio R = (V1−V0) / V0 × 100 is obtained in advance, and using the moving speed V0m measured by the moving speed measuring device and the moving speed ratio R, the equation (1)
V1a = V0m + V0m × R / 100 --------- (1)
After the front end of the material to be rolled is caught in the final finish rolling mill, the target moving speed V1a of the intermediate portion of the material to be rolled until the rear end of the material to be rolled passes through the upstream rolling mill is obtained. The rolling between the final finishing mill and the upstream rolling mill is controlled by controlling the rotational speed of the drive motor of the final finishing mill so that the moving speed V1 of the material to be rolled becomes the target moving speed V1a. 2. A method for rolling steel bars according to claim 1, wherein a predetermined tension is applied to the material.
前記移動速度計測装置がドップラー速度計であることを特徴とする請求項2に記載の条鋼の圧延方法。   The strip rolling method according to claim 2, wherein the moving speed measuring device is a Doppler speedometer.
JP2011139650A 2011-06-23 2011-06-23 Strip rolling method Active JP5775378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139650A JP5775378B2 (en) 2011-06-23 2011-06-23 Strip rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139650A JP5775378B2 (en) 2011-06-23 2011-06-23 Strip rolling method

Publications (2)

Publication Number Publication Date
JP2013006190A JP2013006190A (en) 2013-01-10
JP5775378B2 true JP5775378B2 (en) 2015-09-09

Family

ID=47674028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139650A Active JP5775378B2 (en) 2011-06-23 2011-06-23 Strip rolling method

Country Status (1)

Country Link
JP (1) JP5775378B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551404B (en) * 2013-11-07 2015-09-02 山西太钢不锈钢股份有限公司 A kind of production method of stainless screw-thread steel
CN106077085B (en) * 2016-07-29 2018-05-25 中冶赛迪工程技术股份有限公司 A kind of production system and method for low yield strength ratio hot-rolled high-strength anti-seismic steel bar
CN112275804B (en) * 2020-08-31 2023-03-17 山西太钢不锈钢精密带钢有限公司 Control method for surface color difference of precise stainless steel strip
CN116493419A (en) * 2023-06-27 2023-07-28 山西建龙实业有限公司 Flexible control method for rolling micro-tension of tail of hot-rolled steel bar

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3197502B2 (en) * 1997-03-24 2001-08-13 川崎製鉄株式会社 Continuous hot rolling of steel sheet
JP2002263705A (en) * 2001-03-09 2002-09-17 Daiwa Steel Corp Method and equipment for continuously rolling metallic material
JP4050897B2 (en) * 2001-12-17 2008-02-20 新日本製鐵株式会社 Steel material tracking method and apparatus in continuous rolling
JP3869332B2 (en) * 2002-08-01 2007-01-17 株式会社神戸製鋼所 Strip rolling method
JP5305829B2 (en) * 2008-10-21 2013-10-02 株式会社神戸製鋼所 Wire rod rolling method

Also Published As

Publication number Publication date
JP2013006190A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
CN101039762B (en) Method and device for continuously producing a thin metal strip
JP5775378B2 (en) Strip rolling method
JP5305829B2 (en) Wire rod rolling method
ITUD20100115A1 (en) LAMINATION PROCEDURE FOR PLAN PRODUCTS AND ITS LAMINATION LINE
RU2005102828A (en) METHOD AND CAST-ROLLING UNIT FOR SEMI-INFINITE OR INFINITE ROLLING OF A METAL, IN PARTICULAR, CONTINUOUSLY CAST STEEL WORK, WHICH AFTER CRYSTALLIZATION DOES NOT IN CASE
JP2006289436A (en) Wire rolling method
JP2015511178A (en) Method for controlling a production plant of two continuous strands obtained from a single billet
WO2014087520A1 (en) Device for cooling hot-rolled steel sheet
KR102131182B1 (en) Width-altering system for strip-shaped rolled material
JP4808068B2 (en) Billet rolling method
JP5618911B2 (en) Manufacturing method of original material of wire rod rolling
JP2005270982A (en) Method for controlling cooling of material to be rolled in hot rolling
JP5949691B2 (en) Plate width control method and plate width control device
JP6172108B2 (en) Hot rolled steel sheet rolling method
JP5414398B2 (en) Rolling method for steel strip
JP6354956B2 (en) Bending control method and bending control apparatus for steel slab in sizing press
JP6172110B2 (en) Hot rolled steel sheet rolling method
JP4065251B2 (en) Hot finish rolling method that prevents drawing wrinkles
JPWO2014087516A1 (en) Steel plate manufacturing method
JP6188606B2 (en) Method for determining setup conditions in cold rolling
JP2010075977A (en) Method of forming slab with sizing press
JP4964061B2 (en) Control method for steel wire rod cooling
JP3661640B2 (en) Cross roll rolling method and leveling control method
KR20160142931A (en) Continuous casting and rolling method and apparatus
JP2002126802A (en) Method for drafting press width of hot slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150703

R150 Certificate of patent or registration of utility model

Ref document number: 5775378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150