JP4915015B2 - Purification method of gallium-containing solution - Google Patents

Purification method of gallium-containing solution Download PDF

Info

Publication number
JP4915015B2
JP4915015B2 JP2005360067A JP2005360067A JP4915015B2 JP 4915015 B2 JP4915015 B2 JP 4915015B2 JP 2005360067 A JP2005360067 A JP 2005360067A JP 2005360067 A JP2005360067 A JP 2005360067A JP 4915015 B2 JP4915015 B2 JP 4915015B2
Authority
JP
Japan
Prior art keywords
gallium
solution
metal
impurities
containing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005360067A
Other languages
Japanese (ja)
Other versions
JP2007162072A (en
Inventor
三雄 鐙屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2005360067A priority Critical patent/JP4915015B2/en
Publication of JP2007162072A publication Critical patent/JP2007162072A/en
Application granted granted Critical
Publication of JP4915015B2 publication Critical patent/JP4915015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、ガリウム含有溶液の精製方法に関し、特に、電解採取によってガリウムメタルを回収するために電解液として使用するガリウム電解液のようなガリウム含有溶液から不純物を除去してガリウム含有溶液を精製する方法に関する。   The present invention relates to a method for purifying a gallium-containing solution, and in particular, removes impurities from a gallium-containing solution, such as a gallium electrolyte used as an electrolytic solution to recover gallium metal by electrowinning, thereby purifying the gallium-containing solution. Regarding the method.

ガリウムは、一般に化合物半導体に使用されており、特に、6〜7Nグレイドの高純度ガリウムが、GaAsやGaPなどの化合物半導体の製造に使用され、IC、LSI、発光ダイオードなどに利用されている。また、アルコールの分解や化合のための触媒としてガリウム合金を使用することも注目されており、純度の高いガリウムが要求されている。   Gallium is generally used for compound semiconductors, and in particular, high purity gallium of 6 to 7 N grade is used for manufacturing compound semiconductors such as GaAs and GaP, and is used for ICs, LSIs, light emitting diodes, and the like. Further, the use of a gallium alloy as a catalyst for alcohol decomposition and compounding has attracted attention, and high-purity gallium is required.

ガリウムは、亜鉛製錬やアルミニウム製錬の副産物として少量回収される金属元素であり、最近では、ガリウムを含むスクラップからも回収されている。このようなガリウムを含有する製錬の副産物やスクラップからガリウムを得るために、一般に、ガリウムを含む製錬の副産物やスクラップをアルカリ溶液に溶解して濃縮した後、電解採取によってガリウムを金属として回収することが行われている。   Gallium is a metal element that is recovered in a small amount as a by-product of zinc smelting and aluminum smelting, and has recently been recovered from scrap containing gallium. In order to obtain gallium from smelting by-products and scrap containing gallium, gallium-containing smelting by-products and scrap are generally dissolved in an alkali solution and concentrated, and then recovered as metal by electrowinning. To be done.

このような電解採取に使用するガリウム電解液には、採取目的である金属、即ちガリウム以外の不純物金属などの電解採取の阻害要因となる成分が含まれていないことが望ましい。しかし、製錬の副産物やスクラップをアルカリに溶解した溶液には、ガリウム以外の様々な不純物金属が含まれているため、電解採取前に薬品の添加や固液分離などによって不純物金属などの電解採取の阻害要因となる成分を除去している。   It is desirable that the gallium electrolyte used for such electrowinning does not contain any components that hinder the electrowinning, such as metals that are intended for collection, that is, impurity metals other than gallium. However, since the solution of smelting by-products and scrap dissolved in alkali contains various impurity metals other than gallium, electrolytic collection of impurity metals, etc. by adding chemicals or solid-liquid separation before electrolytic collection. The component which becomes the obstruction factor is removed.

また、電解採取によって得られるガリウムの純度は、ガリウム電解液の組成によってほぼ決定されてしまうため、ガリウム電解液の組成は重要である。電解液の元になる電解元液には、鉄、銅、鉛、錫、インジウムなどの不純物金属が含まれている場合があり、これらの金属が微量でも含まれると、電解採取において、これらの不純物金属がガリウムメタルとともに電着して、ガリウムメタルの品位が低下するだけでなく、さらにガリウム純度を高める高純度精製工程への大きな負荷になっている。   In addition, the composition of the gallium electrolyte is important because the purity of gallium obtained by electrowinning is almost determined by the composition of the gallium electrolyte. The electrolytic source solution that is the source of the electrolytic solution may contain impurity metals such as iron, copper, lead, tin, and indium. If these metals are contained even in trace amounts, Impurity metals are electrodeposited together with gallium metal, which not only lowers the quality of gallium metal, but also places a heavy burden on the high purity purification process that further increases the purity of gallium.

ガリウム電解液の精製方法として、ガリウム電解液にアルカリ金属のシュウ酸塩を添加して生成するインジウムの沈殿物を濾別し、あるいは、ガリウム電解液にアルカリ土類金属の水酸化物または酸化物を添加して生成するバナジウムの沈殿物を濾別することにより、インジウムやバナジウムを除去する方法が提案されている(例えば、特許文献1参照)。また、陰極の電流密度を0.05〜0.1A/dmの低電流密度に保持して、インジウム、銅、鉛などの不純物を含むガリウム電解液の電解を行うことにより、インジウム、銅、鉛などの不純物を陰極側に電着させて、電解液から分離・除去する方法が提案されている(例えば、特許文献2参照)。 As a purification method of gallium electrolyte, indium precipitate formed by adding alkali metal oxalate to gallium electrolyte is filtered, or alkaline earth metal hydroxide or oxide is added to gallium electrolyte. There has been proposed a method for removing indium and vanadium by filtering the precipitate of vanadium formed by adding (see, for example, Patent Document 1). In addition, by maintaining the cathode current density at a low current density of 0.05 to 0.1 A / dm 2 and performing electrolysis of a gallium electrolyte containing impurities such as indium, copper, and lead, indium, copper, A method has been proposed in which impurities such as lead are electrodeposited on the cathode side to be separated and removed from the electrolytic solution (see, for example, Patent Document 2).

特開昭63−496号公報(第2頁)Japanese Patent Laid-Open No. 63-496 (2nd page) 特開平6−192875号公報(段落番号0008−0012)JP-A-6-192875 (paragraph numbers 0008-0012)

しかし、特許文献1の方法は、ガリウム電解液からインジウムまたはバナジウムおよび銅を除去する方法であり、不純物として鉄、鉛、錫などを含むガリウム電解液の精製に適用することができない。   However, the method of Patent Document 1 is a method of removing indium or vanadium and copper from a gallium electrolyte, and cannot be applied to the purification of a gallium electrolyte containing iron, lead, tin or the like as impurities.

また、特許文献2の方法は、インジウム、銅および鉛を除去する方法であり、不純物として鉄や錫などを含むガリウム電解液を十分に精製することができない。また、この方法では、不純物の除去に長時間を要するとともに、ガリウム電解液の精製用の電解設備が必要になり、コストが高くなる。   Moreover, the method of patent document 2 is a method of removing indium, copper, and lead, and cannot fully purify the gallium electrolyte solution which contains iron, tin, etc. as an impurity. In addition, this method requires a long time to remove impurities and requires an electrolytic facility for purifying the gallium electrolyte, which increases the cost.

また、ガリウム電解液がアルカリ性である場合に、電解元液から不純物を簡便に且つ短時間で除去して高純度ガリウムを得るためのガリウム電解液として使用することができるようにする方法が望まれている。さらに、電解元液中に不純物として銅、鉛およびインジウムの他に錫が含まれる場合のように、電解元液中に様々な不純物が含まれる場合にも、電解元液から不純物を簡便に且つ短時間で除去することができる方法が望まれている。   In addition, when the gallium electrolyte is alkaline, a method is desired that can be used as a gallium electrolyte for obtaining high-purity gallium by simply removing impurities from the electrolytic base solution in a short time. ing. Furthermore, even when various impurities are contained in the source solution, such as when the source solution contains tin in addition to copper, lead, and indium, impurities can be easily removed from the source solution. A method that can be removed in a short time is desired.

したがって、本発明は、このような従来の問題点に鑑み、不純物として銅、鉄、鉛、錫およびインジウムの少なくとも1種を含むガリウム含有溶液から簡便に且つ短時間で不純物を除去することができる、ガリウム含有溶液の精製方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention can remove impurities from a gallium-containing solution containing at least one of copper, iron, lead, tin and indium as impurities easily and in a short time. An object of the present invention is to provide a method for purifying a gallium-containing solution.

