JP3423910B2 - How to recover indium - Google Patents

How to recover indium

Info

Publication number
JP3423910B2
JP3423910B2 JP2000017168A JP2000017168A JP3423910B2 JP 3423910 B2 JP3423910 B2 JP 3423910B2 JP 2000017168 A JP2000017168 A JP 2000017168A JP 2000017168 A JP2000017168 A JP 2000017168A JP 3423910 B2 JP3423910 B2 JP 3423910B2
Authority
JP
Japan
Prior art keywords
activated carbon
indium
electrolytic
recovering
electrolytic refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000017168A
Other languages
Japanese (ja)
Other versions
JP2001207282A (en
Inventor
諭 館野
義幸 日角
俊一郎 山口
光一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2000017168A priority Critical patent/JP3423910B2/en
Publication of JP2001207282A publication Critical patent/JP2001207282A/en
Application granted granted Critical
Publication of JP3423910B2 publication Critical patent/JP3423910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電解精製後、電
解液中のメタスズ酸の懸濁物及び錫イオンを除去し、電
解液を再利用する電解精製によるインジウムの回収方法
に関する。
TECHNICAL FIELD The present invention relates to a method for recovering indium by electrolytic refining in which a suspension of metastannic acid and tin ions in an electrolytic solution are removed after electrolytic refining and the electrolytic solution is reused.

【0002】[0002]

【従来の技術】近年、酸化インジウム−酸化錫(IT
O)は液晶表示装置の透明導電性薄膜やガスセンサーな
どに広く使用されているが、多くの場合スパッタリング
法による薄膜形成手段を用いて基板等の上に薄膜が形成
されている。このスパッタリング法は薄膜形成手段とし
て優れた方法であるが、スパッタリングターゲットを用
いて、例えば透明導電性薄膜を製造する場合には、該タ
ーゲットの消耗が均一に消耗するわけではない。このタ
ーゲットの一部の特に消耗が激しい部分を一般にエロー
ジョン部と呼んでいるが、このエロージョン部の消耗が
進行し、ターゲットを支持するバッキングプレートが剥
き出しになる直前までスパッタリング操作を続行する
が、その後は新らしいターゲットと交換している。した
がって、使用済みのスパッタリングターゲットには多く
の非エロージョン部、すなわち未使用のターゲット部分
が残存することになり、これらは全てスクラップとな
る。
2. Description of the Related Art In recent years, indium oxide-tin oxide (IT
O) is widely used for a transparent conductive thin film of a liquid crystal display device, a gas sensor and the like, but in many cases, a thin film is formed on a substrate or the like by using a thin film forming means by a sputtering method. This sputtering method is an excellent method for forming a thin film, but when a transparent conductive thin film is produced using a sputtering target, the target is not consumed uniformly. The part of this target that is particularly worn is generally called the erosion part.The wear of this erosion part progresses and the sputtering operation is continued until just before the backing plate supporting the target is exposed, but after that, Is trading for a new target. Therefore, many non-erosion parts, that is, unused target parts, remain in the used sputtering target, and they are all scrap.

【0003】酸化インジウム−酸化錫(ITO)材料に
は高純度材が使用されており、価格も高いので、一般に
このスクラップ材からインジウムを回収することが行わ
れている。このインジウム回収方法として、従来酸溶解
法、イオン交換法、溶媒抽出法などの湿式精製を組み合
わせた方法が用いられている。例えば、ITOスクラッ
プを洗浄及び粉砕後、硝酸に溶解し、溶解液に硫化水素
を通して、錫、鉛、銅などの不純物を硫化物として沈殿
除去した後、これにアンモニアを加えて中和し、水酸化
インジウムとして回収する方法である。しかし、この方
法によって得られた水酸化インジウムはろ過性が悪く操
作に長時間を要し、Si、Al等の不純物が多く、また
生成する水酸化インジウムはその中和条件及び熟成条件
等により、粒径や粒度分布が変動するため、その後IT
Oターゲットを製造する際に、ITOターゲットの特性
を安定して維持できないという問題があった。
Since a high-purity material is used for the indium oxide-tin oxide (ITO) material and its price is high, indium is generally recovered from this scrap material. As a method for recovering this indium, a method combining wet purification such as an acid dissolution method, an ion exchange method and a solvent extraction method has been conventionally used. For example, after cleaning and crushing ITO scrap, it is dissolved in nitric acid, hydrogen sulfide is passed through the solution to precipitate and remove impurities such as tin, lead, and copper as sulfides, and then ammonia is added to neutralize the solution. This is a method of recovering as indium oxide. However, the indium hydroxide obtained by this method is poor in filterability, requires a long time for operation, contains many impurities such as Si and Al, and the produced indium hydroxide may have a neutralization condition and an aging condition. Since the particle size and particle size distribution fluctuate, IT
There is a problem that the characteristics of the ITO target cannot be stably maintained when the O target is manufactured.

【0004】このようなことから、本発明者は先に、I
TOスクラップ等の酸化インジウムを含有する物質を、
予め750〜1200°Cで還元性ガスにより還元して
金属インジウムとした後、該インジウムを電解精製する
インジウムの回収方法を提案した(特開平7−1454
32号公報)。これによれば、高純度のインジウムを効
率良く安定して回収することが可能となった。しかし、
電解精製で特に問題となるのは、電解精製の進行ととも
に、電解液中にメタスズ酸や錫イオンが蓄積してくるこ
とである。ITOスクラップでは錫の混入は避けられな
い問題である。電解装置内のアノードとカソードの間に
隔膜を設けて、錫を含有するスライムの析出物への混入
を避ける方法が採られているが、メタスズ酸や錫イオン
が増加するにつれ、電解精製能力は急速に低下してく
る。したがって、このメタスズ酸や錫イオンを除去する
ことが必要であるが、従来簡便にかつ効率よく除去でき
る方法がなかった。
From the above, the present inventor first
A material containing indium oxide, such as TO scrap,
A method for recovering indium has been proposed in which metal indium is reduced in advance by a reducing gas at 750 to 1200 ° C., and then the indium is electrolytically refined (JP-A-7-1454).
No. 32). According to this, it became possible to collect highly pure indium efficiently and stably. But,
A particular problem in electrolytic refining is that metastannic acid and tin ions accumulate in the electrolytic solution as electrolytic refining progresses. Mixing tin is an unavoidable problem in ITO scrap. A method has been adopted in which a diaphragm is provided between the anode and the cathode in the electrolysis device to prevent the inclusion of tin-containing slime in the precipitate, but as the metastannic acid and tin ions increase, the electrorefining capacity increases. It drops rapidly. Therefore, it is necessary to remove the metastannic acid and tin ions, but there has been no conventional method that can remove them easily and efficiently.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の問題
を解決するために、電解精製後、電解液中のメタスズ酸
の懸濁物及び錫イオンを簡便にかつ効率良く除去して電
解液を再利用し、電解精製によるインジウムを効率良く
回収する方法を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a method for electrolytically purifying an electrolytic solution by simply and efficiently removing a suspension of metastannic acid and tin ions in the electrolytic solution. Another object of the present invention is to provide a method for efficiently recovering indium by electrolytically refining it.

【0006】[0006]

【課題を解決するための手段】本発明は、 1 硫酸インジウム又は塩化インジウム水溶液を用いる
インジウムの電解精製において、電解液を活性炭処理す
ることにより、電解液中のメタスズ酸の懸濁物及び錫イ
オンを除去することを特徴とする電解精製によるインジ
ウムの回収方法 2 電解精製液中に活性炭を20〜200g/L添加す
ることを特徴とする上記1に記載する電解精製によるイ
ンジウムの回収方法 3 電解精製液中に活性炭を50〜100g/L添加す
ることを特徴とする上記1に記載する電解精製によるイ
ンジウムの回収方法 4 回転数400rpm以上で、5分以上撹拌すること
を特徴とする上記1〜3のそれぞれに記載する電解精製
によるインジウムの回収方法 5 活性炭の細孔径が30Å以下であることを特徴とす
る上記1〜4のそれぞれに記載する電解精製によるイン
ジウムの回収方法 6 活性炭の細孔径が20Å以下であることを特徴とす
る上記1〜4のそれぞれに記載する電解精製によるイン
ジウムの回収方法 7 活性炭の粒径が250メッシュ以下であることを特
徴とする上記1〜6のそれぞれに記載する電解精製によ
るインジウムの回収方法 8 活性炭の比表面積が1050m/g以上であるこ
とを特徴とする上記1〜7のそれぞれに記載する電解精
製によるインジウムの回収方法、を提供する。
According to the present invention, in electrolytic purification of indium using an indium sulfate or indium chloride aqueous solution, a suspension of metastannic acid and tin ions in the electrolytic solution are obtained by treating the electrolytic solution with activated carbon. Method 2 for recovering indium by electrolytic refining, characterized in that the activated carbon is added to the electrolytically refined solution in an amount of 20 to 200 g / L. Activated carbon is added to the liquid in an amount of 50 to 100 g / L, and the method for recovering indium by electrolytic refining according to the above item 1, 4 is stirred at 400 rpm or more for 5 minutes or more. Method of recovering indium by electrolytic refining described in each of 5 above, wherein the activated carbon has a pore diameter of 30 Å or less. Method 4 for recovering indium by electrolytic refining described in each of 4 above. Method for recovering indium by electrolytic refining according to each of the above 1 to 4, characterized in that the pore diameter of activated carbon is 20 Å or less. Method of recovering indium by electrolytic refining according to each of the above 1 to 6, characterized in that it is 250 mesh or less Each of the above 1 to 7, characterized in that the specific surface area of activated carbon is 1050 m 2 / g or more And a method for recovering indium by electrolytic refining according to 1.

【0007】[0007]

【発明の実施の形態】一般に、電解精製後液は錫イオン
として1000〜2000mg/L(Lは電解液量)、
固形物として2000〜10000mg/L含まれる。
本発明は、硫酸インジウム又は塩化インジウム水溶液を
用いるインジウムの電解精製において、電解液を活性炭
処理することにより、電解液中に懸濁するメタスズ酸だ
けでなく錫イオンを活性炭に吸着させ、これをろ過して
効果的にメタスズ酸及び錫イオン除去することが可能と
なった。ろ過後の電解液は再利用することができる。活
性炭は電解精製後、該電解精製液中に20〜200g/
L(電解液)添加する。20g/L未満では吸着して除
去できる効果が殆どなく、また200g/Lを超えると
除去能が飽和し、処理量が増えるだけで活性炭が無駄と
なる。より好ましい範囲は、添加量50〜100g/L
である。
BEST MODE FOR CARRYING OUT THE INVENTION Generally, a solution after electrolytic purification is 1000 to 2000 mg / L as tin ions (L is the amount of the electrolytic solution),
2000 to 10000 mg / L is contained as a solid.
The present invention, in the electrolytic purification of indium using indium sulfate or indium chloride aqueous solution, by treating the electrolytic solution with activated carbon, not only metastannic acid suspended in the electrolytic solution but also tin ions are adsorbed on the activated carbon, and this is filtered. As a result, metastannic acid and tin ions can be effectively removed. The electrolytic solution after filtration can be reused. Activated carbon, after electrolytic purification, is added to the electrolytically refined liquid in an amount of 20 to 200 g /
Add L (electrolyte). If it is less than 20 g / L, there is almost no effect that it can be adsorbed and removed, and if it exceeds 200 g / L, the removal ability is saturated and the treatment amount is increased, and the activated carbon is wasted. A more preferable range is an addition amount of 50 to 100 g / L.
Is.

【0008】電解液中の上記塩素イオン源として、塩酸
又は塩化ナトリウム、塩化カリウム等のアルカリ金属塩
化物が使用されるが、前記活性炭による電解液の再生は
いずれの場合にも適応できる。一般に、酸化インジウム
−酸化錫(ITOスクラップ)等の酸化インジウムを含
有する物質については、これを予め還元して金属インジ
ウムとした後、電解精製が行なわれる。前記活性炭を添
加した後、回転数400rpm以上で、5分以上撹拌す
る。処理の温度は常温で良く、加熱や冷却は不要であ
る。なお、低温では電解液成分が析出する場合もあるの
で、むしろ必要以上の低温は好ましくない。上記のよう
に、回転数は400rpm以上と大きい方が望ましい。
撹拌の時間の増加により、錫の濃度は低下する。60分
以上で殆ど吸着は完了する。
Hydrochloric acid or an alkali metal chloride such as sodium chloride or potassium chloride is used as the chlorine ion source in the electrolytic solution, but regeneration of the electrolytic solution by the activated carbon can be applied in any case. In general, a substance containing indium oxide such as indium oxide-tin oxide (ITO scrap) is reduced in advance to metallic indium and then electrolytically refined. After adding the activated carbon, the mixture is stirred at a rotation speed of 400 rpm or more for 5 minutes or more. The treatment temperature may be room temperature, and heating or cooling is unnecessary. It should be noted that an electrolyte component may be precipitated at a low temperature, so a temperature higher than necessary is not preferable. As described above, it is desirable that the number of revolutions is as large as 400 rpm or more.
As the stirring time increases, the tin concentration decreases. Most of the adsorption is completed in 60 minutes or more.

【0009】活性炭の細孔径は、30Å以下であること
が望ましい。特に活性炭の細孔径が20Å以下である
と、錫の吸着が効果的に行われる。さらに、活性炭の粒
径が250メッシュ以下であり、かつ活性炭の比表面積
が1050m/g以上であることが望ましい。いずれ
の場合も吸着がより効果的に実施できる。このように、
活性炭を電解後液に入れて錫イオン及びメタスズ酸を吸
着除去した後、該電解液を再利用する。後述する実施例
に示すように、この活性炭処理により、回収するための
インジウムや電解液成分が影響を受けることがなく、錫
イオン及びメタスズ酸のみが選択的に除去できる。
The pore size of activated carbon is preferably 30 Å or less. In particular, when the activated carbon has a pore diameter of 20 Å or less, the adsorption of tin is effectively performed. Further, it is desirable that the particle size of the activated carbon be 250 mesh or less and the specific surface area of the activated carbon be 1050 m 2 / g or more. In either case, adsorption can be carried out more effectively. in this way,
Activated carbon is put into the post-electrolysis solution to adsorb and remove tin ions and metastannic acid, and then the electrolysis solution is reused. As shown in Examples described later, this activated carbon treatment can selectively remove only tin ions and metastannic acid without affecting the indium and electrolytic solution components for recovery.

【0010】[0010]

【実施例】次に、実施例について説明する。なお、本実
施例は発明の一例を示すためのものであり、本発明はこ
れらの実施例に制限されるものではない。すなわち、本
発明の技術思想に含まれる他の態様及び変形を含むもの
である。電解精製の試料として、酸化インジウム−酸化
錫(ITOスクラップ)を使用し、この材料を予め10
00°Cで水素ガスを流し、還元したものである。この
材料の中には、不純物として錫12%、Fe19pp
m、酸素1ppm含有した。この試料を使用し、電解液
及び条件を、インジウム濃度55g/L、PH1.5〜
2.5、電流密度0.6〜0.63A/dm、液温2
5〜40°C、塩素イオン量24〜51g/L、にかわ
0〜4mg/L、極間を40〜60mmに調整して、電
解精製したものである。この結果、錫(イオン)濃度は
1100mg/Lであった。この電解精製した後液に活
性炭を5〜100g/L添加し、錫(イオン)濃度を調
べた。この結果を表1に示す。なお、この場合に使用し
た活性炭の細孔径16Å、粒径250メッシュ以下、比
表面積1050m/gのものを使用し、撹拌時間60
分、回転数400rpmで処理した。
EXAMPLES Next, examples will be described. It should be noted that the present embodiment is merely an example of the invention, and the present invention is not limited to these embodiments. That is, it includes other aspects and modifications included in the technical idea of the present invention. As a sample for electrolytic refining, indium oxide-tin oxide (ITO scrap) was used.
The hydrogen gas was reduced by flowing hydrogen gas at 00 ° C. Among these materials, as impurities 12% tin, Fe19pp
m, containing 1 ppm of oxygen. Using this sample, the electrolytic solution and conditions were set to an indium concentration of 55 g / L, a pH of 1.5 to
2.5, current density 0.6 to 0.63 A / dm 2 , liquid temperature 2
The electrolytic purification was performed at 5 to 40 ° C., chlorine ion amount of 24 to 51 g / L, glue 0 to 4 mg / L, and gap between 40 to 60 mm. As a result, the tin (ion) concentration was 1100 mg / L. After the electrolytic purification, 5 to 100 g / L of activated carbon was added to the liquid, and the tin (ion) concentration was examined. The results are shown in Table 1. The activated carbon used in this case had a pore size of 16Å, a particle size of 250 mesh or less, and a specific surface area of 1050 m 2 / g.
Min., The rotation speed was 400 rpm.

【0011】[0011]

【表1】 [Table 1]

【0012】表1から明らかなように、無添加のときS
n濃度1100mg/Lであったが、活性炭5g/Lの
場合にSn濃度が360mg/Lに減少し、活性炭10
g/Lの添加で184mg/L、活性炭20g/Lの添
加で84mg/L、活性炭50g/Lの添加で38mg
/L、活性炭100g/Lの添加で15mg/Lに減少
した。電解液中に錫の沈殿物は約2000〜10000
mg/L存在したが、活性炭100g/Lの添加の場合
には、これらも同時に殆ど除去された。活性炭20g/
Lの添加で1/10以下に減少することが分かる。以上
から活性炭は多いほど良いが、その効果が飽和し活性炭
の処理量が多くなるだけなので、200g/L以下の添
加で十分である。以上から活性炭の添加は、電解液中の
Snの吸着除去に極めて有効であることが分かる。
As is clear from Table 1, when no addition is made, S
The n concentration was 1100 mg / L, but when the activated carbon was 5 g / L, the Sn concentration decreased to 360 mg / L, and the activated carbon 10
184 mg / L with addition of g / L, 84 mg / L with addition of activated carbon 20 g / L, 38 mg with addition of activated carbon 50 g / L
/ L and activated carbon 100 g / L were added to reduce the amount to 15 mg / L. Precipitation of tin in the electrolyte is about 2000-10000
There was mg / L, but when 100 g / L of activated carbon was added, these were almost removed at the same time. Activated carbon 20g /
It can be seen that the addition of L reduces it to 1/10 or less. From the above, the more activated carbon the better, but the effect is saturated and the treated amount of activated carbon only increases, so addition of 200 g / L or less is sufficient. From the above, it is understood that the addition of activated carbon is extremely effective in the adsorption removal of Sn in the electrolytic solution.

【0013】次に、撹拌の時間を変えその影響を調べ
た。活性炭の添加量は100g/Lとした。電解液中の
Sn濃度は330mg/Lであり、他は上記と同様であ
る。この結果を表2に示す。表2に示す通り、無撹拌の
場合にSn濃度は330mg/Lであったが、30分の
撹拌でSn濃度が45mg/Lとなり、60分以降は1
mg/L以下となった。このように、撹拌の効果は非常
に大きい。実験によれば、5分以上の撹拌でその効果が
現れた。
Next, the influence of stirring was examined by changing the stirring time. The amount of activated carbon added was 100 g / L. The Sn concentration in the electrolytic solution is 330 mg / L, and the others are the same as above. The results are shown in Table 2. As shown in Table 2, the Sn concentration was 330 mg / L without stirring, but the Sn concentration was 45 mg / L after stirring for 30 minutes, and the Sn concentration was 1 after 60 minutes.
It became less than mg / L. Thus, the effect of stirring is very large. According to the experiment, the effect was exhibited by stirring for 5 minutes or more.

【0014】[0014]

【表2】 [Table 2]

【0015】次に、活性炭の細孔径の影響を調べた。そ
の結果を表3に示す。処理前のSn濃度は1100mg
/Lであり、In濃度は47.6g/L、SO 2−
度は60g/L、Na濃度は18.7g/L、Cl
濃度は29.0g/Lである。活性炭の添加量は100
g/Lであり、該活性炭の粒径は200メッシュ以下、
比表面積1430m/gのものを使用し、撹拌時間6
0分、回転数400rpmで処理した。活性炭の細孔径
は16Åと30Åの2種類を使用した。この結果を表3
に示す。この表3に示す通り、活性炭の細孔径が30Å
に比べ、活性炭の細孔径は16Åの方がSnイオンの吸
着が著しいことが分かる。活性炭の細孔径が30Åでも
Snイオンの十分な吸着効果を示すが、より効率のよい
吸着効果を期待するとすれば、活性炭の細孔径が20Å
以下であることが望ましい。なお、この表から明らかな
ように、In、SO 2−、Na、Clには殆ど影
響がなく、Snイオンのみが選択的に吸着除去されてい
ることが分かる。
Next, the influence of the pore size of activated carbon was investigated. The results are shown in Table 3. Sn concentration before treatment is 1100 mg
/ L, In concentration is 47.6 g / L, SO 4 2− concentration is 60 g / L, Na + concentration is 18.7 g / L, Cl −.
The concentration is 29.0 g / L. The amount of activated carbon added is 100
g / L, the particle size of the activated carbon is 200 mesh or less,
Use with a specific surface area of 1430 m 2 / g, stirring time 6
Processing was carried out for 0 minutes at a rotation speed of 400 rpm. The activated carbon used had two pore sizes of 16Å and 30Å. The results are shown in Table 3.
Shown in. As shown in Table 3, the activated carbon has a pore size of 30Å
Compared with the above, it can be seen that the adsorption of Sn ions is more remarkable when the pore size of activated carbon is 16Å. Even if the activated carbon has a pore size of 30Å, it exhibits a sufficient Sn ion adsorption effect, but if a more efficient adsorption effect is expected, the activated carbon has a pore size of 20Å.
The following is desirable. As is clear from this table, In, SO 4 2− , Na + , and Cl are hardly affected, and only Sn ions are selectively adsorbed and removed.

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【発明の効果】本発明は、硫酸インジウム又は塩化イン
ジウム水溶液を用いるインジウムの電解精製において、
電解液後液を活性炭処理することにより、電解液中のメ
タスズ酸の懸濁物及び錫イオンを簡便にかつ効率良く除
去し、該電解液を再利用することにより電解精製による
インジウムを効率良く回収することができる優れた効果
を有する。
INDUSTRIAL APPLICABILITY The present invention provides electrolytic purification of indium using indium sulfate or indium chloride aqueous solution.
By treating the post-electrolyte solution with activated carbon, the suspension of metastannic acid and tin ions in the electrolyte solution can be removed easily and efficiently, and by reuse of the electrolyte solution, indium can be efficiently recovered by electrolytic refining. It has an excellent effect that can be.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 光一 茨城県北茨城市華川町臼場187番地4 株式会社日鉱マテリアルズ磯原工場内 (56)参考文献 特開 平10−204673(JP,A) 特開 平1−270511(JP,A) 特開 平1−270513(JP,A) 特開 平7−145432(JP,A) 特開2000−169991(JP,A) 特公 昭38−12806(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C25C 1/22 C22B 58/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Nakajima 187 Usuba, Hwagawa Town, Kitaibaraki City, Ibaraki Prefecture 4 Nikko Materials Co., Ltd. Isohara Plant (56) Reference JP-A-10-204673 (JP, A) JP-A-1-270511 (JP, A) JP-A-1-270513 (JP, A) JP-A-7-145432 (JP, A) JP-A-2000-169991 (JP, A) JP-B-38-12806 ( JP, B1) (58) Fields surveyed (Int.Cl. 7 , DB name) C25C 1/22 C22B 58/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硫酸インジウム又は塩化インジウム水溶
液を用いるインジウムの電解精製において、電解液を活
性炭処理することにより、電解液中のメタスズ酸の懸濁
物及び錫イオンを除去することを特徴とする電解精製に
よるインジウムの回収方法。
1. Electrolytic purification of indium using an aqueous solution of indium sulfate or indium chloride, characterized in that a suspension of metastannic acid and tin ions in the electrolytic solution are removed by treating the electrolytic solution with activated carbon. Method of recovering indium by purification.
【請求項2】 電解精製液中に活性炭を20〜200g
/L添加することを特徴とする請求項1に記載する電解
精製によるインジウムの回収方法。
2. Activated carbon in an electrolytically refined liquid is 20 to 200 g.
/ L is added, The method for recovering indium by electrolytic refining according to claim 1, characterized in that.
【請求項3】 電解精製液中に活性炭を50〜100g
/L添加することを特徴とする請求項1に記載する電解
精製によるインジウムの回収方法。
3. 50 to 100 g of activated carbon in the electrolytically refined liquid
/ L is added, The method for recovering indium by electrolytic refining according to claim 1, characterized in that.
【請求項4】 回転数400rpm以上で、5分以上撹
拌することを特徴とする請求項1〜3のそれぞれに記載
する電解精製によるインジウムの回収方法。
4. The method for recovering indium by electrolytic refining according to each of claims 1 to 3, wherein the rotation speed is 400 rpm or more and stirring is performed for 5 minutes or more.
【請求項5】 活性炭の細孔径が30Å以下であること
を特徴とする請求項1〜4のそれぞれに記載する電解精
製によるインジウムの回収方法。
5. The method for recovering indium by electrolytic refining according to each of claims 1 to 4, wherein the activated carbon has a pore size of 30 Å or less.
【請求項6】 活性炭の細孔径が20Å以下であること
を特徴とする請求項1〜4のそれぞれに記載する電解精
製によるインジウムの回収方法。
6. The method for recovering indium by electrolytic refining according to each of claims 1 to 4, wherein the activated carbon has a pore size of 20 Å or less.
【請求項7】 活性炭の粒径が250メッシュ以下であ
ることを特徴とする請求項1〜6のそれぞれに記載する
電解精製によるインジウムの回収方法。
7. The method for recovering indium by electrolytic refining according to claim 1, wherein the activated carbon has a particle size of 250 mesh or less.
【請求項8】 活性炭の比表面積が1050m/g以
上であることを特徴とする請求項1〜7のそれぞれに記
載する電解精製によるインジウムの回収方法。
8. The method for recovering indium by electrolytic refining according to each of claims 1 to 7, wherein the specific surface area of activated carbon is 1050 m 2 / g or more.
JP2000017168A 2000-01-26 2000-01-26 How to recover indium Expired - Lifetime JP3423910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000017168A JP3423910B2 (en) 2000-01-26 2000-01-26 How to recover indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017168A JP3423910B2 (en) 2000-01-26 2000-01-26 How to recover indium

Publications (2)

Publication Number Publication Date
JP2001207282A JP2001207282A (en) 2001-07-31
JP3423910B2 true JP3423910B2 (en) 2003-07-07

Family

ID=18544197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017168A Expired - Lifetime JP3423910B2 (en) 2000-01-26 2000-01-26 How to recover indium

Country Status (1)

Country Link
JP (1) JP3423910B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915016B2 (en) * 2005-12-14 2012-04-11 Dowaメタルマイン株式会社 Purification method of gallium-containing solution
JP4967155B2 (en) * 2006-09-29 2012-07-04 Dowaメタルマイン株式会社 Method for treating indium-containing solution
CN114045530B (en) * 2021-11-30 2022-12-30 广东先导稀材股份有限公司 Method for purifying and removing tin from indium sulfate electrolyte

Also Published As

Publication number Publication date
JP2001207282A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
JP4549501B2 (en) Indium recovery method
CN101528986B (en) Method for collection of valuable metal from ITO scrap
TWI432609B (en) Method for recovering valuable metal from indium - zinc oxide waste
JP4782238B2 (en) Method for recovering valuable metals from IZO scrap
KR20090055651A (en) Method for collection of valuable metal from ito scrap
JP3203587B2 (en) How to recover indium
KR20090057141A (en) Method for collection of valuable metal from ito scrap
JP4519294B2 (en) Indium recovery method
JP2009035808A (en) Method for separating tin from coexistence metal
JP2003247089A (en) Method of recovering indium
JP2007009274A (en) Method for recovering indium
JP3423910B2 (en) How to recover indium
JP4598921B2 (en) Indium recovery method
JP5217480B2 (en) Recovery method of crude indium
JP2018016822A (en) Production method of high purity indium
JP5283403B2 (en) Indium recovery method
JP2012219314A (en) Method for recovering platinum from blasting powder
JP3933869B2 (en) Method for recovering indium hydroxide or indium
CN112708763B (en) Method for recovering valuable metal from ITO waste target
CN114540639B (en) Impurity removing method for zinc metallurgy leaching solution by ammonia method
JPH0253497B2 (en)
JP5177471B2 (en) Method for recovering indium hydroxide or indium
JPS5888124A (en) Palladium purification and recovery
JP2002003961A (en) Method for recovering indium
JP3296170B2 (en) How to remove osmium from chloride solutions

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030415

R150 Certificate of patent or registration of utility model

Ref document number: 3423910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term