JP4915502B2 - Resist pattern simulation method - Google Patents

Resist pattern simulation method Download PDF

Info

Publication number
JP4915502B2
JP4915502B2 JP2006059859A JP2006059859A JP4915502B2 JP 4915502 B2 JP4915502 B2 JP 4915502B2 JP 2006059859 A JP2006059859 A JP 2006059859A JP 2006059859 A JP2006059859 A JP 2006059859A JP 4915502 B2 JP4915502 B2 JP 4915502B2
Authority
JP
Japan
Prior art keywords
development
resist
distribution
speed
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006059859A
Other languages
Japanese (ja)
Other versions
JP2007242710A (en
Inventor
崇 吉井
一正 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2006059859A priority Critical patent/JP4915502B2/en
Publication of JP2007242710A publication Critical patent/JP2007242710A/en
Application granted granted Critical
Publication of JP4915502B2 publication Critical patent/JP4915502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Description

本発明は、半導体集積回路装置などの作成に関して使用するレジストパターン形状のシミュレーション方法に関する。   The present invention relates to a resist pattern shape simulation method used for manufacturing a semiconductor integrated circuit device or the like.

電子線リソグラフィーの分野において、現像後のレジスト形状を推定する場合、電子線散乱シミュレーションを行いレジスト中のエネルギー蓄積分布を求めた後、蓄積エネルギーを現像速度に置き換えて現像プロファイル計算を行うのが一般的である。   In the field of electron beam lithography, when estimating the resist shape after development, it is common to perform an electron beam scattering simulation to obtain the energy accumulation distribution in the resist, and then calculate the development profile by replacing the accumulated energy with the development speed. Is.

電子線散乱シミュレーションの代表的なものにはモンテカルロ法がある。これは乱数を用いて電子の散乱およびエネルギー損失をシミュレートするものであり、電子線の失ったエネルギーはその軌跡中のレジストや下地基板に与えられたとする。また、モンテカルロ法を使用したシミュレーションには、1点の照射電子散乱計算から周辺領域へのエネルギー蓄積分布関数(EID関数)を計算し、これを所望のパターン領域に渡って重畳計算することによりエネルギー蓄積分布を算出する方法と、所望のパターン領域に電子線を照射し、その全ての電子の散乱状態をエネルギー蓄積分布を算出する方法(ダイレクトモンテカルロ法)がある。このようにして求めたレジスト中のエネルギー蓄積分布を、Mackモデル等の現像モデルに代入し、現像速度に変換する。このようにして求めたレジスト中の現像速度3次元分布からストリング法、セルリムーバル法などの現像計算を行い現像後のパターンを予見するものである。   A representative example of electron beam scattering simulation is the Monte Carlo method. This simulates electron scattering and energy loss using random numbers, and it is assumed that the energy lost by the electron beam is given to the resist and the base substrate in the locus. In the simulation using the Monte Carlo method, the energy accumulation distribution function (EID function) to the peripheral region is calculated from one point of the electron scattering calculation, and the energy is calculated by superimposing this over the desired pattern region. There are a method for calculating the accumulation distribution and a method (direct Monte Carlo method) for irradiating an electron beam to a desired pattern region and calculating the energy accumulation distribution for the scattering state of all the electrons. The energy accumulation distribution in the resist thus obtained is substituted into a development model such as the Mack model and converted into a development speed. From the three-dimensional distribution of the development speed in the resist thus obtained, development calculation such as string method and cell removal method is performed to predict the developed pattern.

一般に現像モデルを用いた方法ではパターン形状が実際の形状を反映する事は難しく、これを改善するために複雑な現像モデルが提案されている。しかし、複雑な現像モデルは計算が膨大になるだけでなく、反応に関するパラメータも多くなりレジスト形状の再現に困難を要するという問題がある。   In general, in a method using a development model, it is difficult for the pattern shape to reflect the actual shape, and in order to improve this, a complicated development model has been proposed. However, a complicated development model has a problem that not only the calculation becomes enormous, but also the parameters related to the reaction increase, and it is difficult to reproduce the resist shape.

現像モデル計算の問題点を解消するものとして、シミュレーションによって求めたエネルギー蓄積分布を現像速度に変換する際に光干渉効果を用いて実験的に算出した現像速度を用いて現像後の形状を予測する方法がある(特許文献1参照)。
これは電子線照射後のレジストを現像液に浸漬し、照射部のレジスト膜厚変化をレジスト層表面からの反射光と、内部の既現像レジスト層と未現像レジスト層との境界面で反射する光との干渉光の強度を測定する事により未現像レジストの膜厚時間変化を求め現像速度を算出するものである。
特開2003−37050号公報
To solve the problem of developing model calculation, predict the shape after development using the developing speed experimentally calculated using the light interference effect when converting the energy accumulation distribution obtained by simulation to the developing speed There is a method (see Patent Document 1).
This is because the resist after electron beam irradiation is immersed in the developer, and the resist film thickness change in the irradiated area is reflected by the reflected light from the resist layer surface and the boundary surface between the developed resist layer and the undeveloped resist layer inside. By measuring the intensity of interference light with light, the development time is calculated by obtaining the change in film thickness time of the undeveloped resist.
JP 2003-37050 A

しかしながら、従来の干渉光を使用した現像速度測定方法では、レジストの種類によっては測定に使用する光の吸収や透過が起こってしまうため、正確な測定が出来ないものがあり、また、レジスト膜厚が薄い場合は干渉光強度の変化そのものが少ないため、現像速度変換時の精度が悪化する。さらに、干渉光を用いた現像速度測定では、現像中に不均一に溶解する場合や、現像中にレジストの膨潤が起こる場合などでは干渉光の波形が乱れ正確な測定が出来ない。そのため、レジスト溶解深度により異なる現像速度や、レジストの膨潤、基板界面に残留した残留レジスト層の存在など、現像過程での微細な挙動までは検出することが出来ないという課題があった。   However, with conventional development speed measurement methods using interference light, depending on the type of resist, the light used for measurement may be absorbed or transmitted, so there are some that cannot be measured accurately. When the thickness is small, the change in the interference light intensity itself is small, and the accuracy at the time of developing speed conversion deteriorates. Further, in the development speed measurement using interference light, the waveform of the interference light is disturbed and accurate measurement cannot be performed when it is dissolved non-uniformly during development or when the resist swells during development. For this reason, there has been a problem that fine behavior in the development process cannot be detected, such as development speed that varies depending on the resist dissolution depth, resist swelling, and the presence of a residual resist layer remaining on the substrate interface.

さらに、半導体加工技術の微細化に伴い、レジストの薄膜化を伴う微細パターンの形成が必要となり、シミュレーションに対しても同様に微細な形状の再現が求められているという課題があった。   Furthermore, with the miniaturization of semiconductor processing technology, it is necessary to form a fine pattern with a thin resist, and there is a problem that a fine shape must be reproduced for simulation as well.

本発明はこのような事情に鑑みてなされたものであり、その目的は、電子線レジストの種類によらず現像後のレジストパターン形状をより詳細に予測できるシミュレーション方法を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a simulation method capable of predicting a resist pattern shape after development in more detail regardless of the type of electron beam resist.

上記課題を解決するため、本発明は、1点の照射電子散乱計算から周辺領域へのエネルギー蓄積分布を計算し、これを所望のパターン領域に渡って重畳計算し、エネルギー蓄積分布を算出するか、もしくは所望のパターン領域に電子線を照射し、それぞれの電子の散乱状態を全て計算してエネルギー蓄積分布を算出する工程と、前記算出したエネルギー蓄積分布を現像速度分布に変換する工程と、前記現像速度分布に基づいて現像計算を行い、レジストのパターン形状を推定する工程とを有した、レジスト層の現像後形状をシミュレートするレジストパターンシミュレーション方法であって前記エネルギー蓄積分布を現像速度分布に変換する工程において、レジストの膜厚が増加するドーズ条件では、レジスト膜圧と現像時間との関係から現像時間変化に伴う膜厚増加率を基に前記膜厚増加ドーズ条件下での現像速度r(t,D)を算出し、かつ算出した現像速度r(t,D)をエネルギー蓄積量に対応する現像速度R(t,D)に変換し、前記レジストのパターン形状を推定する工程において、前記変換された現像速度R(t,D)を用いて前記現像速度分布に基づいた現像計算を行い、さらに、前記エネルギー蓄積分布を現像速度分布に変換する工程において、レジストの膜厚が減少するドーズ条件では、レジスト溶解深度と現像時間との関係を基に前記膜厚減少ドーズ条件下での現像速度r’(t,D)を算出し、かつ算出した現像速度r’(t,D)をエネルギー蓄積量に対応する現像速度R’(t,D)に変換し、前記レジストのパターン形状を推定する工程において、前記変換された現像速度R’(t,D)を用いて前記現像速度分布に基づいた現像計算を行うことを特徴とする。 To solve the above problems, the present onset bright calculates the energy storage distribution to the peripheral region from the irradiation electron scattering calculations one point, this superimposed calculated over a desired pattern region, and calculates the energy accumulated distribution Or irradiating a desired pattern region with an electron beam, calculating the energy accumulation distribution by calculating all the scattering states of each electron, and converting the calculated energy accumulation distribution into a development speed distribution; and developed calculated based on the development rate distribution, and a step of estimating the resist pattern shape, I resist pattern simulation method der to simulate post-development shape of the resist layer, developing the energy storage distribution In dose conversion conditions where the resist film thickness increases in the process of converting to velocity distribution, the relationship between resist film pressure and development time The developing speed r (t, D) under the above-mentioned film thickness increasing dose condition is calculated based on the film thickness increasing rate with the image time change, and the calculated developing speed r (t, D) corresponds to the energy accumulation amount. In the step of converting to the developing speed R (t, D) and estimating the resist pattern shape, development calculation based on the developing speed distribution is performed using the converted developing speed R (t, D). Further, in the step of converting the energy accumulation distribution into the development speed distribution, the development under the film thickness reduction dose condition is based on the relationship between the resist dissolution depth and the development time in the dose condition in which the resist film thickness decreases. A speed r ′ (t, D) is calculated, and the calculated development speed r ′ (t, D) is converted into a development speed R ′ (t, D) corresponding to the energy accumulation amount, and the pattern shape of the resist is changed. In the estimation process, before Converted development rate R '(t, D) and performing a development calculations based on the development rate distribution using the.

本発明のレジストパターンシミュレーション方法によれば、レジストの現像シミュレーションにおいて現像時間に対するレジスト形状変化を詳細に再現することができ、さらに、レジストの膨潤挙動をも反映させることが可能となる。そのため、従来の方法よりも時間変化、形状の2点において精度の高いシミュレーションが可能となる。   According to the resist pattern simulation method of the present invention, the resist shape change with respect to the development time can be reproduced in detail in the resist development simulation, and the swelling behavior of the resist can be reflected. Therefore, it is possible to perform simulation with higher accuracy at two points of time change and shape than the conventional method.

本発明の実施の形態におけるレジストパターンシミュレーション方法は、1点の照射電子散乱計算から周辺領域へのエネルギー蓄積分布を計算し、これを所望のパターン領域に渡って重畳計算し、エネルギー蓄積分布を算出するか、もしくは所望のパターン領域に電子線を照射し、それぞれの電子の散乱状態を全て計算してエネルギー蓄積分布を算出する工程と、前記算出したエネルギー蓄積分布を現像速度分布に変換する工程と、前記現像速度分布に基づいて現像計算を行い、レジストのパターン形状を推定する工程とを有した、レジスト層の現像後形状をシミュレートするレジストパターンシミュレーション方法であり、前記エネルギー蓄積分布を現像速度分布に変換する工程において、レジストの膜厚が増加するドーズ条件では、レジスト膜圧と現像時間との関係から現像時間変化に伴う膜厚増加率を基に前記膜厚増加ドーズ条件下での現像速度r(t,D)を算出し、かつ算出した現像速度r(t,D)をエネルギー蓄積量に対応する現像速度R(t,D)に変換し、前記レジストのパターン形状を推定する工程において、前記変換された現像速度R(t,D)を用いて前記現像速度分布に基づいた現像計算を行い、さらに、前記エネルギー蓄積分布を現像速度分布に変換する工程において、レジストの膜厚が減少するドーズ条件では、レジスト溶解深度と現像時間との関係を基に前記膜厚減少ドーズ条件下での現像速度r’(t,D)を算出し、かつ算出した現像速度r’(t,D)をエネルギー蓄積量に対応する現像速度R’(t,D)に変換し、前記レジストのパターン形状を推定する工程において、前記変換された現像速度R’(t,D)を用いて前記現像速度分布に基づいた現像計算を行うようにしたものである。
すなわち、実験により電子線照射量(以下、ドーズと記載)とレジスト溶解深度の2つのパラメータから決定される現像速度のテーブルを算出する。このテーブルを用いてシミュレーションにより求めたレジスト層のエネルギー蓄積分布を現像速度に変換することにより、従来の方法より精度の高いシミュレーション結果を提供するものである。
図1は、本実施の形態によるレジストパターンシミュレーション方法の概略を示すフローチャートである。
In the resist pattern simulation method according to the embodiment of the present invention, an energy accumulation distribution in a peripheral region is calculated from a single irradiation electron scattering calculation, and this is superimposed on a desired pattern region to calculate an energy accumulation distribution. Or irradiating an electron beam to a desired pattern region, calculating the energy accumulation distribution by calculating all the scattering states of each electron, and converting the calculated energy accumulation distribution into a development speed distribution. and developed calculated based on the development rate distribution, and a step of estimating the resist pattern shape, a resist pattern simulation method for simulating the development after the shape of the resist layer, developing speed of said energy storage distribution In the process of converting to the distribution, the resist condition is increased under dose conditions where the resist film thickness increases. From the relationship between the film pressure and the development time, the development speed r (t, D) under the film thickness increase dose condition is calculated based on the film thickness increase rate accompanying the development time change, and the calculated development speed r ( (t, D) is converted into a developing speed R (t, D) corresponding to an energy storage amount, and the resist pattern shape is estimated using the converted developing speed R (t, D) in the step of estimating the resist pattern shape. Based on the relationship between the resist dissolution depth and the development time under the dose condition in which the resist film thickness is reduced in the step of performing development calculation based on the development speed distribution and further converting the energy accumulation distribution to the development speed distribution. The developing speed r ′ (t, D) under the film thickness reducing dose condition is calculated, and the developing speed r ′ (t, D) corresponding to the energy storage amount is calculated. Convert the resist pattern into In the step of estimating Jo, the converted development rate R '(t, D) is obtained so as to perform development calculations based on the development rate distribution using the.
That is, a development rate table determined from two parameters of an electron beam irradiation amount (hereinafter referred to as “dose”) and a resist dissolution depth is calculated by experiment. By converting the energy accumulation distribution of the resist layer obtained by simulation using this table into the developing speed, a simulation result with higher accuracy than the conventional method is provided.
FIG. 1 is a flowchart showing an outline of a resist pattern simulation method according to this embodiment.

本実施の形態では、現像速度を高精度に算出する方法として水晶振動子マイクロバランス(以下、QCMと記載する)を用いた膜厚測定を利用する。図2は、このQCMを用いた膜厚測定の原理を示す模式図である。水晶の単結晶からディスクを切りだし、電極を形成した圧電素子(以下、水晶振動子と記載する)4を基板としてこれにレジスト層3を形成する。なお、符号1は水晶振動子4と共振回路との接続用配線、符号2は振動子固定ジグである。水晶振動子4は固有の共振周波数を持っており、レジスト層3が表面に形成されると共振周波数がレジスト層の種類、膜厚の違いなどに応じて低周波数側にシフトする。レジスト層3を形成した水晶振動子4に均一に電子線を照射したのち、現像液5に浸漬すると現像中にレジストの膜厚が変化し、これが共振周波数の変化として現れる。   In the present embodiment, film thickness measurement using a quartz crystal microbalance (hereinafter referred to as QCM) is used as a method for calculating the developing speed with high accuracy. FIG. 2 is a schematic diagram showing the principle of film thickness measurement using this QCM. A disk is cut out from a single crystal of quartz, and a resist layer 3 is formed on the piezoelectric element (hereinafter referred to as a crystal resonator) 4 having electrodes formed thereon as a substrate. Reference numeral 1 denotes a connection wiring between the crystal resonator 4 and the resonance circuit, and reference numeral 2 denotes a resonator fixing jig. The crystal unit 4 has a specific resonance frequency, and when the resist layer 3 is formed on the surface, the resonance frequency is shifted to the low frequency side according to the type of resist layer, the difference in film thickness, and the like. When the crystal resonator 4 on which the resist layer 3 is formed is uniformly irradiated with an electron beam and then immersed in the developer 5, the resist film thickness changes during development, which appears as a change in resonance frequency.

得られた現像時間と共振周波数の関係から計算を行い、レジスト膜厚と現像時間の関係が得られる。ドーズを変化させ同様の測定を行い、各ドーズに対応するレジスト溶解深度方向の現像速度を求めることによりドーズ、レジスト溶解深度の2つのパラメータと現像速度の関係を求めることが出来る。さらに、本実施の形態では、レジストが膨潤して膜厚が増加している場合、現像速度をマイナス値で定義することによりレジスト膨潤挙動を反映させることとする。   Calculation is performed from the relationship between the obtained development time and the resonance frequency, and the relationship between the resist film thickness and the development time is obtained. By performing the same measurement while changing the dose and obtaining the development speed in the resist dissolution depth direction corresponding to each dose, the relationship between the two parameters of dose and resist dissolution depth and the development speed can be obtained. Furthermore, in this embodiment, when the resist is swollen and the film thickness is increased, the resist swelling behavior is reflected by defining the developing speed as a negative value.

また、別途水晶振動子上に形成したレジスト層に均一な電子線を照射した場合の電子線散乱シミュレーションを行い、ドーズと蓄積エネルギーの関係を求める。この関係を用いてドーズに対するレジスト溶解深度方向の現像速度をエネルギー蓄積分布に対応するレジスト溶解深度方向の現像速度に変換する。
以上の工程によりエネルギー蓄積分布と、レジスト溶解深度の2つのパラメータからレジスト現像速度を算出する変換テーブルが得られる。この変換テーブルを、電子線で所望のパターニングを施したレジスト層の3次元エネルギー蓄積分布に適用することにより、レジストの現像シミュレーションを行う。
In addition, electron beam scattering simulation is performed when a uniform electron beam is irradiated to a resist layer separately formed on a crystal resonator, and a relationship between dose and accumulated energy is obtained. Using this relationship, the development speed in the resist dissolution depth direction with respect to the dose is converted into the development speed in the resist dissolution depth direction corresponding to the energy accumulation distribution.
The conversion table for calculating the resist development speed from the two parameters of the energy accumulation distribution and the resist dissolution depth is obtained by the above steps. By applying this conversion table to the three-dimensional energy accumulation distribution of a resist layer that has been subjected to desired patterning with an electron beam, a resist development simulation is performed.

本実施の形態として、フォトマスク原版(マスクブランクス)に化学増幅ネガレジスト層を形成した基板に対し電子線パターニングを行なった場合のパターン形状のシミュレーションを行った。電子線の入射エネルギーは50kV、レジスト膜厚250nm、レジストパターンは線幅100nmの孤立ラインを想定した。   As this embodiment, a simulation of a pattern shape was performed when electron beam patterning was performed on a substrate in which a chemically amplified negative resist layer was formed on a photomask original (mask blank). The incident energy of the electron beam was 50 kV, the resist film thickness was 250 nm, and the resist pattern was an isolated line with a line width of 100 nm.

まず、QCM法を用いた膜厚変化測定用に上記レジスト種、膜厚条件のレジスト層3を水晶振動子4上に形成したサンプルを複数作成する。各水晶振動子4に異なるドーズで均一な電子線照射領域を周波数測定領域と同等もしくはそれ以上の領域に形成した後、照射後のサンプルを現像液5に浸漬しながら共振周波数をモニタリングする。こうして得られた共振周波数の現像時間に伴う変化から、水晶振動子4上のレジスト層3の膜厚変化をドーズ毎に算出する。
図3は、QCM法測定によって得られた現像時間とレジスト膜厚の関係を表す説明図である。
First, a plurality of samples in which the resist layer 3 having the above resist type and film thickness conditions is formed on the crystal resonator 4 for film thickness change measurement using the QCM method are prepared. After forming a uniform electron beam irradiation region with a different dose in each quartz crystal resonator 4 in a region equal to or higher than the frequency measurement region, the resonance frequency is monitored while the irradiated sample is immersed in the developer 5. From the change of the resonance frequency obtained in this way with the development time, the change in the thickness of the resist layer 3 on the crystal unit 4 is calculated for each dose.
FIG. 3 is an explanatory diagram showing the relationship between the development time and the resist film thickness obtained by the QCM method measurement.

図3に示すように、アンダードーズ条件である2uC/cm2で照射されたレジストの膜厚は直線的に減少しておらず、深さ方向に対し現像速度が一定でないことが分かる。また、ドーズしきい値以下(≦9uC/cm2)の条件では現像時間が進むにつれ、現像後のレジスト膜厚が逆に増加していることが分かる。これはレジストの膨潤が起こっているものと推定される。以上得られた測定結果をもとに、レジストの相反する挙動に対してドーズ毎に条件を分け現像速度を算出する。
(1)現像プロセスでレジスト膜厚が増加するドーズ条件では、図3より現像時間変化tに伴う膜厚増加率を算出し、これを現像速度r(t,D)[nm/sec]とする。
(2)現像プロセスでレジストの膜厚が減少しているドーズ条件に対しては、図3の結果を時間微分することにより現像速度r'(t,D)[nm/sec]を算出するが、さらにこれを縦軸としてその時点におけるレジストの初期膜厚からの溶解深度z[nm]を横軸にとり、レジスト溶解深度に対しての現像速度r'(z,D)[nm/sec]を求める。
図4は、QCM法測定によって得られたレジスト溶解深度と現像速度の関係を表す説明図である。
図4よりレジストが溶解する2uC/cm2というドーズにおいても、レジストが溶解して底面に達する約30nm前に現像速度がゼロになることが分かる。これは電子線の照射不足が原因と認識されがちであるが、電子線散乱シミュレーションにより、50kVの電子線はそのエネルギーの高さからレジスト層をほぼ直線的に貫通しており、レジスト底面までエネルギーが蓄積されているという結果が得られている。そのため、現像速度が深さ方向で異なるのには別の要因(ベーク、酸発生、拡散プロセスなど)があるものと推定される。
As shown in FIG. 3, it can be seen that the film thickness of the resist irradiated at 2 uC / cm 2, which is an underdose condition, does not decrease linearly, and the development speed is not constant in the depth direction. Further, it can be seen that the resist film thickness after development increases conversely as the development time advances under the condition of the dose threshold value (≦ 9 uC / cm 2). This is presumed that the resist swells. Based on the measurement results obtained above, the development speed is calculated by dividing the conditions for each dose with respect to the conflicting behavior of the resist.
(1) Under the dose condition in which the resist film thickness increases in the development process, the film thickness increase rate with the development time change t is calculated from FIG. 3, and this is set as the development speed r (t, D) [nm / sec]. .
(2) For the dose condition in which the resist film thickness is reduced in the development process, the development speed r ′ (t, D) [nm / sec] is calculated by differentiating the result of FIG. 3 with respect to time. Further, with this as the vertical axis, the dissolution depth z [nm] from the initial film thickness of the resist at that time is taken as the horizontal axis, and the development speed r ′ (z, D) [nm / sec] with respect to the resist dissolution depth is obtained. Ask.
FIG. 4 is an explanatory diagram showing the relationship between the resist dissolution depth obtained by the QCM method measurement and the development speed.
As can be seen from FIG. 4, even at a dose of 2 uC / cm 2 where the resist dissolves, the developing speed becomes zero about 30 nm before the resist dissolves and reaches the bottom surface. This tends to be recognized as the cause of insufficient electron beam irradiation. According to electron beam scattering simulation, the 50 kV electron beam penetrates the resist layer almost linearly due to its energy level, and the energy reaches the bottom of the resist. The result that is accumulated. Therefore, it is presumed that there are other factors (baking, acid generation, diffusion process, etc.) that the development speed differs in the depth direction.

また、前記水晶振動子上に形成したレジスト層をモデルとして均一な電子線を照射した場合の電子線散乱シミュレーションを行い、ドーズD(uC/cm2)とエネルギー蓄積量E[J/m3]の関係を求める。この関係を用いてr(t,D)とr'(z,D)をエネルギー蓄積量に対応する現像速度R(t,D)とR'(z,E)に変換する。   Further, an electron beam scattering simulation is performed when a uniform electron beam is irradiated using the resist layer formed on the crystal resonator as a model, and the relationship between dose D (uC / cm2) and energy storage amount E [J / m3]. Ask for. Using this relationship, r (t, D) and r ′ (z, D) are converted into development speeds R (t, D) and R ′ (z, E) corresponding to the energy accumulation amount.

こうして得られたエネルギー蓄積量の分布とレジスト溶解深度から決定される現像速度を用いて現像計算を実施し、シミュレーションによるレジストパターン形状を得た。
図5は、前記シミュレーションによって求めたレジストパターンの断面形状を示す説明図である。図5は、実験によりドーズとレジスト溶解深度の2つのパラメータから決定される現像速度テーブルを用いて現像計算を行った結果を示す。図5はレジストの側面部分が横に張り出した形になっており、レジストの膨潤挙動を反映した結果となっている。また、現像速度がレジスト底面付近で遅くなるためにレジスト形状に裾引き形状が強く反映されたものとなっている。
比較として、一定のエネルギー蓄積分布に対する現像速度の平均値をレジスト溶解深度に関係無く用いて、さらに膨潤挙動による膜厚の増加を考慮しない場合の現像計算結果を図6に示す。
図6は、従来のシミュレーション方法によって求めたレジストパターンの断面形状を示す説明図である。
Development calculation was carried out using the development rate determined from the distribution of the energy storage amount thus obtained and the resist dissolution depth, and a resist pattern shape by simulation was obtained.
FIG. 5 is an explanatory view showing the cross-sectional shape of the resist pattern obtained by the simulation. FIG. 5 shows the result of development calculation using a development speed table determined from two parameters of dose and resist dissolution depth by experiment. FIG. 5 shows a shape in which the side surface portion of the resist projects laterally, and reflects the swelling behavior of the resist. Further, since the developing speed becomes slow near the bottom surface of the resist, the bottom shape is strongly reflected in the resist shape.
As a comparison, FIG. 6 shows a development calculation result in the case where the average value of the development speed for a constant energy accumulation distribution is used regardless of the resist dissolution depth and the increase in film thickness due to swelling behavior is not taken into consideration.
FIG. 6 is an explanatory view showing a cross-sectional shape of a resist pattern obtained by a conventional simulation method.

以上説明したように、本実施の形態によれば、実験によりドーズとレジスト溶解深度の2つのパラメータから決定される現像速度のテーブルを算出し、このテーブルを用いてシミュレーションにより求めたレジスト層のエネルギー蓄積分布を現像速度に変換することにより、従来の方法より精度の高い、実際の現像後のレジストパターンに近い形状が得られる現像シミュレーションを実現できる効果がある。   As described above, according to the present embodiment, a development rate table determined from two parameters of dose and resist dissolution depth is calculated by experiment, and the energy of the resist layer obtained by simulation using this table is calculated. By converting the accumulated distribution into the development speed, there is an effect that it is possible to realize a development simulation that can obtain a shape close to the resist pattern after actual development with higher accuracy than the conventional method.

本発明の実施の形態によるレジストパターンシミュレーション方法の手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the procedure of the resist pattern simulation method by embodiment of this invention. 本発明の実施の形態によるレジストパターンシミュレーション方法におけるQCMを用いた膜厚測定の原理を示す模式図である。It is a schematic diagram which shows the principle of the film thickness measurement using QCM in the resist pattern simulation method by embodiment of this invention. 本発明の実施の形態によるレジストパターンシミュレーション方法におけるQCM法測定によって得られた現像時間とレジスト膜厚の関係を表す説明図である。It is explanatory drawing showing the relationship between the development time obtained by the QCM method measurement in the resist pattern simulation method by embodiment of this invention, and a resist film thickness. 本発明の実施の形態によるレジストパターンシミュレーション方法におけるQCM法測定によって得られたレジスト溶解深度と現像速度の関係を表す説明図である。It is explanatory drawing showing the relationship between the resist melt | dissolution depth obtained by the QCM method measurement in the resist pattern simulation method by embodiment of this invention, and development speed. 本発明の実施の形態によるレジストパターンシミュレーション方法におけるシミュレーションによって求めたレジストパターンの断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the resist pattern calculated | required by the simulation in the resist pattern simulation method by embodiment of this invention. 従来のシミュレーション方法によって求めたレジストパターンの断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the resist pattern calculated | required with the conventional simulation method.

符号の説明Explanation of symbols

1……水晶振動子‐共振回路接続用配線、2……振動子固定ジグ、3……レジスト層、4……水晶振動子、5……現像液。
DESCRIPTION OF SYMBOLS 1 ... Crystal oscillator-resonance circuit connection wiring, 2 ... Vibrator fixing jig, 3 ... Resist layer, 4 ... Crystal oscillator, 5 ... Developer.

Claims (1)

1点の照射電子散乱計算から周辺領域へのエネルギー蓄積分布を計算し、これを所望のパターン領域に渡って重畳計算し、エネルギー蓄積分布を算出するか、もしくは所望のパターン領域に電子線を照射し、それぞれの電子の散乱状態を全て計算してエネルギー蓄積分布を算出する工程と、
前記算出したエネルギー蓄積分布を現像速度分布に変換する工程と、
前記現像速度分布に基づいて現像計算を行い、レジストのパターン形状を推定する工程とを有した、レジスト層の現像後形状をシミュレートするレジストパターンシミュレーション方法であって
前記エネルギー蓄積分布を現像速度分布に変換する工程において、レジストの膜厚が増加するドーズ条件では、レジスト膜圧と現像時間との関係から現像時間変化に伴う膜厚増加率を基に前記膜厚増加ドーズ条件下での現像速度r(t,D)を算出し、かつ算出した現像速度r(t,D)をエネルギー蓄積量に対応する現像速度R(t,D)に変換し、前記レジストのパターン形状を推定する工程において、前記変換された現像速度R(t,D)を用いて前記現像速度分布に基づいた現像計算を行い、
さらに、前記エネルギー蓄積分布を現像速度分布に変換する工程において、レジストの膜厚が減少するドーズ条件では、レジスト溶解深度と現像時間との関係を基に前記膜厚減少ドーズ条件下での現像速度r’(t,D)を算出し、かつ算出した現像速度r’(t,D)をエネルギー蓄積量に対応する現像速度R’(t,D)に変換し、前記レジストのパターン形状を推定する工程において、前記変換された現像速度R’(t,D)を用いて前記現像速度分布に基づいた現像計算を行う、
ことを特徴とするレジストパターンシミュレーション方法。
Calculate the energy accumulation distribution in the surrounding area from one-point irradiation electron scattering calculation, and calculate the energy accumulation distribution over the desired pattern area, or irradiate the desired pattern area with the electron beam Calculating the energy accumulation distribution by calculating all the scattering states of each electron;
Converting the calculated energy accumulation distribution into a development speed distribution;
The development is performed calculations based on the development rate distribution, and a step of estimating the resist pattern shape, I resist pattern simulation method der to simulate post-development shape of the resist layer,
In the step of converting the energy accumulation distribution into the development speed distribution, in the dose condition in which the resist film thickness increases, the film thickness is based on the film thickness increase rate accompanying the development time change from the relationship between the resist film pressure and the development time. The developing speed r (t, D) under the increased dose condition is calculated, and the calculated developing speed r (t, D) is converted into a developing speed R (t, D) corresponding to the energy accumulation amount, and the resist In the step of estimating the pattern shape, development calculation based on the development speed distribution is performed using the converted development speed R (t, D),
Further, in the step of converting the energy storage distribution into the development speed distribution, the development rate under the film thickness reduction dose condition is based on the relationship between the resist dissolution depth and the development time in the dose condition where the resist film thickness is reduced. r ′ (t, D) is calculated, and the calculated developing speed r ′ (t, D) is converted into a developing speed R ′ (t, D) corresponding to the energy accumulation amount, and the pattern shape of the resist is estimated. A development calculation based on the development speed distribution using the converted development speed R ′ (t, D).
A resist pattern simulation method.
JP2006059859A 2006-03-06 2006-03-06 Resist pattern simulation method Expired - Fee Related JP4915502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059859A JP4915502B2 (en) 2006-03-06 2006-03-06 Resist pattern simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059859A JP4915502B2 (en) 2006-03-06 2006-03-06 Resist pattern simulation method

Publications (2)

Publication Number Publication Date
JP2007242710A JP2007242710A (en) 2007-09-20
JP4915502B2 true JP4915502B2 (en) 2012-04-11

Family

ID=38587995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059859A Expired - Fee Related JP4915502B2 (en) 2006-03-06 2006-03-06 Resist pattern simulation method

Country Status (1)

Country Link
JP (1) JP4915502B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110069044A (en) * 2008-09-01 2011-06-22 디2에스, 인코포레이티드 Method for optical proximity correction, design and manufacturing of a reticle using variable shaped beam lithography
US8039176B2 (en) 2009-08-26 2011-10-18 D2S, Inc. Method for fracturing and forming a pattern using curvilinear characters with charged particle beam lithography
US7901850B2 (en) 2008-09-01 2011-03-08 D2S, Inc. Method and system for design of a reticle to be manufactured using variable shaped beam lithography
US9341936B2 (en) 2008-09-01 2016-05-17 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US20120219886A1 (en) 2011-02-28 2012-08-30 D2S, Inc. Method and system for forming patterns using charged particle beam lithography with variable pattern dosage
US9323140B2 (en) 2008-09-01 2016-04-26 D2S, Inc. Method and system for forming a pattern on a reticle using charged particle beam lithography
US8669023B2 (en) 2008-09-01 2014-03-11 D2S, Inc. Method for optical proximity correction of a reticle to be manufactured using shaped beam lithography
JP2010192754A (en) * 2009-02-19 2010-09-02 Toppan Printing Co Ltd Resist pattern simulation method and device
US9448473B2 (en) 2009-08-26 2016-09-20 D2S, Inc. Method for fracturing and forming a pattern using shaped beam charged particle beam lithography
US9164372B2 (en) 2009-08-26 2015-10-20 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US9057956B2 (en) 2011-02-28 2015-06-16 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
US9612530B2 (en) 2011-02-28 2017-04-04 D2S, Inc. Method and system for design of enhanced edge slope patterns for charged particle beam lithography
WO2012148606A2 (en) 2011-04-26 2012-11-01 D2S, Inc. Method and system for forming non-manhattan patterns using variable shaped beam lithography
US10007191B2 (en) * 2016-07-15 2018-06-26 Kla-Tencor Corporation Method for computer modeling and simulation of negative-tone-developable photoresists

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05289322A (en) * 1992-04-10 1993-11-05 Hitachi Ltd Pattern forming material and method for forming pattern using the same
JPH06112293A (en) * 1992-08-04 1994-04-22 Matsushita Electric Ind Co Ltd Method of forecasting finished shape of photoresist and device therefor
JP3450561B2 (en) * 1996-01-09 2003-09-29 株式会社東芝 Resolution line width prediction method
JP2001319848A (en) * 2000-05-02 2001-11-16 Nikon Corp Method for estimating shape of resist pattern
JP2003037050A (en) * 2001-07-25 2003-02-07 Nikon Corp Method of simulating resist pattern shape
JP2004153163A (en) * 2002-10-31 2004-05-27 Renesas Technology Corp Method and equipment for controlling aligner
JP2005217254A (en) * 2004-01-30 2005-08-11 Renesas Technology Corp Method and device for evaluation of resist development speed variation

Also Published As

Publication number Publication date
JP2007242710A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4915502B2 (en) Resist pattern simulation method
JP5334956B2 (en) System and method for performing mask verification using an individual mask error model
KR100197191B1 (en) Method of forming resist pattern
JP5519634B2 (en) Method for analyzing a mask for photolithography
US20090013304A1 (en) Physical-Resist Model Using Fast Sweeping
TWI236698B (en) Pattern size correction apparatus and pattern size correction method
JP2008180712A (en) Optical measurement and automatic process control using correlation between profile model and important profile shape
JP2004514938A (en) Process and apparatus for measuring integrated circuit characteristics
WO2017143163A1 (en) Photo-sensitized chemically amplified resist (ps-car) simulation
JP2007108508A (en) Method for forming mask pattern, method and program for manufacturing mask
US6630361B1 (en) Use of scatterometry for in-situ control of gaseous phase chemical trim process
JP2005172920A (en) Method and program for extracting hazardous pattern
KR20090071736A (en) Opc method by using etch bias modeling
JP2010192754A (en) Resist pattern simulation method and device
US20070182941A1 (en) Projection exposure mask acceptance decision system, projection exposure mask acceptance decision method, method for manufacturing semiconductor device, and computer program product
JP5685400B2 (en) Manufacturing method of fine structure
KR100801737B1 (en) Method for processing a optical proximity correction of semiconductor device's pattern
KR20160019938A (en) On-product derivation and adjustment of exposure parameters in a directed self-assembly process
Osborne et al. Improving global CD uniformity by optimizing post-exposure bake and develop sequences
US11699017B2 (en) Die yield assessment based on pattern-failure rate simulation
JP3115517B2 (en) Method of forming resist pattern
JP2003037050A (en) Method of simulating resist pattern shape
Williamson et al. Effects of image contrast and resist types upon line edge roughness (LER)
KR20110079110A (en) Optical proximity correction method
Ohfuji et al. Advanced dynamic process simulation for an excimer laser lithography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees