JP4915319B2 - 工作機械制御装置 - Google Patents

工作機械制御装置 Download PDF

Info

Publication number
JP4915319B2
JP4915319B2 JP2007242006A JP2007242006A JP4915319B2 JP 4915319 B2 JP4915319 B2 JP 4915319B2 JP 2007242006 A JP2007242006 A JP 2007242006A JP 2007242006 A JP2007242006 A JP 2007242006A JP 4915319 B2 JP4915319 B2 JP 4915319B2
Authority
JP
Japan
Prior art keywords
grindstone
machine tool
virtual
diameter
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007242006A
Other languages
English (en)
Other versions
JP2009075702A (ja
Inventor
吉二 山本
康晴 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2007242006A priority Critical patent/JP4915319B2/ja
Publication of JP2009075702A publication Critical patent/JP2009075702A/ja
Application granted granted Critical
Publication of JP4915319B2 publication Critical patent/JP4915319B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工作機械を制御する工作機械制御装置に関する。
従来の工作機械には、工作機械の動作を制御する数値制御装置(CNC装置)と、指示入力手段及び表示手段を備えた操作盤とが設けられており、当該操作盤から動作の指示を入力することが可能であり、当該操作盤に動作状態等が表示され、動作異常時には当該操作盤に異常コード等が表示されている。
工作機械は複雑かつ精密な機械であるが、熟練作業者でなくても扱うことができるように、より容易な操作性、保守性が求められている。
例えば、特許文献1に記載された従来技術では、工作機械に設けた表示手段に、当該工作機械の仮想3次元モデルを表示し、工作機械の動作に同期させて仮想3次元モデルをシミュレート動作させている。仮想3次元モデルは、視点位置の変更や拡大及び縮小、そして工作機械の内部を透過して表示することも可能であり、特に異常発生時には、仮想3次元モデルにて工作機械の内部を透過して表示し、異常が発生したパーツを示すことが可能であり、熟練作業者でなくても容易に異常個所、異常パーツがわかるので、便利である。
特開2006−85328号公報
特許文献1に記載された従来技術では、実際の工作機械と仮想3次元モデルとが完全に一致することが理想的であるが、実際の工作機械では、各パーツが誤差を含んだサイズであるとともに組み付け時の誤差が発生したり、摩耗するパーツについては形状が徐々に変化しており、実際の工作機械と仮想3次元モデルとは完全に一致するとは限らない。このため、工作機械の動作に合わせて仮想3次元モデルを動作させると、実際の工作機械ではパーツが干渉していないにもかかわらず仮想3次元モデルの表示では干渉しているように表示される場合がある。
また、実際の工作機械と仮想3次元モデルとをほぼ一致させることができれば、パーツの干渉をより正確に把握することができるので、干渉を避けるためのマージンを適切に設定することが可能となり、サイクルタイムをより向上させることが期待できる。
特に、ワークを加工する毎に摩耗していく加工工具の場合、実際の加工工具の大きさと、仮想3次元モデル中の加工工具の大きさをほぼ一致させることができることが好ましい。
本発明は、このような点に鑑みて創案されたものであり、種々のタイミングで実際の加工工具の大きさを検出して仮想3次元モデルに反映することで、実際の工作機械により近い状態で仮想3次元モデルでの表示を行い、よりリアルな仮想3次元モデルを表示することができる工作機械制御装置を提供することを課題とする。
上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの工作機械制御装置である。
請求項1に記載の工作機械制御装置は、ワークを加工する毎に摩耗する加工工具を備えた工作機械を制御する制御手段と、前記工作機械の動作に同期させて前記工作機械の仮想3次元モデルをシミュレート動作させることが可能なシミュレート手段と、前記シミュレート手段にてシミュレート動作している前記工作機械の仮想3次元モデルを表示する表示手段と、を備えている。
そして、工作機械制御装置は、前記工作機械を構成する各パーツに対応させて、パーツ識別データと3次元形状データと3次元座標データとを含むパーツ情報を記憶しており、複数の前記パーツを仮想3次元座標上で組み付け、仮想3次元座標上で可動するパーツに対しては、実際のパーツに対して出力される制御信号、及び実際の工作機械に設けられた各センサからの検出信号に基づいて、仮想3次元座標上で可動させて表示することで、実際の工作機械の動作に合わせて仮想3次元モデルをシミュレート動作させて前記表示手段に表示する。
そして、摩耗した実際の加工工具の大きさと、仮想3次元モデル中で表示している加工工具の大きさとのずれを所定のタイミングで補正して、補正した大きさの加工工具を仮想3次元モデル中に表示する。
そして、前記所定のタイミングは、加工開始時にワークと加工工具とが接触した時点である。
実際の工作機械は、加工前において加工工具とワークとが離間した状態からワークに対して加工工具を相対的に徐々に近づけた際にワークと加工工具とが接触した時点を検出可能な接触検出手段を備えており、予めワークに関する位置を取得するためのワーク基準位置と、加工工具に関する位置を取得するための加工工具基準位置と、が設定されている。
そして、前記接触検出手段からの検出信号が検出されると、ワークと加工工具が接触した時点におけるワーク基準位置から加工工具基準位置までの距離を示す接触距離を求め、
ワークの大きさのばらつきと加工工具の大きさのばらつきに対して、ワークに対しては、ばらつきにかかわらず、予め設定した基準サイズで仮想3次元モデル中に表示し、加工工具に対しては、前記接触距離からワークの前記基準サイズに基づいた距離を減算した距離に基づいて求めた大きさを用いて仮想3次元モデル中に表示する。
また、本発明の第2発明は、請求項2に記載されたとおりの工作機械制御装置である。
請求項2に記載の工作機械制御装置は、請求項1に記載の工作機械制御装置であって、複数のワークに対して求めた前記接触距離から、前記接触距離の標準偏差を求め、求めた前記接触距離の標準偏差に基づいて、前記接触距離の中で最も長い最長接触距離を求め、加工開始時に加工工具を早送りでワークに近づける際、前記最長接触距離に所定距離を加えた距離まで加工工具を早送りでワークに近づける。
また、本発明の第3発明は、請求項3に記載されたとおりの工作機械制御装置である。
請求項3に記載の工作機械制御装置は、請求項2に記載の工作機械制御装置であって、前記最長接触距離は、前記標準偏差の3倍である3σである。
また、本発明の第4発明は、請求項4に記載されたとおりの工作機械制御装置である。
請求項4に記載の工作機械制御装置は、ワークを加工する毎に摩耗する加工工具を備えた工作機械を制御する制御手段と、前記工作機械の動作に同期させて前記工作機械の仮想3次元モデルをシミュレート動作させることが可能なシミュレート手段と、前記シミュレート手段にてシミュレート動作している前記工作機械の仮想3次元モデルを表示する表示手段と、を備えている。
そして、工作機械制御装置は、前記工作機械を構成する各パーツに対応させて、パーツ識別データと3次元形状データと3次元座標データとを含むパーツ情報を記憶しており、複数の前記パーツを仮想3次元座標上で組み付け、仮想3次元座標上で可動するパーツに対しては、実際のパーツに対して出力される制御信号、及び実際の工作機械に設けられた各センサからの検出信号に基づいて、仮想3次元座標上で可動させて表示することで、実際の工作機械の動作に合わせて仮想3次元モデルをシミュレート動作させて前記表示手段に表示する。
そして、摩耗した実際の加工工具の大きさと、仮想3次元モデル中で表示している加工工具の大きさとのずれを所定のタイミングで補正して、補正した大きさの加工工具を仮想3次元モデル中に表示する。
そして、前記所定のタイミングは、加工工具を整形した時点であり、加工工具は略円筒状の砥石であり、前記工作機械には、前記砥石の形状を整形可能な整形手段と、前記砥石の径を測定可能な工具測定手段と、が予め設けられている。
そして、予め設定された整形開始条件が満足されると、前記整形手段を用いて前記砥石を整形するとともに、整形後の前記砥石の径を前記工具測定手段にて測定し、前記整形後に測定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示する。
また、本発明の第5発明は、請求項5に記載されたとおりの工作機械制御装置である。
請求項5に記載の工作機械制御装置は、請求項4に記載の工作機械制御装置であって、加工したワークの数をカウントするとともに予め設定された数のワークを加工する毎に前記整形手段を用いて砥石を整形して前記工具測定手段を用いて砥石の径を測定し、砥石の整形を行った場合であり且つ前回測定した砥石の径を記憶している場合、前回測定した砥石の径と、今回測定した砥石の径と、前回の測定時から今回の測定時までに加工したワークの数と、に基づいて、ワークを加工する毎の砥石の摩耗量である加工毎摩耗量を求める。
そして、砥石を整形して径を測定した場合、測定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示し、次回の整形時まではワークを加工する毎に前記加工毎摩耗量に基づいて推定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示する。
また、本発明の第6発明は、請求項6に記載されたとおりの工作機械制御装置である。
請求項6に記載の工作機械制御装置は、請求項4に記載の工作機械制御装置であって、加工したワークの数をカウントし、今回の整形時に測定した砥石の径に基づいて、次回に整形すべき砥石の径を示す次回整形砥石径を求め、砥石の整形を行った場合であり且つ前回測定した砥石の径を記憶している場合、前回測定した砥石の径と、今回測定した砥石の径と、前回の測定時から今回の測定時までに加工したワークの数と、に基づいて、ワークを加工する毎の砥石の摩耗量である加工毎摩耗量を求める。
そして、砥石を整形して径を測定した場合、測定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示し、次回の整形時まではワークを加工する毎に前記加工毎摩耗量に基づいて推定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示し、変更した砥石の径が前記次回整形砥石径に達した場合、前記整形手段を用いて砥石を整形する。
また、本発明の第7発明は、請求項7に記載されたとおりの工作機械制御装置である。
請求項7に記載の工作機械制御装置は、ワークを加工する毎に摩耗する加工工具を備えた工作機械を制御する制御手段と、前記工作機械の動作に同期させて前記工作機械の仮想3次元モデルをシミュレート動作させることが可能なシミュレート手段と、前記シミュレート手段にてシミュレート動作している前記工作機械の仮想3次元モデルを表示する表示手段と、を備えている。
そして、工作機械制御装置は、前記工作機械を構成する各パーツに対応させて、パーツ識別データと3次元形状データと3次元座標データとを含むパーツ情報を記憶しており、複数の前記パーツを仮想3次元座標上で組み付け、仮想3次元座標上で可動するパーツに対しては、実際のパーツに対して出力される制御信号、及び実際の工作機械に設けられた各センサからの検出信号に基づいて、仮想3次元座標上で可動させて表示することで、実際の工作機械の動作に合わせて仮想3次元モデルをシミュレート動作させて前記表示手段に表示する。
そして、摩耗した実際の加工工具の大きさと、仮想3次元モデル中で表示している加工工具の大きさとのずれを所定のタイミングで補正して、補正した大きさの加工工具を仮想3次元モデル中に表示する。
そして、前記所定のタイミングは、各ワークの加工を完了した時点であり、加工工具は略円筒状の砥石であり、実際の工作機械は、加工されているワークの寸法を測定可能なワーク測定手段を備えており、予めワークに関する位置を取得するためのワーク基準位置と砥石に関する位置を取得するための加工工具基準位置が設定されている。
そして、ワークの加工を完了した時点において、ワークと砥石とが接触した状態におけるワークの寸法と、前記ワーク基準位置と、前記砥石基準位置と、に基づいて、実際の砥石の径を求め、求めた砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示する。
また、本発明の第8発明は、請求項8に記載されたとおりの工作機械制御装置である。
請求項8に記載の工作機械制御装置は、請求項7に記載の工作機械制御装置であって、前記工作機械には、砥石の形状を整形可能な整形手段と、砥石の径を測定可能な工具測定手段と、が予め設けられており、前記整形手段を用いて砥石を整形可能であるとともに、前記工具測定手段を用いて整形後の砥石の径を測定可能である。
そして、今回の整形後に前記工具測定手段を用いて測定した砥石の径に基づいて、次回に整形すべき砥石の径である次回整形砥石径を求め、ワークの加工を完了する毎に、前記ワーク測定手段を用いて測定したワークの寸法を用いて求めた砥石の径が前記次回整形砥石径に達した場合、前記整形手段を用いて砥石を整形する。
また、本発明の第9発明は、請求項9に記載されたとおりの工作機械制御装置である。
請求項9に記載の工作機械制御装置は、請求項1〜8のいずれかに記載の工作機械制御装置であって、加工工具の大きさを入力可能な入力手段を備えている。
そして、前記入力手段から加工工具の大きさが入力されると、加工を開始する前に、入力された加工工具の大きさに応じて仮想3次元モデル中の加工工具を表示する。
また、本発明の第10発明は、請求項10に記載されたとおりの工作機械制御装置である。
請求項10に記載の工作機械制御装置は、請求項9に記載の工作機械制御装置であって、入力された加工工具の大きさに応じて表示した仮想3次元モデル中の加工工具が、仮想3次元モデル中の他の部分と干渉する場合、警報を出力する。
請求項1に記載の工作機械制御装置を用いれば、実際の加工工具の大きさと、仮想3次元モデル中の加工工具の大きさとのずれが生じていても、所定のタイミングでずれを補正するので、仮想3次元モデルの動作がより正確に表示され、工作機械の状態の詳細を分かり易くすることができる。
外観からは見えない工作機械の内部の状態が、仮想3次元モデルにて正確かつ詳細に分かるので、保守性、保全性をより向上させることができる。
また、請求項1に記載の工作機械制御装置によれば、加工開始時にワークと加工工具とが接触した時点で、適切に仮想3次元モデル中の加工工具の大きさを補正することができる。
なお、接触した時点におけるワーク基準位置から加工工具基準位置までの接触距離を求めるが、これだけでは接触距離中のどこまでがワークによる距離で、どこまでが加工工具による距離であるか分からない。そこで、仮想3次元モデルでは、ワークは基準サイズ(固定サイズ)で表示し、ワークの寸法のばらつきと加工工具の寸法のばらつき(摩耗量)を、加工工具の大きさに変換して表示する。
これにより、複雑な形状のワークであっても、表示の処理負荷を増加させることなく、仮想3次元モデルにおいてワークと加工工具との間隔をより正確に表示することができる。
また、請求項2に記載の工作機械制御装置によれば、加工工具を早送りでワークに近づける際、従来では衝突を回避するために必要以上に余裕を持たせていたが、よりワークに近い位置まで安全に早送りすることができるので、サイクルタイムをより短縮することができる。
また、請求項3に記載の工作機械制御装置によれば、最長接触距離を、より適切な値に設定することができる。
また、請求項4に記載の工作機械制御装置によれば、砥石(加工工具)を整形した場合に、適切に仮想3次元モデル中の加工工具の大きさを補正することができる。
また、請求項5に記載の工作機械制御装置によれば、砥石の整形を行う毎に砥石の径を変更する請求項4に加えて、砥石の整形を行っていない場合であっても、ワークを加工する毎に仮想3次元モデル中の砥石の径を適切に推定して表示することができる。
また、請求項6に記載の工作機械制御装置によれば、砥石の整形が必要な時期を、より適切に判定することができる。
また、請求項7に記載の工作機械制御装置によれば、砥石(加工工具)でワークの加工を完了した時点で、ワークと砥石とが接触した状態におけるワークの寸法(ワークの径)と、ワークの位置と、砥石の位置から砥石の径を求めることができるので、適切に仮想3次元モデル中の加工工具の大きさを補正することができる。
また、請求項8に記載の工作機械制御装置によれば、砥石の整形が必要な時期を、より正確に判定することができる。
また、請求項9に記載の工作機械制御装置によれば、加工を開始する前に、作業者等が入力した大きさで、加工工具を仮想3次元モデル中で表示するので、明らかな誤入力の場合、誤入力であることを加工前に気づかせることができ、再入力を促すことができる。
また、請求項10に記載の工作機械制御装置によれば、請求項9に記載の工作機械制御装置に加えて、入力された大きさにて仮想3次元モデル中の加工工具を表示し、干渉すると判定された場合、警報を出力することで、入力された加工工具の大きさが適切でないことが瞬時に分かるので、入力者に適切に再入力を促すことができる。
以下に本発明を実施するための最良の形態を図面を用いて説明する。
図1は、本発明の工作機械制御装置40を適用した、工作機械1(研削盤)の一実施の形態における構成の例の平面図を示している。また、図2は、図1におけるA方向から見た工作機械1の側面図(工作機械制御装置40、心押し台21T等は省略している)の例を示している。また、図3は工作機械制御装置40の構成の例を示している。
●[工作機械1の構成(図1、図2)]
工作機械1は、ベース2と主軸テーブルTB1と、砥石テーブルTB2と、工作機械制御装置40とを備えている。
砥石テーブルTB2には、略円筒状の砥石30(加工工具に相当)を備えている。砥石30は、砥石テーブルTB2に載置された砥石回転駆動モータ24(砥石回転手段)により、Z軸に平行な砥石回転軸ZTを中心に回転する。なお、Z軸は、ワークW(工作物)の回転軸(工作物回転軸)であるC軸に平行な軸であり、後述する送りネジ23BがZ軸である。
また、図示省略するが、ワークWの被加工部と砥石30の冷却と潤滑を行うためのクーラント(冷却油等の流体)を吐出するクーラントノズルが、砥石30の近傍に設けられており、クーラントは、工作機械制御装置40から制御されるクーラント供給ポンプによりクーラントノズルに供給されて吐出され、クーラントの吐出量は、工作機械制御装置40から制御される流量調節バルブにて調節される。
また、主軸モータ21(工作物回転手段)は、ワークWを支持してワークWをC軸回りに回転させる。
また、砥石テーブルTB2は、ベース2に設けられた砥石テーブル駆動モータ22(第1切込み手段)と送りネジ22B、及び砥石テーブルTB2に設けられたナット(図示省略)により、ベース2に対してX軸方向に移動可能である。なお、X軸は、前記C軸に直交する方向の軸であり、送りネジ22BがX軸である。
主軸テーブルTB1は、ベース2に設けられた主軸テーブル駆動モータ23(第2切込み手段)と送りネジ23B、及び主軸テーブルTB1に設けられたナット(図示省略)により、ベース2に対してZ軸方向に移動可能である。
主軸テーブルTB1の上には、心押し台21Tが固定され、主軸台21Dが、種々の長さのワークに対応可能とするように、心押し台21Tに近接または離間可能となるように、心押し台21Tに対向する位置に載置されている。主軸台21D及び心押し台21Tには、それぞれ支持部21C、21S(チャック等)が設けられており、これら支持部21C、21Sの間にワークWが保持(支持)される。ワークWは、主軸台21Dに設けられた主軸モータ21により、支持部21C、21Sを結ぶC軸を中心として回転する。
工作機械制御装置40は、砥石テーブル駆動モータ22に設けられた位置検出器22Eからの検出信号に基づいて、砥石テーブルTB2のX軸方向の位置を検出することが可能である。また、同様に、主軸テーブル駆動モータ23に設けられた位置検出器23Eからの検出信号に基づいて、主軸テーブルTB1のZ軸方向の位置を検出することが可能であり、主軸モータ21に設けられた位置検出器21Eからの検出信号に基づいて、ワークWの回転角度または回転速度を検出することが可能である。これらの位置検出器としては種々のものを用いることができるが、本実施の形態ではエンコーダを用いている。
また、工作機械1では、工作機械制御装置40による位置制御を行うために、予めワークWの基準位置Pw、及び砥石30の基準位置Ptが設定されている。例えば、ワークWの基準位置Pwは心押し台21Tの支持部21Sの先端部に設定されており、砥石30の基準位置Ptは砥石30の中心に設定されている。
なお、図1の例では、砥石回転駆動モータ24には検出器を設けていないが、砥石回転駆動モータ24にも速度検出器等を設け、砥石回転駆動モータ24の回転速度をフィードバック制御することも可能である。
また、主軸モータ21には、砥石30の外周面の位置を検出する外周面検知ピンP1と、砥石30の端面の位置を検出する端面検知ピンP2とを備えた砥石位置検出手段26(工具測定手段に相当)が設けられており、更に、砥石30の外周面を整形する修正研削面25Sと砥石30の端面を整形する修正研削面25Tとを備えた整形手段25が設けられている。例えば外周面検知ピンP1、端面検知ピンP2はAEセンサ(アコースティックエミッションセンサ)であり、それぞれ、砥石30の外周面、砥石30の端面が接触すると検出信号を出力する。
また、砥石テーブルTB2の端部には、砥石30の位置検出用プローブP3を備えた位置検出手段32が設けられている。例えばプローブP3はタッチセンサであり、外周面検知ピンP1あるいは端面検知ピンP2に接触すると検出信号を出力する。
次に、図2(工作機械1の側面図)を用いて、定寸装置60の構成について説明する。
定寸装置60(ワーク測定手段に相当)は、ワークWを挟んで砥石30と対向する位置のベース2上に設けられ、ワークWの外径を測定可能である。定寸装置60は、C軸回りに回転するワークWの被加工部の外径の寸法をリアルタイムに検出して検出信号を出力する。そして工作機械制御装置40は、定寸装置60からの検出信号を取り込み、被加工部の外径がどれだけであるか、リアルタイムに連続的に認識することができる。
定寸装置60は、駆動装置69と定寸装置本体66等にて構成され、駆動装置69は、パイロットバー68を介して定寸装置本体66をX軸方向に進退移動させることが可能である。
定寸装置本体66には、先端にワークWの被加工部の外周部の上下2個所に接触する接触子である一対のフィーラ(検出部に相当し、図示省略)を設けた一対の揺動アーム61a、61bが揺動可能に設けられている。また、揺動アーム61a、61bは、互いに閉止する方向(間隔が狭くなる方向)に付勢されている。
ワークWの被加工部の外径の測定を行わない場合、定寸装置60は後退端(ワークWから最も離れる位置)に保持され、一対の揺動アーム61a、61bはリトラクト装置(図示省略)により開放状態に保持されている。
ワークWの被加工部の外径の測定を行う場合、例えば、ワークWの粗研削中に定寸装置60の前進が工作機械制御装置40からドライブユニット(図示省略)を介して指令され、駆動装置69が定寸装置本体66をX軸方向に沿ってワークWに近接する方向に移動させる。そして、一対の揺動アーム61a、61bに設けられた一対のフィーラがワークWの外径を測定可能な位置に到達すると、定寸装置本体66の移動が停止される。そして、工作機械制御装置40からドライブユニット(図示省略)を介してリトラクト装置に解除指令を出力すると、一対のフィーラはワークWの外周部の上下2個所に接触する。
工作機械1は、一対のフィーラをワークWの外周部に接触した状態を保持しながら、砥石30をワークWに対して切込む方向に移動させて研削することが可能である。従って、ワークWの被加工部を砥石30で研削しながら、研削している被加工部の外径を定寸装置60にて測定可能である。
なお、定寸装置60の構成は、図2に示すものに限定されず、他の構成の定寸装置を用いてもよい。
●[工作機械制御装置40の構成(図3)]
次に図3を用いて、工作機械制御装置40の構成について説明する。
工作機械制御装置40は、機能的には、図1及び図2に示す工作機械1を制御する工作機械(本体)制御機能40eと、工作機械1及び周辺に設けられたPLC(プログラマブルロジックコントローラ)や各種のセンサ及びスイッチ等を含む周辺機器1Bを制御する周辺機器制御機能40fと、仮想3次元モデルの表示及び動作を制御する仮想3次元モデル機能40cと、工作機械1及び周辺機器1Bの異常を検出する故障診断機能40dと、工作機械制御機能40e、周辺機器制御機能40f、仮想3次元モデル機能40c、故障診断機能40dを管理する総合管理機能40aと、を有している。なお図3の例では、工作機械(本体)制御機能40eと周辺機器制御機能40fを合わせて工作機械制御機能40bとしている。
また、工作機械制御装置40は、物理的には工作機械(本体)制御機能40eを実現するCNC装置と、周辺機能制御機能40fを実現する第1パーソナルコンピュータと、仮想3次元モデル機能40cと故障診断機能40dを実現する第2パーソナルコンピュータと、作業者からの指示等を入力する入力手段44と、工作機械1の動作状態や仮想3次元モデルを表示する表示手段42等で構成されている。
総合管理機能40aは、入力手段44から指示された入力に基づいて、工作機械1及び周辺機器1Bを所定の加工プログラムに従って動作させる制御信号を工作機械(本体)制御機能40e及び周辺機器制御機能40fに出力する。なお、加工プログラムは、工作機械制御装置40が備えている記憶手段に記憶されている。
そして工作機械(本体)制御機能40eは、加工プログラムに基づいて主軸モータ21等を制御する駆動信号を出力するとともに位置検出器21E等からの検出信号を取り込む。また、周辺機器制御機能40fも同様に、加工プログラムに基づいてPLC等に駆動信号を出力するとともに各種センサ等からの検出信号を取り込む。
また、記憶手段には、工作機械1(及び周辺機器1B)を構成する各パーツに対応させて、パーツ識別データと3次元形状データ(パーツの形状やサイズに関するデータ)と3次元座標データ(パーツの組み付け位置や方向に関するデータ)が記憶されている。
仮想3次元モデル機能40cは、仮想3次元座標上において、パーツ識別データに対応するパーツを、3次元形状データに基づいた形状及びサイズで表現し、3次元座標データに基づいた位置や方向に組み付け、仮想3次元座標上で工作機械1の仮想3次元モデルを形成し、総合管理機能40aを介して表示手段42に表示する。また、可動するパーツに対しては、実際の工作機械1(及び周辺機器1B)に出力される駆動信号や、実際の工作機械1に設けられたセンサ等からの検出信号を取り込み、仮想3次元座標上で可動させて表示することで、実際の工作機械1(及び周辺機器1B)の動作に合わせて仮想3次元モデルをシミュレート動作させて表示手段42に表示する。
なお、図3の例に示すように、仮想3次元モデル機能40cと故障診断機能40dを実現する第2パーソナルコンピュータは、工作機械(本体)制御機能40eを実現するCNC装置と周辺機能制御機能40fを実現する第1パーソナルコンピュータから、各パーツ(可動パーツ)の位置を示す現在位置情報や、各種の固有の設定情報を示すパラメータ情報や、工作機械1や周辺機器1Bのシステムに固有の変数を示すシステム変数情報や、PLC装置の入力と出力の状態を示すPLCのI/O情報等、種々の情報を取り込み、仮想3次元モデルの表示に使用することができる。
また、故障診断機能40dは、工作機械1及び周辺機器1Bへの駆動信号、及び工作機械1及び周辺機器1Bからの検出信号を取り込み、各種の異常判定を行う。異常が判定されると、総合管理機能40aから工作機械(本体)制御機能40e及び周辺機器制御機能40fを停止させるための制御信号が出力される。
●[工作機械1と工作機械制御装置40の外観の例(図4)]
次に図4を用いて、実際の工作機械1及び工作機械制御装置40の外観と、表示手段42への表示の例を示す。
図4に示すように実際の工作機械1は全体をカバーで覆われており、この内部に図1に示す主軸モータ21等、工作機械を構成する各パーツや、PLC等の各周辺機器が収められており、通常ではカバーの内部を見ることはできない。
また、本実施の形態にて説明する表示手段42はタッチパネル方式のモニタであり、入力手段44と兼用されている。表示手段42の表示画面42aには、仮想3次元座標上に表示した工作機械1の仮想3次元モデルV1が表示され、領域A44には、工作機械1の動作状態の表示や、各種の指示を入力するための操作ボタンを示すブロックB(x、y)が複数表示されている。例えばブロックB(0、0)〜ブロックB(0、8)には、粗研削〜仕上げ研削までの各工程が表示され、現在どの工程を実行中であるか識別可能に表示される。また、例えばブロックB(6、0)〜ブロックB(6、8)には、仮想3次元モデルV1を表示する視点位置の変更や、拡大表示または縮小表示の指示を入力するための操作ボタンとして設定されている。
ここで、仮想3次元モデルは、実際の工作機械1と完全に一致するとは限らない。実際の工作機械1を構成する各パーツのサイズには、それぞれ誤差があり、組み付け時にも誤差が生じており、許容範囲内の誤差を含んでいる。しかし、仮想3次元モデルは、誤差のない理想サイズのパーツを、誤差のない理想状態で組み付けている。
また、砥石30等の加工工具は、使用する毎に摩耗して径が徐々に小さくなるが、従来の工作機械制御装置40では、使用に応じて摩耗することまではシミュレーションしていない。これを実現するには、ワークWの材質、砥石30の材質、ワークWと砥石30の回転速度、砥石30をワークWに押し付ける力等から摩耗量を推定する必要があり、処理負荷が大きく、好ましくない。
ところが、実際の工作機械1と仮想3次元モデルとのずれが大きいと、例えば、実際の工作機械1では砥石30がワークWの表面に接触して研削中である場合、仮想3次元モデルのシミュレーション動作の表示では、ワークWに砥石30が接触していない表示、あるいはワークWに砥石30が食い込んでいる表示となる場合があり、作業者に違和感を生じさせる。
仮想3次元モデルでは、少なくともワークWと加工工具(この場合、砥石30)の状態(離間状態、接触状態等)を実際の工作機械1と同じ状態で表示することが望まれている。
そこで、以下に説明するように、所定のタイミングで実際の加工工具の大きさを検出して仮想3次元モデルに反映することで、処理負荷を必要以上に増やすことなく、実際の工作機械1の動作状態とほぼ一致する状態で、ワークWと加工工具とを表示し、違和感をなくす。
●[第1の実施の形態(加工開始時のワークWと砥石30の接触時に検出)(図5)]
第1の実施の形態では、実際の砥石30(加工工具)の大きさを、ワークWと砥石30の接触時に検出する。なお、第1の実施の形態では、実際の砥石30の大きさを正確に検出しないが、実際のワークWと砥石30とが接触または離間している場合に、適切に仮想3次元モデルでも接触または離間して表示させることができる。
以下、その手順について説明する。
まず実際の工作機械1にて、加工開始時にワークWと砥石30とが離間している状態から、ワークWに対して砥石30を(相対的に)徐々に近づけていくと、いずれワークWと砥石30は接触する。この接触時点のワークWの位置と砥石30の位置を検出し、その距離を求める。すなわち、接触時点におけるワークWの基準位置Pwと砥石30の基準位置PtとのX軸方向の距離を示す接触距離WTxを求める。なお、図5の例では、説明を容易にするために、基準位置Pwと基準位置PtのY軸方向の位置を同じとしている。
接触距離WTxは、加工前のワークの半径Rwと、径が未確認の砥石30の半径Rtの合計であるため、これでは砥石30の半径Rtが求まらない。
ただし、半径Rwと半径Rtの合計値は、接触距離WTxであることが分かっている。
そこで、加工前のワークWの径(大きさ)のばらつきに対しては、実際には個々のワークW毎にサイズが異なるのであるが、予め設定した基準サイズで(全て同じサイズで)仮想3次元モデル中にワークWを表示する。
ワークWの径を強制的に基準サイズとすれば、接触距離WTxから基準サイズの半径を減算すれば、砥石30の半径Rtが求められる。そして求めた半径Rtにて仮想3次元モデル中の砥石30を表示すれば、基準サイズのワークWとの相対位置(接触位置または離間位置)が、実際の工作機械1のワークWと砥石30との相対位置(接触位置または離間位置)と一致する。
これにより、実際の工作機械1では砥石30がワークWの表面に接触している場合、仮想3次元モデルのシミュレーション動作の表示にて、ワークWに砥石30が接触していない表示、あるいはワークWに砥石30が食い込んでいる表示等を回避することができる。
なお、ワークWと砥石30が接触したか否かの検出は、砥石テーブルTB2上の砥石30の近傍に設けたAEセンサ1Ba(アコースティックエミッションセンサ)等(接触検出手段に相当)を用いて検出することが可能である。
なお、接触検出手段は、主軸テーブルTB1上のワークWの近傍に設けてもよい。また、AEセンサの代わりに、砥石回転駆動モータ24や主軸モータ21の負荷の変化を検出可能な負荷センサを用いてもよい。
なお、接触時点で定寸装置60にてワークWの半径Rwを求めて、砥石30の半径Rtを求めて、仮想3次元モデルで表示するようにしてもよい。この場合、仮想3次元モデルでは、ワークWを基準サイズで表示せずに、実際に求めたワークWの半径Rwを用いて表示する。
次に、上記に説明した加工開始時におけるワークWと砥石30との接触時点における接触距離WTxの他の利用方法について説明する。
ワークWを砥石30で研削加工する場合、一般的には図5(B)に示すように、まず早送り工程[1]にて、砥石30をワークWに衝突しない位置、且つできるだけワークWに近い位置まで早送りする。そして、低速送り工程[2]にて、砥石30がワークWに接触するまで徐々に(ゆっくりと)近づけていく。砥石30とワークWとが接触したら、研削工程[3]にて、目標径となるまで研削する。定寸装置60にて目標径に達したことを確認すると、早戻し工程[4]にて、原位置に砥石30を早送りする。ここで、低速送り工程[2]の距離をいかに短くするかが、サイクルタイム短縮のカギである。
従来では、砥石30とワークWとが衝突しない早送り工程[1]の位置を作業者が経験的に設定していたので、低速送り工程[2]の距離が必要以上に長くなる場合があった。
そこで、上記に説明した加工開始時におけるワークWと砥石30との接触時点における接触距離WTxを用いて、低速送り工程[2]の距離をより短くする方法を説明する。
同一の製造ロットのワークWは正規分布であると考えられるので、例えば30個程度のワークWにて接触距離WTxを求め、その標準偏差σを求めれば、接触距離WTxの平均値を中心とした前後3σ内に99.7%が含まれると考えることができる。その中で最も長い距離を最長接触距離WTmaxとする。
この最長接触距離WTmaxに、安全のための適切なマージン距離M(例えば、許容加工精度)を加えた距離までは、ワークWと砥石30とが離間状態である。従って、距離(WTmax+M)まで、砥石30を早送り工程[1]でワークWに近づければ、低速送り工程[2]の距離をより短くすることが可能であり、衝突を確実に回避してサイクルタイムを短縮化することができる。
また、工作機械制御装置40は、低速送り工程[2]の開始位置(すなわち、早送り工程[1]の終了位置)である低速送り開始点(開始位置)を、表示画面42aに表示している仮想3次元モデル中に表示する。これにより、作業者が、どこまで早送りされるのか、どこから低速送りされるのか、を視覚的に理解することができ、低速送り工程の開始点が何らかの理由で間違っていたときにすぐにミスに気づくことができるという効果が得られる。
以上に説明した、ワークWと加工工具とが接触する直前の低速送り工程[2]の距離の短縮化方法は、砥石を備えた工作機械に限定されず、種々の工作機械に適用することが可能である。
●[第2の実施の形態(砥石30の整形時に検出)(図6〜図8)]
第2の実施の形態では、実際の砥石30(加工工具)の大きさを、砥石30の整形時に検出する。
ワークWを加工する毎に砥石30は摩耗し、摩耗が進行した砥石30の形状を定期的に整形するために、工作機械1は、砥石30の形状を整形可能な整形手段25と、(整形後の)砥石30の径を測定可能な外周面検知ピンP1(工具測定手段に相当)とを備えている。
以下、図6、図7(A)、図7(B)に示すフローチャートを用いて、第2の実施の形態における、3通りの処理手順(手順(2−1)、手順(2−2)、手順(2−3))を説明する。
[手順(2−1)(図6)]
まず、図6に示すフローチャートを用いて手順(2−1)について説明する。工作機械1では、例えばワークWを10個加工する毎に砥石30の整形を行い、4回目の整形時に砥石30の有効範囲の下限に達したと判定して砥石30の交換を促すように設定されている(図8(A)参照)。この場合、砥石30の整形を行うべき摩耗量(摩耗max)に達するには、ワークWを10個加工すると達する、ということを想定している。例えばワーク1個を加工すると砥石30は0.3[μm]摩耗し、ワークを10個加工すると3[μm](=摩耗max)摩耗すると想定している。
工作機械制御装置40は、新たなワークWがセットされて加工を開始する際、ステップS110にて、加工回数カウンタをカウントする。加工回数カウンタは、ワークWを何個加工したか、を示すカウンタである。
次のステップS120では、ワークWの加工を行い、加工が完了するとステップS130に進む。なお、工作機械制御装置40は、加工中のワークWの径を定寸装置60(ワーク測定手段に相当)にて測定可能であり、測定したワークWの径を用いて仮想3次元モデル中のワークWの大きさを変更して表示することができる。
ステップS130では、加工回数カウンタが加工数閾値以上であるか否かを判定する。加工回数カウンタが加工数閾値未満である(No)場合、ステップS110に戻る。加工回数カウンタが加工数閾値以上である(Yes)場合、ステップS140に進む。
ステップS140では、整形回数カウンタが整形数閾値以上であるか否かを判定する。整形回数カウンタが整形閾値未満である(No)場合、ステップS150に進む。整形回数カウンタが整形閾値以上である(Yes)場合、処理を終了して、砥石交換作業を促す。そして、作業者によって砥石30の交換作業が行われ、交換作業が完了すると、本フローチャートの処理が再度指示される。
ステップS150では、砥石30の整形処理を行い、整形した砥石30の径を測定し、ステップS160に進む。なお、整形方法及び測定方法は説明を省略する。砥石30の径が更新されるのは、このタイミングである。なお、工作機械制御装置40は、測定した砥石30の計を用いて仮想3次元モデル中の砥石の大きさを変更して表示することができる。
ステップS160では、整形回数カウンタをカウントし、ステップS170に進む。
ステップS170では、加工回数カウンタをクリアしてステップS110に戻る。
以上、図6に示す手順(2−1)に基づいて仮想3次元モデル中の砥石の大きさを変更した場合、実際の砥石30の整形と径の測定を行った際(ステップS150)に正確な径の砥石を表示することが可能である。また手順(2−1)では、ワークWを加工する毎には、砥石の径を変更して表示することができないが、後述する手順(2−2)及び手順(2−3)にて、ワークWを加工する毎に砥石の径を変更して表示する方法について説明する。
また、図6に示す手順(2−1)では、ワークWの加工回数で砥石30の整形の実行/非実行を制御しており、図8(B)に示すように、ワークWの大きさのばらつき等により、整形すべき摩耗量に達していなくても整形を実行してしまう場合がある。従って、図8(B)に示すように、砥石有効下限まで利用できる砥石30の部分が残っていても交換を促してしまう場合がある。
なお、砥石30を整形する修正研削面25S、25T(ダイヤモンドロール等)は砥石30を整形する毎に摩耗し、外周面検知ピンP1、端面検知ピンP2は砥石30の大きさを測定する毎に摩耗するが、それぞれ、1回の整形でN[μm]、1回の測定でM[μm]摩耗すると想定して、整形及び測定する毎に仮想3次元モデル中の大きさを変更して表示するようにしてもよい。
[手順(2−2)(図7(A))]
次に図7(A)に示すフローチャートを用いて手順(2−2)について説明する。なお、図7(A)に示すフローチャートは、図6に示したフローチャートに対して、ステップS121、S122、S151が追加され、ステップS140、S160が削除されている。以下、同一のステップの説明は省略し、相違点を主に説明する。
ステップS110、S120は、図6と同様であるので説明を省略する。
ステップS121では、現在記憶している砥石径から加工毎摩耗量を減算して砥石径を更新し、ステップS122に進む。これにより、ステップS120の加工後の砥石径を推定する。なお、加工毎摩耗量は、後述するステップS151にて説明する。そして、工作機械制御装置40は、更新した砥石径を用いて、仮想3次元モデル中の砥石の径を変更して表示する。
ステップS122では、更新した砥石径が下限値以下であるか否かを判定する。径が下限値以下となった砥石30は砥石としての有効範囲を使い切った状態であるため、交換が必要となる。砥石径が下限値以下である(Yes)場合、処理を終了して、砥石交換作業を促す。そして、作業者によって砥石30の交換作業が行われ、交換作業が完了すると、本フローチャートの処理が再度指示される。砥石径が下限値より大きい(No)場合、ステップS130に進む。このステップS122を追加しているので、図6のステップS140、ステップS160の整形カウンタの処理を省略している。
ステップS130、S150は、図6と同様であるので説明を省略する。
続くステップS151では、[前回測定した砥石30の径−今回測定した砥石30の径]/加工回数カウンタ(前回測定時から今回測定時までに加工したワークの数)を求めることで、ワークWを加工する毎の砥石30の摩耗量を求め、加工毎摩耗量としてステップS121にて利用する。なお、1回目の整形時には前回の整形時の砥石30の径が存在しないが、例えば、砥石30を交換時に最初の砥石径を測定して記憶しておけばよい。
そして、ステップS170は、図6と同様であるので説明を省略する。
以上、図7(A)に示す手順(2−2)に基づいて仮想3次元モデル中の砥石の大きさを変更した場合、実際の砥石30の整形と径の測定を行った際(ステップS150)に正確な径の砥石を表示することが可能である。また、ワークWを加工する毎には、加工毎砥石摩耗量に基づいて推定した径の砥石を表示することができる(ステップS121)。
なお、手順(2−2)では、図8(C)に示すように、ワークWの大きさのばらつき等により、整形すべき摩耗量に達していなくても整形を実行してしまう場合があるが、砥石有効下限まで砥石30を利用できる。
[手順(2−3)(図7(B))]
次に図7(B)に示すフローチャートを用いて手順(2−3)について説明する。なお、図7(B)に示すフローチャートは、図6に示したフローチャートに対して、ステップS121、S122、S131、S151、S152が追加され、ステップS130、S140、S160が削除されている。以下、同一のステップの説明は省略し、相違点を主に説明する。
ステップS122、S121は、図7(A)に示す手順(2−2)と同じであるので説明を省略する。
ステップS131では、ステップS121にて更新された砥石径が次回整形砥石径以下であるか否かを判定する。なお、次回整形砥石径は、砥石30の整形(ステップS150)を実行後、ステップS152にて算出され、次に整形を行うべき砥石の径を示している。砥石径が次回整形砥石径より大きい(No)場合、整形は必要ないのでステップS110に進む。砥石径が次回整形砥石径以下(Yes)の場合、整形が必要であるのでステップS150に進む。
ステップS150、S151は、図7(A)に示す手順(2−2)と同じであるので説明を省略する。
ステップS152では、ステップS150にて測定した整形後の砥石径に対して、次に整形すべき砥石の径を求めて次回整形砥石径に設定する。このため、図8(D)に示すように、ワークWを加工した回数で整形タイミングを設定するのではなく、砥石30の径に対して整形タイミングを設定できるので、整形の間隔を、ほぼ所望する間隔とすることが可能であり、より好ましい状態で整形を行うことができる。なお、最初の次回整形砥石径は、砥石を交換後に最初の砥石径を測定したときに設定すればよい。
そして、ステップS170は、図6と同様であるので説明を省略する。
以上、図7(B)に示す手順(2−3)に基づいて仮想3次元モデル中の砥石の大きさを変更した場合、図7(A)に示す手順(2−2)と同様に、実際の砥石30の整形と径の測定を行った際(ステップS150)に正確な径の砥石を表示することが可能である。また、ワークWを加工する毎には、加工毎砥石摩耗量に基づいて推定した径の砥石を表示することができる(ステップS121)。
なお、手順(2−3)では、図8(D)に示すように、ワークWの大きさのばらつき等があっても、砥石の径に基づいて整形を実行するため、より適切なタイミングで整形を行うことができる。また、図7(A)に示す手順(2−2)と同様に、砥石有効下限まで砥石30を利用できる。
また、工作機械制御装置40は、次回整形砥石径を、表示画面42aに表示している仮想3次元モデル中の砥石30上に表示する。これにより、作業者が次回の砥石整形タイミングを視覚的に理解でき、作業性が向上するという効果が得られる。
●[第3の実施の形態(ワークWの加工完了時に検出)(図9)]
第3の実施の形態では、実際の砥石30(加工工具)の大きさを、ワークWの加工完了時に算出する。
図9(B)を用いて、ワークWの加工完了時に砥石30の径を算出する方法について説明する。図9(B)は、ワークWの加工が完了して、ワークWと砥石30とが離間する直前で接触点Aにて接触している状態を示している。
ここで、ワークWの中心であるワークWの基準位置PwのXY座標を(Wx、Wy)、砥石30の中心である砥石30の基準位置PtのXY座標を(Tx、Ty)、接触点AのXY座標を(Ax、Ay)、ワークWの半径をRw、砥石30の半径をRtとする。
この場合、工作機械制御装置40にとって、Pw(Wx、Wy)、Pt(Tx、Ty)の位置は機械座標から既知であり、Rwは定寸装置60の測定から既知である。
接触点AはワークWの外周上にあるので、以下の式が成立する。
(Wx−Ax)2+(Wy−Ay)2=Rw2 (式1)
また、接触点AはワークWの中心Pw(基準位置)と砥石30の中心Pt(基準位置)を通る直線上にあるので、以下の式が成立する。
Ty−Ay=(Tx−Ax)*(Ty−Wy)/(Tx−Wx) (式2)
また、接触点Aは砥石30の外周上にあるので、以下の式が成立する。
(Tx−Ax)2+(Ty−Ay)2=Rt2 (式3)
以上の(式1)、(式2)から(Ax、Ay)を求めて(式3)に代入することで、砥石30の半径Rtを求めることができる。
なお、Z座標を考慮する必要がある場合は(式1)〜(式3)をXYZ座標の3次元として求めればよい。また、(式1)〜(式3)においてY座標を同じとすれば、計算を容易にできる。
次に図9(A)に示すフローチャートを用いて手順(3−1)について説明する。なお、図9(A)に示すフローチャートは、図6に示したフローチャートに対して、ステップS115、S122、S131、S152が追加され、ステップS110、S120、S130、S140、S160、S170が削除されている。以下、相違点を主に説明する。
ステップS115では、ワークWの加工処理を行い、ワークWの寸法と、ワークWの基準位置Pwと、砥石30の基準位置Ptとを用いて、上記に説明した手順にて砥石30の径(半径Rt)を算出する。そして、工作機械制御装置40は、求めた砥石30の径を用いて、仮想3次元モデル中の砥石の径を変更して表示する。手順(2−1)及び手順(2−2)のステップS121で求めた砥石の径は推定値であることに対して、手順(3−1)のステップS115で求めた砥石の径は直接的な測定値から算出した値であるので、より正確な砥石の径を求めることができる。
ステップS122は、図7(A)の手順(2−1)のステップS122と同じであるので説明を省略する。
また、ステップS131、S150、S152は、図7(B)の手順(2−2)のステップS131、S150、S152と同じであるので説明を省略する。
以上、図9(A)に示す手順(3−1)に基づいて仮想3次元モデル中の砥石の大きさを変更した場合、図7(A)に示す手順(2−1)と同様に、実際の砥石30の整形と径の測定を行った際(ステップS150)に正確な径の砥石を表示することが可能である。また、ワークWを加工する毎には、ワークWの径と、ワークWの基準位置Pw、砥石30の基準位置Ptに基づいて算出した径の砥石を表示することができる(ステップS115)。
なお、手順(3−1)では、手順(2−2)と同様に、図8(D)に示すように、ワークWの大きさのばらつき等があっても、砥石の径に基づいて整形を実行するため、より適切なタイミングで整形を行うことができる。また、砥石有効下限まで砥石30を利用できる点も手順(2−2)と同様である。
●[第4の実施の形態(加工工具の大きさが直接指示された場合の表示)]
第1の実施の形態〜第3の実施の形態では、工作機械1にて加工中の所定のタイミングで自動的に加工工具の大きさを求めて、仮想3次元モデル中に表示する加工工具の大きさに反映する方法を説明した。第4の実施の形態では、加工工具の交換直後等の場合に作業者から加工工具の大きさが直接指示(入力)された場合における、仮想3次元モデル中への表示について説明する。
例えば、加工工具が砥石の場合、作業者は砥石の交換直後に、工作機械制御装置40の入力手段44を用いて砥石の大きさ(径)を入力している。従来では、入力された径を仮想3次元モデルに表示するのは加工を開始してからであったため、入力された値が正しくない場合、加工が開始されてから異常なサイズの加工工具が表示されていた。
作業者からの入力値が正しくない状態で加工を開始してしまうことを回避するには、作業者が入力した時点で、入力値を反映した仮想3次元モデルを表示すればよい。例えば砥石の径を入力する場合、砥石の径が入力された時点で仮想3次元モデルの砥石の径を変更して表示すれば、異常な値を入力した場合、作業者は自身の入力値が正しくないことを即座に認識して再入力することができる。
また、作業者が入力した値が正しくない値であっても、正しい値との差が小さい場合、仮想3次元モデル中に入力値に応じた大きさで加工工具を表示しても、正しい値でないことが分からない場合がある。そこで、入力された値に応じた大きさで仮想3次元モデル中の加工工具を表示し、仮想3次元モデル中の加工工具が、仮想3次元モデル中の他の部分(他のパーツ)と干渉する場合、入力値の再確認と再入力を促す警報を出力する。例えば、警報を示す音声や、加工工具を点滅させたり色彩を変更したりして表示することで警報を出力する。
本発明の工作機械制御装置40は、本実施の形態で説明した外観、構成、処理、表示例等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
なお、本実施の形態の説明では、図1の例に示した工作機械1により、砥石30(加工工具)に対してワークWをZ軸方向に移動させ、ワークWに対して砥石30をX軸方向に移動させたが、ワークWに対して砥石30をZ軸方向に移動させ、砥石30に対してワークWをX軸方向に移動させる構成にすることもできる。従って、ワークWに対して砥石30を相対的にZ軸方向、あるいはX軸方向に移動させることができる。
工作機械制御装置40を備えた工作機械1の例を説明する図(平面図)である。 工作機械1の例を説明する図(側面図)である。 工作機械制御装置40の構成の例を説明する図である。 実際の工作機械1及び工作機械制御装置40の外観と、表示手段42に表示される仮想3次元モデルを説明する図である。 第1の実施の形態を説明する図である。 第2の実施の形態において、手順(2−1)を説明する図である。 第2の実施の形態において、手順(2−2)、手順(2−3)を説明する図である。 第2の実施の形態において、砥石30の整形が行われるタイミングと、各整形時における砥石30の摩耗量との関係を説明する図である。 第3の実施の形態において、手順(3−1)と、砥石30の径の求め方を説明する図である。
1 工作機械
1B 周辺機器
1Ba AEセンサ(接触検出手段)
2 ベース
21 主軸モータ
21E 位置検出器
21D 主軸台
21T 心押し台
21C、21S 支持部
TB2 砥石テーブル
22 砥石テーブル駆動モータ
22E 位置検出器
TB1 主軸テーブル
23 主軸テーブル駆動モータ
23E 位置検出器
24 砥石回転駆動モータ
25 整形手段
25S 修正研削面
25T 修正研削面
26 砥石位置検出手段(工具測定手段)
P1 外周面検知ピン
P2 端面検知ピン
30 砥石(加工工具)
32 位置検出手段
40 工作機械制御装置
42 表示手段
42a 表示画面
44 入力手段
60 定寸装置(ワーク測定手段)
P3 位置検出用プローブ
Pt (加工工具の)基準位置
Pw (ワークの)基準位置
W ワーク

Claims (10)

  1. ワークを加工する毎に摩耗する加工工具を備えた工作機械を制御する制御手段と、
    前記工作機械の動作に同期させて前記工作機械の仮想3次元モデルをシミュレート動作させることが可能なシミュレート手段と、
    前記シミュレート手段にてシミュレート動作している前記工作機械の仮想3次元モデルを表示する表示手段と、を備え、
    前記工作機械を構成する各パーツに対応させて、パーツ識別データと3次元形状データと3次元座標データとを含むパーツ情報を記憶しており、
    複数の前記パーツを仮想3次元座標上で組み付け、
    仮想3次元座標上で可動するパーツに対しては、実際のパーツに対して出力される制御信号、及び実際の工作機械に設けられた各センサからの検出信号に基づいて、仮想3次元座標上で可動させて表示することで、実際の工作機械の動作に合わせて仮想3次元モデルをシミュレート動作させて前記表示手段に表示し、
    摩耗した実際の加工工具の大きさと、仮想3次元モデル中で表示している加工工具の大きさとのずれを所定のタイミングで補正して、補正した大きさの加工工具を仮想3次元モデル中に表示し、
    前記所定のタイミングは、加工開始時にワークと加工工具とが接触した時点であり、
    実際の工作機械は、加工前において加工工具とワークとが離間した状態からワークに対して加工工具を相対的に徐々に近づけた際にワークと加工工具とが接触した時点を検出可能な接触検出手段を備えており、予めワークに関する位置を取得するためのワーク基準位置と、加工工具に関する位置を取得するための加工工具基準位置と、が設定されており、
    前記接触検出手段からの検出信号が検出されると、ワークと加工工具が接触した時点におけるワーク基準位置から加工工具基準位置までの距離を示す接触距離を求め、
    ワークの大きさのばらつきと加工工具の大きさのばらつきに対して、
    ワークに対しては、ばらつきにかかわらず、予め設定した基準サイズで仮想3次元モデル中に表示し、
    加工工具に対しては、前記接触距離からワークの前記基準サイズに基づいた距離を減算した距離に基づいて求めた大きさを用いて仮想3次元モデル中に表示する、
    工作機械制御装置。
  2. 請求項1に記載の工作機械制御装置であって、
    複数のワークに対して求めた前記接触距離から、前記接触距離の標準偏差を求め、
    求めた前記接触距離の標準偏差に基づいて、前記接触距離の中で最も長い最長接触距離を求め、
    加工開始時に加工工具を早送りでワークに近づける際、前記最長接触距離に所定距離を加えた距離まで加工工具を早送りでワークに近づける、
    工作機械制御装置。
  3. 請求項2に記載の工作機械制御装置であって、
    前記最長接触距離は、前記標準偏差の3倍である3σである、
    工作機械制御装置。
  4. ワークを加工する毎に摩耗する加工工具を備えた工作機械を制御する制御手段と、
    前記工作機械の動作に同期させて前記工作機械の仮想3次元モデルをシミュレート動作させることが可能なシミュレート手段と、
    前記シミュレート手段にてシミュレート動作している前記工作機械の仮想3次元モデルを表示する表示手段と、を備え、
    前記工作機械を構成する各パーツに対応させて、パーツ識別データと3次元形状データと3次元座標データとを含むパーツ情報を記憶しており、
    複数の前記パーツを仮想3次元座標上で組み付け、
    仮想3次元座標上で可動するパーツに対しては、実際のパーツに対して出力される制御信号、及び実際の工作機械に設けられた各センサからの検出信号に基づいて、仮想3次元座標上で可動させて表示することで、実際の工作機械の動作に合わせて仮想3次元モデルをシミュレート動作させて前記表示手段に表示し、
    摩耗した実際の加工工具の大きさと、仮想3次元モデル中で表示している加工工具の大きさとのずれを所定のタイミングで補正して、補正した大きさの加工工具を仮想3次元モデル中に表示し、
    前記所定のタイミングは、加工工具を整形した時点であり、
    加工工具は略円筒状の砥石であり、前記工作機械には、前記砥石の形状を整形可能な整形手段と、前記砥石の径を測定可能な工具測定手段と、が予め設けられており、
    予め設定された整形開始条件が満足されると、前記整形手段を用いて前記砥石を整形するとともに、整形後の前記砥石の径を前記工具測定手段にて測定し、
    前記整形後に測定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示する、
    工作機械制御装置。
  5. 請求項4に記載の工作機械制御装置であって、
    加工したワークの数をカウントするとともに予め設定された数のワークを加工する毎に前記整形手段を用いて砥石を整形して前記工具測定手段を用いて砥石の径を測定し、
    砥石の整形を行った場合であり且つ前回測定した砥石の径を記憶している場合、前回測定した砥石の径と、今回測定した砥石の径と、前回の測定時から今回の測定時までに加工したワークの数と、に基づいて、ワークを加工する毎の砥石の摩耗量である加工毎摩耗量を求め、
    砥石を整形して径を測定した場合、測定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示し、次回の整形時まではワークを加工する毎に前記加工毎摩耗量に基づいて推定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示する、
    工作機械制御装置。
  6. 請求項4に記載の工作機械制御装置であって、
    加工したワークの数をカウントし、
    今回の整形時に測定した砥石の径に基づいて、次回に整形すべき砥石の径を示す次回整形砥石径を求め、
    砥石の整形を行った場合であり且つ前回測定した砥石の径を記憶している場合、前回測定した砥石の径と、今回測定した砥石の径と、前回の測定時から今回の測定時までに加工したワークの数と、に基づいて、ワークを加工する毎の砥石の摩耗量である加工毎摩耗量を求め、
    砥石を整形して径を測定した場合、測定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示し、次回の整形時まではワークを加工する毎に前記加工毎摩耗量に基づいて推定した砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示し、変更した砥石の径が前記次回整形砥石径に達した場合、前記整形手段を用いて砥石を整形する、
    工作機械制御装置。
  7. ワークを加工する毎に摩耗する加工工具を備えた工作機械を制御する制御手段と、
    前記工作機械の動作に同期させて前記工作機械の仮想3次元モデルをシミュレート動作させることが可能なシミュレート手段と、
    前記シミュレート手段にてシミュレート動作している前記工作機械の仮想3次元モデルを表示する表示手段と、を備え、
    前記工作機械を構成する各パーツに対応させて、パーツ識別データと3次元形状データと3次元座標データとを含むパーツ情報を記憶しており、
    複数の前記パーツを仮想3次元座標上で組み付け、
    仮想3次元座標上で可動するパーツに対しては、実際のパーツに対して出力される制御信号、及び実際の工作機械に設けられた各センサからの検出信号に基づいて、仮想3次元座標上で可動させて表示することで、実際の工作機械の動作に合わせて仮想3次元モデルをシミュレート動作させて前記表示手段に表示し、
    摩耗した実際の加工工具の大きさと、仮想3次元モデル中で表示している加工工具の大きさとのずれを所定のタイミングで補正して、補正した大きさの加工工具を仮想3次元モデル中に表示し、
    前記所定のタイミングは、各ワークの加工を完了した時点であり、
    加工工具は略円筒状の砥石であり、実際の工作機械は、加工されているワークの寸法を測定可能なワーク測定手段を備えており、予めワークに関する位置を取得するためのワーク基準位置と砥石に関する位置を取得するための加工工具基準位置が設定されており、
    ワークの加工を完了した時点において、ワークと砥石とが接触した状態におけるワークの寸法と、前記ワーク基準位置と、前記砥石基準位置と、に基づいて、実際の砥石の径を求め、求めた砥石の径を用いて仮想3次元モデル中の砥石の径を変更して表示する、
    工作機械制御装置。
  8. 請求項7に記載の工作機械制御装置であって、
    前記工作機械には、砥石の形状を整形可能な整形手段と、砥石の径を測定可能な工具測定手段と、が予め設けられており、
    前記整形手段を用いて砥石を整形可能であるとともに、前記工具測定手段を用いて整形後の砥石の径を測定可能であり、
    今回の整形後に前記工具測定手段を用いて測定した砥石の径に基づいて、次回に整形すべき砥石の径である次回整形砥石径を求め、
    ワークの加工を完了する毎に、前記ワーク測定手段を用いて測定したワークの寸法を用いて求めた砥石の径が前記次回整形砥石径に達した場合、前記整形手段を用いて砥石を整形する、
    工作機械制御装置。
  9. 請求項1〜8のいずれか一項に記載の工作機械制御装置であって、
    加工工具の大きさを入力可能な入力手段を備えており、
    前記入力手段から加工工具の大きさが入力されると、加工を開始する前に、入力された加工工具の大きさに応じて仮想3次元モデル中の加工工具を表示する、
    工作機械制御装置。
  10. 請求項9に記載の工作機械制御装置であって、
    入力された加工工具の大きさに応じて表示した仮想3次元モデル中の加工工具が、仮想3次元モデル中の他の部分と干渉する場合、警報を出力する、
    工作機械制御装置。
JP2007242006A 2007-09-19 2007-09-19 工作機械制御装置 Active JP4915319B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242006A JP4915319B2 (ja) 2007-09-19 2007-09-19 工作機械制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242006A JP4915319B2 (ja) 2007-09-19 2007-09-19 工作機械制御装置

Publications (2)

Publication Number Publication Date
JP2009075702A JP2009075702A (ja) 2009-04-09
JP4915319B2 true JP4915319B2 (ja) 2012-04-11

Family

ID=40610630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242006A Active JP4915319B2 (ja) 2007-09-19 2007-09-19 工作機械制御装置

Country Status (1)

Country Link
JP (1) JP4915319B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1401373B1 (it) * 2010-08-06 2013-07-18 Fidia Spa Sistema predittivo di controllo e visualizzazione virtuale per una macchina utensile a controllo numerico
KR101933336B1 (ko) * 2015-02-12 2018-12-27 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 표시 시스템
JP6113244B2 (ja) * 2015-09-30 2017-04-12 株式会社牧野フライス製作所 工作機械の故障診断方法および工作機械の制御装置
JP6790525B2 (ja) * 2016-07-08 2020-11-25 株式会社リコー 診断装置、診断システム、診断方法およびプログラム
TWI650705B (zh) * 2017-08-17 2019-02-11 凌華科技股份有限公司 架構於非侵入式資料擷取系統客製化顯示畫面的系統模組及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054166A (ja) * 1991-06-25 1993-01-14 Okuma Mach Works Ltd 研削盤用数値制御装置
JPH08257905A (ja) * 1995-03-28 1996-10-08 Tokyo Seimitsu Co Ltd 自動定寸装置
JP2944947B2 (ja) * 1996-11-11 1999-09-06 豊田工機株式会社 数値制御円筒研削盤の研削方法
KR100311077B1 (ko) * 1999-10-23 2001-11-02 윤종용 선행공정의 결과에 따라 최적의 후행공정장비 및/또는 후행공정조건을 가변적으로 적용하는 로트 디스패칭방법 및 이를 위한 시스템
JP4911810B2 (ja) * 2000-06-23 2012-04-04 コマツNtc株式会社 ワークの研削装置および研削方法
US6662073B1 (en) * 2000-06-30 2003-12-09 Mori Seiki Co., Ltd. Apparatus and method for machining simulation for NC machining
JP2006085328A (ja) * 2004-09-15 2006-03-30 Toyoda Mach Works Ltd 工作機械制御装置
JP2006085575A (ja) * 2004-09-17 2006-03-30 Citizen Watch Co Ltd 工作機械の移動体の移動を制御する制御装置、制御装置を有する工作機械及び移動体の移動方法
JP4904731B2 (ja) * 2005-07-06 2012-03-28 株式会社ジェイテクト 工作機械の干渉チェック装置

Also Published As

Publication number Publication date
JP2009075702A (ja) 2009-04-09

Similar Documents

Publication Publication Date Title
EP3214514B1 (en) Machine tool control method and machine tool control device
US9212961B2 (en) Grinding abnormality monitoring method and grinding abnormality monitoring device
CN107077118B (zh) 机床的控制装置以及机床
JP4915319B2 (ja) 工作機械制御装置
KR101889889B1 (ko) 기어 절삭 기계를 제어하는 방법 및 기어 절삭 기계
JP6584488B2 (ja) 工作機械の制御方法および工作機械の制御装置
JP6434246B2 (ja) 機械異常履歴の解析支援機能を有する数値制御装置
JP7148421B2 (ja) 工作機械の予防保全システム
JP5023919B2 (ja) 工作機械
US9984452B2 (en) Monitoring apparatus for machine tool
JP2006085328A5 (ja)
TWI659214B (zh) 檢測設備及操作檢測設備的方法
JP2006085328A (ja) 工作機械制御装置
CN114473870A (zh) 磨床监测系统及监测方法
JP2008272861A (ja) 工具位置測定方法、工具位置測定システム、及び加工方法
JP2022528842A (ja) 較正方法およびワークピース情報の取得方法
JP5711015B2 (ja) 定寸装置
CN102985222A (zh) 磨床以及研磨加工方法
KR20090076363A (ko) 공작기계의 툴 모니터링 시스템
EP3837560B1 (en) Method, computer program and apparatus for measurement cycle generation in a touch trigger coordinate machine
US20160199963A1 (en) Method for compensating temparature-induced deviations in a grinding machine and machine being equipped correspondingly
CN112775731A (zh) 磨削系统
WO2021192071A1 (ja) ワーク加工装置
JP5167767B2 (ja) 工作機械の干渉検出装置
JP2020008979A (ja) 数値制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150