本発明者らは、上記課題を解決するために鋭意研究した結果、不純物としての銅、鉄、鉛、錫およびインジウムの少なくとも1種とガリウムとを含む溶液に金属亜鉛を添加することにより、ガリウム含有溶液から簡便に且つ短時間で不純物を除去することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have added gallium to a solution containing at least one of copper, iron, lead, tin, and indium as impurities and gallium, thereby obtaining gallium. It has been found that impurities can be easily removed from the contained solution in a short time, and the present invention has been completed.

すなわち、本発明によるガリウム含有溶液の精製方法は、銅、鉄、鉛、錫およびインジウムの少なくとも1種とガリウムとを含む溶液に金属亜鉛を添加した後、濾過することを特徴とする。このガリウム含有溶液の精製方法において、溶液がアルカリ性溶液であるのが好ましく、溶液中の遊離NaOH濃度を150g/L以下に調整するのが好ましく、溶液の温度を40℃以下に調整するのが好ましい。また、金属亜鉛が亜鉛末であるのが好ましい。さらに、濾過後の濾液は、電解採取によってガリウムメタルを回収するためのガリウム電解液として使用することができる。   That is, the method for purifying a gallium-containing solution according to the present invention is characterized by adding metal zinc to a solution containing at least one of copper, iron, lead, tin and indium and gallium and then filtering. In this gallium-containing solution purification method, the solution is preferably an alkaline solution, the free NaOH concentration in the solution is preferably adjusted to 150 g / L or less, and the temperature of the solution is preferably adjusted to 40 ° C. or less. . The zinc metal is preferably zinc dust. Furthermore, the filtrate after filtration can be used as a gallium electrolyte for recovering gallium metal by electrowinning.

本発明によれば、不純物として銅、鉄、鉛、錫およびインジウムの少なくとも1種を含むガリウム含有溶液から簡便に且つ短時間で不純物を除去して、ガリウム含有溶液中の不純物の濃度を極めて低濃度にすることができる。このようにして得られたガリウム電解液を使用して電解採取を行うことにより、高純度のガリウムを回収することができる。   According to the present invention, impurities are easily removed in a short time from a gallium-containing solution containing at least one of copper, iron, lead, tin and indium as impurities, and the concentration of impurities in the gallium-containing solution is extremely low. Can be a concentration. By performing electrowinning using the gallium electrolyte solution thus obtained, high-purity gallium can be recovered.

本発明によるガリウム含有溶液の精製方法の実施の形態では、銅、鉄、鉛、錫およびインジウムの少なくとも1種とガリウムとを含む溶液に金属亜鉛を添加し、攪拌した後、濾過して濾液を回収する。   In an embodiment of the method for purifying a gallium-containing solution according to the present invention, zinc metal is added to a solution containing at least one of copper, iron, lead, tin and indium and gallium, stirred, and then filtered to obtain a filtrate. to recover.

金属亜鉛として、粉状、粒状、片状などの亜鉛末を使用することができる。金属亜鉛の形態は、液中で反応可能な形態であればよい。この金属亜鉛の形状は、特に限定されないが、液との混合や反応性を向上させるために、液中で分散する状態であればよく、金属亜鉛の大きさは、数μm〜数mm程度がよい。また、亜鉛の純度は、99%以上であればよいが、他の金属成分などを含む場合であっても、アルカリ液中または電解元液中において他の金属成分が溶出しなければよい。   As the metallic zinc, zinc powder in powder form, granular form or flake form can be used. The form of metallic zinc should just be a form which can react in a liquid. The shape of the metallic zinc is not particularly limited, but may be in a state of being dispersed in the liquid in order to improve mixing with the liquid and reactivity, and the size of the metallic zinc is about several μm to several mm. Good. Moreover, the purity of zinc should just be 99% or more, However, Even if it is a case where another metal component etc. are included, the other metal component should just not elute in an alkaline solution or an electrolysis original solution.

また、金属亜鉛の反応温度が40℃以上であると、以下の反応が急速に進む。すなわち、水素ガスを発生しながら亜鉛末の自然溶解が急速に進み、反応が短時間で終了して、十分な置換反応を行うことができなくなる。また、液中に亜鉛が溶出して亜鉛の濃度を上げる結果になる。したがって、溶液の温度は、40℃以下に調整するのが好ましく、低いほど好ましい。
Zn+2OH=ZnO 2−+H
Moreover, the following reaction will advance rapidly that the reaction temperature of metallic zinc is 40 degreeC or more. That is, the natural dissolution of zinc powder proceeds rapidly while generating hydrogen gas, the reaction is completed in a short time, and a sufficient substitution reaction cannot be performed. In addition, zinc is eluted in the liquid, resulting in an increase in zinc concentration. Therefore, it is preferable to adjust the temperature of the solution to 40 ° C. or lower, and the lower the temperature, the more preferable.
Zn + 2OH = ZnO 2 2− + H 2

また、溶液中の遊離NaOH濃度は150g/L以下であるのが好ましく、低いほど好ましい。遊離NaOH濃度が150g/L以上になると、イオン化傾向が卑な不純物である鉛、錫、インジウムなどの除去能力が低下するからである。この原因は、これらの不純物が一旦メタルまで還元されても、それぞれHPbO またはPbO 2−、SnO 、InO として再溶解が進み、その結果、トータルとしての除去能力が低下するからであると考えられる。 Moreover, it is preferable that the free NaOH concentration in a solution is 150 g / L or less, and it is so preferable that it is low. This is because when the free NaOH concentration is 150 g / L or more, the ability to remove lead, tin, indium and the like, which are impurities with a low ionization tendency, decreases. This cause is also these impurities is temporarily reduced to the metal, respectively HPbO 2 - or PbO 3 2-, SnO 3 -, InO 2 - remelting process proceeds as a result, the removal capacity as a total decrease It is thought that it is from.

このように、溶液中の遊離NaOH濃度が150g/L以下であり、且つ亜鉛末の反応温度が40℃以下であるのが好ましく、30分程度の反応時間で十分に平衡に達する。   Thus, the free NaOH concentration in the solution is preferably 150 g / L or less, and the reaction temperature of the zinc powder is preferably 40 ° C. or less, and a sufficient equilibrium is reached in a reaction time of about 30 minutes.

本発明によるガリウム含有溶液の精製方法により得られた濾液は、電解採取によってガリウムメタルを回収するためのガリウム電解液として使用することができる。ガリウム電解液中のガリウム以外の金属元素は、電解採取によって得られるガリウムメタルの組成に大きく影響する。そのため、この電解液は、アルカリ性であり、電解液中の不純物としての銅、鉄、鉛、錫およびインジウムの含有量の合計が5ppm以下であるのが好ましい。ガリウムメタル中の不純物としての銅、鉄、鉛、錫およびインジウムの含有量の合計が5ppm以下であれば、ガリウムメタルの品位は99.999質量%以上になり、半導体や触媒の材料として利用可能になる。さらに高純度の6N(99.9999質量%)、7N(99.99999質量%)のガリウムを製造する精製工程においても利用可能であり、精製工程における添加剤や設備の負担を極めて低減することができ、コストを削減することが可能になる。   The filtrate obtained by the method for purifying a gallium-containing solution according to the present invention can be used as a gallium electrolyte for recovering gallium metal by electrowinning. Metal elements other than gallium in the gallium electrolyte greatly affect the composition of gallium metal obtained by electrowinning. Therefore, this electrolytic solution is alkaline, and the total content of copper, iron, lead, tin and indium as impurities in the electrolytic solution is preferably 5 ppm or less. If the total content of copper, iron, lead, tin and indium as impurities in gallium metal is 5 ppm or less, the quality of gallium metal will be 99.999 mass% or more, and it can be used as a material for semiconductors and catalysts. become. Furthermore, it can be used in a purification process for producing high-purity 6N (99.9999 mass%) and 7N (99.99999 mass%) gallium, and can greatly reduce the burden on additives and equipment in the purification process. And cost can be reduced.

以下、本発明によるガリウム含有溶液の精製方法の実施例について詳細に説明する。   Examples of the method for purifying a gallium-containing solution according to the present invention will be described in detail below.

[実施例1]
まず、ガリウム含有溶液として、亜鉛製錬で回収された電解元液を用意した。この電解元液は、表1に示す組成であった。
[Example 1]
First, an electrolytic base solution recovered by zinc smelting was prepared as a gallium-containing solution. This electrolytic base solution had the composition shown in Table 1.

Figure 0004915015
Figure 0004915015

次に、この電解元液の浄液処理を行った。すなわち、電解元液をHSOで逆中和して、遊離NaOH濃度を103g/Lに調整し、この溶液1.1Lをビーカーに入れ、スターラーで攪拌しながら、亜鉛末2gを入れて、温度40℃で30分間反応させた後、C濾紙で吸引濾過して濾液を得た。 Next, the electrolytic treatment of the electrolytic base solution was performed. That is, the electrolytic base solution was reverse neutralized with H 2 SO 4 to adjust the free NaOH concentration to 103 g / L, and 1.1 L of this solution was placed in a beaker, and 2 g of zinc dust was added while stirring with a stirrer. The mixture was reacted at a temperature of 40 ° C. for 30 minutes, and then filtered with suction through C filter paper to obtain a filtrate.

次に、得られた溶液1Lを電解液として使用し、SUS316Lからなるカソード1枚(カソード液接面積:0.0153m)とアノード2枚を配置し、通電流を6.38A、陰極の電流密度を417A/m、通電時間を17時間とし、電解終了時のガリウム濃度が1g/L以下になることを確認して、電解採取を行い、ガリウムメタルを回収した。得られたガリウムメタル中の不純物の品位を表2に示す。表2に示すように、ガリウムメタル中の不純物は、僅かに検出されただけであった。 Next, 1 L of the obtained solution was used as an electrolytic solution, and one cathode made of SUS316L (cathode liquid contact area: 0.0153 m 2 ) and two anodes were arranged, the current flow was 6.38 A, the cathode current The density was 417 A / m 2 , the energization time was 17 hours, and it was confirmed that the gallium concentration at the end of electrolysis was 1 g / L or less, and electrowinning was performed to recover gallium metal. Table 2 shows the quality of impurities in the obtained gallium metal. As shown in Table 2, impurities in gallium metal were only slightly detected.

Figure 0004915015
Figure 0004915015

[実施例2〜4]
亜鉛末を反応させる際の温度をそれぞれ35℃(実施例2)、30℃(実施例3)、25℃(実施例4)とした以外は実施例1と同様の方法により得られた電解液を用いて、実施例1と同様の電解採取によりガリウムメタルを回収した。得られたガリウムメタル中の不純物の品位を表2に示す。表2に示すように、ガリウムメタル中の不純物の量は、全て分析定量下限以下であった。
[Examples 2 to 4]
Electrolyte obtained by the same method as in Example 1 except that the temperature at which the zinc powder was reacted was 35 ° C. (Example 2), 30 ° C. (Example 3), and 25 ° C. (Example 4), respectively. Gallium metal was recovered by electrowinning in the same manner as in Example 1. Table 2 shows the quality of impurities in the obtained gallium metal. As shown in Table 2, the amounts of impurities in gallium metal were all below the lower limit of analytical quantification.

[比較例]
実施例1と同様の電解元液を用いて、実施例1と同様の電解採取によりガリウムメタルを回収した。得られたガリウムメタル中の不純物の品位を表2に示す。表2に示すように、この比較例では、実施例1〜4と比べて、ガリウムメタル中の不純物の量が非常に多かった。したがって、実施例1〜4では、簡便な方法で且つ短時間で種々の不純物の量を非常に低レベルまで減少させて、不純物を十分に除去することができるのがわかる。
[Comparative example]
Gallium metal was recovered by electrowinning as in Example 1 using the same electrolytic base solution as in Example 1. Table 2 shows the quality of impurities in the obtained gallium metal. As shown in Table 2, in this comparative example, the amount of impurities in the gallium metal was much larger than in Examples 1 to 4. Therefore, in Examples 1-4, it turns out that the quantity of various impurities can be reduced to a very low level by a simple method in a short time, and an impurity can fully be removed.

Claims (5)

銅、鉄、鉛、錫およびインジウムの少なくとも1種とガリウムとを含むアルカリ性溶液に金属亜鉛を添加した後、濾過することを特徴とする、ガリウム含有溶液の精製方法。 A method for purifying a gallium-containing solution, comprising adding metal zinc to an alkaline solution containing at least one of copper, iron, lead, tin, and indium and gallium, followed by filtration. 前記アルカリ性溶液中の遊離NaOH濃度を150g/L以下に調整することを特徴とする、請求項1に記載のガリウム含有溶液の精製方法。 The method for purifying a gallium-containing solution according to claim 1, wherein the concentration of free NaOH in the alkaline solution is adjusted to 150 g / L or less. 前記アルカリ性溶液の温度を40℃以下に調整することを特徴とする、請求項1または2に記載のガリウム含有溶液の精製方法。 And adjusting the temperature of the alkaline solution to 40 ° C. or less, the purification method of the gallium-containing solution according to claim 1 or 2. 前記金属亜鉛が亜鉛末であることを特徴とする、請求項1乃至のいずれかに記載のガリウム含有溶液の精製方法。 The method for purifying a gallium-containing solution according to any one of claims 1 to 3 , wherein the metallic zinc is zinc dust. 前記濾過後の濾液が、電解採取によってガリウムメタルを回収するためのガリウム電解液として使用する溶液であることを特徴とする、請求項1乃至のいずれかに記載のガリウム含有溶液の精製方法。 The method for purifying a gallium-containing solution according to any one of claims 1 to 4 , wherein the filtrate after filtration is a solution used as a gallium electrolyte for recovering gallium metal by electrowinning.
JP2005360067A 2005-12-14 2005-12-14 Purification method of gallium-containing solution Expired - Fee Related JP4915015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360067A JP4915015B2 (en) 2005-12-14 2005-12-14 Purification method of gallium-containing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360067A JP4915015B2 (en) 2005-12-14 2005-12-14 Purification method of gallium-containing solution

Publications (2)

Publication Number Publication Date
JP2007162072A JP2007162072A (en) 2007-06-28
JP4915015B2 true JP4915015B2 (en) 2012-04-11

Family

ID=38245324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360067A Expired - Fee Related JP4915015B2 (en) 2005-12-14 2005-12-14 Purification method of gallium-containing solution

Country Status (1)

Country Link
JP (1) JP4915015B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967330A (en) * 1982-10-08 1984-04-17 Dowa Mining Co Ltd Separation of gallium
JP3810963B2 (en) * 1999-09-29 2006-08-16 同和鉱業株式会社 Method for separating and concentrating Ga
JP4190678B2 (en) * 1999-10-26 2008-12-03 古河機械金属株式会社 Purification method of gallium

Also Published As

Publication number Publication date
JP2007162072A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP5151072B2 (en) Method for recovering metal constituting electrode from lithium battery
JP5532886B2 (en) Method for producing metallic indium
JP4298712B2 (en) Method for electrolytic purification of copper
JP5250683B2 (en) Recovery method of valuable metals from Pb-free waste solder
JP2738192B2 (en) Recovery method of crude indium for electrolysis
JP5589854B2 (en) How to recover bismuth
JP2007270262A (en) Method for collecting indium
JP2015086436A (en) Method for recovering valuable material
JP4915015B2 (en) Purification method of gallium-containing solution
KR101481366B1 (en) Selective recovery method of silver and tin in the anode slime
JP2642230B2 (en) Manufacturing method of high purity tin
JP5471735B2 (en) Method for removing tin and thallium and method for purifying indium
JP4872097B2 (en) Purification method of gallium-containing solution
JP4842426B2 (en) Method for producing high purity silver
JP4779163B2 (en) Method for producing copper sulfate solution
JP2019203199A (en) Electrolytic method of bismuth
JP4915016B2 (en) Purification method of gallium-containing solution
JP4872098B2 (en) Purification method of gallium-containing solution
JP5002790B2 (en) Gallium recovery method
JP6457039B2 (en) Silver recovery method
CN1304611C (en) Method for removal of silver from a copper chloride solution
JP7279540B2 (en) Gallium recovery method
JP4914975B2 (en) Manufacturing method of high purity indium metal
KR101752727B1 (en) Method for recovering tin from tin residue
JP5553646B2 (en) Purification method of ammonium tungstate solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees