JP4915016B2 - Purification method of gallium-containing solution - Google Patents

Purification method of gallium-containing solution Download PDF

Info

Publication number
JP4915016B2
JP4915016B2 JP2005360073A JP2005360073A JP4915016B2 JP 4915016 B2 JP4915016 B2 JP 4915016B2 JP 2005360073 A JP2005360073 A JP 2005360073A JP 2005360073 A JP2005360073 A JP 2005360073A JP 4915016 B2 JP4915016 B2 JP 4915016B2
Authority
JP
Japan
Prior art keywords
gallium
solution
containing solution
zinc
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005360073A
Other languages
Japanese (ja)
Other versions
JP2007162073A (en
Inventor
三雄 鐙屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2005360073A priority Critical patent/JP4915016B2/en
Publication of JP2007162073A publication Critical patent/JP2007162073A/en
Application granted granted Critical
Publication of JP4915016B2 publication Critical patent/JP4915016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、ガリウム含有溶液の精製方法に関し、特に、電解採取によってガリウムメタルを回収するために電解液として使用するガリウム電解液のようなガリウム含有溶液から不純物を除去してガリウム含有溶液を精製する方法に関する。   The present invention relates to a method for purifying a gallium-containing solution, and in particular, removes impurities from a gallium-containing solution, such as a gallium electrolyte used as an electrolytic solution to recover gallium metal by electrowinning, thereby purifying the gallium-containing solution. Regarding the method.

ガリウムは、一般に化合物半導体の材料に使用されており、特に、6〜7Nグレイドの高純度ガリウムが、GaAsやGaPなどの化合物半導体の製造に使用され、IC、LSI、発光ダイオードなどに利用されている。また、アルコールの分解や化合のための触媒としてガリウム合金を使用することも注目されており、純度の高いガリウムが要求されている。   Gallium is generally used as a material for compound semiconductors. In particular, high-purity gallium of 6 to 7 N grade is used for manufacturing compound semiconductors such as GaAs and GaP, and is used for ICs, LSIs, light emitting diodes, and the like. Yes. Further, the use of a gallium alloy as a catalyst for alcohol decomposition and compounding has attracted attention, and high-purity gallium is required.

ガリウムは、亜鉛製錬やアルミニウム製錬の副産物として少量回収される金属元素であり、最近では、ガリウムを含むスクラップからも回収されている。このようなガリウムを含有する製錬の副産物やスクラップからガリウムを得るために、一般に、ガリウムを含む製錬の副産物やスクラップをアルカリ溶液に溶解して濃縮した後、電解採取によってガリウムを金属として回収することが行われている。   Gallium is a metal element that is recovered in a small amount as a by-product of zinc smelting and aluminum smelting, and has recently been recovered from scrap containing gallium. In order to obtain gallium from smelting by-products and scrap containing gallium, gallium-containing smelting by-products and scrap are generally dissolved in an alkali solution and concentrated, and then recovered as metal by electrowinning. To be done.

このような電解採取に使用するガリウム電解液には、採取目的である金属、即ちガリウム以外の不純物金属などの電解採取の阻害要因となる成分が含まれていないことが望ましい。しかし、製錬の副産物やスクラップをアルカリに溶解した溶液には、ガリウム以外の様々な不純物金属が含まれているため、電解採取前に薬品の添加や固液分離などによって不純物金属などの電解採取の阻害要因となる成分を除去している。   It is desirable that the gallium electrolyte used for such electrowinning does not contain any components that hinder the electrowinning, such as metals that are intended for collection, that is, impurity metals other than gallium. However, since the solution of smelting by-products and scrap dissolved in alkali contains various impurity metals other than gallium, electrolytic collection of impurity metals, etc. by adding chemicals or solid-liquid separation before electrolytic collection. The component which becomes the obstruction factor is removed.

また、電解採取によって得られるガリウムの純度は、ガリウム電解液の組成によってほぼ決定されてしまうため、ガリウム電解液の組成は重要である。電解液の元になる電解元液には、鉄、銅、鉛、錫、インジウムなどの不純物金属が含まれている場合があり、これらの金属が微量でも含まれると、電解採取において、これらの不純物金属がガリウムメタルとともに電着して、ガリウムメタルの品位が低下するだけでなく、さらにガリウム純度を高める高純度精製工程への大きな負荷になっている。   In addition, the composition of the gallium electrolyte is important because the purity of gallium obtained by electrowinning is almost determined by the composition of the gallium electrolyte. The electrolytic source solution that is the source of the electrolytic solution may contain impurity metals such as iron, copper, lead, tin, and indium. If these metals are contained even in trace amounts, Impurity metals are electrodeposited together with gallium metal, which not only lowers the quality of gallium metal, but also places a heavy burden on the high purity purification process that further increases the purity of gallium.

ガリウム電解液の精製方法として、ガリウム電解液にアルカリ金属のシュウ酸塩を添加して生成するインジウムの沈殿物を濾別し、あるいは、ガリウム電解液にアルカリ土類金属の水酸化物または酸化物を添加して生成するバナジウムの沈殿物を濾別することにより、インジウムやバナジウムを除去する方法が提案されている(例えば、特許文献1参照)。また、陰極の電流密度を0.05〜0.1A/dmの低電流密度に保持して、インジウム、銅、鉛などの不純物を含むガリウム電解液の電解を行うことにより、インジウム、銅、鉛などの不純物を陰極側に電着させて、電解液から分離・除去する方法が提案されている(例えば、特許文献2参照)。 As a purification method of gallium electrolyte, indium precipitate formed by adding alkali metal oxalate to gallium electrolyte is filtered, or alkaline earth metal hydroxide or oxide is added to gallium electrolyte. There has been proposed a method for removing indium and vanadium by filtering the precipitate of vanadium formed by adding (see, for example, Patent Document 1). In addition, by maintaining the cathode current density at a low current density of 0.05 to 0.1 A / dm 2 and performing electrolysis of a gallium electrolyte containing impurities such as indium, copper, and lead, indium, copper, A method has been proposed in which impurities such as lead are electrodeposited on the cathode side to be separated and removed from the electrolytic solution (see, for example, Patent Document 2).

特開昭63−496号公報(第2頁)Japanese Patent Laid-Open No. 63-496 (2nd page) 特開平6−192875号公報(段落番号0008−0012)JP-A-6-192875 (paragraph numbers 0008-0012)

しかし、特許文献1の方法は、ガリウム電解液からインジウムまたはバナジウムおよび銅を除去する方法であり、不純物として鉄、鉛、錫などを含むガリウム電解液の精製に適用することができない。   However, the method of Patent Document 1 is a method of removing indium or vanadium and copper from a gallium electrolyte, and cannot be applied to the purification of a gallium electrolyte containing iron, lead, tin or the like as impurities.

また、特許文献2の方法は、インジウム、銅および鉛を除去する方法であり、不純物として鉄や錫などを含むガリウム電解液を十分に精製することができない。また、この方法では、不純物の除去に長時間を要するとともに、ガリウム電解液の精製用の電解設備が必要になり、コストが高くなる。   Moreover, the method of patent document 2 is a method of removing indium, copper, and lead, and cannot fully purify the gallium electrolyte solution which contains iron, tin, etc. as an impurity. In addition, this method requires a long time to remove impurities and requires an electrolytic facility for purifying the gallium electrolyte, which increases the cost.

また、ガリウム電解液がアルカリ性である場合に、電解元液から不純物を簡便に且つ短時間で除去して高純度ガリウムを得るためのガリウム電解液として使用することができるようにする方法が望まれている。さらに、電解元液中に不純物として銅、鉛およびインジウムの他に錫が含まれる場合のように、電解元液中に様々な不純物が含まれる場合にも、電解元液から不純物を簡便に且つ短時間で除去することができる方法が望まれている。   In addition, when the gallium electrolyte is alkaline, a method is desired that can be used as a gallium electrolyte for obtaining high-purity gallium by simply removing impurities from the electrolytic base solution in a short time. ing. Furthermore, even when various impurities are contained in the source solution, such as when the source solution contains tin in addition to copper, lead, and indium, impurities can be easily removed from the source solution. A method that can be removed in a short time is desired.

したがって、本発明は、このような従来の問題点に鑑み、不純物として銅、鉄、鉛、錫およびインジウムの少なくとも1種を含むガリウム含有溶液から簡便に且つ短時間で不純物を除去することができる、ガリウム含有溶液の精製方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention can remove impurities from a gallium-containing solution containing at least one of copper, iron, lead, tin and indium as impurities easily and in a short time. An object of the present invention is to provide a method for purifying a gallium-containing solution.

本発明者らは、上記課題を解決するために鋭意研究した結果、不純物としての銅、鉄、鉛、錫およびインジウムの少なくとも1種とガリウムとを含む溶液を、金属亜鉛と活性炭の混合物に接触させることにより、ガリウム含有溶液から簡便に且つ短時間で不純物を除去することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the inventors of the present invention contact a solution containing at least one of copper, iron, lead, tin, and indium as impurities and a mixture of zinc metal and activated carbon. As a result, it was found that impurities can be easily removed from the gallium-containing solution in a short time, and the present invention has been completed.

すなわち、本発明によるガリウム含有溶液の精製方法は、銅、鉄、鉛、錫およびインジウムの少なくとも1種とガリウムとを含む溶液を、金属亜鉛と活性炭の混合物に接触させることを特徴とする。このガリウム含有溶液の精製方法において、溶液がアルカリ性溶液であるのが好ましく、溶液中の遊離NaOH濃度を150g/L以下に調整するのが好ましく、溶液の温度を40℃以下に調整するのが好ましい。また、金属亜鉛が亜鉛末であるのが好ましい。金属亜鉛と活性炭の混合物に接触させた溶液は、電解採取によってガリウムメタルを回収するためのガリウム電解液として使用することができる。   That is, the method for purifying a gallium-containing solution according to the present invention is characterized in that a solution containing at least one of copper, iron, lead, tin and indium and gallium is brought into contact with a mixture of metallic zinc and activated carbon. In this gallium-containing solution purification method, the solution is preferably an alkaline solution, the free NaOH concentration in the solution is preferably adjusted to 150 g / L or less, and the temperature of the solution is preferably adjusted to 40 ° C. or less. . The zinc metal is preferably zinc dust. The solution brought into contact with the mixture of metallic zinc and activated carbon can be used as a gallium electrolyte solution for recovering gallium metal by electrolytic collection.

本発明によれば、不純物として銅、鉄、鉛、錫およびインジウムの少なくとも1種を含むガリウム含有溶液から簡便に且つ短時間で不純物を除去して、ガリウム含有溶液中の不純物の濃度を極めて低濃度にすることができる。このようにして得られたガリウム電解液を使用して電解採取を行うことにより、高純度のガリウムを回収することができる。   According to the present invention, impurities are easily removed in a short time from a gallium-containing solution containing at least one of copper, iron, lead, tin and indium as impurities, and the concentration of impurities in the gallium-containing solution is extremely low. Can be a concentration. By performing electrowinning using the gallium electrolyte solution thus obtained, high-purity gallium can be recovered.

本発明によるガリウム含有溶液の精製方法の実施の形態では、銅、鉄、鉛、錫およびインジウムの少なくとも1種とガリウムとを含む溶液を、亜鉛末のような金属亜鉛と活性炭の混合物の層に通液して接触させる。   In an embodiment of the method for purifying a gallium-containing solution according to the present invention, a solution containing at least one of copper, iron, lead, tin, and indium and gallium is added to a layer of a mixture of metallic zinc and activated carbon such as zinc dust. Pass through the liquid.

金属亜鉛として、亜鉛末を使用するのが好ましい。亜鉛末は、細かいほどよく、150メッシュ未満であるのが好ましい。ガリウム含有溶液を亜鉛末と接触させるためには、亜鉛末と活性炭の混合物を充填したカラムにガリウム含有溶液を通液させるのが好ましい。例えば、図1に示すように、カラムの容器10内に市販のフィルタバッグ(フィルタハウジング)12を設置し、このフィルタバッグ12の中央部に、多数の貫通孔14aが形成されたパンチングパイプ14を装入し、フィルタバッグ12内のパンチングパイプ14の周囲および下側に、亜鉛末と活性炭の混合物16を充填し、パンチングパイプ14内に活性炭18を充填し、ガリウム含有溶液を容器10の導入口20から導入してカラム内に流し、容器10の排出口22から排出させればよい。なお、カラムの容器10内に亜鉛末だけを充填すると、圧力損失が上昇して通液が不可能になるため、亜鉛末を活性炭と混合して充填している。また、フィルタバッグ12全体に通液させるために、フィルタバッグ12の中央部にパンチングパイプ14を装入し、パンチングパイプ14内に活性炭18だけを充填している。また、図2に示すように、パンチングパイプ14の下方に向かって貫通孔14aの密度が増大するようにして、底部まで通液を確保している。なお、使用する活性炭は、市販の活性炭でよく、例えば、太平化学産業(株)製のヤシコールMや、クラレケミカル(株)製のクラレコールKWなどの活性炭を使用することができる。   Zinc powder is preferably used as the metallic zinc. The finer the zinc powder, the better and preferably less than 150 mesh. In order to bring the gallium-containing solution into contact with the zinc dust, it is preferable to pass the gallium-containing solution through a column filled with a mixture of zinc dust and activated carbon. For example, as shown in FIG. 1, a commercially available filter bag (filter housing) 12 is installed in a column container 10, and a punching pipe 14 having a large number of through holes 14 a is formed at the center of the filter bag 12. The mixture is filled with zinc dust and activated carbon 16 around and under the punching pipe 14 in the filter bag 12, the activated carbon 18 is filled in the punching pipe 14, and the gallium-containing solution is introduced into the inlet of the container 10. What is necessary is just to introduce | transduce from 20, flow in a column, and to make it discharge | emit from the discharge port 22 of the container 10. In addition, when only zinc dust is packed in the column container 10, the pressure loss increases and liquid passage becomes impossible. Therefore, zinc powder is mixed with activated carbon and packed. Further, in order to pass the liquid through the entire filter bag 12, a punching pipe 14 is inserted into the center of the filter bag 12, and only the activated carbon 18 is filled in the punching pipe 14. Further, as shown in FIG. 2, the density of the through holes 14 a increases toward the lower side of the punching pipe 14 so as to ensure liquid passage to the bottom. The activated carbon to be used may be a commercially available activated carbon, and for example, activated carbon such as palm coal M manufactured by Taihei Chemical Industry Co., Ltd. or Kuraray Coal KW manufactured by Kuraray Chemical Co., Ltd. may be used.

また、金属亜鉛の反応温度が40℃以上であると、以下の反応が急速に進む。すなわち、水素ガスを発生しながら亜鉛末の自然溶解が急速に進み、反応が短時間で終了して、十分な置換反応を行うことができなくなり、急激な圧力上昇を招くので危険である。また、液中に亜鉛が溶出して亜鉛の濃度を上げる結果になる。したがって、溶液の温度は、40℃以下に調整するのが好ましく、低いほど好ましい。
Zn+2OH=ZnO 2−+H
Moreover, the following reaction will advance rapidly that the reaction temperature of metallic zinc is 40 degreeC or more. That is, the spontaneous dissolution of zinc powder proceeds rapidly while generating hydrogen gas, the reaction is completed in a short time, and a sufficient substitution reaction cannot be carried out, resulting in a sudden increase in pressure, which is dangerous. In addition, zinc is eluted in the liquid, resulting in an increase in zinc concentration. Therefore, it is preferable to adjust the temperature of the solution to 40 ° C. or lower, and the lower the temperature, the more preferable.
Zn + 2OH = ZnO 2 2− + H 2

また、溶液中の遊離NaOH濃度は150g/L以下であるのが好ましく、低いほど好ましい。遊離NaOH濃度が150g/L以上になると、イオン化傾向が卑な不純物である鉛、錫、インジウムなどの除去能力が低下するからである。この原因は、これらの不純物が一旦メタルまで還元されても、それぞれHPbO またはPbO 2−、SnO 、InO として再溶解が進み、その結果、トータルとしての除去能力が低下するからであると考えられる。 Moreover, it is preferable that the free NaOH concentration in a solution is 150 g / L or less, and it is so preferable that it is low. This is because when the free NaOH concentration is 150 g / L or more, the ability to remove lead, tin, indium and the like, which are impurities with a low ionization tendency, decreases. This cause is also these impurities is temporarily reduced to the metal, respectively HPbO 2 - or PbO 3 2-, SnO 3 -, InO 2 - remelting process proceeds as a result, the removal capacity as a total decrease It is thought that it is from.

本発明によるガリウム含有溶液の精製方法により得られた溶液は、電解採取によってガリウムメタルを回収するためのガリウム電解液として使用することができる。   The solution obtained by the method for purifying a gallium-containing solution according to the present invention can be used as a gallium electrolyte for recovering gallium metal by electrowinning.

以下、本発明によるガリウム含有溶液の精製方法の実施例について詳細に説明する。   Examples of the method for purifying a gallium-containing solution according to the present invention will be described in detail below.

まず、ガリウム含有溶液として、亜鉛製錬で回収された電解元液を用意した。この電解元液は、表1に示す組成であった。   First, an electrolytic base solution recovered by zinc smelting was prepared as a gallium-containing solution. This electrolytic base solution had the composition shown in Table 1.

Figure 0004915016
Figure 0004915016

次に、図1に示すようなカラムに、この電解元液1000Lを溶液温度31℃、SV(空間速度)=100hr−1で2時間通液した。なお、フィルタバッグ12として、エレポン化工機(株)製の×100フィルターハウジング(商品名)を使用し、活性炭として、太平化学産業(株)製のヤシコールM(顆粒状の活性炭、充填密度:0.47g/mL)を使用した。パンチングパイプ14内には、活性炭16のみを充填し、フィルタバッグ12内のパンチングパイプ14の周囲および下側には、活性炭:亜鉛末=1:1.4(重量比)になるように活性炭と亜鉛末(150メッシュ未満の亜鉛末)を良く混合して充填した(この混合物の充填量は3.8Lであった)。通液時のフィルターバック12の内部の圧力は0.07MPaであり、問題がなかった。 Next, 1000 L of this electrolytic base solution was passed through the column as shown in FIG. 1 at a solution temperature of 31 ° C. and SV (space velocity) = 100 hr −1 for 2 hours. As the filter bag 12, a × 100 filter housing (trade name) manufactured by Elepon Chemical Machinery Co., Ltd. is used, and as activated carbon, coconut M (granular activated carbon manufactured by Taihei Chemical Industry Co., Ltd., packing density: 0) .47 g / mL) was used. Only the activated carbon 16 is filled in the punching pipe 14, and activated carbon: zinc powder = 1: 1.4 (weight ratio) is placed around and below the punching pipe 14 in the filter bag 12. Zinc dust (zinc powder of less than 150 mesh) was mixed well and filled (the filling amount of this mixture was 3.8 L). The pressure inside the filter bag 12 when the liquid was passed was 0.07 MPa, and there was no problem.

次に、1槽当たりSUS316Lからなるカソード9枚とアノード10枚を配置した2槽の電解採取槽を直列に配置し、その槽に通液処理した液を入れ、通電流を1,000A(陰極の電流密度:417A/m)、通電時間を48時間として、電解採取を行い、ガリウムメタルを回収した。得られたガリウムメタル中の不純物の品位を表2に示す。表2に示すように、ガリウムメタル中の主な不純物の量は、分析定量下限以下であった。 Next, two electrowinning tanks with 9 cathodes and 10 anodes made of SUS316L per tank were placed in series, and the liquid passed through was put into the tank, and the current flow was 1,000 A (cathode) Current density: 417 A / m 2 ), energization time was 48 hours, and electrowinning was performed to recover gallium metal. Table 2 shows the quality of impurities in the obtained gallium metal. As shown in Table 2, the amount of main impurities in gallium metal was below the lower limit of analytical quantification.

Figure 0004915016
Figure 0004915016

[比較例]
実施例1と同様の電解元液1Lを用意し、SUS316Lからなるカソード1枚とアノード2枚を配置した槽中に入れ、通電流を6.38A、陰極の電流密度を417A/m、通電時間を17時間として、電解採取を行い、ガリウムメタルを回収した。得られたガリウムメタル中の不純物の品位を表2に示す。表2に示すように、この比較例では、実施例と比べて、ガリウムメタル中の不純物の量が非常に多かった。したがって、実施例では、簡便な方法で且つ短時間で種々の不純物の量を非常に低レベルまで減少させて、不純物を十分に除去することができるのがわかる。
[Comparative example]
Example 1 was prepared the same electrolyte source solution 1L and placed in a bath of arranging the cathode one and two anodes consisting of SUS316L, 6.38A energization current, 417A / m 2 current density in the cathode, current Electrolysis was performed at a time of 17 hours to recover gallium metal. Table 2 shows the quality of impurities in the obtained gallium metal. As shown in Table 2, in this comparative example, the amount of impurities in the gallium metal was much larger than in the example. Therefore, it can be seen that the embodiment can sufficiently remove impurities by reducing the amount of various impurities to a very low level in a simple method and in a short time.

ガリウム含有溶液を通液させるカラムを概略的に示す断面図である。It is sectional drawing which shows schematically the column which lets a gallium containing solution flow. 図1のカラムに使用するパンチングパイプを概略的に示す斜視図である。It is a perspective view which shows roughly the punching pipe used for the column of FIG.

符号の説明Explanation of symbols

10 容器
12 フィルタバッグ
14 パンチングパイプ
14a 貫通孔
16 亜鉛末と活性炭の混合物
18 活性炭
20 導入口
22 排出口
DESCRIPTION OF SYMBOLS 10 Container 12 Filter bag 14 Punching pipe 14a Through-hole 16 Mixture of zinc dust and activated carbon 18 Activated carbon 20 Inlet 22 Outlet

Claims (5)

銅、鉄、鉛、錫およびインジウムの少なくとも1種とガリウムとを含むアルカリ性溶液を、金属亜鉛と活性炭の混合物に接触させることを特徴とする、ガリウム含有溶液の精製方法。 A method for purifying a gallium-containing solution, comprising contacting an alkaline solution containing at least one of copper, iron, lead, tin and indium and gallium with a mixture of metallic zinc and activated carbon. 前記アルカリ性溶液中の遊離NaOH濃度を150g/L以下に調整することを特徴とする、請求項1に記載のガリウム含有溶液の精製方法。 The method for purifying a gallium-containing solution according to claim 1, wherein the concentration of free NaOH in the alkaline solution is adjusted to 150 g / L or less. アルカリ性前記溶液の温度を40℃以下に調整することを特徴とする、請求項1または2に記載のガリウム含有溶液の精製方法。 The method for purifying a gallium-containing solution according to claim 1 or 2 , wherein the temperature of the alkaline solution is adjusted to 40 ° C or lower. 前記金属亜鉛が亜鉛末であることを特徴とする、請求項1乃至のいずれかに記載のガリウム含有溶液の精製方法。 The method for purifying a gallium-containing solution according to any one of claims 1 to 3 , wherein the metallic zinc is zinc dust. 前記金属亜鉛と活性炭の混合物に接触させた溶液が、電解採取によってガリウムメタルを回収するためのガリウム電解液として使用する溶液であることを特徴とする、請求項1乃至のいずれかに記載のガリウム含有溶液の精製方法。 The solution in contact with the mixture of the zinc metal and activated carbon, characterized in that it is a solution used as a gallium electrolyte for the recovery of gallium metal by electrowinning, according to any one of claims 1 to 4 A method for purifying a gallium-containing solution.
JP2005360073A 2005-12-14 2005-12-14 Purification method of gallium-containing solution Expired - Fee Related JP4915016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360073A JP4915016B2 (en) 2005-12-14 2005-12-14 Purification method of gallium-containing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360073A JP4915016B2 (en) 2005-12-14 2005-12-14 Purification method of gallium-containing solution

Publications (2)

Publication Number Publication Date
JP2007162073A JP2007162073A (en) 2007-06-28
JP4915016B2 true JP4915016B2 (en) 2012-04-11

Family

ID=38245325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360073A Expired - Fee Related JP4915016B2 (en) 2005-12-14 2005-12-14 Purification method of gallium-containing solution

Country Status (1)

Country Link
JP (1) JP4915016B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967330A (en) * 1982-10-08 1984-04-17 Dowa Mining Co Ltd Separation of gallium
JP3810963B2 (en) * 1999-09-29 2006-08-16 同和鉱業株式会社 Method for separating and concentrating Ga
JP3423910B2 (en) * 2000-01-26 2003-07-07 株式会社日鉱マテリアルズ How to recover indium

Also Published As

Publication number Publication date
JP2007162073A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
KR101623629B1 (en) Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire
CN110565115B (en) High purity tin
WO2001090445A1 (en) Method of producing a higher-purity metal
JP4298712B2 (en) Method for electrolytic purification of copper
JP5538953B2 (en) Purification method of sodium tungstate solution
US3039865A (en) Recovery of mercury from aqueous solutions
JP4664719B2 (en) Purification method of copper chloride etching waste liquid and purified copper chloride solution
KR101844771B1 (en) A method recovered of high purity copper and valuable metal from the crude copper
JP4915016B2 (en) Purification method of gallium-containing solution
EP0223837B1 (en) Method and apparatus for purification of gold
JP2007254800A (en) Method for manufacturing high purity nickel and high purity nickel obtained by using the method
JP5609121B2 (en) Concentration method of platinum to molten copper phase to recover platinum in copper iron scrap
JP4915015B2 (en) Purification method of gallium-containing solution
US4895626A (en) Process for refining and purifying gold
US5573739A (en) Selective bismuth and antimony removal from copper electrolyte
JP5565339B2 (en) Effective chlorine removal method and cobalt recovery method
JP4872097B2 (en) Purification method of gallium-containing solution
JP2007290937A (en) Method of purifying nickel chloride aqueous solution
JP3885913B2 (en) Method for purifying recovered gallium
US9752208B2 (en) Extraction solvent for extracting metallic elements, method for producing same, and method for recovering metallic elements
JP2011178582A (en) Method for purifying alkali tungstate solution
JP5553646B2 (en) Purification method of ammonium tungstate solution
JP4872098B2 (en) Purification method of gallium-containing solution
JP5996797B2 (en) High purity In and its manufacturing method
JPH0674461B2 (en) Method for collecting metallic gallium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees